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Abstract

Exploring and analyzing oceanographic sonar data is a difficult task due to the extreme ratios in the dimensions of the data. While
sonar data may consist of many hundreds of thousands of sonar pings coving hundreds of kilometres, the ocean depth of the data is at a
much lower resolution. As a result, visual representations of the sonar data (echograms) are normally shown as long and narrow ribbons
of data. As an analyst zooms in to show the echogram in sufficient detail, much of the contextual information is lost and the analyst must
perform horizontal scrolling to explore the data. In this research, we outline an approach that couples a technique for visually clustering
slices of the echogram based on visual similarity, with a geovisualization method that shows the spatial location of echogram slices on a
virtual globe. Panning and zooming within each of these views of the data results in coordinated filtering, such that data outside of the
viewport in one view is dimmed and de-emphasized in the other view. This approach provides data analysts with a powerful geovisual
analytics tool for exploring sonar data. In particular, analysts may filter the data based on spatial regions of interest, visually identify
important features within the data, and observe the spatial relationships among the locations of the echogram slices.
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1 Introduction

Sonar is commonly used to measure sub-sea phenomena in disci-
plines such as fisheries research and physical oceanography [5].
Often, such sonar datasets are collected over large geographic re-
gions, and visualized using an echogram, where the length rep-
resents the number of sonar pings in the data set, and the height
represents the depth of the data. Colour is used to show the
strength of the sonar pings, representing the size or density of
objects that are below the water surface.

A common use of such acoustic methods is to monitor and an-
alyze fish stocks [6]. Vessels equipped with acoustic gear travel
over some region of interest, collecting sonar datasets that may
contain hundreds of thousands of sonar pings. Software systems
such as Echoview [8] can then be used to process this sonar data
and generate echograms. Fisheries scientists and environmental
managers analyze and explore these echograms in order to un-
derstand the sub-sea environment [9].

The main challenge with analyzing sonar data using
echograms is that the ratio of the length to the height can be
very high (see Figure 1). The alternatives for viewing the data
are to either view the entire echogram and not be able to see any
detail, or zoom in so that detail can be seen, but then lose the
contextual information provided by the full echogram. Further-
more, an echogram does not include any facilities for showing
the geographic locations related to the data, resulting in addi-
tional cognitive load as the analysts attempt to keep track of the
spatial locations of the features while they analyze the echogram.

To address this problem, we have developed an approach that
combines the visual clustering of slices of the echogram with
a geovisual representation of the spatial locations of each slice.
Coordination between these views allows the analyst to dynami-

cally filter the data based on the spatial extent and visual features
within the echogram slices. The goal of this geovisual analytics
approach is to support knowledge discovery activities through
exploration and analysis of the data [2].

2 Method

2.1 Echogram Slice Extraction and Clustering

It is common for sonar dataset to be large, both in the number of
sonar pings as well as the geographic distance covered. As a re-
sult, the corresponding echograms may be hundreds of thousands
of pixels wide. By partitioning a high resolution echogram, we
can produce a large number of low resolution echogram slices.
For example, a 300000 × 1000 pixel echogram may be parti-
tioned into a set of 300 1000×1000 pixel echogram slices. The
problem then is how to visually organize and cluster these slices
such that an analyst can identify features of interest. To further
complicate this problem, the screen space even on a very high
resolution monitor will not be sufficient to simultaneously show
all the slices in detail when the source echogram is large.

Our solution is to cluster the echogram slices in a hierar-
chical manner based on their visual similarities, using a multi-
resolution Self Organizing Map (SOM) [11]. While others have
explored the use of SOMs within the context of geographic infor-
mation systems [1], our approach is fundamentally different than
these. Rather than clustering the raw data, we focus on cluster-
ing geographically continuous subsets of the sonar data, as rep-
resented by the echogram slices. This approach has been suc-
cessfully employed in the context of image retrieval [12]. Since
the task of visually identifying interesting features within the
echogram is similar to image retrieval tasks (i.e., visually iden-
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Figure 1: A sample echogram consisting of 30,000 sonar pings and a depth resolution of 1000 pixels. Note that this is 1/5 of the
dataset used in the other examples in this paper.

tifying interesting images), we expect it to be well-suited to this
problem domain.

In order to cluster the echogram slices based on similarity, we
extract visual information from each slice in the form of a colour-
gradient correlation feature vector [11]. Although there are other
approaches to converting images into high-dimensional vectors,
this approach has been found to be both efficient to calculate
and provides good organizational performance [10]. As a result,
rather than comparing the echogram slices to one another, such
comparisons are made based on the Euclidean distance between
feature vectors.

Fundamentally, a SOM is a type of artificial neural network
that can be trained to organize and cluster data [7]. We use
the SOM to map the high-dimensional visual feature vectors ex-
tracted from the echogram slices into a 2D grid. The topology-
preserving property of the SOM ensures that similar feature vec-
tors are mapped to cells in the SOM that are near one another.
As a result, placing the corresponding echogram slices at their
assigned locations within the 2D space produces a clustering of
the slices based on their visual features.

However, when the collection contains a large number of
echogram slices, it is impractical to display all of the slices at
the same time. The solution to this problem is to use a multi-
resolution SOM. At the highest resolution, all of the echogram
slices are organized and visually clustered. This space is progres-
sively divided in half over both the x and y dimensions, produc-
ing lower resolution spaces. For a given cell in the lower resolu-
tion space, the average feature vector is calculated from the four
cells in the higher resolution space, and the nearest correspond-
ing echogram slice is used as the representative for this region.
The end result is a hierarchical clustering of the echogram slices.

This interface supports pan and zoom operations, whereby the
analyst can zoom into a region of space that appears to contain
some visual feature of interest in the echogram slices. Once suf-
ficient space has been created as a result of this zoom operation, a
higher resolution SOM is chosen and additional echogram slices
are shown. Zooming further and further pushes those echogram
slices that are distant from the focal point of the zoom operation
out of the viewport, and loads additional echogram slices that are
similar to those near the focal point.

2.2 Geovisualization

While the visual clustering described in the previous section can
allow an analyst to easily identify interesting features within the
echogram slices, what is lost is the continuity of the echogram.
To address this, and to further enhance the analysts’ understand-
ing of the spatial aspects of the data, a geovisual representation
is provided to show the locations of each of the echogram slices
on a map.

With the geographic space, directional glyphs are used to rep-
resent the location of each echogram slice as well as the direction
in which the source echogram was measured. In order to disam-

biguate these locations within congested areas of the map, paths
are drawn between successive echogram slice locations using cu-
bic Hermite splines.

Like the visual space, this geographic space also supports pan
and zoom operations, making it easy for analysts to focus on
specific geographic locations by zooming into these regions.

2.3 Coordinated Interaction

To further support the exploration of the data, the visual space
and geographic space are linked to support coordinated interac-
tion [3]. In the visual space, the echogram slices are organized
such that those with visual similarities are grouped together; si-
multaneously, the geographic space shows their locations. Pan-
ning and zooming within each of these views of the data results
in coordinated filtering, such that data outside of the viewport in
one view is dimmed and de-emphasized in the other view. Fig-
ures 2 - 5 provide an example of this process, whereby an analyst
first zooms into a geographic region of interest, then zooms into
a visual region of interest, and finally zooms in to increase the
sizes of the echogram slices such that specific features can be
examined in detail.

This coordinated interaction helps analysts to explore the
echogram data based on both the features of the echogram slices
and their geographic locations, removing visual complexity from
both views along the way. This allows the analysts to more read-
ily identify and explore the underlying patterns and features as a
result of the de-emphasis of the data that was pushed out of the
viewport of the opposite view.

Rather than providing persistent visual links between each
echogram slice in the visual space and each glyph in the ge-
ographic space, an interactive highlighting mechanism is pro-
vided. By selecting a specific echogram slice (or glyph), the
system automatically highlights the corresponding object in the
other view. Furthermore, when the echogram slice is selected, it
is temporarily zoomed to fill the visual space, allowing the ana-
lyst to examine it in greater detail.

Two features are provided within this system to mitigate the
risk of slicing an echogram through specific features of interest.
The first of these is the ability for analysts to merge multiple
slices into a larger subset of the echogram. This is performed
by holding down the shift key and selecting the beginning and
end point within the geographic space. The merged slices are
displayed within the visual space.

The second of these features is the ability for the analysts
to control the width of the echogram slices. By making the
echogram slices narrower, more will be generated and the qual-
ity of visual clustering will be increased; however the likelihood
of dividing an important feature between multiple slices will be
increased. By making the echogram slices wider, the opposite
tradeoff occurs. Whether wider or narrower echogram slices are
appropriate depends on the features of the phenomenon that is
being investigated within the sonar data.
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Figure 2: Initially, the echogram slices are clustered in the visual space (left), and their locations are shown in the geographic space
(right).

Figure 3: As the analyst zooms in within the geographic space (right), the corresponding echogram slices that are located outside of
the viewport are dimmed in the visual space (left).

Figure 4: Zooming into a region of interest in the visual space (left) results in the locations of the echogram slices that are outside
of the viewport to be dimmed in the geographic space (right).
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Figure 5: Continuing to zoom in once all of the hidden echogram slices are shown increases the sizes of the echogram slices,
allowing the analyst to examine the features in detail.

3 Conclusion

Analyzing sonar data using echograms is difficult due to the ex-
treme ratio of the length to the height, and the lack of correspond-
ing geographic representations. To address these problems, we
have developed a novel geovisual analytics approach that slices
the echogram into smaller pieces and uses coordinated interac-
tion between two views of the data: a hierarchical visual cluster-
ing of the echogram slices and a geovisualization of their loca-
tions. This approach supports both geographic-based exploration
while providing visual feature information, and visual feature-
based exploration while providing geographic information.

Field trials that will focus on studying the value and bene-
fits of this approach to analyzing sonar data are currently in the
planning stages. Other future work includes analyzing the differ-
ences between different feature vector creation methods within
the context of visually clustering echogram slices, and studying
the benefits and drawbacks of different alternatives to using self-
organizing maps, such as multidimensional scaling [4].
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