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1 Introduction

Since Pawlak [43] proposed the rough set theory in early eighties, many proposals
have been made for generalizing and interpreting rough sets [3, 4, 19, 27, 37, 38,
39, 46, 47, 51, 52, 54, 55, 63, 65, 66, 67, 68, 69, 70, 71, 72, 83, 92, 103, 104, 105].
Extensive studies have been carried out to compare the theory of rough sets and
other theories of uncertainty, such as fuzzy sets [5, 12, 21, 56, 82, 85, 91], modal
logic [31, 35, 38, 100], conditional events [33, 34], and Dempster-Shafer theory
of evidence [16, 62, 64, 93]. A recent review of standard and generalized rough
set models, and their relationships to other theories, is given by Yao et al [99].

Haack [17] classified non-classical logics into roughly two groups. A non-
classical logic is a deviation of classical two-valued logic, i.e., a deviant logic,
if the two logics have the same logical vocabulary but different axioms or rules.
Many-valued logics may be viewed as deviant logics. A non-classical logic is an
extension, i.e., an extended logic, if it adds new vocabulary along with new ax-
ioms or rules for the new vocabulary. Modal logics may be viewed as extended
logics. Classical set-theoretic operators reflect the corresponding logic connec-
tives in classical two-valued logic [21]. For non-classical set theories, Klir [21]
compared the roles played by non-classical logics, such as many-valued logics
and modal logics, for interpreting fuzzy sets and rough sets. Using the similar
argument, Yao [90] suggested that non-classical set theories may be viewed as
deviations and extensions of classical set theory.

For the interpretation of rough set theory, Yao [86] pointed out that at least
two views may be used, the operator-oriented view and set-oriented view. The
operator-oriented view interprets rough set theory as an extension of set theory
with two additional unary set-theoretic operators. In other words, in rough set
theory we study the system (2U ,∼, apr, apr,∩,∪), where 2U is the power set

of a finite and nonempty set U , and (2U ,∼,∩,∪) is the standard set algebra.
In this case, the meaning of standard set-theoretic operators is unchanged. On
the other hand, the set-oriented view focuses on a system (R(U),¬,⊓,⊔), where
R(U) is the set of all rough sets defined on U . Under this view, one must define
rough set operators ¬, ⊓, and ⊔ by modifying standard set-theoretic operator,
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which produces a deviation of set theory. No additional set-theoretic operator is
introduced.

For the formulation of rough set theory, roughly two approaches may be
taken, the constructive and algebraic approaches [89]. Consider a constructive
approach in which one starts from a binary relation and defines a pair of lower
and upper approximation operators. The approximation operators have a similar
interpretation as that of necessity and possibility operators in modal logic. The
relationships between rough sets and modal logics have been studied extensively
by many authors [1, 2, 10, 24, 25, 30, 31, 32, 35, 36, 37, 38, 40, 44, 45, 57, 58,
59, 74, 75, 76, 79]. Yao and Lin [92] introduced and classified generalized rough
set models. Various classes of rough set models are proposed and examined us-
ing different types of binary relations. Consider now an algebraic (axiomatic)
approach in which one defines a pair of dual approximation operators and states
axioms that must be satisfied by the operators. Various classes of rough set
algebras are characterized by different sets of axioms. Such an axiomatic char-
acterization of approximation operators has been investigated by a number of
authors [28, 77, 83, 86, 89].

In this paper, we focus mainly on rough set algebras characterized by a pair
of lower and upper approximation operators, and rough sets defined by rough
membership functions. We will not discuss other related studies on rough sets,
except for giving a few references. Iwinski [19] and Pawlak [43] defined a rough
set to be a family of subsets of a universe that have the same lower and upper
approximations. With such a notion of rough sets, many researchers established
some important connections between rough set theory and other algebraic sys-
tems. Pomykala and Pomykala [53] used Stone algebras as the algebraic system
for modeling rough sets, in which a psedocomplement operator was introduced.
By introducing a dual psedocomplement, Comer [7, 8] suggested that in fact the
regular double Stone algebras may be used. For an exposition of the algebraic
connections between rough sets, rough relation algebras, Nelson algebras, three-
valued Lukasiewicz algebras, and related structures, one may consult papers by
Cattaneo [3, 4], Düntsch [13], and Pagliani [40, 41].

This paper is a sequel of the review by Yao et al [99]. We present some new
results on generalized rough set models from both constructive and algebraic
points of views. The rest of the paper is organized as follows. From Section 2 to
5, we concentrate on an operator-oriented view of rough sets. In Section 2, we
review a constructive mothed of rough set theory, which builds approximation
operators from binary relations. In Section 3, we introduce and examine alterna-
tive representations of approximation operators, and transformations from one
to another [86]. In Section 4, we present an algebraic method of rough set the-
ory. Axioms on approximation operators are studied. In Section 5, we study the
connections between the theory of rough sets and other related theories of un-
certainty [16, 61, 62, 64, 80, 93]. Two special classes of rough set models are
studied. They are related to belief and plausibility functions, and necessity and
possibility functions, respectively. Section 6 deals with a set-oriented view of
rough sets based on probabilistic rough set models [49, 97, 104] and rough mem-
bership functions [48]. It enables us to draw connections between rough sets and
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fuzzy sets. The notion of interval rough membership functions is introduced.

For simplicity, we restrict our discussion to finite and nonempty universes.
Some of the results may not necessarily hold for infinite universes.

2 Construction of Rough Set Models

Let U denote a finite and nonempty set called the universe, and let E ⊆ U × U
denote an equivalence relation on U , namely, E is reflexive, symmetric, and
transitive. The pair apr = (U, E) is called a Pawlak approximation space. The
equivalence relation E partitions the set U into disjoint subsets. Such a partition
of the universe is a quotient set of U , written U/E. Elements of U/E are called
the elementary sets. The empty set ∅ and the union of one or more elementary
sets are called definable, observable, measurable, or composed sets. The family
of all definable sets is denoted by σ(U/E). It is an σ-algebra of subsets of U
generated by the family of equivalence classes U/E. In addition, U/E is the
basis of the σ-algebra σ(U/E).

The equivalence relation and the induced equivalence classes may be regarded
as the available information or knowledge about the objects under consideration.
For two elements x, y ∈ U , if xEy, we say that x and y are indistinguishable.
Equivalence classes are the basic building blocks for the representation and ap-
proximation of any subset of the universe. They generate the σ-algebra σ(U/E).
All subsets of U must be represented using the elements of σ(U/E). More specif-
ically, for any subset A ⊆ U , the greatest definable set contained in A is called
the lower approximation of A, written aprA, while the least definable set con-
taining A is called the upper approximation of A, written aprA. They can be
expressed as:

aprA =
⋃

{X | X ∈ σ(U/E), X ⊆ A},

aprA =
⋂

{X | X ∈ σ(U/E), X ⊇ A}. (1)

The set A lies between its lower and upper approximations. By definition, a de-
finable set has the same lower and upper approximations. In terms of equivalence
classes, lower and upper approximations can be expressed by:

aprA =
⋃

[x]E⊆A

[x]E ,

aprA =
⋃

[x]E∩A6=∅

[x]E , (2)

where

[x]E = {y | xEy}, (3)

is the equivalence class containing x. The lower approximation aprA is the union
of equivalence classes which are subsets of A. The upper approximation aprA
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is the union of equivalence classes which have a nonempty intersection with A.
They can be equivalently defined by:

aprA = {x | [x]E ⊆ A},

aprA = {x | [x]E ∩ A 6= ∅}. (4)

One may interpret apr, apr : 2U −→ 2U as two unary set-theoretic operators.

They are called approximation operators, and the system (2U ,∼, apr, apr,∩,∪)
is called a Pawlak rough set algebra [86]. It is an extension of the set algebra
(2U ,∼,∩,∪).

The notion of approximation operators can be generalized by considering an
arbitrary binary relation. Let R ⊆ U × U be a binary relation on the universe.
The pair apr = (U, R) is called an approximation space. Given two elements
x, y ∈ U , if xRy, we say that y is R-related to x, x is a predecessor of y, and y
is a successor of x. From a binary relation R, for an element x ∈ U we define its
successor neighborhood as [88, 92]:

Rs(x) = {y ∈ U | xRy}. (5)

The notion of successor neighborhoods can be easily extended to any subset
A ⊆ U as follows:

Rs(A) =
⋃

x∈A

Rs(x). (6)

For the empty set, we define Rs(∅) = ∅. For any subset A of the universe, we
define a pair of lower and upper approximations by replacing the equivalence
class [x]R with the successor neighborhood Rs(x) in equation (4):

aprA = {x | Rs(x) ⊆ A},

aprA = {x | Rs(x) ∩ A 6= ∅}. (7)

An element x in U belongs to the lower approximation aprA if x’s neighborhood
is contained in A, and x belongs to aprA is x’s neighborhood has a nonempty
intersection with A. That is, aprA consists of those elements whose R-related
elements are all in A, and aprA consists of those elements such that at least one

of whose R-related elements is in A. They can therefore be equivalently defined
by:

aprA = {x ∈ U | for all y ∈ U, xRy implies y ∈ A},

aprA = {x ∈ U | there exists y ∈ U such that xRy and y ∈ A}. (8)

This interpretation is closely related to the definition of the necessity and pos-
sibility operators in the study of modal logic [6, 92].

Although no restriction is imposed on the binary relation, the approximation
operators satisfy the following properties: for subsets A, B ⊆ U ,

(L0) aprA = ∼apr ∼A,

(L1) aprU = U,
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(L2) apr(A ∩ B) = aprA ∩ aprB,

(L3) apr(A ∪ B) ⊇ aprA ∪ aprB,

(L4) A ⊆ B =⇒ aprA ⊆ aprB,

(U0) aprA = ∼apr ∼A,

(U1) apr∅ = ∅,

(U2) apr(A ∪ B) = aprA ∪ aprB,

(U3) apr(A ∩ B) ⊆ aprA ∩ aprB,

(U4) A ⊆ B =⇒ aprA ⊆ aprB.

Properties (L0) and (U0) state that two approximations are dual to each other.
Properties with the same number may be regarded as dual properties. They are
not independent properties. Properties (L1) and (L2) form a set of independent
properties of lower approximation operator apr, and (Ul) and (U2) form a set
of independent properties of upper approximation operator apr.

Within the proposed framework, one may study rough set models constructed
from special types of binary relations [92]. A binary relation R is a serial relation
if for all x ∈ U there exists y ∈ U such that xRy. A relation is a reflexive relation
if for all x ∈ U the relationship xRx holds. A relation is symmetric relation if
for all x, y ∈ U , xRy implies yRx holds. A relation is a transitive relation if
for all x, y, z ∈ U , xRy and yRz imply xRz. A relation is Euclidean if for all
x, y, z ∈ U , xRy and xRz imply yRz. With respect to these types of binary
relations, approximation operators have additional properties:

serial (D) aprA ⊆ aprA,

reflexive (T) aprA ⊆ A,

(T′) A ⊆ aprA,

symmetric (B) A ⊆ apr aprA,

(B′) apr aprA ⊆ A,

transitive (4) aprA ⊆ apr aprA,

(4′) apr aprA ⊆ aprA,

Euclidean (5) aprA ⊆ apr aprA,

(5′) apr aprA ⊆ aprX.

These results follow from the definition of approximation operators. They are
parallel to that of necessity and possibility in modal logic. For easy comparisons,
we adopt the same labeling system used by Chellas [6] for modal logic.

A serial rough set model is obtained from a serial binary relation. Given the
first three properties of approximation operators, from property (D) we have:
for any A ⊆ U ,

aprA ⊆ aprA ⇐⇒ apr A∩ ∼aprA = ∅

⇐⇒ aprA ∩ apr ∼A = ∅

⇐⇒ apr(A ∩ ∼A) = ∅

⇐⇒ apr∅ = ∅. (9)
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Similarly, we have:
aprA ⊆ aprA ⇐⇒ aprU = U. (10)

Therefore, (D) can be replaced by two more familiar axioms:

(L5) apr∅ = ∅,

(U5) aprU = U.

The pair of approximation operators of a serial rough set model is referred to
as an interval structure [81]. Serial rough set models can be used to establish a
connection between rough set theory and belief functions [81, 93]. Many other
classes of rough set models can be constructed based on various binary rela-
tions [92]. The class obtained from transitive and connected binary relations is
of interest. This class can be used to establish a connection between rough set
theory and the class of consonant belief and plausibility functions, i.e., neces-
sity and possibility functions [22, 97]. A detailed discussion on this topic will be
presented in Section 5.

By following the same procedure, one may construct more approximation op-
erators from the predecessor neighborhoods, or combinations of predecessor and
successor neighborhoods defined by binary relations [88]. One may also introduce
new approximation operators by the composition of existing approximation op-
erators [89].

Cattaneo [4] discussed another method for the construction of approximation
operators from binary relations. He used an irreflexive and symmetric binary
relation called discernibility or preclusivity relation. Such a relation is in fact
the complement of a reflexive and symmetric relation called a compatibility or
tolerance relation [68, 92, 103]. Its relationship to our formulation can therefore
be established [4]. Let # denote an irreflexive and symmetric relation on U .
From #, the preclusive orthocomplement of a subset A ⊆ U is defined by:

A# = {x ∈ U | for all y ∈ A, x#y}. (11)

By combining # and the standard set complement operator c, one can define
two pairs of approximation operators, (Hc#, H#c) and (Hbb, H##), where Hb =
Hc#c. They are related to each other by the chain of inclusion:

Hc# ⊆ Hbb ⊆ H## ⊆ H#c. (12)

The complement of the relation # is given by R# = U×U−#, which is a reflexive
and symmetric relation. Let apr and apr be the approximation operators defined

by using successor neighborhoods of R#. We immediately have the following
relationships:

Ac# = aprA, A#c = aprA,

Abb = apraprA, A## = apraprA. (13)

The second pair of approximation operators can be obtained from compositions
of the first pair.
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3 Alternative Representations of Approximation

Operators

In the last section, approximation operators are constructed and interpreted
based on binary relations. Two additional representations of approximation op-
erators will be presented in this section by extending the results of Yao [87].
These notions have been studied by Pawlak [47], Skowron [63], and Skowron
and Grzymala-Buss [64] in the contexts of Pawlak rough set models and Pawlak
information systems [42].

3.1 Upper Approximation Distributions

Based on property (U2) and the finiteness property of the universe, the upper
approximation of a set can be computed from the upper approximations of its
singleton subsets, namely, for any A ⊆ U , we have:

aprA =
⋃

x∈A

apr{x}. (14)

If A = ∅, we define apr∅ = ∅. This suggests another way to represent an upper
approximation operator. We define a function h : U −→ 2U ,

h(x) = apr{x}. (15)

The upper approximation of any subset A ⊆ U can be expressed as:

aprA =
⋃

x∈A

h(x). (16)

The function h plays a similar role as that of probability distribution in proba-
bility theory, and possibility distribution in possibility theory [100]. We call the
function h an upper approximation distribution. Property (U2) shows that an
upper approximation operator is additive. An upper approximation operator is
therefore an additive extension of an upper approximation distribution, and an
upper approximation distribution is a projection of an upper approximation on
singleton subsets of the universe.

The notion of upper approximation distribution can be interpreted using
binary relations. For a binary relation R on U , its converse R−1 is defined by:

yR−1x ⇐⇒ xRy. (17)

For an element y ∈ U , the set of R−1-related elements (i.e., conversely R-related
elements) is given by:

R−1
s (y) = {x | yR−1x} = {x | xRy} = {x | y ∈ Rs(x)}. (18)

On the other hand, the upper approximation of a singleton subset {y} is:

apr{y} = {x | Rs(x) ∩ {y} 6= ∅} = {x | y ∈ Rs(x)}. (19)
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By combining these results, we have:

h(y) = {x | y ∈ Rs(x)} = R−1
s (y). (20)

That is, h(y) is exactly the set of R−1-related elements of y. This implies that
x ∈ h(y) if and only if y ∈ Rs(x). From the upper approximation distribution, a
binary relation can be defined by:

Rs(x) = {y | x ∈ h(y)}. (21)

Such a relationship can be extended to binary relations and approximation op-
erators.

In defining rough set algebras, we do not impose any constraint on the binary
relation. Consequently, there is not any constraint on an upper approximation
distribution. Given an arbitrary function h : U −→ 2U , we can define an up-
per approximation operator by using equation (16). By definition, the upper
approximation operator satisfies properties (U0)-(U4).

3.2 Basic Set Assignments

A binary relation R associates each element of U with its successor neighborhood
Rs(x) ⊆ U . By collecting the elements associated with the same subset of U , we
define a function m : 2U −→ 2U :

m(A) = {x | Rs(x) = A}. (22)

An element x ∈ m(A) if and only if the set of R-related elements of x is exactly
A. Each element of the universe must be associated with one and only one subset
of the universe. This implies that m must satisfy the axioms: for all A, B ⊆ U ,

(A1)
⋃

A⊆U

m(A) = U,

(A2) A 6= B =⇒ m(A) ∩ m(B) = ∅.

The set m(A) can be considered as an equivalence class of the following equiva-
lence relation on U :

x ≡ y ⇐⇒ Rs(x) = Rs(y). (23)

Under ≡, two elements of U are considered to be equivalent if and only if their
R-related elements are the same, or equivalently they have the same successor
neighborhood. Conversely, from m the relation R can be recovered by:

Rs(x) = A, for x ∈ m(A). (24)

By properties (A1) and (A2), for every element x in U there exists a unique set
A ⊆ U such that x ∈ m(A). Therefore, this definition is properly defined.

For an arbitrary subset A ⊆ U , consider an element x ∈ aprA. By the
definition of apr, we have Rs(x) ⊆ A. This implies that there must exist a
unique subset B ⊆ A such that B = Rs(x), namely, x ∈ m(B). On the other
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hand, for an arbitrary subset B ⊆ A, consider an element x ∈ m(B). By the
definition of m, we have Rs(x) = B ⊆ A. This implies that x ∈ aprA. From the
above argument, it follows that apr can be expressed in terms of m:

aprA =
⋃

B⊆A

m(B). (25)

The upper approximation can be expressed as:

aprA =
⋃

B∩A6=∅

m(B), (26)

which can be derived either from definitions of m and apr, or from the relation-
ship aprA = ∼apr ∼A.

Function m can be computed from a lower approximation operator. Ac-
cording to equation (25) and the definition of m, if x ∈ m(A), one can con-
clude that x ∈ aprA and x 6∈ aprB for any proper subset B ⊂ A. That is,
m(A) ⊆ aprA −

⋃

B⊂A aprB. For any element x ∈ aprA, there is a unique
subset B ⊆ A such that x ∈ m(B), which implies x ∈ aprB. Therefore,
if x ∈ aprA −

⋃

B⊂A aprB, it must be the case that x ∈ m(A). That is,
aprA −

⋃

B⊂A aprB ⊆ m(A). Hence, m(A) can be expressed through the lower
approximation operator as:

m(A) = aprA −
⋃

B⊂A

aprB. (27)

Function m plays a similar role as that of basic probability assignment in the
theory of belief functions. In terms of a binary relation R, an element x ∈ m(A)
is exactly related to the set A. This is similar to the interpretation of basic
probability assignment in the theory of belief functions [29]. For this reason, m
is called a basic set assignment [81, 100].

A subset with m(A) 6= ∅ is called a focal set. The family of focal sets is given
by:

F = {A | A ⊆ U, m(A) 6= ∅}. (28)

From images of F by m, we define a family of subsets of U :

M = {m(A) | A ∈ F}. (29)

By properties (A1) and (A2), one can see that M is a partition of the universe,
which is in fact the quotient set defined by the equivalence relation ≡, namely
M = U/≡. Elements of M are called elementary sets. The empty set ∅ and the
unions of one or more elementary sets are called observable sets [93]. The family
of all observable sets formed from M is denoted by σ(M), which is the σ-algebra
generated by M . The family of subsets M is the basis of σ(M). With respect to
a binary relation R, for a focal set A ∈ F , we have Rs(m(A)) = Rs(x) = A for
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any x ∈ m(A). Using these notions, the lower and upper approximations have
similar interpretations as in the Pawlak rough set algebra, namely,

aprA =
⋃

{X | X ∈ σ(M), Rs(X) ⊆ A},

aprA =
⋂

{X | X ∈ σ(M),∼Rs(∼X) ⊇ A}. (30)

The lower approximation of A is the greatest observable set in σ(M) whose
successor neighborhood is contained in A, and the upper approximation is the
least observable set in σ(M) such that the complement of its complement’s
successor neighborhood contains A. Similarly, in terms of equivalence classes of
≡, lower and upper approximations can be expressed by:

aprA =
⋃

Rs([x]≡)⊆A

[x]≡,

aprA =
⋃

Rs([x]≡)∩A6=∅

[x]≡, (31)

where [x]≡ = {y | x ≡ y} = {y | Rs(x) = Rs(y)} is the equivalence class
containing x. Results given by equations (30) and (31) are in parallel to that of
equations (1) and (2).

3.3 Related Works

In order to obtain more insights into the alternative representations, we first
examine them in the context of a Pawlak rough set model, and then summarize
some of earlier studies [47, 64, 81, 87].

Consider a Pawlak rough set model constructed from an equivalence relation
E. From the properties of an equivalence relation, we immediately have the
following interesting results:

(i) ∀x, y ∈ U [xEy ⇐⇒ x ≡ y],

(ii) F = M = U/E = U/≡, σ(M) = σ(U/E),

(iii) ∀x ∈ U [Es(x) = [x]E ],

(iv) ∀A ∈ σ(U/E)[Es(A) = A],

(v) h(x) = [x]E ,

(vi) m(A) =







A A ∈ U/E,

∅ otherwise.

They show that different notions coincide in the Pawlak rough set model. By
applying (iii) into equation (7), we have equation (4). Applying (ii) and (iv) into
equation (30) results in equation (1). By combining (v) and equation (16), we
have another definition of the upper approximation:

aprA =
⋃

x∈A

[x]E . (32)
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This definition was used by some authors [8, 14]. Finally, by applying (vi) into
equations (25) and (26), or by combining (ii), (v), and equation (31), we have
equation (2). In summary, our formulation of rough sets provides a more gen-
eral framework. Notions, such as successor neighborhoods, upper approximation
distributions, and basic set assignments, are useful in understanding generalized
rough set models, although they become trivial concepts in the Pawlak rough
set model.

Pawlak [47] interpreted an upper approximation distribution as being an in-
formation function and used the symbol I(x), i.e., I(x) = h(x). The information
about x is given by I(x). Every element y ∈ I(x) is considered to be indiscernible

from x with respect to the information I. In order to use such an interpretation,
one has to impose certain constraints on the information function I, such as
x ∈ I(x).

Skowron and Grzymala-Buss [64] implicitly used the notion of basic set as-
signment in study of connections between rough sets and belief functions. In a
special case, they used the mapping as given by (vi). In the general case, they
adopted notions similar to interval structures, in which two universes and a re-
lation between them are used [81]. One universe is a set of objects and the other
universe is a set of decision classes. The relationship between elements of the
two universes are given by a Pawlak information system. For details on such a
formulation, one may read papers by Skowron and Grzymala-Buss [64], Wong et

al. [81], and Yao and Lingras [93].

3.4 An Example

A simple example is presented to illustrate the basic ideas developed in the
previous subsections.

Consider a universe U = {a, b, c}. Suppose a binary relation R on U is given
by:

aRa, bRb, aRb, bRa, cRb.

The successor neighborhoods are defined by:

Rs(a) = {a, b}, Rs(b) = {a, b}, Rs(c) = {b}.

The converse relation of R is given by:

aR−1a, bR−1b, bR−1a, aR−1b, bR−1c.

The corresponding successor neighborhoods are:

R−1
s (a) = {a, b}, R−1

s (b) = U, R−1
s (c) = ∅.

Based on R, one can define an equivalence relation ≡ by:

a ≡ a, b ≡ b, a ≡ b, b ≡ a, c ≡ c,

which induces a partition of the universe U , namely, M = {{a, b}, {c}}. The
σ-algebra generated by M is given by:

σ(M) = {∅, {a, b}, {c}, U}.
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12 Y.Y. Yao

Every subset of the universe is approximated by two elements of σ(M).
The binary relation produces the pair of lower and upper approximation

operators:
apr∅ = ∅, apr∅ = ∅,
apr{a} = ∅, apr{a} = {a, b},
apr{b} = {c}, apr{b} = U,
apr{c} = ∅, apr{c} = ∅,
apr{a, b} = U, apr{a, b} = U,
apr{a, c} = ∅, apr{a, c} = {a, b},
apr{b, c} = {c}, apr{b, c} = U,
aprU = U, aprU = U.

The upper approximation distribution is defined:

h(a) = {a, b}, h(b) = U, h(c) = ∅.

The basic set assignment is:

m(∅) = ∅, m({a}) = ∅, m({b}) = {c}, m({c}) = ∅,
m({a, b}) = {a, b}, m({a, c}) = ∅, m({b, c}) = ∅, m(U) = ∅.

The set of focal sets is:
F = {{b}, {a, b}},

which defines the following family of subsets of U :

M = {{c}, {a, b}},

which is in fact the partition induced by the equivalence relation ≡.
From this example, one can easily verify the relationships between a binary

relation, successor neighborhoods, a pair of approximation operators, an upper
approximation distribution, and a basic set assignment. Transformations from
one to any other are summarized in Table 1, where a pair of lower and upper
approximations is represented by L and H.

4 Axiomatic Characterization of Rough Set Models

In the construction of approximation operators, we started from an arbitrary bi-
nary relation by treating it as a primitive notion. Such a constructive approach
is commonly used in the study of rough set theory [89]. Alternatively, one may
define a pair of approximation operators axiomatically by using certain axioms,
without explicitly referring to a binary relation. In this case, the approximation
operators are used as primitive notions. We study an algebra (2U ,∼,L,H,∩,∪),
where L and H are unary set-theoretic operators referred to as approximation
operators. An important advantage of the axiomatic or algebraic method is that
one may gain more insights into the structures of lower and upper approxi-
mation operators. An axiomatic characterization of approximation operators is
presented in this section.
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Generalized Rough Set Models 13

Definition 1. A mapping L : 2U −→ 2U is called a lower approximation opera-
tor if it obeys two axioms: for A, B ⊆ U ,

(L1) LU = U,

(L2) L(A ∩ B) = LA ∩ LB.

A mapping H : 2U −→ 2U is called an upper approximation operator if it obeys
two axioms:

(U1) H∅ = ∅,

(U2) H(A ∪ B) = HA ∪ HB.

Axioms (L1) and (U1) give the conditions on the approximations of two spe-
cial subsets of U , the entire set U and the empty set ∅. The lower approximation
of the universe is itself and the upper approximation of the empty set is the empty
set. Axioms (L2) and (U2) may be understood as the distributivity of a lower
approximation operator over set intersection, and of an upper approximation op-
erators over set union. They show that a lower approximation is multiplicative
and an upper approximation is additive [83, 84].

Definition 2. Operators L,H : 2U −→ 2U are said to be dual if they are related
to each other by:

(L0) LA = ∼H ∼A,

(U0) HA = ∼L ∼A.

By the duality of lower and upper approximation operators, we only need
to define one operator. For example, if we define an upper approximation op-
erator H, its dual lower approximation operator L may be considered as an
abbreviation of ∼ H ∼. In parallel to the constructive approach, we introduce
notions of upper approximation distributions and basic set assignments. They
are alternative representations of approximation operators.

Definition 3. A mapping h : U −→ 2U without any constraints is called an
upper approximation distribution. A mapping m : 2U −→ 2U is called a basic
set assignment if it obeys two axioms: for A, B ⊆ U ,

(A1)
⋃

A⊆U

m(A) = U,

(A2) A 6= B =⇒ m(A) ∩ m(B) = ∅.

Table 1 summarizes transformations between approximation operators, a bi-
nary relation, an upper approximation distribution, and a basic set assignment.
From these transformations, we have the following useful results.

Theorem4. Suppose L,H : 2U −→ 2U are dual approximation operators. The

following conditions are equivalent:
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14 Y.Y. Yao

(a). L is a lower approximation operator satisfying axioms (L1) and (L2);
(b). H is an upper approximation operator satisfying axioms (U1) and (U2);
(c). There exists an upper approximation distribution h : U −→ 2U such that

for all subsets A ⊆ U , H(A) =
⋃

x∈A h(x);
(d). There exist a binary relation R and the corresponding approximation space

apr = (U, R) such that for all A ⊆ U , H(A) = apr(A);
(e). There exists a basic set assignment m : 2U −→ 2U satisfying axioms (A1)

and (A2) such that for all A ⊆ U , L(A) =
⋃

B⊆A m(B).

Equivalence of (a) to (c) can be easily established. Equivalence of (b) and
(d) was proved by Yao [86, Theorem 3, page 298], and equivalence of (a) and (e)
follows from the discussion on basic set assignments in Section 3.2.

According to Theorem 4, axioms (L1), (L2), (U1), and (U2) are considered
to be the basic axioms of approximation operators, axioms (A1) and (A2) are
the basic axioms of basic set assignment. This leads to the following definition
of rough set algebra.

Definition 5. An algebra (2U ,∼,L,H,∩,∪) is called a rough set algebra if L
and H are dual approximation operators satisfying axioms (L1), (L2), (U1), and
(U2).

The definition of basic set assignment is weaker than the proposal of Wong
et al [81]. They used an additional axiom:

(A3) m(∅) = ∅.

In the construction of rough set models, no constraint is imposed on binary re-
lations. There may be elements that are not related to any element in U , i.e.,
Rs(x) = ∅. Such elements belong to m(∅). Therefore, axiom (A3) is dropped.
From the view point of approximation operators, this is equivalent to drop ax-
ioms (L5) and (U5) used by Wong et al [81] in the study of interval structures.
The notion of rough set algebras is more general than interval structures. In order
to include axiom (A3), one must use a serial relation. Following the same argu-
ments, we may study different classes of binary relations and axioms on various
representations of approximation operators. Their relationships are summarized
in Tables 2 and 3. From these tables, one may obtain a number of theorems in
parallel to Theorem 4. For instance, with respect to a serial binary relation, we
have the following theorem.

Theorem 6. Suppose L,H : 2U −→ 2U are dual approximation operators. The

following conditions are equivalent:

(a). L is a lower approximation operator satisfying axioms (L1), (L2), and (L5);
(b). H is an upper approximation operator satisfying axioms (U1), (U2), and

(U5);
(c). There exists an upper approximation distribution h : U −→ 2U satisfying

axiom (h1) such that for all subsets A ⊆ U , H(A) =
⋃

x∈A h(x);
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(d). There exist a serial binary relation R and the corresponding approximation

space apr = (U, R) such that for all A ⊆ U , H(A) = apr(A);
(e). There exists a basic set assignment m : 2U −→ 2U satisfying axioms (A1),

(A2), and (A3) such that for all A ⊆ U , L(A) =
⋃

B⊆A m(B).

A Pawlak rough set model is constructed by an equivalence relation. In this
case, we have the corresponding theorem.

Theorem7. Suppose L,H : 2U −→ 2U are a pair of dual approximation opera-

tors. The following conditions are equivalent:

(a). L is a lower approximation operator satisfying axioms (L1), (L2), (T), (B),
and (4);

(b). H is an upper approximation operator satisfying axioms (U1), (U2), (T′),
(B′), and (4′);

(c). There exists an upper approximation distribution h : U −→ 2U satisfy-

ing axiom (h2), (h3), and (h4) such that for all subsets A ⊆ U , H(A) =
⋃

x∈A h(x);
(d). There exist an equivalence relation E and the corresponding approximation

space apr = (U, E) such that for all A ⊆ U , H(A) = apr(A);
(e). There exists a basic set assignment m : 2U −→ 2U satisfying axioms (A1),

(A2), (A4), (A5), and (A6) such that for all A ⊆ U , L(A) =
⋃

B⊆A m(B).

The equivalence of (a), (b), and (d) has been discussed by many authors [14,
28, 78, 86]. The equivalence of other conditions can be easily proved. State-
ment (e) in the previous theorems in fact establishes a connection between con-
structive and algebraic methods of the theory of rough sets. That is, certain
axioms of approximation operators guarantee the existence of a special class of
binary relations producing the same operators, and vice versa.

In comparison with studies on constructive methods, there is not enough
attention on algebraic methods [89]. Some earlier algebraic studies are briefly
summarized below. Zakowski [102] studied a set of axioms on approximation
operators, including axioms such as (L2), (U2), (T), and (T′). A problem with
Zakowski’s axiomatization is that an equivalence relation is explicitly used. One
axiom states that the lower and upper approximations of definable sets are the
sets themselves. The notion of definable sets must be defined using an equiva-
lence relation. Comer [7, 8] investigated axioms on approximation operators in
relation to cylindric algebras. The investigation is made within the context of
Pawlak information systems [42]. Lin and Liu [28] studied axioms on a pair of
abstract operators on the power set of universe in the framework of topological
spaces. The similar result was stated earlier by Wiweger [78]. All those stud-
ies are restricted to Pawlak rough set algebra defined by equivalence relations.
Wybraniec-Skardowska [83, 84] examined many axioms on various classes of ap-
proximation operators. Yao [86, 89] extended axiomatic approach to rough set
algebras constructed from arbitrary binary relations. Cattaneo [4] provided an
axiomatization of approximation operators corresponding the ones produced by
tolerance relations. The formulation is set in a more general context of bounded
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posets. Some of axioms require the notions of open and closed definable elements.
An inner approximation mapping associates an element to the largest open de-
finable element from the bottom of the element, and an outer approximation
mapping associates an element to the least closed definable elements from the
top. This is an extension of Pawlak’s definition as expressed by equation (1).
Gehrke and Walker [15] and Iwinski [20] used similar methods. Furthermore,
Cattaneo showed that in a quasi-BZ poset the sets of open and closed definable
elements can be defined by using a pair of orthocomplementation mappings,
which in turn can be defined axiomatically.

5 Rough Set Models and Uncertainty Measures

The relationships between the theory of belief functions and rough sets have been
studied by many authors. Pawlak [43], Skowron [61, 62], Wong and Lingras [80],
and Skowron and Grzymala-Busse [64] showed that one can derive a pair of belief
and plausibility functions from a Pawlak rough set algebra. Harmanec, Klir, and
Resconi [18] discussed interpretations of belief and plausibility functions in the
framework of modal logic. They used the modal logic system T corresponding
to a reflexive rough set algebra. Using a modal logic system corresponding to
a reflexive and connected rough set algebra, Klir and Harmanec [22] discussed
interpretations of necessity and possibility functions. Many researchers studied
the connections of rough set models and modal logics [1, 10, 24, 30, 35, 36, 38,
40, 44, 45, 57, 58, 74, 76, 79]. Yao and Lingras [93] presented a detailed study
on relationships between belief functions and rough set models. In this section,
we review related results and present some new ones.

5.1 Belief and Plausibility Functions

In a rough set algebra (2U ,∼, apr, apr,∩,∪), the images of focal sets by the basic
set assignment m produce the following partition of the universe:

M = {m(A) | A ∈ F}. (33)

It is a basis of the σ-algebra σ(M) generated by M . Let P denote a probability
function on σ(M). Suppose R is a binary relation corresponding to the approx-
imation operators. The triple apr = (U, R, (σ(M), P )) is called a probabilistic
approximation space.

An arbitrary subset A ⊆ U is approximated by aprA and aprA in a proba-
bilistic approximation space apr = (U, R, (σ(M), P )). They are measurable sets
from σ(M). We can therefore define a pair of lower and upper probabilities as
follows:

P (A) = P (aprA),

P (A) = P (aprA). (34)
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Generalized Rough Set Models 17

According to properties (L0)-(L3) and (U0)-(U3), P and P obey the axioms [44,
93]:

(LP0) P (A) = 1 − P (∼ A),

(LP1) P (U) = 1,

(LP2) P (A ∪ B) ≥ P (A) + P (B) − P (A ∪ B),

(UP0) P (A) = 1 − P (∼ A),

(UP1) P (∅) = 0,

(UP2) P (A ∩ B) ≤ P (A) + P (B) − P (A ∪ B).

Properties (LP0) and (UP0) state that P , P : 2U −→ [0, 1] are dual func-
tions [96]. Properties (LP2) and (UP2) can be expressed in a much stronger
version: for every positive integer n and every collection A1, . . . , An ⊆ U ,

(LP2) P (A1 ∪ . . . ∪ An) ≥
∑

i

P (Ai) −
∑

i<j

P (Ai ∩ Aj) ±

. . . + (−1)n+1P (A1 ∩ . . . ∩ An),

(UP2) P (A1 ∩ . . . ∩ An) ≤
∑

i

P (Ai) −
∑

i<j

P (Ai ∪ Aj) ±

. . . + (−1)n+1P (A1 ∪ . . . ∪ An).

Properties with numbers 1 and 2 are subsets of axioms of belief and plausi-
bility functions [60, 100]. They characterize generalized belief and plausibility
functions proposed by Smets [73] under the open world assumption.

From the basic set assignment m, we define another function: for A ⊆ U ,

bpa(A) = P (m(A)). (35)

The function bpa : 2U −→ [0, 1] is a basic probability assignment satisfying the
axiom:

(M1)
∑

A⊆U

bpa(A) = 1.

Axiom (M1) follows from axioms (A1) and (A2) of a basic set assignment. A
subset A with m(A) > 0 is called a focal element. From the basic probability
assignment, the pair of generalized belief and plausibility functions P and P are
expressed as:

P (A) = P (aprA) = P (
⋃

B⊆A

m(B)) =
∑

B⊆A

P (m(B)) =
∑

B⊆A

bpa(B),

P (A) = P (aprA) = P (
⋃

B∩A6=∅

m(B)) =
∑

B∩A6=∅

P (m(B)) =
∑

B∩A6=∅

bpa(B). (36)

This connection between a basic probability assignment and a pair of belief
and plausibility functions has been studied extensively in the theory of belief
functions [60, 73]. It should be pointed out that the preceding formulation is
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18 Y.Y. Yao

an immediate generalization of the work by Skowron [63], and Skowron and
Grzymala-Busse [64]. We used a probability function to define belief and plau-
sibility values [93], instead of computing them from cardinalities of sets.

Consider a serial rough set model, Axioms (L5) and (U5) imply that P and
P satisfy the axioms:

(LP3) P (∅) = 0,

(UP3) P (U) = 1.

It follows that P and P are a pair of belief and plausibility functions as origi-
nally proposed by Shafer [60]. The corresponding basic set assignment m satisfies
axiom (A3), which implies that the basic probability assignment bpa obeys the
axiom:

(M2) bpa(∅) = 0.

From equation (36), one can easily see the correspondence between axiom (M2),
(LP3) and (UP3).

A binary relation can be interpreted as a multivalued mapping from U to
U using Rs. Our formulation of lower and upper probabilities is related to the
framework suggested by Dempster [9]. In defining lower probability, Dempster
used the following lower approximation:

apr
d
A = {x | Rs(x) 6= ∅, Rs(x) ⊆ A}. (37)

Similar definition was also used by Wybraniec-Skardowska [83]. The lower ap-
proximation operator apr

d
satisfies axioms (L2) and (L3). It is related to apr

by:

(LD0) apr
d
A = aprU − apr ∼A,

(UD0) aprA = aprU − apr
d
∼A.

By definition, apr
d
U = aprU . The corresponding lower and upper probabilies

are defined by:

P d(A) =
P (apr

d
A)

P (aprU)
,

P d(A) =
P (aprA)

P (aprU)
. (38)

They satisfy axioms (LP0)-(LP3) and (UP0)-(UP3), and hence are a pair of dual
belief and plausibility functions. For a serial binary relation, our definition is the
same as that of Dempster [9].

If the binary relation R is an equivalence relation, lower and upper probabil-
ities are the same as rough probabilities introduced by Pawlak [44]. They have
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been studied by many authors [44, 64, 80]. Particularly, instead of using a prob-
ability function, Grzymala-Busse [16], and Skowron and Grzymala-Busse [64]
computed a pair of belief and plausibility functions as follows:

P (A) =
|aprA|

|U |
,

P (A) =
|aprA|

|U |
, (39)

where | · | denotes the cardinality of a set. This is equivalent to saying that one
uses the following probability function defined on σ(M): for A ∈ σ(M),

P (A) =
|A|

|U |
. (40)

Similar approach using cardinalities of sets was proposed by Harmanec, Klir,
and Resconi [18] in a modal logic based framework.

5.2 Necessity and Possibility Functions

A binary relation R is connected if for every pair x, y ∈ U , xRy or yRx holds.
Consider a transitive and connected rough set model. For any two elements
x, y ∈ U , the connectiveness of R can be expressed by:

x ∈ Rs(y) or y ∈ Rs(x). (41)

By transitivity, it implies:

Rs(x) ⊆ Rs(y) or Rs(y) ⊆ Rs(x). (42)

That is, with respect to elements of U , the successor neighborhoods Rs(x)’s are
nested subsets of U . It should be noted that transitivity and connectiveness are
sufficient for the condition (42), they are not necessary as shown in the example
of Section 3.4.

From definition m(A) = {x | Rs(x) = A}, we can conclude that if F1 and F2

are two distinct focal set of m, either F1 ⊂ F2 or F2 ⊂ F1 must hold. Thus, the
set of all focal sets F = {F1, . . . , Fk} is a family of nested subsets of U . Without
loss of generality, we assume:

F1 ⊂ . . . ⊂ Fk. (43)

With this constraint on the set of focal sets, from equations (25) and (26) we
can conclude that approximation operators satisfy the axioms: for all A, B ⊆ U ,

(L6) aprA ⊆ aprB or aprB ⊆ aprA,

(U6) aprA ⊆ aprB or aprB ⊆ aprA.

Under axioms (L2) and (U2), they can be equivalently expressed as:

(L7) apr(A ∩ B) = aprA or apr(A ∩ B) = aprB,

(U7) apr(A ∪ B) = aprA or apr(A ∪ B) = aprB.
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These axioms have been examined by Yao et al [100] in a study of non-numeric
functions, for which both approximation operators are examples.

The connectiveness of R implies that R is reflexive. Hence, property (T) and
(T′) hold. A reflexive relation is a serial relation, which implies that property (D)
holds, namely, properties (L5) and (U5) hold. This suggests that a transitive and
connected a rough set model is a special serial model. Therefore, in a transitive
and connected rough set model, the pair of lower and upper probabilities defined
by:

P (A) = P (aprA),

P (A) = P (aprA), (44)

is a pair of belief and plausibility functions. Moreover, from axioms (L7) and
(U7), we have:

(LP4) P (A ∩ B) = min(P (A), P (B)),

(UP4) P (A ∪ B) = max(P (A), P (B)).

Axioms (LP4) and (UP4) imply axioms (LP2) and (UP2). Together with (LP1),
(LP3), (UP1), and (UP3), they define a special class of belief and plausibility
functions called consonant belief and plausibility functions. This class is stud-
ied independently in the theory of fuzzy sets under the name of necessity and
possibility functions [11, 23].

From the family of nested focal sets, a family of pairwise disjoint subsets of
U is defined by:

D1 = F1, Di = Fi − Fi−1 for i = 2, . . . , k. (45)

The upper approximation distribution h(x) =
⋃

x∈A m(A) satisfies the property:
for xi ∈ Di, i = 1, . . . , k,

h(xk) ⊂ . . . ⊂ h(x1). (46)

Using h, we define a function π : U −→ [0, 1] as follows:

π(x) = P (h(x)) = P (apr{x}) = P ({x}). (47)

According to axiom (U7), for a subset A ⊆ U , the value P (A) can be computed
by:

P (A) = P (
⋃

x∈A

{x}) = max
x∈A

P ({x}) = max
x∈A

π(x). (48)

Thus, the function π is the corresponding possibility distribution of the possi-
bility function P . The arugments are valid if a special probability on σ(M), as
defined by equation (40), is used [22].
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6 Rough Sets and Fuzzy Sets

The theory of rough sets has been shown to be related to fuzzy sets [82, 90],
probabilistic modal logic [92], and Bayesian decision theory [95]. Based on these
studies, this section examines the connection between fuzzy sets and rough sets
using the notion of rough membership functions [48].

6.1 Rough Membership Functions

A fuzzy set A of U is defined by a membership function:

µA : U −→ [0, 1]. (49)

There are many definitions for fuzzy set complement, intersection, and union.
With the min-max system proposed by Zadeh [101], fuzzy set operators are de-
fined component-wise as:

(¬µA)(x) = 1 − µA(x),

(µA ⊓ µB)(x) = min[µA(x), µB(x)],

(µA ⊔ µB)(x) = max[µA(x), µB(x)]. (50)

Let F(U) denote the set of all fuzzy set defined on U . The system (F(U),¬,⊓,⊔)
may be regarded as a deviation of classical set algebra. In general, fuzzy set inter-
section and union may be defined by t-norms and t-conorms [23]. An important
feature of such systems is that fuzzy sets operators are truth-functional. Mem-
bership functions of complement, intersection, and union can be computed solely
from membership functions of the fuzzy sets involved.

Given a number α ∈ [0, 1], an α-cut of a fuzzy set is defined by:

Aα = {x ∈ U | µA(x) ≥ α}, (51)

which is a subset of U . A strong α-cut is defined by:

Aα+ = {x ∈ U | µA(x) > α}. (52)

If α’s are interpreted as thresholds, α-cuts are crisp set approximations of a fuzzy
set at different levels.

In a Pawlak approximation space apr = (U, E), the rough membership func-
tion of A ⊆ U is defined by [48]:

µA(x) =
|A ∩ [x]E |

|[x]E |
. (53)

Such a notion was used earlier by some authors for the development of prob-
abilistic rough set models [49, 82]. One can easily see the similarity between
rough membership functions and conditional probabilities. The rough member-
ship value µA(x) may be interpreted as the probability that an arbitrary element
of [x]E belongs to A. In fact, Yao and Wong [95] used conditional probabilities
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P (A | [x]E) in an attempt to relate rough set theory to Bayesian decision the-
ory. Yao and Lin [92] defined rough membership functions with respect to an
arbitrary binary relation:

µA(x) =
|A ∩ Rs(x)|

|Rs(x)|
. (54)

It is assumed that R is at least a serial relation. This notion of rough membership
functions was introduced earlier by Pawlak [47] using an information function
I : U −→ 2U . The information function may be interpreted using the successor
neighborhood operator Rs, i.e., I(x) = Rs(x). In order to generalize such a notion
further, we consider a probabilistic approximation space apr = (U, R, (2U , P )).
For A ⊆ U , its rough membership function is defined as:

µA(x) = P (A | Rs(x)) =
P (A ∩ Rs(x))

P (Rs(x))
. (55)

Similarly, it is assumed that R is a serial relation and furthermore P (Rs(x)) 6= 0.
A rough set is defined by a rough membership function µA through a stan-

dard set A ⊆ U . Rough sets may be regarded as a special type of fuzzy sets.
Let R(U) denote the set of all rough sets defined on U . There are at most |2U |
number of rough sets in R(U), which is clearly a subset of F(U). There does
not exist an one-to-one relationships between rough sets and subsets of U . Two
distinct subsets of U may define the same rough set. Consequently, rough set
operators cannot be defined directly using rough membership functions. Mem-
bership functions of rough sets corresponding to ∼ A, A∩B, and A∪B must be
computed using set operators and the definition of rough membership functions:

(¬µA)(x) = µ∼A(x),

(µA ⊓ µB)(x) = µA∩B(x),

(µA ⊔ µB)(x) = µA∪B(x), (56)

where ∼, ∩, and ∪ are standard set-theoretic operators. Each rough set is ob-
tained from a classical set, and rough set operators ¬, ⊓, and ⊔ are defined using
classical set-theoretic operators. In other words, in formulating a set-oriented
view of rough set theory we introduce notions of rough sets and rough set opera-
tors by modify the standard meanings of classical set and set-theoretic operators.
The system (R(U),¬,⊓,⊔) is a deviation of classical set algebra (2U ,∼,∩,∪).

By laws of probability, intersection and union of rough sets are not truth-
functional. We have:

(rm1) µ∼A(x) = 1 − µA(x),

(rm2) µA∪B(x) = µA(x) + µB(x) − µA∩B(x),

(rm3) max(0, µA(x) + µB(x) − 1) ≤ µA∩B(x) ≤ min(µA(x), µB(x)),

(rm4) max(µA(x), µB(x)) ≤ µA∪B(x) ≤ min(1, µA(x) + µB(x)).

Properties (rm1)-(rm4) clearly show that rough set theory provides a class of
non-truth-functional fuzzy set systems [21, 90]. Such non-truth-functional sys-
tems need further attention.
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By extending the notion of α-cuts of fuzzy sets, we define a pair of α-level
lower and upper approximations with respect to a number α ∈ [0, 1] as follows:

apr
α
A = {x | µA(x) ≥ 1 − α},

aprαA = {x | µA(x) > α}. (57)

We call apr
α

and aprα probabilistic rough set approximation operators. They
can be explained in the framework of Bayesian decision theory by minimizing
certain loss function [99]. They have also been studied within the framework of
variable precision rough set model proposed by Ziarko [104]. For probabilistic
approximation operators, we have:

(PL0) apr
α
A = ∼aprα ∼A,

(PL1) apr
α
U = U,

(PL2) apr
α
(A ∩ B) ⊆ apr

α
A ∩ apr

α
B,

(PL3) apr
α
(A ∪ B) ⊇ apr

α
A ∪ apr

α
B,

(PU0) aprαA = ∼ apr
α
∼A,

(PU2) aprα∅ = ∅,

(PU3) aprα(A ∪ B) ⊇ aprαA ∪ aprαB,

(PU4) aprα(A ∩ B) ⊆ aprαA ∩ aprαB.

As stated by (PL0) and (PU0), apr
α

and aprα are dual operators on 2U . Prop-
erties (PL2) and (PU2) are much weaker versions of (L2) and (U2). We call
the system (2U ,∼, apr

α
, aprα,∩,∪), α ∈ [0, 1], a probabilistic rough set algebra,

which is an extension of classical set algebra (2U ,∼,∩,∪). When the rough mem-
bership function is computed by equation (54), the algebraic and probabilistic
approximations are related to each other by aprA = apr

0
A and aprA = apr0A.

6.2 Interval Rough Membership Functions

When the membership values of elements of the universe are fuzzy sets, one
obtains type-2 fuzzy sets [23]. A special class of type-2 fuzzy sets, called interval
fuzzy sets, is defined by restricting membership values to subintervals of of [0, 1].
Interval fuzzy sets are commonly known as Φ-fuzzy sets [50, 94]. In the theory
of rough sets, we can introduce similar notions [90].

Based on the concepts of approximation operators and rough membership
functions, we may define a pair of lower and upper rough membership functions:

µ
A
(x) = µaprA(x) =

|apr(A) ∩ Rs(x)|

|Rs(x)|
,

µA(x) = µaprA(x) =
|apr(A) ∩ Rs(x)|

|Rs(x)|
, (58)
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where it is assumed that R is at least a serial relation. By definition, we have:
for x ∈ U ,

(ID) µ
A
(x) ≤ µA(x),

(IL0) µ
A
(x) = 1 − µ∼A(x),

(IL1) µ
U
(x) = 1,

(IL2) µ
A∪B

(x) ≥ µ
A
(x) + µ

B
(x) − µ

A∩B
(x),

(IL3) µ
∅
(x) = 0,

(IU0) µA(x) = 1 − µ
∼A

(x),

(IU1) µ∅(x) = 0,

(IU2) µA∩B(x) ≤ µA(x) + µB(x) − µA∪B(x),

(IU3) µU (x) = 1.

According to axiom (ID), we call the pair of membership functions an interval
rough membership function. Axioms (IL2) and (IU2) can be expressed in a much
stronger form in parallel to axioms (LP2) and (UP3). This can be easily verified
by using the arguments presented in Section 5 on uncertainty measures. While
a rough membership function may be interpreted using a probability function,
an interval rough membership function may be interpreted using a pair of belief
and plausibility functions: for A ⊆ U ,

Belx(A) =
|apr(A) ∩ Rs(x)|

|Rs(x)|
,

P lx(A) =
|apr(A) ∩ Rs(x)|

|Rs(x)|
. (59)

The results developed in the last few sections can be immediately applied to the
study of interval rough membership functions.

If R is a reflexive binary relation, from axioms (T) and (T′) of approximation
operators, we have a pair of additional axioms:

(IT) µ
A
(x) ≤ µA(x),

(IT′) µA(x) ≤ µA(x).

If R is a transitive and connected binary relation, the pair of belief and plausi-
bility functions defined by equation (59) are necessity and possibility functions.
In this case, we have:

(IL4) µ
A∩B

(x) = min(µ
A
(x), µ

B
(x)),

(IU4) µA∪B(x) = max(µA(x), µA(x)).

If R is an equivalence relation, the lower and upper rough membership functions
are indeed the characteristic functions of aprA and aprA.

The notion of interval rough membership functions can be extended further.
One may use a probabilistic approximation space apr = (U, R, (2U , P )). Rough
and interval rough membership functions can be defined using equation (55).
One may also use a pair of probabilistic approximation operators apr

α
and aprα

in the definition interval rough membership functions.
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7 Conclusion

The theory of rough sets is typically studied based on the notion of an approx-
imation space and the induced lower and upper approximations of subsets of a
universe. With the concepts introduced in this paper, such as successor neigh-
borhoods, upper approximation distributions, and basic set assignments, one
may obtain alternative representations of approximation operators. Moreover,
relationships between the theory of rough sets and other theories of uncertainty
can be established. A rough set model can be related to belief and plausibility
functions. In this case, a basic set assignment corresponds to a basic probability
assignment. If a rough set model is related to necessity and possibility functions,
an upper approximation distribution corresponds to a possibility distribution.
By studying these alternative representations, we may obtain more insights into
theory of rough sets.

The relationships between rough sets and fuzzy sets can be established based
on the concept of rough membership functions. Rough set theory provides a class
of non-truth-functional fuzzy set systems, in which the membership values have
a probabilistic interpretation. With lower and upper approximations of a set,
one may define interval rough membership functions. They may be interpreted
using belief and plausibility functions, or necessity and plausibility functions. The
connection between these two non-classical set theories needs further exploration.

Generalized rough set models can be formulated and studied from both con-
structive and algebraic points of views. The constructive approach defines ap-
proximation operators based on a binary relation on the universe, while the
algebraic approach characterizes approximation operators based on a set of ax-
ioms. The relationships between these two approaches can be easily established
by showing the existence of a binary relation that produces the same approxi-
mation operators.
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Rs(x) = {y | x ∈ h(y)}

= A, x ∈ m(A)

= {y | x 6∈ L ∼{y}}

= {y | x ∈ H{y}};

h(x) = {y | x ∈ Rs(y)}

=
⋃

x∈A

m(A)

= ∼L ∼{x}

= H{x};

m(A) = {x | Rs(x) = A}

= {x | {y | x ∈ h(y)} = A}

= LA −
⋃

B⊂A

LB

= [
⋂

B⊂A

H ∼B]− H ∼A;

LA = {x | Rs(x) ⊆ A}

= ∼
⋃

x 6∈A

h(x)

=
⋃

B⊆A

m(B)

= ∼H ∼A;

HA = {x | Rs(x) ∩ A 6= ∅}

=
⋃

x∈A

h(x)

=
⋃

B∩A6=∅

m(B)

= ∼ L ∼A.

Table 1. Relationships between representations of approximation operators

This article was processed using the LATEX macro package with LMAMULT style
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serial ∀x ∈ U∃y ∈ U [xRy],

∀x ∈ U [Rs(x) 6= ∅],

(h1) ∀x ∈ U∃y ∈ U [x ∈ h(y)],
⋃

x∈U

h(x) = U ;

reflexive ∀x ∈ U [xRx],

∀x ∈ U [x ∈ Rs(x)],

(h2) ∀x ∈ U [x ∈ h(x)];

symmetric ∀x, y ∈ U [xRy =⇒ yRx],

∀x, y ∈ U [x ∈ Rs(y) =⇒ y ∈ Rs(x)],

(h3) ∀x, y ∈ U [x ∈ h(y) =⇒ y ∈ h(x)];

transitive ∀x, y, z ∈ U [(xRy, yRz) =⇒ xRz],

∀x, y, z ∈ U [(y ∈ Rs(x), z ∈ Rs(y)) =⇒ z ∈ Rs(x)],

∀x, y ∈ U [y ∈ Rs(x) =⇒ Rs(y) ⊆ Rs(x)],

(h4) ∀x, y, z ∈ U [x ∈ h(y), y ∈ h(z)) =⇒ x ∈ h(z)],

∀x, y ∈ U [x ∈ h(y) =⇒ h(x) ⊆ h(y)];

Euclidean ∀x, y, z ∈ U [(xRy, xRz) =⇒ yRz],

∀x, y, z ∈ U [(y ∈ Rs(x), z ∈ Rs(x)) =⇒ z ∈ Rs(y)],

∀x, y ∈ U [y ∈ Rs(x) =⇒ Rs(x) ⊆ Rs(y)],

(h5) ∀x, y, z ∈ U [(x ∈ h(y), x ∈ h(z)) =⇒ y ∈ h(z)].

Table 2. Properties of binary relation and upper approximation distribution (Note
that some of the properties are stated in several different forms.)
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relation m L and H

any

(A1) A 6= B =⇒ m(A) ∩ m(B) = ∅

(A2)
⋃

A⊆U

m(A) = U

(L1) LU = U

(L2) L(A ∩ B) = LA ∩ LB

(U1) H∅ = ∅
(U2) H(A ∪ B) = HA ∪ HB

serial (A3) m(∅) = ∅
(L5) L∅ = ∅
(U5) HU = U

reflexive (A4) m(A) ⊆ A
(T) LA ⊆ A

(T′) A ⊆ HA

symmetric
(A5) [x ∈ m(A), y ∈ m(B)] =⇒

(y ∈ A =⇒ x ∈ B)
(B) A ⊆ LHA

(B′) HLA ⊆ A,

transitive
(A6) [x ∈ m(A), y ∈ m(B)] =⇒

(y ∈ A =⇒ B ⊆ A)
(4) LA ⊆ LLA

(4′) HHA ⊆ HA

Euclidean
(A7) [x ∈ m(A), y ∈ m(B)] =⇒

(y ∈ A =⇒ A ⊆ B)
(5) HA ⊆ LHA

(5′) HLA ⊆ LX

Table 3. Properties of basic set assignment and approximation operators
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