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ABSTRACT

Current intrusion detection techniques mainly focus on discovering abnormal system events in computer networks and
distributed communication systems. Clustering techniques are normally utilized to determine a possible attack. Due to
the uncertainty nature of intrusions, fuzzy sets play an important role in recognizing dangerous events and reducing false
alarms level. This paper proposes a dynamic approach that tries to discover known or unknown intrusion patterns. A
dynamic fuzzy boundary is developed from labelled data for different levels of security needs. Using a set of experiment,
we show the applicability of the approach.

1. INTRODUCTION

Due to the popularization of the Internet and local networks, intrusion events to computer systems are growing. Intrusion
detection systems are becoming increasingly important in maintaining proper network security.2, 7 Most intrusion detec-
tion systems are softwares.3 People use these softwares to monitor the events occurring in a computer system or network,
analyze the system events, detect suspected intrusion, and then raise an alarm.

A typical intrusion detection system consists of three functional components3: an information source, an analysis
engine and a decision maker. The information source provides a stream of event records. This component can also be
considered as an event generator. It monitors different data sources and generates data that are well formatted and suitable
for analysis. The data sources can be divided into three categories: first, data sources related to operating systems, such as
system calls and system logs; second, network traffic monitors which generate raw network packets13; third, data collectors
of different applications.

The analysis engine finds signs of intrusions. There are two basic approaches used to detect intrusions.3 The first
approach is called misuse detection. A system using this approach detects intrusion events which follow well-known
patterns. The patterns may describe a suspect set of sequences of actions or takes other forms. The primary limitation
of this approach is that it cannot detect novel intrusions, i.e., events that are never happened in the system. The second
approach is called anomaly detection. An anomaly detection based system analyzes the event data of a training system,
recognizes patterns of activities that appear to be normal. If a testing event lies outside of the patterns, it is reported as a
possible intrusion. In this paper we mainly focus on anomaly intrusion detection.

A decision maker applies some rules on the outcomes of the analysis engine, and decides what reactions should be
done based on the outcomes of the analysis engine. The major function of the decision maker is to increase the usability
of an intrusion detection system.

Many artificial intelligence techniques have been applied to the intrusion detection area.10 By the approaches used
on analysis engine, the intrusion detection systems can be categorized into misuse detection systems or anomaly detection
systems. For a misuse detection system, an expert system can be used to store a set of rules designed to detect the known
intrusion activities.1 The knowledge of past intrusions can be encoded by human experts into expert system rules. Kumar
et al.11 proposed a misuse detection system based on pattern matching. In their model, the known intrusion signatures are
encoded as patterns, and then matched against the audit data introduced by the analysis component.

From the viewpoint of classification, the main work of building an anomaly intrusion detection system is to build
a classifier which can classify normal event data and intrusion event data from an original data set. Anomaly intrusion
detection mainly consists of two processes, which are training the parameters of a classifier from a training data set and
using this classifier to classify a test data set. Here we just mention some popular approaches to develop classifiers. Qiao



et al.18 presented an anomaly detection method by using a Hidden Markov Model to analyze the trace of system calls
coming from a UNIX system. Leeet al.14 established an anomaly detection model that integrated the association rules
and frequency episodes with fuzzy logic to produce patterns for intrusion detection. Mohajeranet al.16 developed an
anomaly intrusion detection system combining neural networks and fuzzy logic. Wanget al.21 applied genetic algorithms
to optimize the membership function for mining fuzzy association rules.

The above researchers have made various contributions on using artificial intelligence techniques on anomaly intrusion
detection, but all their methods are using a static classifier or a static decision boundary to classify data, then detect
possible intrusions. However, the security needs may differ for various applications. It would be good if a dynamic
decision boundary can be set for different applications. This research is aim to develop a dynamic decision boundary for
different levels of security needs. Our research is also within the anomaly detection category. It is natural to think that
there are some connections between the detection accuracy of a decision boundary and the computation complexity of
classification using this boundary. With a dynamic boundary adjustable to users’ requests, the users may obtain a suitable
detection rate according to their own needs along with a acceptable computation time.

The organization of this paper is as follows. In the next section, we propose a fuzzy intrusion detection approach with
dynamic boundary. Experiments by using KDD Cup 1999 data are presented in Section 3. Preliminary results and their
analysis are discussed in Sections 4. A conclusion section is followed.

2. DEVELOPMENT OF A DYNAMIC FUZZY BOUNDARY

A hybrid system intrusion detection approach is proposed. The method and rational of choosing Fuzzy logic and Support
Vector Machine is disused in this section.

2.1. Overview of Fuzzy logic and Support Vector Machine

Fuzzy logic was introduced by Dr. Lotfi Zadeh of UC/Berkeley in the 1960’s as a means to model the uncertainty of
natural language.22 For several reasons, fuzzy logic is very appropriate for using on intrusion detection.9 One reason is
that usually there is no clear boundary between normal and anomaly events. The use of fuzziness of fuzzy logic helps to
smooth the abrupt separation of normality and abnormality. Another reason is that when to raise an alarm is fuzzy. There
would be too many alarms if we raise an alarm every time when we find an intrusion event. At what degree of intrusion we
should raise an alarm is often depends on different situation.

Support Vector Machine or SVM in short is a machine learning method based on statistical learning theory.20 It relies
on preprocessing the data to represent patterns in a high dimension which is typically higher than the original feature space.
SVM classifies data by determining a set of support vectors, which are members of a set of training inputs. These support
vectors outline a hyper plane (decision boundary) in the feature space.20 SVM has two unique features.5, 20 Based on
Structural Risk Minimization principal, SVM minimizes the generalization error. Therefore the first feature of SVM is its
good generalization ability of the learning model, which means even from a relatively small training data set, we can still
have a good accuracy when we use SVM from classification. The high generalization ability of SVM is very useful when
we apply SVM on an intrusion detection system. In an anomaly intrusion detection system, we need to form a training
data set and attach each record in the set with a label. This label identifies if the record is an intrusion or not. The whole
process of forming a training data set costs a lot of time. The SVM’s feature of using relatively small training set saves
time of forming the training data set in a intrusion detection system.

The second feature of SVM is the ability to overcome the curse of dimensionality. SVM constructs the classifier by
evaluating an kernel function between two vectors of the training data instead of explicitly mapping the training data into
the high dimensional feature space. Therefore SVM is capable of handling a large number of features. On an intrusion
detection system, we need to collect event data for representing different aspects of a system. The more data features we
have, the more possible we can detect an intrusion. A good capability to handle high dimensional data is very useful to a
intrusion detection system.

The nonlinear discriminant function of SVM is

f(~x) = sgn(
l∑

i=1

αiyiK(~xi, ~xi) + b)



wherel is the number of training records,yi ∈ {−1,+1} is the label associated with the training data,0 ≤ αi ≤ C, C > 0
is a constant andK(~xi, ~xi) is the kernel function. Users can choose a suitable function for themselves.

The (Radial Bias Function(RBF)8 e−|| ~xi−~x||2·γ is used as our kernel function in this study. The final discriminant
function we are using is

f(~x) = sgn(
l∑

i=1

αiyie
−|| ~xi−~x||2·γ + b)

where the value of variance parameterγ is set in advance.

2.2. A method to develop a dynamic fuzzy boundary

Fuzzy logic and SVM have their own unique features appropriate for intrusion detection systems. SVM is a classification
method which has shown good performances on the accuracy and efficiency, specially in high input dimensions. Mukka-
malaet al.17 compared the performance of intrusion detection systems using SVM and Neural Networks, and concluded
that SVM outperforms Neural Networks. The uncertainty of fuzzy logic is also very suitable for intrusion detection sys-
tems. Therefor, we use a hybrid method consisting of SVM and fuzzy logic techniques to develop a dynamic and fuzzy
decision boundary. We use this boundary to discriminate normal and abnormal events and detect the possible intrusions.
The dynamic decision boundary is based on a set of support vectors generated by SVM and fuzzed with fuzzy logic tech-
nique. We hope the decision boundary generated by our method obtains the high generalization from SVM and flexibility
from fuzzy logic.

In this paper we focus on developing an anomaly intrusion detection system with a dynamic decision boundary. The
basic thought of our method is extracting a fuzzy rule set from support vectors which are the training result of a SVM.
Then we apply some fuzzy functions on the rule set to develop a fuzzy classifier or a fuzzy decision boundary .6 To make
the decision boundary dynamic, we train a SVM several times using different values of parameters, obtain several sets of
support vectors, extract different fuzzy rule sets from different sets of support vectors, and at last build a dynamic decision
boundary according to the fuzzy rule sets. The different positions of the boundary correspond to different fuzzy rule set.

We use RBF(Radial Bias Function) kernel functione−|| ~xi− ~xj ||2·γ when we train the SVM. Suppose we have totally
l records in the training data set. The training result is a set of support vectors{~z1y1, ..., ~zmym} and the biasb, where
m < l, yi ∈ {−1, 1}. From the subsection above we know that there are two parametersC andγ needed to be set in
advance for training a SVM with RBF kernel. To let the final decision boundary generated be dynamic, we fix the value of
C and letγ be equal to several different values. Each value ofγ corresponds to a different set of support vectors. From the
different support vectors we build different decision boundaries.

After we have several sets of support vectors, we can develop several fuzzy rule sets from the sets of support vectors.
Each fuzzy rule set corresponds to a set of support vectors. The fuzzy rule set would be like6:

Rule 0: IFA1
0 AND A2

0 AND ... An
0 THEN b0

Rule 1: IFA1
1 AND A2

1 AND ... An
1 THEN b1

...

Rule m: IFA1
m AND A2

m AND ... An
m THEN bm

whereb0 = b, Ak
0 = ak(0), bi = αiyi, A

k
i = ak(zk

i ), k = 1, ..., n, i = 1, ...,m. m is the number of support
vectors we found,n is the number of features in the data space andak(x) is the fuzzy function.

From the fuzzy rule set, the binary fuzzy discriminant function can be written as the following form6:

f(~x) = sgn(
(b0 + t) +

∑m
i=1(bi + t)

∏n
k=1 ak

i (xk − zk
i )

1 +
∑m

i=1(bi + t)
∏n

k=1 ak
i (xk − zk

i )
)

wheret is a threshold.~x = xk, k = 1...n.



3. EXPERIMENT

Using the method introduced above, we build a dynamic decision boundary based on KDD (Knowledge Discovery in
Databases) Cup 1999 data set.13 The performance of the dynamic decision boundary on different positions with different
training parametersγ is evaluated. A discussion about the dynamic decision boundary is provided. To prove the good
generalization ability of SVM, a trimmed training set and a full-size training set are used in the experiment. Comparisons
with results from different training sets prove the good generalization ability of SVM.

3.1. The experimental data set

Start

Trim training data
set

Train SVM using
different

parameters

Extract Fuzzy
Rule Set

Extract Fuzzy
Rule Set

Extract Fuzzy
Rule Set

Build decision
boundary

Build decision
boundary

Build decision
boundary

Choose the most suitable
decision boundary

Classify the test
data set

Gamma1 Gamma2 Gamma3

End

For experiments
using small training

set

For experiments
using full training

set

Prepare data
set

Prepare test data
set

Figure 1. Experiment Procedures

In the three categories of data we have mentioned in the introduction section, the operating systems level data depend
on different operating systems, and the data from running applications depend on an application. To maximize the general-
ization of our discussion, in this paper, we use KDD’99 data set which consists of raw network packets and is independent
of a operating system or an application.



The KDD’99 data set has four intrusion categories and one normal category. Twenty-four types of attacks fall into four
main categories which are denial-of-service (DOS), e.g., SYN flood, unauthorized access from a remote machine (R2L),
e.g., guessing password, unauthorized access to local superuser (root) privileges (U2R), e.g., various “buffer overflow”
attacks, and surveillance and other probing, e.g., port scanning.

The whole data set is collected TCP/IP dump records from hosts located on a simulated military network. The original
data set contains 744 MB data with 4,940,000 connection records. It has 41 features for each record. 10% of the original
data are training data with a label which identify to which category the record belongs. In this paper we only discuss binary
classification. Therefore, instead of four intrusion categories and one normal category, we consider all intrusion records in
one category and all normal records in another category.

3.2. Experiment procedures

There are four steps in the experiments as shown in Figure 1: data preparation, SVM training, rule extraction and dynamic
boundary building.

The first step is to prepare the data sets. On this step we prepare both the training and test data sets. Since we do binary
classification, we attach a class label with value +1 or -1 to each data example of all data including training and test data.
The label value +1 means the example is a normal record and -1 means the example is an intrusion record.

For the training process, we prepare two data sets. A small data set has 50,000 records randomly selected from the
KDD’99 training set. A large data set has all the 494,022 records from the KDD’99 training set. The volume of KDD’99
data set is large. Because of the good generalization ability of SVM mentioned above, we do not use all the training
examples of KDD’99. Instead, we can use the small data set as our training set. With this way, the number of generated
support vectors are decreased, the computational complexity of classification is lowered, and the performance is still on
the same level as we show below.

For the test process, to gain a better generalization performance of experiments, we randomly select 50,000 records
from KDD’99 test data, and split these records into five test sets with each set has 10,000 examples.

The second step is to generate the support vectors by training the SVM. We use a modification of the SVM implemen-
tation developed by Joachims,12 setC = 1 and change the value ofγ to be10−2, 10−6 and10−8 in different training
processes. Three different sets of support vectors are generated from training.

The third step is to extract fuzzy rule sets from support vectors. Each rule set corresponds to one set of support vectors.

The last step is to build a dynamic decision boundary from the three different fuzzy rules. To simplify our experiment,
for the parameters of the fuzzy classifier, we set allak

i (x) = γ · e−||xk−zk
i ||2 , thresholdt = 0, and theγ has the same

value as it is on the training phase. In our experiments we compare the detection abilities of all the decision boundaries we
generated. For the users in the real world, they can choose the most suitable boundary according to their security needs
and use only this boundary to detect intrusions.

4. RESULTS AND ANALYSIS

Table 1 shows the training results from the SVM using different values ofγ. All the three experiments use a same training
set which consists of 50,000 randomly chosen data records with 41 features from the original training set which has 494,020
records. The table shows that the different sets of support vectors generated by using different values ofγ. It is observed
that the larger value ofγ results a larger number of support vectors generated and the smaller value ofγ results small
number of support vectors.

Table 1: Training results with different value of gamma.
Training Result Exp1 Exp2 Exp3

# of training records 50,000 50,000 50,000
# of features 41 41 41

kernel RBF RBF RBF
Value ofγ 10−3 10−6 10−8

# of generated SVs 6,498 1,868 1,057



Table 2 shows three different test results for different rule sets and different values ofγ. The three fuzzy rules are
extracted from the Support Vector Sets showed in table 1. All the tests are conducted on a same computer with Pentium 4
2.66 GHz CPU and 512 M RAM. There are two measures that evaluate the performance of a intrusion detection system:
False Positive and False Negative Rate. A False Positive occurs when an actual intrusive action has occurred but the system
allows it to pass as non-intrusive behavior. A False Negative occurs when the intrusion detection system classifies an action
as an intrusion when it is a legitimate action.

From these results we conclude that larger number of rules results in higher detection accuracy and higher computation
costs. In experiment 1, the accuracy is the highest. Experiments 2 and 3 have similar accuracies and testing time. This
result is quite reasonable. From the form of fuzzy classifier we know the computational complexity of testing process is
O(mn) with m is the number of rules,n is the number of features in the data space. Therefor, the testing time is increased
along with the increasing of the number of rules. Another phenomenon we noticed is that while experiment 1 has much
larger number of rules much longer testing time than experiment 2 and 3. The accuracy of these three experiments are on
the same level.

Table 2: Test results with different values of gamma.
Test Result Exp1 Exp2 Exp3

# of test records 10,000 10,000 10,000
# of features 41 41 41

# of rules 6,498 1,868 1,057
Value ofgamma 10−3 10−6 10−8

# of misclassifications 44 63 211
Accuracy 99.56% 99.37% 97.89%

# of False Positives 37 52 176
# of False Negative 7 11 35

CPU-second 49.53 11.34 8.32

Table 3 shows the test results of 5 different test data sets. To prove that the decision boundary obtained is consistent
across the whole original data set, we generate 5 test sets. Each set has 10,000 data records randomly chosen from the
original test set which has over four million records. The results show little differences on accuracy, false positive and false
negative number, and testing time. It is suggested that the decision boundary we generated is consistent for whole data set.

Table 3: Test results with different data sets.
Test Result Exp1 Exp2 Exp3 Exp4 Exp5

# of test records 10,000 10,000 10,000 10,000 10,000
# of features 41 41 41 41 41

# of rules 1,868 1,868 1,868 1,868 1,868
Value ofgamma 10−6 10−6 10−6 10−6 10−6

# of misclassifications 67 63 62 66 69
Accuracy 99.33% 99.37% 99.38% 99.34% 99.31%

# of False Positives 54 52 56 58 55
# of False Negative 13 11 6 8 14

CPU-second 11.07 11.87 11.34 11.36 11.11

Table 4 shows the test results on the small and full size of training data sets. To prove the generalization ability of
SVM, we compare the performances of two decision boundaries trained from two different sizes of training sets. Every
decision boundary is tested on two test sets. The results show that accuracy of the test is not decreased when we use a
smaller training set. The volume of training sets does not effect the performance of trained decision boundaries.



Table 4: Test results with different volume of training sets.
Test Result Exp1 Exp2 Exp3 Exp4

# of training records 494,022 494,022 50,000 50,000
# of test records 10,000 10,000 10,000 10,000

# of features 41 41 41 41
# of rules 9,460 9,460 1,868 1,868
Value ofγ 10−6 10−6 10−6 10−6

# of misclassifications 63 67 62 66
Accuracy 99.37% 99.33% 99.38% 99.34%

# of False Positives 52 54 56 58
# of False Negative 11 13 6 8

CPU-second 60.85 65.28 11.34 11.36

From the all the experiment results we have three analysis conclusions.

• Using the proposed method, the decision boundary can be adjusted easily and the computing costs corresponding
to different decision boundaries are different. When the value ofC is fixed, by choosing different values ofγ of
the SVM kernel function, users can easily adjust the generated decision boundary. The larger value ofγ results a
decision boundary with a larger number of support vectors and a large number of rules in the fuzzy set which means
possible higher detection rate but also high computation costs. Conversely, a small value ofγ results a decision
boundary with lower detection rate and lower computation costs. The different users focusing more on detection rate
or computing time may prefer different decision boundaries.

• The adjusting of the decision boundary must be within a range using our method, when the accuracy of detection
intrusion is above some level (over 99% in our case), increasing the accuracy becomes more difficult. A small
accuracy increase costs a lot computation. Therefore adjusting the decision boundary is only efficient within a
certain range. On the other hand, this means when using the dynamic decision boundary, users may decrease the
computation cost with only a small accuracy sacrifice.

• The SVM has good generalization ability. The results of our experiments show that difference of detection accuracy
between using a full training set and using a small training set is very small. This may be viewed as another
experimental proof on the good generalization ability of SVM.

5. CONCLUSION

In this paper, a method to develop a dynamic decision boundary based on SVM and fuzzy logic has been introduced. The
experiment results show that users can adjust dynamic boundary easily for different requests of accuracy and computation
complexity. Further more, because of using SVM, this method can handle a large number of features efficiently. It is also
possible to build a dynamic decision boundary using other popular artificial intelligence techniques such as neural networks,
decision tree and Bayesian Networks. A further work is to develop methods that build dynamic decision boundary using
other techniques and comparing the results.
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