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Abstract— This work examines a novel method that provides
a parallel search of a very large network space consisting
of fisheries management data. The parallel search solution is
capable of determining global maxima of the search space
using brute force search, compared to local optima located by
machine learning solutions such as evolutionary computation.
The actual solutions from the best machine learning technique,
called Probabilistic Adaptive Mapping Developmental Genetic
Algorithm, are compared by a fisheries expert to the global
maxima solutions returned by parallel search. In addition, the
time required for parallel search, for both CPU and GPU-
optimized solutions, are compared to those required for machine
learning solutions. The GPU parallel computing solution was
found to have a speedup of over 10,000x, in excess of most
similar performance comparison studies in the literature. An
expert found that overall the machine learning solutions pro-
duced more interesting results by locating local optima than
global optima determined by parallel processing.

I. I NTRODUCTION

Evolutionary computation (EC) is a good approach for
examining a very large search space by finding local optima
as solutions when it is not reasonable to search the entire
problem space. However, there may also be value in using
EC even when brute force is made possible for a very
large space, as is the case here through a novel parallel
computation solution. While considering the parallelization
of an EC solution, we discovered that a brute force search
was also possible given the use of either GPUs or CPUs for
parallel programming. Thus, instead of being restricted to
looking for promising sub-optima in the space with EC or
other machine learning techniques, we could also determine
the global optimum of the search space with brute force in
order to compare solutions. This work examines the end
user utility and execution time of using a novel massively
parallel processing solution to determine the global optima
of a large network-based data set of fisheries catch samples
in the North Atlantic, and compares it to the local optima
solutions presented using a developmental GA known to
provide the most useful solutions from a group including
other EC algorithms and simulated annealing [1].

The remainder of this paper is organized as follows.
Section 2 reviews related past work, and examines the nature
of the real world problem space. Section 3 describes the

Garnett Wilson, Orland Hoeber, and Wolfgang Banzhaf are with the
Department of Computer Science, Memorial University of Newfound-
land, St. John’s, NL, Canada (email: gwilson@mun.ca, hoeber@mun.ca,
banzhaf@mun.ca).

Simon Harding is with the Istituto Dalle Molle di Studi sull’Intelligenza
Artificiale (IDSIA), Lugano, Switzerland (email: simon@idsia.ch).

Rodolphe Devillers is with the Department of Geography, Memorial Uni-
versity of Newfoundland, St. John’s, NL, Canada (email: rdeville@mun.ca).

both most useful EC algorithm according to an expert (called
Probabilistic Adaptive Mapping Developmental Genetic Al-
gorithm, or PAM DGA) and parallel computation. Section
4 discusses the execution performance results of the non-
parallel and parallel (for both GPU and CPU) implemen-
tations, and Section 5 describes the feedback of the expert
user for the different search methods. Conclusions follow in
Section 6.

II. BACKGROUND AND PROBLEM SPACE

Many studies have examined the gain in speed that can be
gleaned from using a Graphic Processing Unit (GPU) in evo-
lutionary computation (EC), especially given a problem that
involves analysis of a large amount of data [2]. There has also
been previous work by Langdon on using a GPU to speed up
genetic programming search of a large bioinformatics data
set using thoughtful division of the search space to construct
a solution [3]. Our work takes a slightly different angle
than previous studies: rather than attempting to optimize EC
algorithms to examine the large data set, we use a novel
GPU-based solution to perform a brute force search to com-
pare with EC algorithms in finding information interesting to
experts in a real world application (fisheries management).
In so doing, we examine the usefulness of located global
optima over local optima to fisheries management officers.
Another important aspect of the study was to have reasonable
execution times for these solutions. To this end, we examine
the performance of the EC algorithms against both GPU and
CPU parallel computing solutions when searching a very
large network space.

This work represents the latest investigations of an ongoing
research project involving visual analytics research and appli-
cation of EC-based search for fisheries management efforts
using a very large network based on a spatiotemporal data
set of annual bottom trawl survey catch data for the Atlantic
cod (Gadus morhua). In previous work in this project, we
investigated the application of a basic GA to search for
large catch differences [4] and then improved performance
in terms of finding interesting catch information through the
use of two coevolutionary GAs in [1]. The data used in this
study was collected by Fisheries and Oceans Canada for the
fisheries management of the Newfoundland and Labrador,
Canada region. To the authors’ knowledge, this data set
represents one of the largest network data set analyzed in the
evolutionary computation literature. Nodes represent catch
levels at a particular geographical location and an associated
time span, where the mean catch over all data points in
the given span of years is calculated to determine the level
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Fig. 1. Relationship between network structure and spatiotemporal visual-
ization.

of catch for the node (see leftmost two grids of Figure 1).
Edges in the network represent differences in the mean catch
between locations over two time spans, and are shown in the
rightmost grid of Figure 1. Edges in the network using two
nodes with the same time span are excluded, since they do
not reflect any difference because the entire geographical area
is viewed at once in the visualization tool (application of the
tool is discussed in Section 4). In virtue of not allowing the
same time span (regardless of locations) in a node, loops
(reflexive ties) are prohibited in the large graph.

The data collected covers an area of about 1,000,000 km2

and a temporal range of years 1980 to 2005. The data set
produces a very large network to be evaluated: The search
space involves a node for every pair of locationsx, y in
a 30 x 30 grid and two year time span. The number of
unique, unordered two year time spans for the 26 year
period we examine (1980 to 2005, inclusive) is

(
26

2

)
, or 325

possibilities. The span of one year (e.g. 1996 to 1996) is also
considered a possible time span of interest, so the number
of possible time spans is thus a total of 325 + 26 = 351.
Years of two time spans can overlap in each edge, but both
nodes cannot refer to the same time span in a single edge.
The area covered by the data set is divided as a 30 x 30
grid because it was selected as an appropriate resolution for
viewing changes in preliminary experiments with an expert.
Given the number of possible time spans, there will thus be
302 x 351 = 315,900 possible nodes to consider.

Nodes are average catch data over a particular area during
a time span. We wish to consider the difference between
nodes as absolute differences in those mean catches. Thus,
the network to be considered consists of an undirected,
weighted graph. The number of all unique edges existing
in this search space is the number of possible pairings of
nodes, with no time span compared to itself for a difference
of 0, giving n(n − 1)/2 − t possibilities forn nodes andt
time spans, or approximately 5.0 x109 edges.

III. SEARCH METHODS

A. Probabilistic Adaptive Mapping Developmental Genetic
Programming (PAM DGA)

In past work, the research project team compared four
intelligent search methods: standard genetic algorithm, simu-
lated annealing, co-evolutionary genetic algorithm and prob-
abilistic adaptive mapping developmental genetic program-
ming (PAM DGA). The authors found that the best perform-
ing algorithm was PAM DGA [1], considering the value of
the networks to an expert end user. The PAM DGA algorithm
uses two populations which evolve in parallel: genotype
individuals and mapping individuals. Details and motivations
behind PAM DGA are available in [5], with the algorithm
discussed presently.

The fitness function used is themodularity (or Q) metric
to provide a measure of the strength of connections be-
tween nodes in the network. In particular, densely connected
subnetworks (communities) that are separated by sparse
connections are rewarded. Newman adapted the modularity
metric for weighted networks in [6], which is used here and
is defined as

Qw =
1

2m

∑

ij

(

Aij −
kikj
2m

)

δf (ci, cj) (1)

whereAij is the weight of the edge fromi to j, ki of a
nodei in a weighted network is the sum of the weights of the
edges connected to it (ki =

∑

j

Aij), andm = 1
2

∑

ij

Aij is the

total weight of the edges in the network.Qw has an absolute
value between 0 and 1, where a value of over 0.3 is typically
considered to indicate favorable community division [6].

The typical community membership function is denoted as
δf (ci, cj), whereci is the community to which a nodei is
assigned. In the traditional community membership function,
a node cannot be a member of more than one community
(communities cannot overlap). In this work, the members of
a community are time spans of two years. Previous work
has shown that the most useful networks had no community
overlap [1]. This work thus does not consider overlapped
communities in the Q metric-based fitness function.

The first population consists of GA individuals. The geno-
type of each of these individuals is a chromosome of 20 gene
sequences. Each separate gene sequence is an ordered set of
8 integers (genes) that correspond to an edge in the network.
The genotype of each individual represents a graph, or list of
edges. The first four integers in a gene sequence determine
one node in the edge, and the last four integers determine the
other node in the edge. Within each group of four integers
that identify a node, the first two integers correspond to thex
andy coordinates in the N x N grid and the last two integers
correspond to the first and second years of a time span in the
data set. Formation of genotypes and the genetic operators
always ensure that the first and second years of the time span
are ordered. Furthermore, in a set of eight integers that make
up the gene sequence the two time spans (integers 3,4 and
7,8) cannot be the same. The absolute difference between the



average catch between the two time span and location pairs
is the weight of the edge. A gene sequence corresponding to
a network edge is

edge
︷ ︸︸ ︷

node1
︷ ︸︸ ︷

x1, y1
︸ ︷︷ ︸

location1

, t1, t2
︸︷︷︸

timespan1

node2
︷ ︸︸ ︷

x2, y2
︸ ︷︷ ︸

location2

, t3, t4
︸︷︷︸

timespan2

(2)

where t2 ≥ t1, t4 ≥ t3 and t1, t2 6= t3, t4. The second
population in the PAM DGA algorithm is the mapping
population. This second population consists of potential
mappings of all time spans of two years to a community.
As described in Section 2, there are 351 time spans that
are each considered a community in the standard GA. A
mapping individual consists of all ordered year pairings that
constitute a time span. Upon initialization, each ordered
pairing of years are given a randomly assigned community
number from 1...351. As such, the mapping is redundant
because more than one ordered pair of years (time span)
can be a member of the same community and there will
be 351 or less communities. By allowing the mapping of
time span to community to be redundant, the GA search
on the mapping population will emphasize particular sets
of time spans (not necessarily sequential). That is, instead
of each time span being its own community by definition, a
number of collectively interesting time spans can be grouped
in a community by the coevolutionary search in the mapping
population.

The algorithm begins with initialization of genotype and
mapping populations of sizeg andm, respectively. A proba-
bility table of sizeg x m is then created with cells initialized
to 1/m. For each round of a steady state tournament, 4
cells of the probability table are selected using roulette
selection on them axis. The selected cells correspond to
four genotype/mapping pairings that are selected where the
genotypes must be unique but the mappings can be chosen
more than once. The pairings are evaluated for fitness, and
the best two pairings are considered parents and are left
unaltered. The best two pairings are also checked against
the current best genotype/mapping pairing found so far in
the tournament to determine if they will be identified as the
new best. Once the current best genotype/mapping pairing
is identified, the table cell corresponding to the two best
genotype/mapping pairings is updated according to

P (g,m)new = P (g,m)old + α(1− P (g,m)old) (3)

and the other combinations in the same column are updated
according to

P (g,m)new = P (g,m)old + α(P (g,m)old) (4)

where g is the index of the genotype,m is the index of
the mapping,α is the learning rate (corresponding to the
emphasis of current table values over previous values), and
P (g,m) is the probability in cell [g, m] of the table. Updates

by equations 3 and 4 result in all values in a column always
having a sum of unity. A threshold value ofγ is used to
prevent premature convergence on a sub-optimal solution:
Following the table update, if any cell in the probability table
column corresponding to the winning genotypes exceedγ,
all values in that column are then reset to1/m so they sum
to unity. The effect of noise addition and normalization is
to effectively reset the chances of selection of all mappings
with respect to the genotype handled by that table column.
The last two ranked pairings are considered the children and
are subject to genetic operations based on their respective
associated thresholds. However, if either the genotype or
mapping of the losing pairings is identified as the current
best genotype or mapping found so far in the tournament,
they are protected from both mutation and crossover. (The
pseudocode for PAM DGA is provided in Figure 2.)

In addition to PAM DGA, the authors previously examined
characteristics of the results of a GA, a standard coevolu-
tionary GA, and simulated annealing. The pseudocode and
detailed results for these algorithms are provided in [1],
but they are mentioned only because we will examine their
execution times in the results section to put PAM DGA and
the parallel search technique (targeted for CPU and GPU) in
perspective.

B. Massively Parallel Search

The machine learning algorithms described in the previous
section search for local optima, or solutions in smaller areas
of the search space. Since they explore the search space by
moving from one possible solution to another that is not
necessarily close by in the search space, the best solution
may not be (but could be) the solution that maximizes the
search criterion. On the other hand, if a brute force search
over all possible solutions in the search space could be done,
we could know the global optima of the entire space. As
described in Section 3, the fisheries catch data search space
appears to be so large as to be unreasonable to search in its
entirety. Also, in terms of storage space alone, the entire data
set would consume 593 GB based on our estimates.

By conceiving the search space in partitions and dividing
the search as described in this section, we can provide a
brute force search of the entire space. By so doing, we
can determine the global maximum for the space. The key
to performing this type of search is to place the arrays
on a multicore processor sufficient to handle the parallel
computation required, namely a GPU processor capable of
massively parallel processing or a sufficiently fast multicore
CPU processor. The search space can be envisioned as a grid
of all time frames, with the time frame for each node of an
edge given on either axes. Each element on the grid then
corresponds to a comparison between two time frames, or
comparison of two year pairs. For each year pair comparison
(element on the grid), it is divided into a grid of the decided
latitude-longitude resolution (in this case a resolution of
30x30). Here, there would simply be a 315,900x315,900
grid corresponding to compared timespans, each element
being a 30x30 grid (which we will consider as 30 latitudinal



1 create size N genotype population & mapping population
2 initialize N x N probability table so each value = 1/N
3 while (tournament not done and solution not located
4 choose 4 genotype / mapping pairs (unique geno) using roulette selection
5 rank selected 4 genotype / mapping pairs
6 if new best genotype / mapping pair, replace best genotype / mapping pair
7 update probability table using Equation (3) & (4)
8 if (cell in best genotype column >= gamma)
9 set column values to 1 / N
10 for worst 2 genotype / mapping pairs
11 if (genotype != best genotype in best genotype / mapping pair)
12 replace genotype with parent, apply mutation & crossover
13 if (mapping != best genotype in best genotype / mapping pair)
14 replace mapping with parent, apply mutation & crossover

Fig. 2. Pseudocode for PAM DGA algorithm.

and 30 longitudinal divisions) for a geographic area. This
conception of the search space results in duplication of
all edge weight values (except for time spans compared to
themselves). This repetition, as we will see, does not have
a computational cost for parallel processing: Each piece of
data provided to the GPU (or CPU) has unique elements not
having been previously calculated (and those having been
calculated previously just happen to be processed along with
them). Furthermore, any conception of the search space that
was attempted in order to eliminate the repetition prior to
parallel computing far outweighed any benefit due to the
CPU-side cost in the rearranging.

By altering the natural conception of the space, we can
massage it into a form that is amenable to parallel (or
massively parallel) processing shown in Figure 3. To do
this, we first consider how large a section of the search
space can be handled by the parallel processor at one time.
In particular, the documentation for the Microsoft Research
tool [7] indicates that most GPUs are limited to processing
of 2-dimensional arrays of 64,000,000 elements, with no
side over 8000 elements long. We found these restrictions
to hold when using Accelerator with our chosen production
GPU. The area of the search space sent to the GPU for
processing each time was divided to be within this range. We
chose to send arrays of no more than 5280x5280 elements
(totaling 27,878,400 individual elements) in a 2-dimensional
grid at one time. The smallest array sent is 5250 x 5250, thus
containing 27,562,500 elements. (The grid of the largest size
is in the lower right corner of Figure 3, with the other grids
being slightly smaller.)

To produce a natural division of the search space that
provides grids of this size, we consider that each element of
the search space is actually an edge. Each edge is represented
by two nodes, each having latitude, longitude, and time
span attributes that collectively identify the node. Let uscall
each of these attributeslatitude1, longitude1, andtimespan1
for the first node of the edge, andlatitude2, longitude2,
and timespan2for the second node of the edge. First we,
divide the entire search space so we consider every instance
of latitude1 as a separate space, and then every instance
of the space corresponding to eachlatitude1, longitude1
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Fig. 3. Parallel computation conception of the search space.

combination as a space. This creates a nested loop with 900
iterations given 30latitude1points and 30longitude1points
(for a 30 x 30 grid) to process four search spaces that are
passed to the GPU, each of up to the stated size of 27,878,400
elements. The 351 possible time spans on each axis are split
into two parts of 175 and 176. These four search spaces
collectively contain nodes covering all values oflatitude2,
longitude2, and timespan1and timespan2. The attributes of
the node corresponding to each element are also labeled in
Figure 3.

The Accelerator tool (Version 2) code is used for the GPU
parallel computing solution using Direct X under Accelerator
bindings with C#. As mentioned at the start of this section,
the size of the network to be considered is so large that
it is not feasible to store all edges and access them as
needed during execution. To eliminate this problem, we
generate the edges as needed using the code in Figure 4
given information about the 315,900 possible nodes (the only
information stored prior to determination of global optima).

In Figure 4, for eachlatitude1 and longitude1 (outer
for loops) on lines 4 and 5, all elements in four smaller
arrays (using inner for loop) are filled with catch weight
differences with respect tolatitude2(andtimespan1) andlon-
gitude2 (and timespan2) using weight difference calculated
from the existing node data (lines 7-8 for GPU solution).



1 int maxLatitude = 30; int maxLongitude = 30;
3 // input node data in 4 vectors: weightDiffs1_1, 1_3, 2_1, 2_2
4 for (int longit1 = 0; longit1 < maxLongitude; longit1++)
5 for (int latit1 = 0; latit1 < maxLatitude; latit1++)
6 if using GPU
7 fill weightDiffs1_1 & weightDiffs1_2 vectors for longit2, time span 1
8 fill weightDiffs2_1 & weightDiffs2_2 vectors for latit2, time span 2
9 on GPU: determine weight difference for all grid points (see Figure 7)
10 if using CPU
11 fill input1 and input2 arrays for longit2, time span 1
12 fill input3 and input4 arrays for latit2, time span 2
13 for each input array start a thread (4 threads total)
14 in each thread determine vertical, horizontal maxes
15 find max across arrays 1,2 and 3,4 (rows) and 1,3 and 2,4 (columns)
16 for maximum values for all rows
17 find corresponding longit2, time span 1
18 for maximum values for all columns
19 find corresponding latit2, time span 2

Fig. 4. CPU-side code for GPU-based parallel solution.

1 // replicate weight vectors across rows, columns
2 FPA input1Vert = new FPA(weightDiffs1_1[longit1, latit1]);
3 FPA input2Vert = new FPA(weightDiffs1_2[longit1, latit1]);
4 FPA input3Vert = new FPA(weightDiffs1_1[longit1, latit1]);
5 FPA input4Vert = new FPA(weightDiffs1_2[longit1, latit1]);
6 FPA input1VertStretched = PA.Replicate(input1Vert, dim1);
7 repeat 6 for 3 other grids
8 FPA input1Hor = new FPA(weightDiffs2_1[longit1, latit1]);
9 FPA input2Hor = new FPA(weightDiffs2_1[longit1, latit1]);
10 FPA input3Hor = new FPA(weightDiffs2_2[longit1, latit1]);
11 FPA input4Hor = new FPA(weightDiffs2_2[longit1, latit1]);
12 FPA input1HorStretched = PA.Replicate(PA.Transpose(input1Hor), dim1);
13 repeat 12 for 3 other grids
15 // determine absolute difference between weight differences
16 FPA fpInput1 = PA.Abs(PA.Subtract(input1VertStretched, input1HorStretched));
17 repeat 16 for 3 other grids
19 // determine max in each row and column for [longit1, latit1].
20 FPA fpOutputVert1 = PA.MaxVal(fpInput1, 1);
21 repeat 20 for 3 other grids
22 FPA horFpInput1 = PA.Transpose(fpInput1);
23 repeat 22 for 3 other grids
24 FPA fpOutputHor1 = PA.MaxVal(horFpInput1, 1);
25 repeat 24 for 3 other grids
26 // move result from GPU back to CPU for further processing
27 maxesOfInputArrayVert1s[longit1, latit1] = evalTarget.ToArray1D(fpOutputVert1);
28 repeat 27 for 3 other grids
29 maxesOfInputArrayHor1s[longit1, latit1] = evalTarget.ToArray1D(fpOutputHor1);
30 repeat 29 for 3 other grids

Fig. 5. GPU-side code for GPU-based parallel solution.

These weight differences are appropriately separated into
two vectors (weightDiffs11, weightDiffs12) for latitude2,
timespan1and two vectors (weightDiffs21, weightDiffs22)
for longitude2, timespan2. These vectors are then passed
to GPU for processing, see Figure 5. For GPU processing,
the vectors are first converted to vertical and horizontal
floating point arrays (FPAs), an Accelerator-specific data type
(lines 2-6 and lines 8-11, respectively, of Figure 5). These
vectors are then replicated across the appropriate number of
dimensions for each of the four sections of the grid (lines
6-7 and 12-13). Following that, the absolute difference in
vertical and horizontal values for each of the four grids are

determined (line 16-17). The result of this operation for each
element is a catch difference with respect to two time spans,
each with associated latitude and longitude locations. These
replication and subtraction steps are shown in Figure 6.

Following the determination of the catch difference be-
tween two of {timespan, latitude, longitude} triples, the
maximum of each row and column is determined. For
each of the four search space sections, the maximum for
each latitude2, timespan1with respect to eachlongitude2,
timespan2possibility is determined (and vice versa) in lines
19-25. Collectively, recall that these four search spaces are
in the context of a particular{longitude1, latitude1} location
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Fig. 7. Calculation of maximums across all rows and columns.

(see Figure 3). The maximum across each row and column
and finally placed in the arraysmaxesOfInputArrayVertXs
and maxesOfInputArrayHorXswhereX = {1, 2, 3, 4}, re-
spectively, in lines 26-30 of Figure 5 and passed back to the
CPU for further processing. This step is shown pictorially in
Figure 7. Following the determination of the maximums, the
maximum for each pair of row and column maxes in the four-
array space is determined CPU-side (line 15 of Figure 4).

We should note that when determining the maxima that
information is lost during this process. In particular, the
maximum with respect to each row is stored inmaxesOfIn-
putArrayVertXs, but the column location of that maximum is
lost (and vice versa for columns). However, this information
can be easily determined since we need only search the orig-
inal vertical and horizontal weight vectors for a difference
that, combined with the difference in the location of the
maximum resulting frommaxesOfInputArrayHorXsor max-
esOfInputArrayVertXs, respectively, produces the maximum
in question. In particular,weightDiffs11, weightDiffs12 are
searched formaxesOfInputArrayVertXsand weightDiffs21,
weightDiffs22 are searched formaxesOfInputArrayHorXs.
This final gathering for the time spans and locations corre-
sponds to lines 16-19 in the CPU-side code of Figure 4.

The CPU solution operates in much the same way as the
GPU solution, and only differs in lines 11-14 as shown in
Figure 4 where the four arraysfpInputXare calculated CPU-
side (lines 11-12) in the straightforward way, rather than by
replication of vertical and horizontal vectors (lines 6-7 and
12-13 of Figure 5). These maxima are then calculated by
dedicating each of four threads to determining the maxima
for the four arrays (lines 13-14 of Figure 4). The remainder
of the code operates in the same way CPU-side for CPU and
GPU (lines 15-19 of Figure 4).
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Fig. 8. Time in seconds for a solution to be located for each machine
learning algorithm. Based on 50 trials.

IV. RESULTS

A. Execution Time

For all of the machine learning algorithms, the same
number of tournament rounds were completed to allow
comparison of execution times. In particular, each of the EC
algorithms is run for 100,000 rounds with 4 individuals being
evaluated per round. This means that 400,000 individual
evaluations are conducted per round. For equivalent compu-
tational effort, the SA is run for 400,000 evaluations. Figure 8
compares the time to solution for all the computational
intelligence search algorithms in a boxplot based on 50 trials.
Bottom, middle, and top of boxes indicate lower quartile,
median, and upper quartile values, respectively. If notches of
boxes do not overlap, medians of the two sets of data differ at
the 0.95 confidence interval. The symbol ‘+’ denotes points
from 1.5 to 3 times the interquartile range, and ‘o’ denotes
points outside 3 times the interquartile range.

The time for the search of the entire space using parallel
computation for all global optima is shown in Figure 9
based on 50 trials. The time taken for evaluation of the
four grids depicted in Figure 3 is timed. In particular, this
corresponds to the execution time for the seeding of vectors
and arrays for GPU and CPU, respectively, and the parallel
processing associated with the GPU processing and CPU
threading. The operations timed in Figure 7 is shown in
Figure 4 on lines 6-9 for GPU and lines 10-14 for CPU.
These sections of code were chosen to fairly represent the
execution time differences because different CPU-side data
preparation times are required prior to either GPU processing
or threading on CPU due to the use of vectors and arrays,
respectively. The CPU used for the time trials was an IntelR©
CoreTM i7 870 @2.93GHz (which has four CPU cores) on
the 64-bit Windows 7 Ultimate OS with 8GB of RAM. The
graphics card used is an AsusR© ENGTS450 DirectCU OC
850 MHz (overclocked) with 1GB GDDR5 video memory
and a nVidiaR© GeForce

TM
GTS 450 GPU on board (which

uses 192 cores). Both processors are considered current
hardware at the time of this writing.

We can see from Figure 8 that, for the computational
intelligence techniques examined, the time to solution after
all rounds was 100 to 1200 seconds. Also, the PAM DGA al-
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Fig. 9. Time in seconds for a solution to be located for parallel computation
on GPU and CPU. Leftmost graph shows both plots, middle and right graphs
are zoomed plots. Based on 50 trials.

gorithm that found the best solutions according to the expert,
stretched across those execution times. In Figure 9, we can
see that there is a large discrepancy between GPU and CPU
execution times. The median time for execution of the code
for the GPU solution was 0.245 seconds, compared to 2817.4
seconds for the multithreaded CPU solution, representing
a speedup of 11,500x. This is a very significant speedup
even considering GPU vs CPU claims in the literature that
typically span from 10x to 1000x, and these often use a single
thread CPU example [8]. This speedup is thus an order of
magnitude greater than some of the higher claims, and this
may be a result of compounding the normally cited speedups
with the very large data set processed. Another possibilityis
that the speedup is due to efficient implementation of the
GPU-based solution compared to the thread-based version
using CPU. However, it is worth noting that comparable
speedups of up to 7300x have been reported, also in a study
using Accelerator, by Harding [9].

B. Expert Assessment

A fisheries analysis expert, examined the best solutions
located by all machine learning algorithms (GA, SA, Co-
evolutionary GA, and PAMDGA) and the global maximum
search results. He rated each edge of the best networks,
where these edges were visualized using GTdiff software
(a visualization tool designed for this project, describedin
detail in [10]) as two temporal bins and one corresponding
difference graph. In previous work, we investigated large
changes of interest that resulted from PAM DGA [1]; here we
contrast those previous best results according to the expert
with the actual largest catch changes which can now be
located thanks to parallel computing search. The first two
grids show average catch in kg in each spatial grid element,
and are ordered sequentially based on last year of the time
spans (and if the last year is the same, they are ordered
by the first year). The color scale spans from light yellow
(lowest average catch) to brown (largest average catch). The
third grid is the difference graph, which shows the difference
in average catch between the two time spans as a positive
(green) or negative (red) change. White indicates no change
in catch, and the degree of saturation of green and red is used

TABLE I

RANKING OF DIFFERENCEGRAPHS

No Relevant Salient Differences
GA 10 6 1 17
SA 3 7 0 10

CoEvGA 6 6 1 13
PAMDGA 6 7 3 16

Parallel 13 6 1 20

to represent positive and negative differences, respectively.
The final networks are shown as a 10 x 10 grid in GTdiff
to allow for easier viewing of trends by the expert and in
publication (as opposed to finer resolution on a large screen).

During the time period examined (1980 to 2005), there
are established anomalous changes that are represented as
large differences in catch over time that would be known to
experts. A major event reported by biologists involved cod
population levels that dropped suddenly in the early 1990s,
leading to a moratorium on cod fisheries from 1992 to 1993.
Other less significant changes are also known to experts
during this time period. The three options for the rating of
each difference graph by the expert were: No (meaning no
difference relevant to fisheries officers appeared), Relevant (a
difference relevant to fisheries officers appeared), or Salient
(a special case of Relevant indicating that an important
biological event was identified). The ranking of the difference
graphs are shown in Table 1 for responses corresponding to
each valued edge (actual difference) for best solutions from
all computational intelligence algorithms [1] over 50 trials
and for the global maximum search (multiple trials not ap-
plicable). The top difference graphs for the PAM DGA search
are shown in Figure 10, and indicate known biological events
including those involving the moratorium (these differences
were reported with additional details in [1]).

The global maxima found by the parallel computation
methods ranged in catch difference from 867,300 kg to
1,250kg between two time spans, and 115 unique maxima
were determined. In order to provide the expert with a
reasonable number of difference graphs to evaluate, we
selected 20 of the maxima generated by the parallel algorithm
for ranking by the expert (a convenient number close to
the 16 evaluated for PAM DGA to provide results seen in
Figure 10). We chose the top twenty based on a ratio of catch
over the time span separating the last year of the first time
span and the last year of the second time span. Interestingly,
the results used time spans that involved comparison of a
time span including the first year (1980) of the data to a year
in the future, with the exception of 3 out of the top 20 results.
The expert ranked these results, and found only one salient
catch difference despite these difference graphs featuring the
largest catch changes. This salient difference selected from
the parallel search results is shown in Figure 11. He also
found that, overall, the patterns were less interesting than
those found by the computational intelligence algorithms that
selected local optima. In particular, the graphs focused on
the 1980s when larger catches occurred, but did not readily



Fig. 10. Salient difference graphs selected by expert from the highest Q
network produced by PAMDGA. Catches are shown in thousands of kg.

Fig. 11. Salient difference graphs selected by expert from the networks
produced by parallel search. Catches are shown in thousandsof kg.

pick out contrasts before and after the moratorium. The
parallel search also located changes that involved overlapping
time spans, which were deemed to be less helpful than
the non-overlapping spans of the computational intelligence-
based searches. What was interesting for the expert were
not necessarily the maximum catch differences in the data
set; and the expert noted that some extreme catches can be
recorded but be isolated (not a pattern of interest).

V. CONCLUSIONS

This work presented a novel parallel computing solution
for finding global optima in a very large network space.
Furthermore, the location of large differences in this dataset
had real world implications, as the data represented scientific
cod fisheries catch data used by fisheries officers for natural
resources management purposes. The novel parallel approach
was optimized for CPU and GPU use, taking advantage of
the parallel computing capacity of both processor types. For
the problem conception for this particular large data set, we
found that the use of the GPU could provide a speedup of
11,500 times that of the CPU. This is an impressive speedup,
even by GPU performance literature standards, and may be
a result of usual speedup levels compounded by a larger data
set. While a useful solution to parallel processing of a large

data set is presented, the fisheries expert in this project found
that there was greater value in finding local optima using
evolutionary computation for this particular data set. In this
study, the global optima tended to focus on a time period
of abundant catches that were (for the most part) of less
interest than the machine learning results. The value to users
of local optima over global optima may differ from data set
to data set, so there is likely a lot of opportunity to mimic
the parallel GPU solution we present to evaluate other large
network spaces quickly. Our study, however, also provides a
real world example of how the exploration of a search space
using evolutionary computation can be more valuable than
simply finding global optima by brute force even when that
option is possible.
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