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Abstract. When mining a large database, the number of patterns dis-
covered can easily exceed the capabilities of a human user to identify in-
teresting results. To address this problem, various techniques have been
suggested to reduce and/or order the patterns prior to presenting them
to the user. In this paper, our focus is on ranking summaries generated
from a single dataset, where attributes can be generalized in many dif-
ferent ways and to many levels of granularity according to taxonomic
hierarchies. We theoretically and empirically evaluate thirteen diversity
measures used as heuristic measures of interestingness for ranking sum-
maries generated from databases. The thirteen diversity measures have
previously been utilized in various disciplines, such as information the-
ory, statistics, ecology, and economics. We describe five principles that
any measure must satisfy to be considered useful for ranking summaries.
Theoretical results show that only four of the thirteen diversity measures
satisfy all of the principles. We then analyze the distribution of the index
values generated by each of the thirteen diversity measures. Empirical re-
sults, obtained using synthetic data, show that the distribution of index
values generated tend to be highly skewed about the mean, median, and
middle index values. The objective of this work is to gain some insight
into the behaviour that can be expected from each of the measures in
practice.

1 Introduction

When mining a large database, the number of patterns discovered can easily ex-
ceed the capabilities of a human user to identify interesting results. To address
this problem, various techniques have been suggested to reduce and/or order the
patterns prior to presenting them to the user. For example, in [3], it is shown
that the most interesting rules may reside along a support/confidence border. A
technique is described in [20] that discovers interesting rules via an interactive
process that seeks to classify rules that are not interesting. In [8], a measure is de-
scribed that determines the interestingness (called surprise there) of discovered
knowledge via the explicit detection of Simpson’s Paradox. An approach is de-
scribed in [7] that utilizes a distance metric to evaluate the importance of a rule
by considering its unexpectedness in terms of other rules in its neighborhood.



Our focus is on the use of diversity measures for ranking summaries generated
from a single dataset, where attributes can be generalized in many different
ways and to many levels of granularity according to taxonomic hierarchies. We
introduced this use of diversity measures in [10] and [11]. An empirical analysis
found that highly ranked, concise summaries provided a reasonable starting point
for further analysis of discovered knowledge. It was also shown that for selected
sample datasets, the order in which some of the measures rank summaries is
highly correlated, but the rank ordering can vary substantially when different
measures are used. In [12], the notion of a summary was extended to include other
forms of knowledge representation, and we showed that these other forms are
also amenable to ranking using diversity measures. And significant progress has
been made into more theoretical issues regarding formal principles for diversity
measures used as measures of interestingness in data mining applications [14].

In this paper, we evaluate thirteen diversity measures as heuristic measures of
interestingness for ranking summaries in data mining applications. We describe
five principles that any measure must satisfy to be considered useful for ranking
summaries. OQur theoretical results show that only four of the thirteen diversity
measures satisfy all of the principles. We then analyze the distribution of the
index values generated by each of the thirteen diversity measures. Empirical
results, obtained using synthetic data, show that the distribution of index values
generated tend to be highly skewed about the mean, median, and middle index
values. The objective of this work is to gain some insight into the behaviour that
can be expected from each of the measures in practice so that when choosing a
candidate interestingness measure, we can determine which of the five principles
are satisfied, and then knowing the behavioural characteristics of each measure,
judge the suitability of the candidate interestingness measure for the intended
application.

The remainder of the paper is organized as follows. In Section 2, we describe
several forms of knowledge representation, which we collectively refer to as sum-
maries, and motivate the need for ranking discovered knowledge. In Section 3,
we provide a brief overview of thirteen diversity measures introduced and eval-
uated as heuristic measures of interestingness in previous work. In Section 4, we
describe five principles that useful diversity measures must satisfy, and identify
those diversity measures satisfying the five principles. In Section 5, we present
experimental results describing the distribution of index values generated by
each of the thirteen measures. We conclude in Section 6 with a summary of our
work and suggestions for future research.

2 Background and Motivation

Let a summary S be a relation defined on the columns {(A41, D1), (A2, Da2),
.oy (An, D)}, where each (A;, D;) is an attribute-domain pair. Also, let
{(A1,vi1), (A2, i), ..., (An,vin)}, i = 1,2,...,m, be a set of m unique tuples,
where each (A4;,v;;) is an attribute-value pair and each v;; is a value from the
domain D; associated with attribute A;. Let attribute Ay be a derived attribute



whose values v, from the domain Dy, for each attribute-value pair (Ag, v;5) is
an aggregation of values from the the unconditioned data present in the origi-
nal database. For example, a sample summary is shown in Table 1. Table 1 is
a generalized relation in which retail sales transactions have been aggregated
to show the derived attributes Quantity, Amount, and Count (i.e., number of
transactions) by Region.

Table 1. A generalized relation

|Region| Quantity|Amount| Count|

North 12 $150.00] 7
South 5 $325.00| 2
West 8 $200.00| 4
East 11 $275.00] 3

The summary definition given above can also be naturally extended to include
summaries that are multi-dimensional. For example, another sample summarys, is
shown in Figure 1. Figure 1 shows a data cube in which retail sales transactions
have been aggregated in three dimensions, where the Item attribute is on the
vertical dimension, Transact.Loc is on the horizontal, and Cust.Loc is on the
diagonal. Transact.Loc is the city where the sales transaction was processed,
and Cust.Loc is the city where the sales transaction was initiated. Here we show
each cell containing two values (due to space limitations); the top value is the
quantity of items aggregated from sales transactions (i.e., Quantity), and the
bottom value is the number of transactions aggregated (i.e., Count).
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Figure 1. A data cube

Of course, numerous methods could be used to guide the generation of sum-
maries, such as concept hierarchies [5], domain generalization graphs [15], Ga-



lois lattices [9], conceptual graphs [4], and formal concept analysis [22]. Also,
summaries could more generally include many other forms of knowledge repre-
sentation, such as database views, association rules, itemsets, and web search
results.

However, when given hundreds, or even thousands of summaries (possibly
multi-dimensional), it is simply not feasible to determine the most interesting
summaries or dimensions using a manual technique. What is needed are effective
measures of interestingness to assist in the interpretation and evaluation of the
discovered knowledge. The development of such measures is currently an active
research area in KDD. Such measures are broadly classified as either objective
or subjective. Objective measures are based upon the structure of discovered
patterns, such as the frequency with which combinations of items appear in
sales transactions [1]. Subjective measures are based upon user beliefs or biases
regarding relationships in the data, such as an approach utilizing Bayes Rule to
revise prior beliefs [18]. Here we focus on objective measures of interestingness.

3 Objective Interestingness Measures

The tuples in a summary or dimension generated from a database are unique,
and therefore, can be considered to be a population with a structure that can
be described by some frequency or probability distribution. Here, we review
thirteen diversity measures, described in detail in [10], and shown in Figure 2,
that evaluate the frequency or probability distribution of the values in a derived
attribute to assign a single real-valued index that represents its interestingness
relative to other summaries or dimensions generated from the same database.

In Figure 2, let m be the total number of tuples in a summary. Let n; be the
value contained in the derived attribute for tuple ¢;. Let N = Z:n:l n; be the
total of the derived attribute. Let p be the actual probability distribution of the
tuples based upon the values n;. Let p; = n;/N be the actual probability for
tuple ;. Let ¢ be a uniform probability distribution of the tuples. Let u = N/m
be the value for tuple ¢;, ¢ = 1,2,...,m according to the uniform distribution
q. Let ¢ = 1/m be the probability for tuple ¢;, for all i = 1,2,... m according
to the uniform distribution ¢. Let r be the probability distribution obtained by
combining the values n; and u. Let v; = (n; + 4)/2N, be the probability for
tuples ¢;, for all e = 1,2, ..., m according to the distribution r.

The measures shown in Figure 2 are well-known measures of dispersion, dom-
inance, inequality, and concentration that have previously been successfully ap-
plied in several areas of the social, ecological, information, and computer sciences.
Although the terminology varies depending upon the application, the concept of
diversity has been considered a useful one for analyzing many phenomena. For ex-
ample, in ecology, various measures of diversity have been proposed and studied
to aid in understanding the variability of populations of organisms within differ-
ent types of habitat [17]. Diversity measures have also been used by economists
and social scientists to study the distribution of income between different so-
cioeconomic groups and geographical regions [2]. In information theory, diversity
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Figure 2. Thirteen diversity measures

measures are used to measure the information content in messages [21]. Diver-
sity measures have been used to describe the linguistic differences between the
inhabitants of neighboring geographic regions [16]. More general treatments at-
tempt to define the concept of diversity and develop a related theory of diversity
measurement [19, 23].

4 Theoretical Results

We now describe principles of interestingness against which the utility of can-
didate interestingness measures can be assessed. We do this through the math-
ematical formulation of five principles that must be satisfied by any acceptable
diversity measure for ranking the interestingness of discovered knowledge using
our, or a similar, technique. Proofs are omitted due to space considerations, so
refer to [13] and [14] for complete details. We study functions f of m variables,
f(n1,...,nm), where f denotes a general measure of diversity, m and each n; (n;
assumed to be non-zero) are as defined in the previous section, and (ny,...,ny)
is a vector corresponding to the values in a derived numeric measure attribute



(e.g., the Count values from the examples in Section 2)for some arbitrary sum-
mary whose values are arranged in descending order such that ny > ... > n,,
(except for discussions regarding Iz orens, which requires that the values be ar-
ranged in ascending order). The principles presented here are for ranking the
interestingness of summaries generated from a single dataset, so we assume that
N is fixed. We justify the non-zero assumption for the n;’s, as follows. If the
value of the Count attribute for a particular tuple is zero, there are two possible
reasons. Either the combination of domain values being counted in the tuple can
occur in practice, but no occurrences have been encountered during the min-
ing process, or else the combination of domain values being summarized cannot
occur in practice, and no occurrences will ever be encountered (i.e., such an
entity does not exist). So, to preserve and simplify the general applicability of
our technique, we make no assumptions regarding the possibility of occurrence
of particular combinations of domain values. We now begin by specifying two
fundamental principles.

Minimum Value Principle (P1). Given a vector (n1,. .., %y ), where n; = nj,
i#j, forall i, j, f(n1,...,ny) attains its minimum value.

P1 specifies that the minimum interestingness should be attained when the
tuple counts are all equal (i.e., uniformly distributed). For example, given the
vectors (2,2), (50,50, 50), and (1000, 1000, 1000, 1000), we require that the index
value generated by f be the minimum possible for the respective values of m
and N.

Maximum Value Principle (P2). Given a vector (ni,...,nm,), where n; =
N—-—m+1,n,=1,i=2,...,m,and N > m, f(ny,...,ny) attains its maximum
value.

P2 specifies that the maximum interestingness should be attained when the
tuple counts are distributed as unevenly as possible. For example, given the
vectors (3,1), (148,1,1), and (3997,1,1, 1), where m = 2,3, and 5, respectively,
and N = 4,150, and 4000, respectively, we require that the index value generated
by f be the maximum possible for the respective values of m and N.

The behaviour of a measure relative to satisfying both P1 and P2 is significant
because it reveals an important characteristic about its fundamental nature as a
measure of diversity. A measure of diversity can generally be considered either a
measure of concentration or a measure of dispersion. A measure of concentration
can be viewed as the opposite of a measure of dispersion, and we can convert
one to the other via simple transformations. For example, if ¢ corresponds to
a measure of dispersion, then we can convert i1t to a measure of concentration
f, where f = max(g) — g. Here we only consider measures of concentration. A
measure was considered to be a measure of concentration if it satisfied P1 and P2
without transformation. A measure was considered to be a measure of dispersion
if it satisfied P1 and P2 following transformation. All measures of dispersion were
transformed into measures of concentration prior to our analysis.

Skewness Principle (P3). Given a vector (ni,...,ny), where ny = N—m—+1,
n;=1,i=2,...,myand N > m, and a vector (n1—c¢, na, ..., Wm, Wm+41, - - -, Rmte)s



where ny —¢ > land n; = 1,6 = 2,...,m+c, f(ny,...,nm) > flng —
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P3 specifies that a summary containing m tuples, whose counts are dis-
tributed as unevenly as possible, will be more interesting than a summary con-
taining m + ¢ tuples, whose counts are also distributed as unevenly as possible.
For example, given the vectors (999, 1) and (997,1,1,1) (i.e., ¢ = 2), we require
that £(999,1) > £(997,1,1,1).

Permutation Invariance Principle (P4). Given a vector (ny,...,n,) and
any permutation (é1,...,4m) of (1,...,m), f(n1,...,nm) = f(niy, ..., 04, ).

P4 specifies that every permutation of a given distribution of tuple counts
should be equally interesting. That is, interestingness i1s not a labeled property,
it 1s only determined by the distribution of the counts. For example, given the
vector (2,4,6), we require that f(2,4,6) = f(4,2,6) = f(4,6,2) = f(2,6,4) =
£(6,2,4) = f(6,4,2).

Transfer Principle (P5). Given a vector (ni,...,n,) and 0 < ¢ < ny,
flr, .o oonide, oo ng—c oo ) > f(na, o, o0, ).

P5, adapted from [6], specifies that when a strictly positive transfer is made
from the count of one tuple to another tuple whose count is greater, then inter-
estingness increases. For example, given the vectors (10,7,5,4) and (10,9, 5, 2),
we require that f(10,9,5,2) > f(10,7,5,4).

Those measures satisfying the above principles of interestingness are shown
in Table 2. In Table 2, the P1 to P5 columns describe the five principles, and a
measure that satisfies a principle is indicated by the bullet symbol (i.e., o).

Table 2. Measures satisfying the five principles

|Measure |P1|P2|P3|P4|P5|

Ivariance .

Isimpson

Ishannon

.
.
IncIntosh .

Irorens
IGini
IBerger

Ischuts

IBray

Iwhittaker

Infacarthur
IThed
Tatkinson

5 Experimental Results

We now analyze the distribution of the index values generated by each of the
thirteen measures. Input data consists of two populations of vectors shown in



Table 3, where index values for 16,928 vectors (i.e., all possible ordered arrange-
ments of a population of 50 objects among 10 classes) and 2,611 vectors (i.e.,
all possible ordered arrangements of a population of 50 objects among 5 classes)
were generated. The choice of vectors to evaluate here was made somewhat arbi-
trarily, but it does provide a large, controlled population of index values in which
a gradual change in evenness occurs from the most highly skewed distribution
in the first vector, to the uniform distribution in the last vector.

Table 3. Ordered arrangements of two populations

[50 objects / 10 classes [50 objects / 5 classes|
(41,1,1,1,1,1,1,1, 1, 1)[(46, 1,1, 1, 1)
(40,2,1,1,1,1,1,1,1,1)[(45,2,1,1, 1)
(39,3,1,1,1,1,1,1,1,1)|(44,3, 1,1, 1)

)

) |11, 11, 10, 10, 8)
(11, 10, 10, 10, 9)
) |(10, 10, 10, 10, 10)

[~~~
UT}T) <D
UTuUT <D
UTuUT ot
UTuUT ot
UTuUT ot
UTuUT ot
UTuUT ot
UTuUT ot
UTuUT W
ST
=z

Histograms of the absolute frequencies of the index values for the vectors in
Table 3 were generated for each measure. Again, due to space limitations, we
cannot show all of these histograms. However, sample histograms of the index
values generated for the population of 50 objects among 10 classes by Iy griance
and Igcpyt, are shown in Figures 3 and 4, respectively. In Figures 3 and 4, the
horizontal and vertical axes describe intervals for the index values generated
and the number of index values that fall in each interval, respectively. For ex-
ample, the histogram for Iy gpsgnce shows that 68 index values were generated
on the interval (0.000,0.0009], 1,106 on (0.0009,0.003], 2,464 on (0.003,0.005],
3,006 on (0.005,0.007], 2,581 on (0.007,0.008], 2,055 on (0.008,0.010], 1,549 on
(0.010,0.012], and 4,099 on the remaining intervals in (0.012,0.065]. A curve
describing the standard normal distribution (SND) of the index values is super-
imposed over the observed frequencies.

To provide a summary description of each histogram, we can use the skew-
ness and kurtosis for the distribution of index values. Skewness is a measure of
the symmetry of a distribution. It has a value of zero when the distribution is
a symmetrical curve (i.e., as in a SND). If the skewness is different from zero,
then the distribution is asymmetrical. A positive (negative) value indicates the
index values are clustered more to the left (right) of the mean, with most of the
extreme index values to the right (left) of the mean. In general, for positive (neg-
ative) skewness, we have mode < median < mean (mean < median < mode).
Kurtosis is a measure of the relative peakedness of a distribution and indicates
the extent to which outliers cause the distribution to differ from the SND. When
a distribution follows the SND, it has value of zero. When the value is greater
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than (less than) zero, the distribution has a sharper (flatter) peak than the SND
and is more (less) prone to containing outliers.

The skewness and kurtosis for all measures are shown in Table 4. In Table 4,
mnemonics are provided as an aid to interpreting the curves described by the
values. The skewness mnemonics describe the symmetry of the frequency distri-
bution in relation to the mean (i.e., AL = asymmetrical left, AR = asymmetrical
right, NS = near symmetrical, and S = symmetrical) and the kurtosis mnemon-
ics describe the relative peakedness of the frequency distribution in relation to
the SND (i.e., SP = sharp peaked, NSN = near standard normal, MP = more
peaked, and LP = less peaked). For example, the histogram for Iy 4rsance, shown
in Figure 3, has a skewness and kurtosis of approximately 1.8 and 5.6, respec-
tively. This means that the distribution of index values is asymmetrical to the
left of the mean (i.e., AL) and more sharply peaked than the SND (i.e., SP).
Similarly, in the histogram for Igcpytz, shown in Figure 5, the distribution of
index values is near symmetrical (i.e., NS) and less peaked than the SND (i.e.,
LP). The other measures in Table 4 can also be interpreted similarly.



Table 4. Skewness and kurtosis of the index values for the two populations

[ 50 objects / 10 classes | 50 objects / 5 classes |
Measure | Skewness | Kurtosis | Skewness |  Kurtosts |

Ivariance |[1.84421 |AL|5.571732 | SP |1.55959 |AL|3.273237 | SP
Isimpson 1.84421 |AL|5.571732 | SP |1.55959 |AL|3.273237 | SP
Ishannon [-0.95761|AR|1.357844 | MP |-1.03452|AR|1.391038 | MP
Inrerntosh |[-1.24351|AR|2.317341 | SP |-1.13072|AR|1.496420 | SP
Irorens 0.14435 | S [-0.232495|NSN|(0.02128 | S [-0.317871|NSN

IGin: -0.14435| S |-0.232495|NSN|-0.02128| S |-0.317871|NSN
IBerger 0.97607 |AL|[1.139526 | SP |0.75039 [AL|0.264196 | SP
Ischutz 0.13192 |NS|-0.130277| LP (0.27521 [NS|-0.076436| LP
IBray -0.13192|NS|-0.130277| LP |-0.27521|NS|-0.076436| LP

Iwhittaker [-0.13192[NS|-0.130277| LP |-0.27521|NS|-0.076436| LP
Infacarthur|0.68369 [AL|0.485805 | MP |0.86586 |AL|0.883313 | MP
Irheit -0.05563| S |-0.236451|NSN|0.68371 |AL|1.112360 | MP
Tatkinson [0.16650 |[NS|-0.422023| LP |0.30949 |AL|-0.476633| LP

wn

We now determine the number of index values generated by each measure
that are less than and greater than the middle index value (i.e., (ménimum +
maximum)/2), and less than and greater than the median (i.e., the value for
which 50% of the generated index values lie below and 50% lie above). Our belief
is that a useful measure of interestingness should generate index values that are
reasonably distributed throughout the range of possible values (such as in a
SND). Again, we analyze the index values generated from the two populations
shown in Table 3, with the results shown in Tables 5 and 6. In Tables 5 and 6, the
Minimum and Mazimum columns describe the minimum and maximum index
values generated by each measure, respectively, the Middle column describes the
middle index value, the < Middle and > Middle columns describe the number
of index values less than and greater than the middle index value, respectively,
and the Median column describes the median index value. For example, for the
IV ariance Mmeasure, the minimum and maximum index values are 0.0 and 0.064,
respectively, the middle index value is 0.032, 16,761 (167) index values lie below
(above) the middle index value, and the median index value is 0.00791. The
distribution of index values in Tables 5 and 6 is highly skewed about the middle
and median values for most of the measures. Isolated exceptions include /pyqy
and Iwhpittaker 10 Table b, and Iforen, and Igin; in Table 6.

6 Conclusion and Future Research

The use of diversity measures for ranking the interestingness of summaries gener-
ated from databases is a new application area. Here we theoretically and experi-
mentally analyzed thirteen diversity measures. Five principles of interestingness
for useful diversity measures were described. Theoretical results showed that
only four of the thirteen diversity measures satisfied all five principles. Exper-
imental results showed that the distribution of index values, in relation to the
mean, is least skewed for Irorenz, Iqini, Ischutz, {Bray, a0d Iwhittaker, but these



Table 5. Distribution of index values for 50 objects among 10 classes

|Measure |Minimum|Ma:vimum|Middle |< Middle|> Middle|Median |

Ivariance [0.0 0.064 0.032 16761 167 0.007911
Isimpson 0.1 0.676 0.388 16761 167 0.1712
Ishannon 1.250664 |3.321928 |2.286295| 613 16315 [2.860161
Inferntosn [0.207096 |0.7964 0.50175 509 16419 |0.682799
Irorens 0.214 0.55 0.37 12353 4575 0.338
IGin: 0.107 0.275 0.185 4786 12142 [0.169
IBerger 0.14 0.82 0.46 15836 1092 0.28
Ischutz 0.0 0.72 0.36 10751 6177 0.34
IBray 0.28 1.0 0.64 7549 9379 0.66
Iwhittaker [0.28 1.0 0.64 7549 9379 0.66
Intacarthur|0.0 0.420842 |0.21042 15683 1245 0.114606
Irheit 0.0 2.141432 [1.07072 5550 11378 |1.21593
Tatkhinson [0.0 0.71 0.35503 11432 5496 0.296977

Table 6. Distribution of index values for 50 objects among 5 classes

|Measure |Minimum|Ma:vimum|Middle |< Middle|> Middle|Median |

Ivariance [0.0 0.162 0.081 2507 104 0.0258
Isimpson 0.2 0.848 0.524 2507 104 0.3032
Ishannon [0.562179 |2.321928 |1.44205 164 2447 1.940238
Inferntosn [0.092165 |0.643839 |0.36800 200 2411 0.523381
Irorens 0.24 0.6 0.42 1496 1115 0.412
IGin: 0.12 0.300 0.21 1183 1428 0.0.206
IBerger 0.2 0.92 0.56 2180 431 0.42
Ischutz 0.0 0.72 0.36 1850 761 0.3
IBray 0.28 1.0 0.64 939 1672 0.7
Iwhittaker [0.28 1.0 0.64 939 1672 0.7
Intacarthur|0.0 0.427524 [0.213765| 2425 186 0.099571
Irheit 0.0 1.759749 |0.879875| 2357 254 0.566115
Tatkhinson [0.0 0.784944 [0.39247 | 1964 647 0.283374

measures are poorly behaved, containing a sharp peak, or multiple sharp peaks,
in the frequency distribution of the index values. The remaining eight measures
were skewed asymmetrically in relation to the mean, and more or less peaked
than the SND. The experimental results also show that the distribution of the
index values is highly skewed, in relation to the middle and median values, for
most of the measures.

Future research will focus on extending the theory of interestingness for di-
versity measures used to rank summaries. New principles will be developed for
ranking the interestingness of summaries generated from different sources (i.e.,
related, but physically, logically, or temporally independent databases).
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