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Abstract— This work examines a novel method that provides both most useful EC algorithm according to an expert (called
a parallel search of a very large network space consisting Probabilistic Adaptive Mapping Developmental Genetic Al-
of fisheries management data. The parallel search solution is gorithm, or PAM DGA) and parallel computation. Section

capable of determining global maxima of the search space 2 di th f f its of th
using brute force search, compared to local optima located by ISCUSses the execution periormance resufts or the non-

machine learning solutions such as evolutionary computation. Parallel and parallel (for both GPU and CPU) implemen-
The actual solutions from the best machine learning technique, tations, and Section 5 describes the feedback of the expert
called Probabilistic Adaptive Mapping Developmental Genetic yser for the different search methods. Conclusions follow i
Algorithm, are compared by a fisheries expert to the global Section 6.

maxima solutions returned by parallel search. In addition, the

time required for parallel search, for both CPU and GPU- Il. BACKGROUND AND PROBLEM SPACE

optimized solutions, are compared to those required for machine

learning solutions. The GPU parallel computing solution was Many studies have examined the gain in speed that can be
found to have a speedup of over 10,000x, in excess of mostgleaned from using a Graphic Processing Unit (GPU) in evo-
similar performance comparison studies in the literature. An lutionary computation (EC), especially given a problent tha

expert found that overall the machine learning solutions pro- involves analvsis of a large amount of data [21. There has als
duced more interesting results by locating local optima than Involv ysl g u [2].

global optima determined by parallel processing. been previous work by Langdon on using a GPU to speed up
genetic programming search of a large bioinformatics data
|. INTRODUCTION set using thoughtful division of the search space to coaostru

Evolutionary computation (EC) is a good approach foa solution [3]. Our work takes a slightly different angle
examining a very large search space by finding local optintRan previous studies: rather than attempting to optimiZe E
as solutions when it is not reasonable to search the entigorithms to examine the large data set, we use a novel
problem space. However, there may also be value in usifgPU-based solution to perform a brute force search to com-
EC even when brute force is made possible for a vergare with EC algorithms in finding information interestiryg t
large space, as is the case here through a novel parafiperts in a real world application (fisheries management).
computation solution. While considering the paralleliaati In so doing, we examine the usefulness of located global
of an EC solution, we discovered that a brute force seardiptima over local optima to fisheries management officers.
was also possible given the use of either GPUs or CPUs fénother important aspect of the study was to have reasonable
parallel programming. Thus, instead of being restricted texecution times for these solutions. To this end, we examine
looking for promising sub-optima in the space with EC oithe performance of the EC algorithms against both GPU and
other machine learning techniques, we could also determifd’U parallel computing solutions when searching a very
the global optimum of the search space with brute force itarge network space.
order to compare solutions. This work examines the end This work represents the latest investigations of an orgyoin
user utility and execution time of using a novel massivelyesearch project involving visual analytics research qudia
parallel processing solution to determine the global ogtimcation of EC-based search for fisheries management efforts
of a large network-based data set of fisheries catch samplging a very large network based on a spatiotemporal data
in the North Atlantic, and compares it to the local optimeset of annual bottom trawl survey catch data for the Atlantic
solutions presented using a developmental GA known #®0d Gadus morhup In previous work in this project, we
provide the most useful solutions from a group includingnvestigated the application of a basic GA to search for
other EC algorithms and simulated annealing [1]. large catch differences [4] and then improved performance

The remainder of this paper is organized as followsn terms of finding interesting catch information througie th
Section 2 reviews related past work, and examines the natufee of two coevolutionary GAs in [1]. The data used in this
of the real world problem space. Section 3 describes tiatudy was collected by Fisheries and Oceans Canada for the

fisheries management of the Newfoundland and Labrador,
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Ill. SEARCHMETHODS

catch: 300kg A. Probabilistic Adaptive Mapping Developmental Genetic
year1999 catch: 300kg Programming (PAM DGA)

year:2001
'catcmookg In past work, the research project team compared four

year:2001 intelligent search methods: standard genetic algoritlm,-s
lated annealing, co-evolutionary genetic algorithm arabpr
abilistic adaptive mapping developmental genetic program

%: t: ming (PAM DGA). The authors found that the best perform-
ing algorithm was PAM DGA [1], considering the value of
:1 :1 the networks to an expert end user. The PAM DGA algorithm
gt a2 adge uses two populations which evolve in parallel: genotype
1997-2001, 20002002, 1997-2001 vs. 2000-2002, individuals and mapping individuals. Details and motigat
mean catch: 350kg mean catch: 300kg mean catch difference: 50kg behind PAM DGA are available in [5], with the algorithm
discussed presently.
Fig. 1. Relationship between network structure and speatipbral visual- The fitness function used is theodularity (or Q) metric
ization. to provide a measure of the strength of connections be-

tween nodes in the network. In particular, densely conmecte
subnetworks (communities) that are separated by sparse
connections are rewarded. Newman adapted the modularity
of catch for the node (see leftmost two grids of Figure 1l)metric for weighted networks in [6], which is used here and
Edges in the network represent differences in the mean catighdefined as
between locations over two time spans, and are shown in the . "
rightmost grid of Figure 1. Edges in the network using two _ (Aij R J)(sf(ci?cj) 1)

nodes with the same time span are excluded, since they do YT 2m p 2m

not reflect any difference because the entire geographieal a
is viewed at once in the visualization tool (application lné t ” _ X k
tool is discussed in Section 4). In virtue of not allowing thd'0de? in @ weighted network is the sum of t[\e weights of the
same time span (regardless of locations) in a node, loof§9€s connected to k(= > A;;), andm = 5 ;Aij Is the
(reflexive ties) are prohibited in the large graph. total weight of the edges in the networ®,, has an absolute
alue between 0 and 1, where a value of over 0.3 is typically
sidered to indicate favorable community division [6].

he typical community membership function is denoted as
¢i,c;), whereg; is the community to which a nodeis
Oz?ssigned. In the traditional community membership fumgtio
node cannot be a member of more than one community
ommunities cannot overlap). In this work, the members of
community are time spans of two years. Previous work
s shown that the most useful networks had no community

where 4;; is the weight of the edge from to j, k; of a

The data collected covers an area of about 1,000,000 knf
and a temporal range of years 1980 to 2005. The data sc@er1
produces a very large network to be evaluated: The seargh
space involves a node for every pair of locationg in i
a 30 x 30 grid and two year time span. The number
unique, unordered two year time spans for the 26 ye%
period we examine (1980 to 2005, inclusive)(#), or 325 ¢
possibilities. The span of one year (e.g. 1996 to 1996) s al

nsider ible tim n of inter he num
g? psoggil:g zrsgssspt;ﬁst is ethizaa (t)otaluce)feég;i tzg :u35]p_verlap [1]. This work thus does not consider overlapped

Years of two time spans can overlap in each edge, but bo(fﬁ)mmu_nmes n th‘? Q metr_|c-based fl_tne_sg function.
The first population consists of GA individuals. The geno-

nodes cannot refer to the same time span in a single edge. L .
P g e of each of these individuals is a chromosome of 20 gene

The area covered by the data set is divided as a 30 x Each N , dered set of
grid because it was selected as an appropriate resolution %?quences. ach separal€ gene sequence 1S an ordered set o

viewing changes in preliminary experiments with an exper rllntegerst (genefs) thﬁt_ cg_rr_((ajsptl)nd toan ?dge n tf;]e n%t_wtork.
Given the number of possible time spans, there will thus b € genotype of €ach Individual represents a graph, ortiist o

302 x 351 = 315,900 possible nodes to consider. edges. Th_e first four integers in a gene sequence detgrmme
one node in the edge, and the last four integers determine the

Nodes are average catch data over a particular area durivifper node in the edge. Within each group of four integers
a time span. We wish to consider the difference betweehat identify a node, the first two integers correspond taithe
nodes as absolute differences in those mean catches. Tharsdy coordinates in the N x N grid and the last two integers
the network to be considered consists of an undirectedprrespond to the first and second years of a time span in the
weighted graph. The number of all unique edges existindata set. Formation of genotypes and the genetic operators
in this search space is the number of possible pairings afways ensure that the first and second years of the time span
nodes, with no time span compared to itself for a differencare ordered. Furthermore, in a set of eight integers thaemak
of 0, giving n(n — 1)/2 — t possibilities forn nodes and  up the gene sequence the two time spans (integers 3,4 and
time spans, or approximately 5.01%° edges. 7,8) cannot be the same. The absolute difference between the



average catch between the two time span and location palng equations 3 and 4 result in all values in a column always

is the weight of the edge. A gene sequence correspondinghaving a sum of unity. A threshold value of is used to

a network edge is prevent premature convergence on a sub-optimal solution:
Following the table update, if any cell in the probabilitpla

cdee column corresponding to the winning genotypes excegd
nodel node2 all values in that column are then resetlton so they sum
r1,y1 , ti,te  Xa,y2, t3,ty (2) to unity. The effect of noise addition and normalization is
N——

to effectively reset the chances of selection of all mapping
with respect to the genotype handled by that table column.
wherety > ty, t4 > t3 and iy, by # ts,ts. The second The |ast two ranked pairings are considered the children and
population in the PAM DGA algorithm is the mappingare subject to genetic operations based on their respective
population. This second population consists of potentigssociated thresholds. However, if either the genotype or
mappings of all time spans of two years to a communitynapping of the losing pairings is identified as the current
As described in Section 2, there are 351 time SpanS tr‘@ést genotype or mapp|ng found so far in the tournament’
are each considered a community in the standard GA. fhey are protected from both mutation and crossover. (The
mapping individual consists of all ordered year pairingst th pseudocode for PAM DGA is provided in Figure 2.)
constitute a time span. Upon initialization, each ordered |n addition to PAM DGA, the authors previously examined
pairing of years are given a randomly assigned communigharacteristics of the results of a GA, a standard coevolu-
number from 1...351. As such, the mapping is redundagbnary GA, and simulated annealing. The pseudocode and
because more than one ordered pair of years (time spafbtailed results for these algorithms are provided in [1],
can be a member of the same community and there Willyt they are mentioned only because we will examine their
be 351 or less communities. By allowing the mapping ofxecution times in the results section to put PAM DGA and

time span to community to be redundant, the GA searghe parallel search technique (targeted for CPU and GPU) in
on the mapping population will emphasize particular setgerspective.

of time spans (not necessarily sequential). That is, idstea )
of each time span being its own community by definition, £+ Massively Parallel Search
number of collectively interesting time spans can be grdupe The machine learning algorithms described in the previous
in a community by the coevolutionary search in the mappingection search for local optima, or solutions in smalleaare
population. of the search space. Since they explore the search space by
The algorithm begins with initialization of genotype andmoving from one possible solution to another that is not
mapping populations of siz¢ andm, respectively. A proba- necessarily close by in the search space, the best solution
bility table of sizeg x m is then created with cells initialized may not be (but could be) the solution that maximizes the
to 1/m. For each round of a steady state tournament, gearch criterion. On the other hand, if a brute force search
cells of the probability table are selected using roulettever all possible solutions in the search space could be,done
selection on then axis. The selected cells correspond tove could know the global optima of the entire space. As
four genotype/mapping pairings that are selected where td@scribed in Section 3, the fisheries catch data search space
genotypes must be unique but the mappings can be chogfpears to be so large as to be unreasonable to search in its
more than once. The pairings are evaluated for fitness, agfgtirety. Also, in terms of storage space alone, the enéta d
the best two pairings are considered parents and are |&ft would consume 593 GB based on our estimates.
unaltered. The best two pairings are also checked againstBy conceiving the search space in partitions and dividing
the current best genotype/mapping pairing found so far e search as described in this section, we can provide a
the tournament to determine if they will be identified as th@rute force search of the entire space. By so doing, we
new best. Once the current best genotype/mapping pairiggn determine the global maximum for the space. The key
is identified, the table cell corresponding to the two bedp performing this type of search is to place the arrays

genotype/mapping pairings is updated according to on a multicore processor sufficient to handle the parallel
computation required, namely a GPU processor capable of

massively parallel processing or a sufficiently fast moltic
P(g,m)new = P(g,m)oia + (1 = P(g,m)aa)  (3)  CPU processor. The search space can be envisioned as a grid
and the other combinations in the same column are updat@f@!l time frames, with the time frame for each node of an
according to edge given on either axes. Each element on the grid then
corresponds to a comparison between two time frames, or
_ comparison of two year pairs. For each year pair comparison
Plgym)new = P(g,m)ota + a(Plg, m)ota) @ (element on the grid), it is divided into a grid of the decided
where g is the index of the genotypen is the index of latitude-longitude resolution (in this case a resolution o
the mapping,« is the learning rate (corresponding to the30x30). Here, there would simply be a 315,900x315,900
emphasis of current table values over previous values), agdd corresponding to compared timespans, each element
P(g,m) is the probability in cell §, m] of the table. Updates being a 30x30 grid (which we will consider as 30 latitudinal

locationl timespanl location2 timespan2



1 create size N genotype popul ati on & mappi ng popul ation

2 initialize Nx N probability table so each value = 1/ N

3 while (tournament not done and sol ution not |ocated

4 choose 4 genotype / mapping pairs (unique geno) using roulette selection
5 rank selected 4 genotype / mapping pairs

6 i f new best genotype / napping pair, replace best genotype / mapping pair
7 update probability table using Equation (3) & (4)

8 if (cell in best genotype colum >= gamm)

9 set colum values to 1/ N

10 for worst 2 genotype / mapping pairs

11 if (genotype != best genotype in best genotype / napping pair)

12 repl ace genotype with parent, apply nmutation & crossover

13 i f (mapping != best genotype in best genotype / mapping pair)

14 repl ace mapping with parent, apply nutation & crossover

Fig. 2. Pseudocode for PAM DGA algorithm.

and 30 longitudinal divisions) for a geographic area. This for all longitude1 (30 x)
conception of the search space results in duplication of
all edge weight values (except for time spans compared to
themselves). This repetition, as we will see, does not have
a computational cost for parallel processing: Each piece of llongitude2 x 1751 llongitude2x 176
data provided to the GPU (or CPU) has unique elements not
having been previously calculated (and those having been
calculated previously just happen to be processed alorg wit
them). Furthermore, any conception of the search space that
was attempted in order to eliminate the repetition prior to
parallel computing far outweighed any benefit due to the
CPU-side cost in the rearranging.

By altering the natural conception of the space, we can
massage it into a form that is amenable to parallel (or  fig 3. Parallel computation conception of the search space.
massively parallel) processing shown in Figure 3. To do
this, we first consider how large a section of the search
space can be handled by the parallel processor at one tindgmbination as a space. This creates a nested loop with 900
In particular, the documentation for the Microsoft Resbarciterations given 30atitudel points and 3dongitudelpoints
tool [7] indicates that most GPUs are limited to processingor a 30 x 30 gnd) to process four search spaces that are
of 2-dimensional arrays of 64,000,000 elements, with npassed to the GPU, each of up to the stated size of 27,878,400
side over 8000 elements long. We found these restrictioR$ements. The 351 possible time spans on each axis are split
to hold when using Accelerator with our chosen productiothto two parts of 175 and 176. These four search spaces
GPU. The area of the search space sent to the GPU fg#llectively contain nodes covering all values lafitude2
processing each time was divided to be within this range. Wengitude2 and timespaniand timespan2 The attributes of
chose to send arrays of no more than 5280x5280 elememf node corresponding to each element are also labeled in
(totaling 27,878,400 individual elements) in a 2-dimensio  Figure 3.
grld at one time. The smallest array sent is 5250 x 5250, thUSThe Accelerator tool (Version 2) code is used for the GPU
containing 27,562,500 elements. (The grid of the largest si parallel computing solution using Direct X under Accelerat
is in the lower right corner of Figure 3, with the other gridspindings with C#. As mentioned at the start of this section,
being slightly smaller.) the size of the network to be considered is so large that

To produce a natural division of the search space thétis not feasible to store all edges and access them as
provides grids of this size, we consider that each element okeded during execution. To eliminate this problem, we
the search space is actually an edge. Each edge is repibsegenerate the edges as needed using the code in Figure 4
by two nodes, each having latitude, longitude, and timgiven information about the 315,900 possible nodes (thg onl
span attributes that collectively identify the node. Letcaf  information stored prior to determination of global optima
each of these attributdatitudel, longitudel andtimespanl In Figure 4, for eachlatitudel and longitudel (outer
for the first node of the edge, andtitude2 longitude2 for loops) on lines 4 and 5, all elements in four smaller
and timespan2for the second node of the edge. First wearrays (using inner for loop) are filled with catch weight
divide the entire search space so we consider every instardiferences with respect fatitude2(andtimespan} andlon-
of latitudel as a separate space, and then every instang#ude?2 (and timespan2 using weight difference calculated
of the space corresponding to eafdtitudel, longitudel from the existing node data (lines 7-8 for GPU solution).

for all latitude1 (30 x)

time span 1

[latitude2 x 175]
—_
[latitude2 x 175]

time span 2

[longitude1 x 175] [longitude2 x 176]

[latitude2 x 176]
[latitude2 x 176]

4




1 int naxLatitude = 30; int maxLongitude = 30;

3 // input node data in 4 vectors: weightDiffsl1 1, 1.3, 2_1, 2_2

4 for (int longitl = 0; longitl < maxLongitude; |ongit1l++)

5 for (int latitl = 0; latitl < nmaxLatitude; latitl++)

6 if using GPU

7 fill weightDiffsl 1 & weightDiffsl 2 vectors for longit2, tine span 1
8 fill weightDiffs2_1 & weightDiffs2_2 vectors for latit2, time span 2
9 on GPU. determine weight difference for all grid points (see Figure 7)

10 i f using CPU

11 fill inputl and input2 arrays for longit2, tine span 1
12 fill input3 and input4 arrays for latit2, tine span 2

13 for each input array start a thread (4 threads total)

14 in each thread deternine vertical, horizontal nmxes

15 find max across arrays 1,2 and 3,4 (rows) and 1,3 and 2,4 (col ums)
16 for nmaxi mumvalues for all rows

17 find corresponding longit2, tinme span 1

18 for nmaxi mumval ues for all colums

19 find corresponding latit2, time span 2

Fig. 4. CPU-side code for GPU-based parallel solution.

1 // replicate weight vectors across rows, colums

2 FPA inputlVert = new FPA(weightDiffsl 1[longitl, latitl]);
3 FPA input2Vert = new FPA(weightDiffsl 2[longitl, latitl]);
4 FPA input3Vert = new FPA(weightDiffsl 1[longitl, latitl]);
5 FPA inputd4Vert = new FPA(weightDiffsl 2[longitl, latitl]);
6 FPA inputlVertStretched = PA Replicate(inputilVert, dinl);
7 repeat 6 for 3 other grids

8 FPA inputlHor = new FPA(weightDi ffs2_ 1[longitl, latitl]);
9 FPA input2Hor = new FPA(weightDi ffs2_1[longitl, latitl]);
10 FPA input3Hor = new FPA(wei ghtDiffs2 2[longitl, latitl]);
11 FPA input4Hor = new FPA(wei ghtDi ffs2_2[longitl, latitl]);
12 FPA input 1Hor Stretched = PA Replicate(PA. Transpose(i nput 1Hor), diml);

13 repeat 12 for 3 other grids

15 // determ ne absolute difference between weight differences

16 FPA fplnputl = PA Abs(PA. Subtract (i nput1lVertStretched, inputlHorStretched));
17 repeat 16 for 3 other grids

19 // determne nax in each row and colum for [longitl, latitl].

20 FPA fpQutputVertl = PA MaxVal (fplnputl, 1);

21 repeat 20 for 3 other grids

22 FPA hor Fpl nput1 = PA. Transpose(fpl nputl);

23 repeat 22 for 3 other grids

24 FPA fpCQutput Hor1l = PA MaxVal (hor Fpl nput 1, 1);

25 repeat 24 for 3 other grids

26 // nove result from GPU back to CPU for further processing

27 maxesOf I nput ArrayVert1s[longitl, latitl] = eval Target. ToArraylD(fpQut putVertl);
28 repeat 27 for 3 other grids

29 maxesOf I nput ArrayHor 1s[longitl, latitl] = eval Target. ToArraylD(f pQut put Hor1);
30 repeat 29 for 3 other grids

Fig. 5. GPU-side code for GPU-based parallel solution.

These weight differences are appropriately separated indetermined (line 16-17). The result of this operation faztea
two vectors {eightDiffs11, weightDiffs12) for latitude2 element is a catch difference with respect to two time spans,
timespanland two vectorswWeightDiffs21, weightDiffs22)  each with associated latitude and longitude locationssé&he
for longitude? timespan2 These vectors are then passedeplication and subtraction steps are shown in Figure 6.

to GPU for processing, see Figure 5. For GPU processing, Following the determination of the catch difference be-
the vectors are first converted to vertical and horizontalveen two of {timespan, latitude, longitudetriples, the
floating point arrays (FPAS), an Accelerator-specific dgp@t maximum of each row and column is determined. For
(lines 2-6 and lines 8-11, respectively, of Figure 5). Theseach of the four search space sections, the maximum for
vectors are then replicated across the appropriate nunfbereach latitude2 timespanilwith respect to eaclongitude2
dimensions for each of the four sections of the grid (lineimespan2possibility is determined (and vice versa) in lines
6-7 and 12-13). Following that, the absolute difference i19-25. Collectively, recall that these four search spaces a
vertical and horizontal values for each of the four grids ara the context of a particulaflongitude] latitude1} location
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PA.MaxVal(inputArrayVertXs, 1)

CoEVGA PAMDGA GA SA

L Fig. 8. Time in seconds for a solution to be located for each mach
learning algorithm. Based on 50 trials.

maxesOfinputArrayVertXs

. IV. RESULTS

PA.MaxVal(inputArrayHorXs, 1)
Y YY Y Y Y YYY v

— A. Execution Time

Y 4 Yy Y A, Yy Y v A4 A,

OB Horks For all of the machine learning algorithms, the same
I I B B number of tournament rounds were completed to allow
comparison of execution times. In particular, each of the EC
Fig. 7. Calculation of maximums across all rows and columns. algorithms is run for 100,000 rounds with 4 individuals tgain
evaluated per round. This means that 400,000 individual
evaluations are conducted per round. For equivalent compu-
(see Figure 3). The maximum across each row and colunitional effort, the SA is run for 400,000 evaluations. Fey8
and finally placed in the arraymaxesOflnputArrayVertXs compares the time to solution for all the computational
and maxesOfinputArrayHorXsvhere X = {1,2,3,4}, re- intelligence search algorithms in a boxplot based on 5Gstria
spectively, in lines 26-30 of Figure 5 and passed back to tfBottom, middle, and top of boxes indicate lower quartile,
CPU for further processing. This step is shown pictoriatly i median, and upper quartile values, respectively. If nataife
Figure 7. Following the determination of the maximums, th&oxes do not overlap, medians of the two sets of data differ at
maximum for each pair of row and column maxes in the fourthe 0.95 confidence interval. The symbol ‘+’ denotes points
array space is determined CPU-side (line 15 of Figure 4).from 1.5 to 3 times the interquartile range, and ‘o’ denotes
We should note that when determining the maxima thatoints outside 3 times the interquartile range.
information is lost during this process. In particular, the The time for the search of the entire space using parallel
maximum with respect to each row is storedniraxesOfln- computation for all global optima is shown in Figure 9
putArrayVertXs but the column location of that maximum isbased on 50 trials. The time taken for evaluation of the
lost (and vice versa for columns). However, this informatio four grids depicted in Figure 3 is timed. In particular, this
can be easily determined since we need only search the or@rresponds to the execution time for the seeding of vectors
inal vertical and horizontal weight vectors for a differenc and arrays for GPU and CPU, respectively, and the parallel
that, combined with the difference in the location of theprocessing associated with the GPU processing and CPU
maximum resulting frommaxesOfinputArrayHorXsr max- threading. The operations timed in Figure 7 is shown in
esOflnputArrayVertXsrespectively, produces the maximumFigure 4 on lines 6-9 for GPU and lines 10-14 for CPU.
in question. In particulanveightDiffs11, weightDiffs12 are These sections of code were chosen to fairly represent the
searched fomaxesOfinputArrayVertXand weightDiffs21, execution time differences because different CPU-sida dat
weightDiffs22 are searched fomaxesOflnputArrayHorXs preparation times are required prior to either GPU proogssi
This final gathering for the time spans and locations correr threading on CPU due to the use of vectors and arrays,
sponds to lines 16-19 in the CPU-side code of Figure 4. respectively. The CPU used for the time trials was an @®tel
The CPU solution operates in much the same way as ti@ore™ i7 870 @2.93GHz (which has four CPU cores) on
GPU solution, and only differs in lines 11-14 as shown inhe 64-bit Windows 7 Ultimate OS with 8GB of RAM. The
Figure 4 where the four arrayplnputXare calculated CPU- graphics card used is an ASUSENGTS450 DirectCU OC
side (lines 11-12) in the straightforward way, rather thgn b850 MHz (overclocked) with 1GB GDDR5 video memory
replication of vertical and horizontal vectors (lines 641da and a nVidig®) GeForce' GTS 450 GPU on board (which
12-13 of Figure 5). These maxima are then calculated hyses 192 cores). Both processors are considered current
dedicating each of four threads to determining the maximardware at the time of this writing.
for the four arrays (lines 13-14 of Figure 4). The remainder We can see from Figure 8 that, for the computational
of the code operates in the same way CPU-side for CPU aidelligence techniques examined, the time to solutioeraft
GPU (lines 15-19 of Figure 4). all rounds was 100 to 1200 seconds. Also, the PAM DGA al-
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on GPU and CPU. Leftmost graph shows both plots, middle andgigiphs ~ Publication (as opposed to finer resolution on a large sgreen
are zoomed plots. Based on 50 trials. During the time period examined (1980 to 2005), there
are established anomalous changes that are represented as
'large differences in catch over time that would be known to
%perts. A major event reported by biologists involved cod
Epulation levels that dropped suddenly in the early 1990s,
ading to a moratorium on cod fisheries from 1992 to 1993.
ZIher less significant changes are also known to experts
ring this time period. The three options for the rating of
ch difference graph by the expert were: No (meaning no
Ifference relevant to fisheries officers appeared), Ratdea
jfference relevant to fisheries officers appeared), oreSali
¢ special case of Relevant indicating that an important

gorithm that found the best solutions according to the déxpe
stretched across those execution times. In Figure 9, we ¢
see that there is a large discrepancy between GPU and CF
execution times. The median time for execution of the cod
for the GPU solution was 0.245 seconds, compared to 281
seconds for the multithreaded CPU solution, representi
a speedup of 11,500x. This is a very significant speed
even considering GPU vs CPU claims in the literature th
typically span from 10x to 1000x, and these often use a sing

thread CPU example [8]. This speedup is thus an order

magnitude greater than some of the higher claims, and t éological event was identified). The ranking of the diﬁmame_
may be a result of compounding the normally cited speedu;%""phS are shown in Table 1 for responses correspondlng to
with the very large data set processed. Another possilidity each vaIued'edge.(actl_JaI dn‘ferencg) for best solu'uomn'fro
that the speedup is due to efficient implementation of th%II computational mtelllgence algorithms [.1] over 50 ksia
GPU-based solution compared to the thread-based versi%.Ol for the global maximum search (multiple trials not ap-
using CPU. However, it is worth noting that comparable? icable). The top difference graphs for the PAM DGA search

speedups of up to 7300x have been reported, also in a studh IS(;].Owrlr']n Flglure llt.)’ artf |nd|catte Knowr:hblolo%l%al events
using Accelerator, by Harding [9]. Including those involving the moratorium (these differeac

were reported with additional details in [1]).

B. Expert Assessment The global maxima found by the parallel computation
A fisheries analysis expert, examined the best solutiomsethods ranged in catch difference from 867,300 kg to
located by all machine learning algorithms (GA, SA, Co-1,250kg between two time spans, and 115 unique maxima
evolutionary GA, and PAMDGA) and the global maximumwere determined. In order to provide the expert with a
search results. He rated each edge of the best networksasonable number of difference graphs to evaluate, we
where these edges were visualized using GTdiff softwarelected 20 of the maxima generated by the parallel algorith
(a visualization tool designed for this project, descrilved for ranking by the expert (a convenient number close to
detail in [10]) as two temporal bins and one correspondinthe 16 evaluated for PAM DGA to provide results seen in
difference graph. In previous work, we investigated larg&igure 10). We chose the top twenty based on a ratio of catch
changes of interest that resulted from PAM DGA [1]; here wever the time span separating the last year of the first time
contrast those previous best results according to the expspan and the last year of the second time span. Interestingly
with the actual largest catch changes which can now hbe results used time spans that involved comparison of a
located thanks to parallel computing search. The first twidme span including the first year (1980) of the data to a year
grids show average catch in kg in each spatial grid elemen, the future, with the exception of 3 out of the top 20 results
and are ordered sequentially based on last year of the tirie expert ranked these results, and found only one salient
spans (and if the last year is the same, they are orderedtch difference despite these difference graphs featuinie
by the first year). The color scale spans from light yellowargest catch changes. This salient difference selected fr
(lowest average catch) to brown (largest average catct®). Tthe parallel search results is shown in Figure 11. He also
third grid is the difference graph, which shows the differen found that, overall, the patterns were less interestingy tha
in average catch between the two time spans as a positih®se found by the computational intelligence algorithha t
(green) or negative (red) change. White indicates no changelected local optima. In particular, the graphs focused on
in catch, and the degree of saturation of green and red is ugbe 1980s when larger catches occurred, but did not readily
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pick out contrasts before and after the moratorium. The

parallel search also located changes that involved ovargp

time spans, which were deemed to be less helpful thafpl

the non-overlapping spans of the computational intellbgen

based searches. What was interesting for the expert were
not necessarily the maximum catch differences in the daté!
set; and the expert noted that some extreme catches can p?

recorded but be isolated (not a pattern of interest).

V. CONCLUSIONS

This work presented a novel parallel computing solution
for finding global optima in a very large network space.

Furthermore, the location of large differences in this degh

data set is presented, the fisheries expert in this projecidfo
that there was greater value in finding local optima using
evolutionary computation for this particular data set.Hist
study, the global optima tended to focus on a time period
of abundant catches that were (for the most part) of less
interest than the machine learning results. The value tsuse
of local optima over global optima may differ from data set
to data set, so there is likely a lot of opportunity to mimic
the parallel GPU solution we present to evaluate other large
network spaces quickly. Our study, however, also provides a
real world example of how the exploration of a search space
using evolutionary computation can be more valuable than
simply finding global optima by brute force even when that
option is possible.

ACKNOWLEDGMENT

The authors wish to thank Fisheries and Oceans Canada
for making available the data used in the case study. This
work was supported by a Strategic Projects Grant from
the Natural Sciences and Engineering Research Council of
Canada (NSERC) held by the last three authors.

REFERENCES

[1] G. C. Wilson, S. Harding, O. Hoeber, R. Devillers, and Varghaf,
“Large network analysis for fisheries management using ca&oeok
ary genetic algorithms,” tGECCQ 2011, pp. 1619-1626.

[2] W. Banzhaf, S. Harding, W. B. Langdon, and G. Wilson, “Aterating
genetic programming through graphics processing unitsGametic
Programming Theory and Practice V2009, pp. 1-19.

[3] W. Langdon, “Large scale bioinformatics data mining withrgllel

genetic programming on graphics processing units,Pamallel and

Distributed Computational Intelligenceser. Studies in Computational

Intelligence, F. de Vega and E. Cant-Paz, Eds. SpringerirBérl

Heidelberg, 2010, vol. 269, pp. 113-141.

G. Wilson, S. Harding, O. Hoeber, R. Devillers, and W. Blaaf,

“Detecting anomalies in spatiotemporal data using genegiorthms

with fuzzy community membership,” it6DA 2010: 10th International

Conference on Intelligent Systems Design and Applicatid@kennai,

India: Research Publishing Services, 2010, pp. 97-102.

G. Wilson and M. Heywood, “Introducing probabilistic @gtive map-

ping developmental genetic programming with redundant magging

Genetic Programming and Evolvable Machinesl. 8, pp. 187-220,

2007.

M. E. J. Newman, “Analysis of weighted networks?hys. Rev. E

vol. 70, no. 5, p. 056131, Nov 2004.

“An introduction to Microsoft Accelerator v2,” Microdb Research,

Tech. Rep. 2.1, June 2010.

[8] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.

Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammaylun

R. Singhal, and P. Dubey, “Debunking the 100x GPU vs. CPU

myth: an evaluation of throughput computing on CPU and GPU,” in

Proceedings of the 37th Annual International Symposium amgiter

Architecture ser. ISCA '10. New York, NY, USA: ACM, 2010, pp.

451-460.

(4]

had real world implications, as the data represented sitent (g
cod fisheries catch data used by fisheries officers for natural
resources management purposes. The novel parallel approH¢!
was optimized for CPU and GPU use, taking advantage of
the parallel computing capacity of both processor types. Fo
the problem conception for this particular large data set, w
found that the use of the GPU could provide a speedup of
11,500 times that of the CPU. This is an impressive speedup,
even by GPU performance literature standards, and may be
a result of usual speedup levels compounded by a larger data
set. While a useful solution to parallel processing of a large

S. Harding and W. Banzhaf, “Fast genetic programming on §Pid
Genetic Programming2007, pp. 90-101.

O. Hoeber, G. Wilson, S. Harding, R. Enguehard, and Rvill2es,
“Exploring geo-temporal differences using GTdIffEEE Pacific Vi-
sualization Symposiunpp. 139-146, 2011.



