

Problem Data

Process	Start	Burst Time t
A	0	7
B	4	4
C	5	1
D	9	1
E	12	3

Legend

$M=$ process missing the processor
$A=$ process A executing
$B=$ process B executing
$C=$ process C executing
$D=$ process D executing
$E E=$ process E executing

1. First-Come-First-Serve (FCFS)

Time

\section*{Gantt
 | A | A | A | A | A | A | A | B | B | B | B | C | D | E | E | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

$\square=$ the time interval from 0 to 1
A scheduling decision is made at a time point, and then some process runs during the time interval between time points.

$t=$ processing time required (burst time)
$T=$ elapsed time (including missed)
$M=T-t=$ missed (idle) time for process
$R=t / T=$ ratio (response) time
$P=T / t=$ penalty ratio $=1 / R$

Process	t	T	M	R	P
A	7	7	0	1	1
B	4	7	3	$4 / 7$	$7 / 4$
C	1	7	6	$1 / 7$	7
D	1	4	3	$1 / 4$	4
E	3	4	1	$3 / 4$	$4 / 3$

Problem Data Legend

Process	Start	Burst Time t
A	0	7
B	4	4
C	5	1
D	9	1
E	12	3

$M=$ process missing the processor
$A=$ process A executing
$B=$ process B executing
$C=$ process C executing
$D=$ process D executing
$E=$ process E executing

2. Round Robin (RR)

Run	A	A	A	A	B	A	C	B	A	B	D	A	B	E	E	E	Running on processor
QP1					A	C	B	A	B	D	A	B	E				Queue Position 1
QP2						B	A			A	B						Queue Position 2
QP3																	Queue Position 3

\section*{Gantt
 | A | A | A | A | B | A | C | B | A | B | D | A | B | E | E | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

When adding to the back of the queue, a new process is added first then the preempted process

Process	t	T	$\mathrm{M}=\mathrm{T}-\mathrm{t}$	$\mathrm{R}=\mathrm{t} / \mathrm{T}$	$\mathrm{P}=\mathrm{T} / \mathrm{t}$
A	7	12	5	$7 / 12$	$12 / 7$
B	4	9	5	$4 / 9$	$9 / 4$
C	1	2	1	$1 / 2$	2
D	1	2	1	$1 / 2$	2
E	3	4	1	$3 / 4$	$4 / 3$

Sctiedulining Ilgorithme 3 : Problem Data

Process	Start	Burst Timet
A	0	7
B	4	4
C	5	1
D	9	1
E	12	3

3. Shortest Job First (SJF)

Gantt

| A | C | B | B | B | B | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Process	t	T	$\mathrm{M}=\mathrm{T}-\mathrm{t}$	$\mathrm{R}=\mathrm{t} / \mathrm{T}$	$\mathrm{P}=\mathrm{T} / \mathrm{t}$
A	7	7	0	1	1
B	4	8	4	$4 / 8$	2
C	1	3	2	$1 / 3$	3
D	1	4	3	$1 / 4$	4
E	3	4	1	$3 / 4$	$4 / 3$

If two processes have equal priority, the one waiting longer in the ready list is chosen.

Process	Start	Burst Time t
A	0	7
B	4	4
C	5	1
D	9	1
E	12	3

Preemptive, based on time left in burst.
Easy if you know burst length. In practice, you must estimate.

A form of priority algorithm, where priority is determined by (estimated) remaining burst length.

4. Shortest Remaining Time (SRT)

Run
RL1
RL2
RL3

A	A	A	A	A	C	A	A	B	D	B	B	B	E	E	E
				B	A	B	B		B			E			
					B										

Ready List, position 1 Ready List, position 2 Ready List, position 3

Gantt | A | A | A | A | A | C | A | A | B | D | B | B | B | E | E | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Process	t	T	$\mathrm{M}=\mathrm{T}-\mathrm{t}$	$\mathrm{R}=\mathrm{t} / \mathrm{T}$	$\mathrm{P}=\mathrm{T} / \mathrm{t}$
A	7	8	1	$7 / 8$	$8 / 7$
B	4	9	5	$4 / 9$	$9 / 4$
C	1	1	0	1	1
D	1	1	0	1	1
E	3	4	1	$3 / 4$	$4 / 3$

Problem Data

0 is the highest priority

Process	Start	Burst Time t	Priority
A	0	7	4
B	4	4	0
C	5	1	2
D	9	1	1
E	12	3	3

5. Nonpreemptive Priority

Many ways of choosing priorities:

- if you use estimated run time, you get shortest job first - here, assign priorities

Ready list ordered by priority first, and arrival time second

Run
RL1
RL2
RL3

A	A	A	A	A	A	A	B	B	B	B	D	C	E	E	E	Running on processor Ready List, position 1
				B	B	B	C	C	D	D	C	E				
Ready List, position 2																

Gantt

Process	t	T	$\mathrm{M}=\mathrm{T}-\mathrm{t}$	$\mathrm{R}=\mathrm{t} / \mathrm{T}$	$\mathrm{P}=\mathrm{T} / \mathrm{t}$
A	7	7	0	1	1
B	4	7	3	$4 / 7$	$7 / 4$
C	1	8	7	$1 / 8$	8
D	1	3	2	$1 / 3$	3

E	3	4	1	$3 / 4$	$4 / 3$

If two processes have equal priority, the one waiting longer in the ready list is chosen.

Problem Data

0 is the highest priority

Process	Start	Burst Time t	Priority
A	0	7	4
B	4	4	0
C	5	1	2
D	9	1	1
E	12	3	3

Many ways of choosing priorities:
-- e.g., use estimated run time
-- here, priorities are assigned
Ready list ordered by priority first, and arrival time second

6. Preemptive Priority

Gantt

A	A	A	A	B	B	B	B	C	D	A	A	E	E	E	A

Process	t	T	$\mathrm{M}=\mathrm{T}-\mathrm{t}$	$\mathrm{R}=\mathrm{t} / \mathrm{T}$	$\mathrm{P}=\mathrm{T} / \mathrm{t}$
A	7	16	9	$7 / 16$	$16 / 7$
B	4	4	0	1	1
C	1	4	3	$1 / 4$	4

D	1	1	0	1	1
E	3	3	0	1	1

If two processes have equal priority, the one waiting longer in the ready list is chosen.

 Problem DataUse burst time to automatically determine priority. The longer the burst, the lower

Process	Start	Burst Time t
A	0	7
B	4	4
C	5	1
D	9	1
E	12	3

Use multiple queues, each sorted by arrival order. Choose first process from highest level queue. Number of queues, $Q=3$.

Always preemptive. Here, quantum $\mathrm{q}=2$.

7. Multileve1 Feedback Queues (FB)

Gantt | A | A | A | A | B | B | C | B | B | D | A | A | E | E | E | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Process	t	T	$\mathrm{M}=\mathrm{T}-\mathrm{t}$	$\mathrm{R}=\mathrm{t} / \mathrm{T}$	$\mathrm{P}=\mathrm{T} / \mathrm{t}$
A	7	16	9	$7 / 16$	$16 / 7$

B	4	5	1	$4 / 5$	$5 / 4$
C	1	2	1	$1 / 2$	2
D	1	1	0	1	1
E	3	3	0	1	1

