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Abstract. A theory of three-way decisions is constructed based on the
notions of acceptance, rejection and noncommitment. It is an extension
of the commonly used binary-decision model with an added third option.
Three-way decisions play a key role in everyday decision-making and have
been widely used in many fields and disciplines. An outline of a theory
of three-way decisions is presented by examining its basic ingredients,
interpretations, and relationships to other theories.

1 Introduction

The concept of three-way decisions was recently proposed and used to interpret
rough set three regions [52, 54, 55]. More specifically, the positive, negative and
boundary regions are viewed, respectively, as the regions of acceptance, rejec-
tion, and noncommitment in a ternary classification. The positive and negative
regions can be used to induce rules of acceptance and rejection; whenever it
is impossible to make an acceptance or a rejection decision, the third noncom-
mitement decision is made [54]. It can be shown that, under certain conditions,
probabilistic three-way decisions are superior to both Palwak three-way decisions
and two-way (i.e., binary) decisions [55]. Many recent studies further investigated
extensions and applications of three-way decisions [1, 7–10, 12, 13, 17–21, 23–29,
31, 45, 46, 56, 60–62, 64–66].

The essential ideas of three-way decisions are commonly used in everyday
life [32] and widely applied in many fields and disciplines, including, for exam-
ple, medical decision-making [30, 37, 38], social judgement theory [39], hypothesis
testing in statistics [42], management sciences [5, 44], and peering review pro-
cess [43]. However, a close examination surprisingly reveals that there still does
not exist a unified formal description. To extend the concept of three-way de-
cisions of rough sets to a much wider context, this paper outlines a theory of
three-way decisions.
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2 A Description of Three-way Decisions

The essential ideas of three-way decisions are described in terms of a ternary
classification according to evaluations of a set of criteria.

Suppose U is a finite nonempty set of objects or decision alternatives and C is
a finite set of conditions. Each condition in C may be a criterion, an objective, or
a constraint. For simplicity, in this paper we refer to conditions in C as criteria.
Our decision task is to classify objects of U according to whether they satisfy
the set of criteria. In widely used two-way decision models, it is assumed that
an object either satisfies the criteria or does not satisfy the criteria. The set U
is divided into two disjoint regions, namely, the positive region POS for objects
satisfying the criteria and the negative region NEG for objects not satisfying
the criteria. There are usually some classification errors associated with such a
binary classification. Two main difficulties with two-way approaches are their
stringent binary assumption of the satisfiability of objects and the requirement
of a dichotomous classification.

In many situations, it may happen that an object only satisfies the set of
criteria to some degree. Even if an object may actually either satisfy or not
satisfy the criteria, we may not be able to identify without uncertainty the subset
of objects that satisfy the criteria due to uncertain or incomplete information.
Consequently, we are only able to search for an approximate solution. Instead
of making a binary decision, we use thresholds on the degrees of satisfiability
to make one of three decisions: (a) accept an object as satisfying the set of
criteria if its degree of satisfiability is at or above a certain level; (b) reject the
object by treating it as not satisfying the criteria if its degree of satisfiability is
at or below another level; and (c) neither accept nor reject the object but opt
for a noncommitment. The third option may also be referred to as a deferment
decision that requires further information or investigation. From the informal
description, we give a formal definition.

The problem of three-way decisions. Suppose U is a finite nonempty
set and C is a finite set of criteria. The problem of three-way decisions
is to divide, based on the set of criteria C, U into three pair-wise dis-
joint regions, POS,NEG, and BND, called the positive, negative, and
boundary regions, respectively.

Corresponding to the three regions, one may construct rules for three-way
decisions. In our previous studies [52, 54], we used three types of rules, namely,
rules for acceptance, rejection, and noncommitment, respectively. It now ap-
pears to us that only rules for acceptance and rules for rejection are meaningful
and sufficient. That is, the noncommitment set is formed by those objects to
which neither a rule for acceptance nor a rule for rejection applies. It is not
necessary to have, and in many cases may be impossible to construct, rules for
noncommitement.

To formally describe the satisfiability of objects, rules for acceptance and
rules for rejection, we need to introduce the notion of evaluations of objects and
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designated values for acceptance and designated values for rejection. Evaluations
provide the degrees of satisfiability, designated values for acceptance are accept-
able degrees of satisfiability, and designated valued for rejection are acceptable
degrees of non-satisfiability. They provide a basis for a theory of three-way de-
cisions.

A theory of three-way decisions must consider at least the following three
issues regarding evaluations and designated values:

1. Construction and interpretation of a set of values for measuring sat-
isfiability and a set of values for measuring non-satisfiability. The
former is used by an evaluation for acceptance and the latter is used
by an evaluation for rejection. In many cases, a single set may be used
by both. It is assumed that the set of evaluation values is equipped
with an ordering relation so that we can compare at least some ob-
jects according to their degrees of satisfiability or non-satisfiability.
Examples of a set evaluation values are a poset, a lattice, a set of a
finite numbers of grades, the set of integers, the unit interval, and
the set of reals. Social judgement theory uses latitudes of acceptance,
rejection, and noncommitment [6, 39], which is closely related to our
formulation of three-way decisions.

2. Construction and interpretation of evaluations. An evaluation de-
pends on the set of criteria and characterizes either satisfiability or
non-satisfiability of objects in U . Evaluations for the purposes of ac-
ceptance and rejection may be either independent or the same. De-
pending on particular applications, evaluations may be constructed
and interpreted in terms of more intuitive and practically operable
notions, including costs, risks, errors, profits, benefits, user satisfac-
tion, committee voting, and so on. Based on the values of an evalu-
ation, one can at least compare some objects.

3. Determination and interpretation of designated values for acceptance
and designated values for rejection. The sets of designated values
must meaningfully reflect an intuitive understanding of acceptance
and rejection. For example, we can not accept and reject an object
simultaneously. This requires that the set of designated values for
acceptance and the set of designated value for rejection are disjoint.
The designated values for acceptance should lead to monotonic deci-
sions; if we accept an object x then we should accept all those objects
that have the same or larger degrees of satisfiability than x. It is also
desirable if we can systematically determine the sets of designated
values on a semantically sound basis.

By focusing on these issues, we examine three classes of evaluations. Evaluations
are treated as a primitive notion for characterizing the satisfiability or desir-
ability of objects. Their concrete physical interpretations are left to particular
applications.

3



3 Evaluation-based Three-way Decisions

We assume that evaluations for acceptance and rejection can be constructed
based on the set of criteria. This enables us to focus mainly on how to obtain
three-way decisions according to evaluations. The problem of constructing and
interpreting evaluations is left to further studies and specific applications. A
framework of evaluation-based three-way decisions is proposed and three models
are introduced and studied.

3.1 Three-way Decisions with a Pair of Poset-based Evaluations

For the most general case, we consider a pair of (may be independent) evalua-
tions, one for the purpose of acceptance and the other for rejection.

Definition 1. Suppose U is a finite nonempty set and (La,�a) (Lr,�r) are
two posets. A pair of functions va : U −→ La and vr : U −→ Lr is called an
acceptance evaluation and a rejection evaluation, respectively. For x ∈ U , va(x)
and vr(x) are called the acceptance and rejection values of x, respectively.

In real applications, the set of possible values of acceptance may be inter-
preted based on more operational notions such as our confidence of an object
satisfying the given set of criteria, or cost, benefit, and value induced by the ob-
ject. For two objects x, y ∈ U , if va(x) �a va(y), we say that x is less acceptable
than y. By adopting a poset (La,�a), we assume that some objects in U are
incomparable. Similar interpretation can be said about the possible values of an
evaluation for rejection. In general, acceptance and rejection evaluations may be
independent.

To accept an object, its value va(x) must be in a certain subset of La rep-
resenting the acceptance region of La. Similarly, we need to define the rejection
region of Lr. By adopting a similar terminology of designated values in many-
valued logics [4], these values are called designated values for acceptance and
designated values for rejection, respectively. Based on the two sets of designated
values, one can easily obtain three regions for three-way decisions.

Definition 2. Let ∅ 6= L+
a ⊆ La be a subset of La called the designated values

for acceptance, and ∅ 6= L−r ⊆ Lr be a subset of Lr called the designated values
for rejection. The positive, negative, and boundary regions of three-way decisions
induced by (va, vr) are defined by:

POS(L+
a ,L
−
r )(va, vr) = {x ∈ U | va(x) ∈ L+

a ∧ vr(x) 6∈ L−r },

NEG(L+
a ,L
−
r )(va, vr) = {x ∈ U | va(x) 6∈ L+

a ∧ vr(x) ∈ L−r },
BND(L+

a ,L
−
r )(va, vr) = (POS(L+

a ,L
−
r )(va, vr) ∪NEG(L+

a ,L
−
r )(va, vr))

c

= {x ∈ U | (va(x) 6∈ L+
a ∧ vr(x) 6∈ L−r ) ∨

(va(x) ∈ L+
a ∧ vr(x) ∈ L−r )}. (1)
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The boundary region is defined as the complement of the union of positive
and negative regions. The conditions in the definition of the positive and negative
regions make sure that they are disjoint. Therefore, the three regions are pair-
wise disjoint. The three regions do not necessarily form a partition of U , as some
of them may be empty. In fact, two-way decisions may be viewed as a special
case of three-way decisions in which the boundary region is always empty.

By the interpretation of the orderings �a and �r, the designated values L+
a

for acceptance and the designated values L−r for rejection must satisfy certain
properties. If La has the largest element 1, then 1 ∈ L+

a . If w �a u and w ∈ L+
a ,

then u ∈ L+
a . That is, if va(x) �a va(y) and we accept x, then we must accept y.

Similarly, if Lr has the largest element 1, then 1 ∈ L−r . If w �r u and w ∈ L−r ,
then u ∈ L−r .

3.2 Three-way Decisions with One Poset-based Evaluation

In some situations, it may be more convenient to combine the two evaluation into
a single acceptance-rejection evaluation. In this case, one poset (L,�) is used
and two subsets of the poset are used as the designated values for acceptance
and rejection, respectively.

Definition 3. Suppose (L,�) is a poset. A function v : U −→ L is called
an acceptance-rejection evaluation. Let L+, L− ⊆ L be two subsets of L with
L+ ∩ L− = ∅, called the designated values for acceptance and the designated
values for rejection, rspectively. The positive, negative, and boundary regions of
three-way decisions induced by v is defined by:

POS(L+,L−)(v) = {x ∈ U | v(x) ∈ L+},
NEG(L+,L−)(v) = {x ∈ U | v(x) ∈ L−},
BND(L+,L−)(v) = {x ∈ U | v(x) 6∈ L+ ∧ v(x) 6∈ L−}. (2)

The condition L+ ∩ L− = ∅ ensures that the three regions are pair-wise
disjoint. A single evaluation v may be viewed as a special case of two evaluations
in which �a = � and �r = �. In this way, acceptance is related to rejection in
the sense that the reverse ordering of acceptance is the ordering for rejection.
To ensure the meaningfulness of L+ and L−, it is required that ¬(w � u) for all
w ∈ L+ and u ∈ L−. In other words, L+ contains larger elements of L and L−

contains smaller elements of L.

3.3 Three-way Decisions with an Evaluation Using a Totally
Ordered Set

Consider now an evaluation based on a totally ordered set (L,�) where � is a
total order. That is, � is a partial order and any two elements of L are compa-
rable. This is in fact a widely used approach. For example, L is either the set of
real numbers or the unit interval [0, 1] and � is the less-than-or-equal relation
≤. For a total order, it is possible to define the sets of designated values for
acceptance and rejection by a pair of thresholds.
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Definition 4. Suppose (L,�) is a totally ordered set, that is, � is a total order.
For two elements α, β with β ≺ α (i.e., β � α ∧¬(α � β)), suppose that the set
of designated values for acceptance is given by L+ = {t ∈ L | t � α} and the
set of designated values for rejection is given by L− = {b ∈ L | b � β}. For an
evaluation function v : U −→ L, its three regions are defined by:

POS(α,β)(v) = {x ∈ U | v(x) � α},
NEG(α,β)(v) = {x ∈ U | v(x) � β},
BND(α,β)(v) = {x ∈ U | β ≺ v(x) ≺ α}. (3)

Although evaluations based on a total order are restrictive, they have a com-
putational advantage. One can obtain the three regions by simply comparing the
evaluation value with a pair of thresholds. It is therefore not surprising to find
that many studies in fact use a total order.

3.4 Comments on Evaluations and Designated Values

Construction and interpretation of evaluations and designated values are vital
for practical applications of three-way decisions. At a theoretical level, it may be
only possible to discuss required properties of evaluations. It is assumed that an
evaluation is determined by a set of criteria, representing costs, benefits, degrees
of desirability, objectives, constraints, and so on. Further studies on evaluations
may be a fruitful research direction.

As an illustration, consider a simple linear model for constructing an evalua-
tion. Suppose C = {c1, c2, . . . , cm} are a set of m criteria. Suppose vci

: U −→ <
denotes an evaluation based on criterion vi, 1 ≤ i ≤ m. An overall evaluation
function v : U −→ <may be simply defined by a linear combination of individual
evaluations:

v(x) = vc1(x) + vc2(x) + . . .+ vcm
(x). (4)

Details of this linear utility model and other models can be found in literature
of multi-crieria and multi-objective decision making [14].

Construction and interpretation of designated values may be explained in
terms of benefits or risks of the resulting three regions of three-way decisions.
For example, consider the model that uses a total order. Let RP (α, β), RN (α, β)
and RB(α, β) denote the risks of the positive, negative, and boundary regions,
respectively. It is reasonable to require that the sets of designated values are
chosen to minimize the following overall risks:

R(α, β) = RP (α, β) +RN (α, β) +RB(α, β). (5)

That is, finding a pair of thresholds can be formulated as the following optimiza-
tion problem:

arg min
(α,β)

R(α, β). (6)

As a concerte example, R may be understood as uncertainty associated with
three regions, by minimizing the overall uncertainty one can obtain the set of
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designed values in a probabilistic rough set model [2]. Two additional examples
will be given in the next section when reviewing decision-theoretic rough sets [50,
57, 58] and shadowed sets [34, 35].

4 Models of Three-way Decisions

We show that many studies on three-way decisions can be formulated within the
framework proposed in the last section. For simplicity and as examples, we focus
on the concept of concepts in a set-theoretical setting. In the classical view of
concepts [40, 41], every concept is understood as a unit of thought consisting of
two parts, the intension and the extension of the concept. Due to uncertain or
insufficient information, it is not always possible to precisely have a set of objects
as the extension of a concept. Consequently, many generalizations of sets have
been proposed and studied.

4.1 Interval Sets and Three-valued Logic

Interval sets provide a means to describe partially known concepts [47, 53]. On
the one hand, it is assumed that an object may actually be either an instance
or not an instance of a concept. On the other hand, due to a lack of information
and knowledge, one can only express the state of instance and non-instance for
some objects, instead of all objects. That is, one has a partially known concept
defined by a lower bound and upper bound of its extension.

Formally, a closed interval set is a subset of 2U of the form,

[Al, Au] = {A ∈ 2U | Al ⊆ A ⊆ Au}, (7)

where it is assumed that Al ⊆ Au, and Al and Au are called the lower and upper
bound, respectively. Any set X ∈ [Al, Au] may be the actual extension of the
partially known concept. Constructive methods for defining interval sets can be
formulated within an incomplete information table [16, 22].

An interval set is an interval of the power set lattice 2U ; it is also a lattice,
with the minimum element Al, the maximum element Au, and the standard
set-theoretic operations.

Interval-set algebra is related to Kleene’s three-valued logic [15, 36], in which
a third truth value is added to the standard two-valued logic. The third value
may be interpreted as unknown or undeterminable. Let L = {F, I, T} denote
the set of truth values with a total order F � I � T . An interval set [Al, Au]
can be equivalently defined by an acceptance-rejection evaluation as,

v[Al,Au](x) =

F, x ∈ (Au)c,
I, x ∈ Au −Al,
T, x ∈ Al.

(8)

Suppose the sets of designated values for acceptance and rejection are defined
by a pair of thresholds (T, F ), namely, L+ = {a ∈ L | T � a} = {T} and
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L− = {b ∈ L | b � F} = {F}. According to Definition 4, an interval set provides
the following three-way decisions:

POS(T,F )([Al, Au]) = {x ∈ U | v[Al,Au](x) � T} = Al,

NEG(T,F )([Al, Au]) = {x ∈ U | v[Al,Au](x) � F} = (Au)c,
BND(T,F )([Al, Au]) = {x ∈ U | F ≺ v[Al,Au](x) ≺ T} = Au −Al. (9)

Although the re-expression of an interval set in terms of three-way decisions is
somewhat trivial, it does provide a new view to look at interval sets.

4.2 Pawlak Rough Sets

Pawlak rough set theory deals with approximations of a concept based on a
family of definable concepts [33].

Let E ⊆ U × U denote an equivalence relation on U , that is, E is reflex-
ive, symmetric, and transitive. The equivalence class containing x is defined by
[x]E = [x] = {y ∈ U | xEy}, which is a set of objects equivalent to x. The family
of all equivalence classes of E is called the quotient set induced by E, denoted
as U/E. In an information table, an equivalence class is a definable set that can
be defined by the conjunction of a family of attribute-value pairs [49].

For a subset A ⊆ U , the Pawlak rough set lower and upper approximations
of A are defined by:

apr(A) = {x ∈ U | [x] ⊆ A},
apr(A) = {x ∈ U | [x] ∩A 6= ∅}

= {x ∈ U | ¬([x] ⊆ Ac)}. (10)

In the definition, we use an equivalent condition ¬([x] ⊆ Ac) so that both lower
and upper approximations are defined uniformly by using set inclusion ⊆. Ac-
cording to the pair of approximations, the Pawlak positive, negative and bound-
ary regions are defined by:

POS(A) = apr(A),
= {x ∈ U | [x] ⊆ A};

NEG(A) = U − apr(A),
= {x ∈ U | [x] ⊆ Ac};

BND(A) = apr(A)− apr(A),
= {x ∈ U | ¬([x] ⊆ Ac) ∧ ¬([x] ⊆ A)}
= (POS(A) ∪NEG(A))c. (11)

Again, these regions are defined uniformly by using set inclusion. The three
regions are pair-wise disjoint. Conversely, from the three regions, we can compute
the pair of approximations by:

apr(A) = POS(A)
apr(A) = POS(A) ∪ BND(A).

8



Therefore, rough set theory can be formulated by either a pair of approximations
or three regions.

Three-way decisions with rough sets can be formulated as follows. Let La =
Lr = {F, T} with F � T , and let L+

a = L−r = {T}. All objects in the same
equivalence class have the same description. Based on descriptions of objects,
we have a pair of an acceptance evaluation and a rejection evaluation:

v(a,A)(x) =

T, [x] ⊆ A,

F, ¬([x] ⊆ A);
v(r,A)(x) =

T, [x] ⊆ Ac,

F, ¬([x] ⊆ Ac).
(12)

According to Definition 2, for a set A ⊆ U , we can make the following three-way
decisions:

POS({T},{T})(A) = {x ∈ U | v(a,A)(x) ∈ {T} ∧ v(r,A)(x) 6∈ {T}}
= {x ∈ U | v(a,A)(x) = T}
= {x ∈ U | [x] ⊆ A},

NEG({T},{T})(A) = {x ∈ U | v(a,A)(x) 6∈ {T} ∧ v(r,A)(x) ∈ {T}},
= {x ∈ U | v(r,A)(x) = T}
= {x ∈ U | [x] ⊆ Ac},

BND({T},{T})(A) = (POS(va, vr) ∪NEG(va, vr))c

= {x ∈ U | ¬([x] ⊆ A) ∧ ¬([x] ⊆ Ac)}. (13)

The reformulation of rough set three regions based uniformly on set inclusion
provides additional insights into rough set approximations. It explicitly shows
that acceptance is based on an evaluation of the condition [x] ⊆ A and rejection
is based on an evaluation of the condition [x] ⊆ Ac. By those two conditions,
both decisions of acceptance and rejection are made without any error. Whenever
there is any doubt, namely, ¬([x] ⊆ A) ∧ ¬([x] ⊆ Ac), a decision of noncommit-
ment is made.

4.3 Decision-Theoretic Rough Sets

Decision-theoretic rough sets (DTRS) [48, 50, 51, 57, 58] are a quantitative gen-
eralization of Pawlak rough sets by considering the degree of inclusion of an
equivalence class in a set.

The acceptance-rejection evaluation used by a DTRS model is the condi-
tional probability vA(x) = Pr(A|[x]), with values from the totally ordered set
([0, 1],≤). Given a pair of thresholds (α, β) with 0 ≤ β < α ≤ 1, the sets of
designated values for acceptance and rejections are L+ = {a ∈ [0, 1] | α ≤ a}
and L− = {b ∈ [0, 1] | b ≤ β}. According to Definition 4, a DTRS model makes
the following three-way decisions: for A ⊆ U ,

POS(α,β)(A) = {x ∈ U | vA(x) � α}
= {x ∈ U | Pr(A|[x]) ≥ α},
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NEG(α,β)(A) = {x ∈ U | vA(x) � β}
= {x ∈ U | Pr(A|[x]) ≤ β},

BND(α,β)(A) = {x ∈ U | β ≺ vA(x) ≺ α}
= {x ∈ U | β < Pr(A|[x]) < α}. (14)

Three-way decision-making in DTRS can be easily related to incorrect accep-
tance error and incorrect rejection error [55]. Specifically, incorrect acceptance
error is given by Pr(Ac|[x]) = 1−Pr(A|[x]) ≤ 1−α, which is bounded by 1−α.
Likewise, incorrect rejection error is given by Pr(A|[x]) ≤ β, which is bounded
by β. Therefore, the pair of thresholds can be interpreted as defining tolerance
levels of errors.

A main advantage of a DTRS model is its solid foundation based on Bayesian
decision theory. In addition, the pair of thresholds can be systematically com-
puted by minimizing overall ternary classification cost [55].

Bayesian decision theory [3] can be applied to the derivation of DTRS as
follows. We have a set of 2 states and a set of 3 actions for each state. The set
of states is given by Ω = {A,Ac} indicating that an object is in A and not in
A, respectively. For simplicity, we use the same symbol to denote both a subset
A and the corresponding state. With respect to the three regions, the set of
actions with respect to a state is given by A = {aP , aN , aB}, where aP , aN ,
and aB represent the three actions in classifying an object x, namely, deciding
x ∈ POS(A), deciding x ∈ NEG(A), and deciding x ∈ BND(A), respectively.
The losses regarding the risk or cost of those classification actions with respect
to different states are given by the 3× 2 matrix:

A (P ) Ac (N)
aP λPP λPN
aN λNP λNN
aB λBP λBN

In the matrix, λPP , λNP and λBP denote the losses incurred for taking actions
aP , aN and aB , respectively, when an object belongs to A, and λPN , λNN and
λBN denote the losses incurred for taking the same actions when the object does
not belong to A

To determine a pair of thresholds for three-way decisions, one can minimize
the following overall risk [12, 55]:

R(α, β) = RP (α, β) +RN (α, β) +RB(α, β), (15)

where

RP (α, β) =
∑

Pr(A|[x])≥α

[λPPPr(A|[x]) + λPNPr(Ac|[x])]Pr([x]),

RN (α, β) =
∑

Pr(A|[x])≤β

[λNPPr(A|[x]) + λNNPr(Ac|[x])]Pr([x]),

RB(α, β) =
∑

β<Pr(A|[x])<α

[λBPPr(A|[x]) + λBNPr(Ac|[x])]Pr([x]), (16)
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represent, risks incurred by acceptance, rejection, and noncommitment, and the
summation is over all equivalence classes. It can be shown [50, 55] that under
the following conditions,

(c1) λPP < λBP < λNP , λNN < λBN < λPN ,

(c2) (λPN − λBN )(λNP − λBP ) > (λBN − λNN )(λBP − λPP ), (17)

a pair of threshold (α, β) with 0 ≤ β < α ≤ 1 that minimizes R is given by:

α =
(λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
,

β =
(λBN − λNN )

(λBN − λNN ) + (λNP − λBP )
. (18)

That is, the pair of thresholds can be computed from the loss function.
Other models for determining the pair of thresholds include a game-theoretic

framework [1, 9, 11], a multi-view decision model [17, 66], and the minimization
of uncertainty of the three regions [2]. The conditional probability required by
DTRS can be estimated based on a naive Bayesian rough set model [59] or a
regression model [25].

4.4 Three-valued Approximations in Many-valued Logic and Fuzzy
Sets

Three-valued approximations in many-valued logics are formulated based on
the discussion given by Gottwald [4] on positively designated truth degrees and
negatively designated truth degrees.

In many-valued logic, the set of truth degrees or values is normally an ordered
set (L,�) and contains the classical truth values F and T (often coded by 0 and
1) as its minimum and maximum elements, namely, {F, T} ⊆ L and for any
u ∈ L, F � u � T . It is also a common practice to use a subset L+ of positively
designated truth degrees to code the intuitive notion of truth and to use another
subset L− of negatively designated truth degrees to code the opposite. For the
two sets to be meaningful, the following conditions are normally assumed [4]:

(i) T ∈ L+,

F ∈ L−,
(ii) L+ ∪ L− ⊆ L,

L+ ∩ L− = ∅,
(iii) w � u ∧ w ∈ L+ =⇒ u ∈ L+,

w � u ∧ u ∈ L− =⇒ w ∈ L−.

Three-valued approximations of a many-valued logic derive from three-way deci-
sions based on the two designated sets. We accept a truth degree as being true if
it is in the positively designated set, reject it as being true if it is the negatively
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designated set, and neither accept nor reject if it is not in any of the two sets.
By so doing, we can have a new three-valued logic with the set of truth values
L3 = {L−, L− (L− ∪L+), L+} under the ordering L− �3 L− (L− ∪L+) �3 L

+,
which is an approximation of the many-valued logic.

To a large extent, our formulation of three-way decisions, as given in the
last section, draws mainly from such a consideration. Specifically, we borrowed
the notions of designated truth degrees from studies of many-valued logic to
introduce the notions of designated values for acceptance and rejection in the
theory of three-way decisions.

A fuzzy set A is characterized by a mapping from U to the unit interval,
namely, µA : U −→ [0, 1]. The value µA(x) is called the degree of membership of
the object x ∈ U . Fuzzy sets may be interpreted in terms of a many-valued logic
with the unit interval as its set of truth degrees. According to the three-valued
approximations of a many-valued logic, one can similarly formulate three-valued
approximations of a fuzzy set. This formulation was in fact given by Zadeh [63]
in his seminal paper on fuzzy sets and was shown to be related to Kleene’s
three-valued logic.

Given a pair of thresholds (α, β) with 0 ≤ β < α ≤ 1, one can define the
designated sets of values for acceptance and rejection as L+ = {a ∈ [0, 1] | α ≤ a}
and L− = {b ∈ [0, 1] | b ≤ β}. According to Definition 4, if a fuzzy membership
function µA is used as an acceptance-rejection evaluation, namely, vµA = µA,
we have the following three-way decisions,

POS(α,β)(µA) = {x ∈ U | vµA(x) � α}
= {x ∈ U | µA(x) ≥ α},

NEG(α,β)(µA) = {x ∈ U | vµA(x) � β}
= {x ∈ U | µA(x) ≤ β},

BND(α,β)(µA) = {x ∈ U | β ≺ vµA(x) ≺ α}
= {x ∈ U | β < µA(x) < α}. (19)

Zadeh [63] provided an interpretation of this three-valued approximations of a
fuzzy set: one may say that (1) x belongs to A if µA(x) ≥ α; (2) x does not
belong to A if µA(x) ≤ β; and (3) x has an indeterminate status relative to A
if β < µA(x) < α. This interpretation explicitly uses the notions of acceptance
and rejection and is consistent with our three-way decisions.

4.5 Shadowed Sets

In contrast to decision-theoretic rough sets in which the pair of thresholds can be
interpreted by classification errors, there is a difficulty in interpreting thresholds
in three-valued approximations of a fuzzy sets. The introduction of a shadowed
set induced by a fuzzy set attempts to address this problem [34, 35].

A shadowed set A is defined as a mapping, SA : U −→ {0, [0, 1], 1}, from U
to a set of three truth values. It is assumed that the three values are ordered
by 0 � [0, 1] � 1. The value [0, 1] represents the membership of objects in the

12



shadows of a shadowed set. Like the interval-set algebra, shadowed-set algebra is
also related to Kleene’s three-valed logic. Shadowed sets provide another model
of three-way decisions.

Unlike an interval set, a shadowed set is constructed from a fuzzy set µA :
U −→ [0, 1] as follows:

SA(x) =

 0, µA(x) ≤ τ,
[0, 1], τ < µA(x) < 1− τ,
1, µA(x) ≥ 1− τ,

(20)

where 0 ≤ τ < 0.5 is a threshold. Given a pair of thresholds (1, 0) for the set of
truth values {0, [0, 1], 1}, by Definition 4 and equations (19) and (20), we have
the following three-way decision for a shadowed set:

POS(1,0)(SA) = {x ∈ U | vSA(x) � 1}
= {x ∈ U | µA(x) ≥ 1− τ}
= POS(1−τ,τ)(µA),

NEG(1,0)(SA) = {x ∈ U | vSA(x) � 0}
= {x ∈ U | µA(x) ≤ τ},
= NEG(1−τ,τ)(µA),

BND(1,0)(SA) = {x ∈ U | 0 ≺ vSA(x) ≺ 1}
= {x ∈ U | τ < µA(x) < 1− τ}
= BND(1−τ,τ)(µA). (21)

That is, a shadowed set is a three-valued approximation of a fuzzy set with
(α, β) = (1 − τ, τ). In general, one can also consider shadowed set by a pair of
thresholds (α, β) with 0 ≤ β < α ≤ 1 on a fuzzy set µA.

As shown in [34, 35], the threshold τ for constructing a shadowed set can be
determined by minimizing the following function,

Ω(τ) = abs(Ωr(τ) +Ωe(τ)−Ωs(τ)), (22)

where abs(·) stands for the absolute value and

Ωr(τ) =
∑

{x∈U |µA(x)≤τ}

µA(x),

Ωe(τ) =
∑

{y∈U |µA(y)≥1−τ}

(1− µA(y)),

Ωs(τ) = card({z ∈ U | τ < µA(z) < 1− τ}), (23)

are, respectively, the total of reduced membership values from µA(x) in the
fuzzy set to 0 in the shadowed set (i.e., µA(x)−0 = µA(x)), the total of elevated
membership values from µA(y) in the fuzzy set to 1 in the shadowed set (i.e., 1−
µA(y)), and the cardinality of the shadows of the shadowed set. The minimization
of Ω(τ) may be equivalently formulated as finding a solution to the equation,

Ωr(τ) +Ωe(τ) = Ωs(τ), (24)
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if it has a solution. Although the problem of finding the threshold τ is formu-
lated precisely, the meaning of the objective function Ω(τ) still needs further
investigation. It is interesting to note that the objective function Ω(τ) shares
some similarity to the objective function R(α, β) of a DTRS model, which may
shed some light on the problem of determining the threshold in shadowed sets.

5 Conclusions

The concept of three-way decisions provides an appealing interpretation of three
regions in probabilistic rough sets. The positive and negative regions are sets of
accepted objects and rejected objects, respectively. The boundary region is the
set of objects for which neither acceptance nor rejection is possible, due to uncer-
tain or incomplete information. A close examination of studies and applications
of three-way decisions shows that (a) essential ideas of three-way decisions are
general applicable to a wide range of decision-making problems; (b) we routinely
make three-way decisions in everyday life; (c) three-way decisions appear across
many fields and disciplines; and (d) there is a lack of formal theory for three-way
decisions. These findings motivate a study of a theory of three-way decisions in
its own right.

We outline a theory of three-way decisions based on the notions of evalu-
ations for acceptance and evaluations for rejection. One accepts or rejects an
object when its values from evaluations fall into some designated areas; oth-
erwise, one makes a decision of noncommitment. We propose and study three
classes of evaluations. We demonstrate that the proposed theory can describe
and explain three-way decisions in many-valued logics and generalizations of set
theory, including interval sets, rough sets, decision-theoretic rough sets, fuzzy
sets, and shadowed sets. As future research, we plan to investigate three-way
decisions in other settings.
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