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Abstract

This paper reviews probabilistic approaches to rough sets in gran-

ulation, approximation, and rule induction. The Shannon entropy

function is used to quantitatively characterize partitions of a universe.

Both algebraic and probabilistic rough set approximations are studied.

The probabilistic approximations are defined in a decision-theoretic

framework. The problem of rule induction, a major application of

rough set theory, is studied in probabilistic and information-theoretic

terms. Two types of rules are analyzed, the local, low order rules, and

the global, high order rules.

1 Introduction

As a recently renewed research topic, granular computing is an umbrella term
to cover any theories, methodologies, techniques, and tools that make use of
granules (i.e., subsets of a universe) in problem solving (Lin et al., 2002; Yao,
2000; Zadeh, 1979, 1997). The basic guiding principle of granular computing
is to “exploit the tolerance for imprecision, uncertainty and partial truth to
achieve tractability, robustness, low solution cost and better rapport with
reality” (Zadeh, 1997). This principle offers a more practical philosophy for
real world problem solving. Instead of searching for the optimal solution, one
may search for good approximate solutions.
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The theory of rough sets provides a special and concrete model of gran-
ular computing (Pawlak, 1982, 1991). Three related issues of granulation,
approximation and rule induction are central to studies of rough sets.

Granulation of a universe involves the decomposition of the universe into
families of subsets, or the clustering of elements into groups. It leads to
a collection of granules, with a granule being a clump of points (objects)
drawn together by indistinguishability, similarity, proximity or functionality
(Zadeh, 1997). Granulation may produce either a single-level, flat structure
or a multi-level, hierarchical structure (Yao, 2001a). The theory of rough
sets uses equivalence relations to represent relationships between elements
of a universe. An equivalence relation induces a single-level granulation,
namely, a partition of the universe.

A natural consequence of granulation is approximation. With respect to
an equivalence relation, some subsets can not be exactly expressed in terms
of the equivalence classes, and must be approximately represented by a pair
of lower and upper approximations. By extending the approximations of
subsets to a family of subsets, it is possible to study the approximation of a
partition.

Rule induction deals with fining relationships between concepts. With
each granule, or a family of granules, representing instances of a certain
concept, one can study rule induction in set-theoretic terms (Yao, 2001b).
Approximations of subsets and families of subsets offer insights and methods
for rule induction (Pawlak, 1991).

Although main stream research in rough set theory has been dominated
by algebraic and non-probabilistic studies, probabilistic approaches have been
applied to the theory ever since its inception (Pawlak et al., 1988; Düntsch
and Gediga, 2001; Wong and Ziarko, 1987; Yao and Wong, 1992; Yao et
al., 1990). More specifically, many authors implicitly used a probabilistic
approach by counting the number of elements of a set. On the other hand,
there is still a lack of systematic study of probabilistic approaches in a unified
and general framework.

The main objective of this paper is to provide a critical analysis and
review of probabilistic and information-theoretic approaches to rough sets.
With respect to three related issues of granulation, approximation, and rule
induction, we focus the discussion on probability related measures. Such a
comprehensive study provides a solid basis for further study of probabilistic
rough set theory.
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2 Approximation space and information gran-

ulation

The underlying notion for granulation in rough sets is equivalence relations
or partitions. Let U be a finite and non-empty universe. A binary relation
E ⊆ U×U on U is called an equivalence relation if it is reflexive, symmetric,
and transitive. A partition of U is a collection of non-empty and pairwise
disjoint subsets of U whose union is U . Each subset in a partition is also called
a block. There is a one-to-one relationship between equivalence relations and
partitions. For an equivalence relation E, the equivalence class,

[x]E = {y ∈ U | yEx}, (1)

consists of all elements equivalent to x, and is the equivalence class containing
the element x. The family of equivalence classes,

U/E = {[x]E | x ∈ U}, (2)

is a partition of the universe U . On the other hand, given a partition π of
the universe, one can uniquely define an equivalence relation Eπ:

xEπy ⇐⇒ x and y are in the same block of the partition π. (3)

In this paper, we will use equivalence relations and partitions interchange-
ably. The pair apr = (U,E) is called an approximation space, indicating the
intended application of the partition U/E for approximation (Pawlak, 1982).

The partition U/E is commonly known as the quotient set and provides
a granulated view of the universe. A coarse-grained view of universe may
arise in several ways. For instance, the equivalence relation is derived based
on available knowledge. Due to a lack of information or vague information,
some distinct objects can not be differentiated (Pawlak, 1982). That is, the
available information only allows us to talk about an equivalence class as
a whole instead of many individuals. In some situations, it may only be
possible to observe or measure equivalence classes. It may also happen that
a coarse-grained view is sufficient for a particular problem (Zadeh, 1997;
Zhang and Zhang, 1992).

Under the granulated view, equivalence classes are the basic building
blocks and are called elementary (equivalence) granules. They are the small-
est non-empty subsets that can be defined, observed or measured. From
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elementary granules, we can construct larger granules by taking unions of
elementary granules. It is reasonable to assume that one can define, observe,
and measure these granules through the information and knowledge on the
equivalence granules. The set of all definable granules, denoted by σ(U/E),
consists of the empty set ∅, the entire universe U , and unions of equivalence
classes. The system σ(U/E) is closed under set complement, intersection,
and union. It is a sub-Boolean algebra of the Boolean algebra formed by the
power set 2U of U and an σ-algebra of subsets of U generated by the family
of equivalence classes U/E. In addition, U/E is the basis of the σ-algebra
σ(U/E).

Each partition represents one granulated view of the universe. Granulated
views induced by all partitions form a partition lattice. The order relation
of the lattice is defined as follows. A partition π1 is a refinement of another
partition π2, or equivalently, π2 is a coarsening of π1, denoted by π1 � π2, if
every block of π1 is contained in some block of π2, or equivalently, each block
of π2 is a union of some blocks of π1. In terms of equivalence relations, we
have U/E1 � U/E2 if and only if E1 ⊆ E2. Given two partitions π1 and π2,
their meet π1 ∧ π2 is the largest partition which is a refinement of both π1

and π2, and their join π1 ∨ π2 is the smallest partition which is a coarsening
of both π1 and π2. The meet has all non-empty intersections of a block from
π1 and a block from π2 as its blocks. The blocks of join are the smallest
subsets which are exactly a union of blocks from both π1 and π2. In terms
of equivalence relations, given two equivalence relations E1 and E2, the meet
of U/E1 and U/E2 is defined by the equivalence relation E1 ∩ E2, and the
join is defined by the equivalence relation (E1 ∪ E2)

∗, the transitive closure
of relation E1 ∪E2. The finest partition is given by {{x} | x ∈ U} consisting
of singleton subsets from U , and the coarsest partition is {U}.

The partition lattice clearly shows the structure of different granulations
of the universe. It can be used to search for suitable level of granulation
for problem solving (Zhang and Zhang, 1992). Many machine learning algo-
rithms using rough sets are based on the search of the partition lattice (Yao
and Yao, 2002).

Information-theoretic measures can be used to quantify the degree of
granularity of each partition (Düntsch and Gediga, 2001; Lee, 1987; Yao,
2003b). With respect to a partition π = {A1, A2, . . . , Am}, we have a proba-
bility distribution:

Pπ =

(

|A1|

|U |
,
|A2|

|U |
, . . . ,

|Am|

|U |

)

, (4)
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where | · | denotes the cardinality of a set. The Shannon entropy function of
the probability distribution is defined by:

H(π) = H(Pπ) = −
m
∑

i=1

|Ai|

|U |
log

|Ai|

|U |
. (5)

The entropy reaches the maximum value log |U | for the finest partition con-
sisting of singleton subsets of U , and it reaches the minimum value 0 for the
coarsest partition {U}. In general, for two partitions with π1 � π2, we have
H(π1) ≥ H(π2). That is, the value of the entropy correctly reflects the order
of partitions with respect to their granularity.

Additional support for using the entropy as a measure of generality can
be seen as follows. We can re-express equation (5) as,

H(π) = log |U | −
m
∑

i=1

|Ai|

|U |
log |Ai|. (6)

The first term is a constant independent of any partition. The quantity
log |Ai| is commonly known as the Hartley measure of information of the set
Ai. It has been used to measure the amount of uncertainty associated with
a finite set of possible alternatives, namely, the nonspecificity inherent in the
set (Klir and Folger, 1988). The function log |Ai| is a monotonic increasing
transformation of the size of a set. It may be used to measure the granularity
of the set. Large sets result in higher degrees of granularity than small sets.
The second term of the equation is basically an expectation of granularity
with respect to all subsets in a partition. It follows that we can use the
following function as a measure of granularity for a partition:

G(π) =
m
∑

i=1

|Ai|

|U |
log |Ai|. (7)

In contrast to the entropy function, for two partitions π1 and π2 with π1 � π2,
we have G(π1) ≤ G(π2). The coarsest partition {U} has the maximum
granularity value log |U |, and the finest partition {{x} | x ∈ U} has the
minimum granularity value 0.

3 Rough set approximations

This section discusses approximations of sets and approximations of proba-
bilities, as well as probabilistic approximations of sets.
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3.1 Approximations of sets

Consider an approximation space apr = (U,E). The set of definable subsets
is given by σ(U/E). For a subset A ⊆ U , the greatest definable set contained
in A is called the lower approximation of A, written apr

U/E
(A), and the least

definable set containing A is called the upper approximation of A, written
aprU/E(A). The subscription U/E indicates that the approximations are
defined with respect to the partition U/E. When no confusion arises, we
simply drop U/E. Lower and upper approximations can be expressed as:

apr(A) =
⋃

{X | X ∈ σ(U/E), X ⊆ A},

apr(A) =
⋂

{X | X ∈ σ(U/E), X ⊇ A}. (8)

In terms of equivalence classes, lower and upper approximations can be ex-
pressed by:

apr(A) =
⋃

[x]E⊆A

[x]E ,

apr(A) =
⋃

[x]E∩A 6=∅

[x]E . (9)

The lower approximation apr(A) is the union of equivalence classes which are
subsets of A. The upper approximation apr(A) is the union of equivalence
classes which have a nonempty intersection with A.

One may interpret apr, apr : 2U −→ 2U as two unary set-theoretic op-
erators, called approximation operators. The system (2U ,¬, apr, apr,∩,∪)
is called a Pawlak rough set algebra (Yao, 1996). It is an extension of the
set algebra (2U ,¬,∩,∪). Properties of approximation operators, pertinent to
our discussion, are summarized below:

(i) apr(A) = ¬apr(¬A),

apr(A) = ¬apr(¬A),

(ii) apr(A) = apr(A) = A, for A ∈ σ(U/E),

(iii) apr(A) ⊆ A ⊆ apr(A),

(iv) apr(A ∩ B) = apr(A) ∩ apr(B),

apr(A ∪ B) = apr(A) ∪ apr(B),

(v) apr(A ∪ B) ⊇ apr(A) ∪ apr(B),

apr(A ∩ B) ⊆ apr(A) ∩ apr(B).
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Property (i) shows that lower and upper approximations are dual to each
other. Property (ii) indicates that the lower and upper approximations of a
definable set are the set itself. By property (iii), a set lies within its lower
and upper approximations. Property (iv) states that lower approximation
distributes over intersection, and the upper approximation distributes over
union. Property (v) shows the sub-distributivity of approximation operators.

Many probability related measures on approximations have been proposed
and studied. Pawlak (1982, 1991) suggested an accuracy measure of rough
set approximation given by:

α(A) =
|apr(A)|

|apr(A)|
= P (apr(A) | apr(A)). (10)

It may be interpreted as the probability that an element belongs to the lower
approximation, given that the element belongs to the upper approximation.
This measure can also be expressed in terms of the well-known Marczewski-
Steinhaus metric or MZ metric for short (Yao, 2001a). Measures of quality
of lower and upper approximations are given respectively by Pawlak (1991):

q(A) =
|apr(A)|

|U |
= P (apr(A)),

q(A) =
|apr(A)|

|U |
= P (apr(A)). (11)

They are referred to as rough probability by Pawlak (1984) and have been
used by many authors (Düntsch and Gediga, 2001; Grzymala-Busse, 1987;
Wong and Lingras, 1989; Yao and Lingras, 1998). The relationship between
the accuracy and quality of approximations can be expressed as:

α(A) =
q(A)

q(A)
. (12)

The accuracy measure can be re-expressed as:

α(A) =
|apr(A)|

|apr(A)|
=

|apr(A)|

|U | − |apr(¬A)|
, (13)

which suggests that the accuracy measure also depends on the lower ap-
proximation of ¬A. Based on this observation, Gediga and Düntsch (2001)
suggested to use the following function:

γ(A) =
|apr(A)|

|A|
= P (apr(A) | A), (14)

7

Yao, Y.Y., Probabilistic approaches to rough sets, Expert Systems, Vol. 20, No. 5, 287-297, 2003.



as a measure of the precision of deterministic approximation of A. Using the
same argument, we suggest that the quality of non-deterministic approxima-
tion of A can be measured by:

γ(A) =
|A|

|apr(A)|
= P (A | apr(A)). (15)

In this case, we have:
α(A) = γ(A)γ(A). (16)

The two measures q and γ monotonically increase with apr(A) approaches
A, when different partitions are used. On the other hand, q and γ show the
opposite direction of changes.

For two partitions π1 and π2 with π1 � π2, we have:

(vi) apr
π1

(A) ⊇ apr
π2

(A), aprπ1
(A) ⊆ aprπ2

(A).

By combining them with (iii), we obtain:

apr
π2

(A) ⊆ apr
π1

(A) ⊆ A ⊆ aprπ1
(A) ⊆ aprπ2

(A). (17)

As expected, a finer partition induces a tighter approximation. All of the
measures correctly reflect this observation, as shown by the following prop-
erties:

(1) απ1
(A) ≥ απ2

(A),

(2) q
π1

(A) ≥ q
π2

(A), qπ1
(A) ≤ qπ2

(A),

(3) γ
π1

(A) ≥ γ
π2

(A), γπ1
(A) ≥ γπ2

(A).

That is, for two partitions with π1 � π2, we obtain the same qualitative
evaluation by all those measures, namely, π1 is the same or better than π2.
For an arbitrary pair of partitions, the pair of q and γ, or the pair of q and
γ, produce the same qualitative evaluation, which may be different from the
one given by the α accuracy measure (Gediga and Düntsch, 2001).

The approximation of a subset can be easily extended to the approxima-
tion of a family of subsets. Consider two partitions πA = {A1, A2, . . . , An}
and πB = {B1, B2, . . . , Bm}. We construct an approximation space aprπA

=
(U,EπA

) using the partition πA. Each equivalence class of πB is approximated
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by apr
πA

(Bi) and aprπA
(Bi). By extending the accuracy and quality mea-

sure to the approximation of partition, Pawlak (1991) suggested the following
quantities:

απA
(πB) =

∑m
i=1 |aprπA

(Bi)|
∑m
i=1 |aprπA

(Bi)|
,

γ
πA

(πB) =

∑m
i=1 |aprπA

(Bi)|

|U |
. (18)

Furthermore, γ
πA

can be expressed as, respectively, the expectation, a weighted

sum, and the sum of γ, α, and q on individual equivalence classes (Gediga
and Düntsch, 2001):

γ
πA

(πB) =
m
∑

i=1

|Bi|

|U |
γ
πA

(Bi) =
m
∑

i=1

P (Bi)γπA

(Bi),

γ
πA

(πB) =
m
∑

i=1

|aprπA
(Bi)|

|U |
απA

(Bi) =
m
∑

i=1

P (aprπA
(Bi))απA

(Bi),

γ
πA

(πB) =
m
∑

i=1

q
πA

(Bi). (19)

The overall measure απA
(πB) can not be similarly expressed. It is reasonable

to use an alternative overall measure as:

α′
πA

(πB) =
m
∑

i=1

απA
(Bi). (20)

In fact, απA
(πB) and α′

πA
(πB) represent two different averaging methods, one

is the application of a measure to the pooled results, and the other is the
average of the measurements on the individual results.

Given a subset B ⊆ U , we can partition the universe as {B,¬B}. By
applying the partition based measure γ

πA

, Düntsch and Gediga (2001) sug-

gested the following measure of the approximation quality of πA with respect
to B:

γ′
πA

(B) = γ
πA

(πB) = q
πA

(B) + q
πA

(¬B). (21)

This measure is the ratio of correct classification of either B or ¬B based on
the partition πA.
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3.2 Approximations of probabilities

In an approximation space apr = (U,E), suppose a set function is defined
on σ(U/E). One can extend the function to non-definable subsets through
the lower and upper approximations. Many authors have studied the ap-
proximation of probabilities in the framework of rough sets, which leads to
belief functions (Grzymala-Busse, 1987; Pawlak, 1984; Skowron, 1989, 1990;
Skowron and Grzymala-Busse, 1994; Wong and Lingras, 1989; Yao and Lin-
gras, 1998).

A belief function is a mapping from 2U to the unit interval [0, 1] and
satisfies the following axioms:

(F1) Bel(∅) = 0,

(F2) Bel(U) = 1,

(F3) For every positive integer n and every collection A1, . . . , An⊆U,

Bel(A1 ∪ A2 . . . ∪ An) ≥
∑

i

Bel(Ai) −
∑

i<j

Bel(Ai ∩ Aj) ±

. . .+ (−1)n+1Bel(A1 ∩ . . . ∩ An).

Axioms (F1) and (F2) may be considered as normalization conditions. Ax-
iom (F3) is a weaker version of the commonly known additivity axiom of
probability functions. It is referred to as the axiom of superadditivity. The
dual of a belief function, called a plausibility function P l, is defined by:

P l(A) = 1 − Bel(¬A). (22)

For any subset A ⊆ U , Bel(A) ≤ P l(A).
Consider first a simple case where a probability function P on 2U is defined

based on the counting of elements in a set (Grzymala-Busse, 1987, Skowron
and Grzymala-Busse, 1994), namely, for A ⊆ U ,

P (A) =
|A|

|U |
. (23)

Clearly, we have:

q(A) = P (apr(A)) ≤ P (A) ≤ P (apr(A)) = q(A). (24)

While apr(A) and apr(A) are approximations of the set A, q(A) and q(A) are
the approximations of the probability of the set A. It can be easily verified by
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using properties (i)-(iv) that the qualities of lower and upper approximations
are a pair of belief and plausibility functions.

Suppose P is a probability function defined on σ(U/<). It is not defined
for subsets of U which are not members of σ(U/<). One can extend P to 2U

in two standard ways by defining functions P∗ and P ∗, traditionally called
the inner measure and the outer measure induced by P . For an arbitrary
subset A ⊆ U , we define:

P∗(A) = sup{P (X) | X ∈ σ(U/<), X ⊆ A} = P (apr(A)),

P ∗(A) = inf{P (X) | X ∈ σ(U/<), X ⊇ A} = P (apr(A)). (25)

Pawlak (1984) referred to the pair (P∗(A), P ∗(A)) as rough probability of
A. The inner and outer probabilities P∗ and P ∗ are a pair of belief and
plausibility functions (Fagin and Halpern, 1991, Wong and Lingras, 1989,
Yao and Lingras, 1998).

3.3 Probabilistic rough set approximations

Algebraic rough set approximations may be considered as qualitative approx-
imations of a set. The extent of overlap between a set and an equivalence
class is not considered. By incorporating the overlap, many authors have
introduced and studied probabilistic rough set approximations (Pawlak and
Skowron, 1994; Pawlak et al., 1988; Wong and Ziarko, 1987; Ziarko, 1993).
Most proposals introduced certain parameters based on intuitive arguments.
The decision-theoretic rough set model provides a solid basis for probabilistic
approximations (Yao and Wong, 1992, Yao et al., 1990).

We first briefly review the Bayesian decision-theoretic framework (Duda
and Hart, 1972). Let Ω = {ω1, . . . , ωs} be a finite set of s states, and let
A = {a1, . . . , am} be a finite set of m possible actions. Let P (ωj|x) be the
conditional probability of an object x being in state ωj given that the object
is described by x. Let λ(ai|ωj) denote the loss, or cost, for taking action ai
when the state is ωj. For an object with description x, suppose an action ai
is taken. Since P (ωj|x) is the probability that the true state is ωj given x,
the expected loss associated with taking action ai is given by:

R(ai|x) =
s
∑

j=1

λ(ai|ωj)P (ωj|x). (26)

The quantity R(ai|x) is also called the conditional risk. Given a description
x, a decision procedure is a function τ(x) that specifies which action to take.
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For every x, τ(x) chooses one action from a1, . . . , am. The overall risk R is
the expected loss associated with a given decision procedure. Since R(τ(x)|x)
is the conditional risk associated with action τ(x), the overall risk is defined
by:

R =
∑

x

R(τ(x)|x)P (x), (27)

where the summation is over the set of all possible descriptions of objects.
One can obtain an optimal decision procedure by minimizing the overall

risk. If τ(x) is chosen so that R(τ(x)|x) is as small as possible for every
x, the overall risk R is minimized. The Bayesian decision procedure can be
therefore formally stated as follows. For every x, compute the conditional
risk R(ai|x) for i = 1, . . . , m defined by equation (26), and then select the
action for which the conditional risk is the minimum. If more than one action
minimizes R(ai|x), any tie-breaking rule can be used.

The Bayesian decision procedure can be applied to define probabilistic
rough set approximations. Given a subset A ⊆ U , we can form a set of
two states Ω = {A,¬A} indicating that an element is in A and not in A,
respectively. We use the same symbol to denote both a subset A and the
corresponding state. In the non-probabilistic rough set model, with respect
to A, we divide the universe U into three disjoint regions, the positive region
POS(A), the negative region NEG(A), and the boundary region BND(A):

POS(A) = apr(A),

NEG(A) = U − apr(A),

BND(A) = apr(A) − apr(A). (28)

In developing a probabilistic rough set model, with respect to three regions,
the set of actions is given by A = {a1, a2, a3}, where a1, a2, and a3 repre-
sent the three actions in classifying an object, deciding POS(A), deciding
NEG(A), and deciding BND(A), respectively. The symbol [x]E , the equiv-
alence class containing x, is also used to represent a description of x. The
required conditional probabilities are defined by the rough membership func-
tions (Pawlak and Skowron, 1994):

µA(x) =
|[x]E ∩A|

|[x]E|
= P (A | [x]E). (29)

Let λ(ai|A) denote the loss incurred for taking action ai when an object
in fact belongs to A, and let λ(ai|¬A) denote the loss incurred for taking
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the same action when the object does not belong to A. The expected loss
R(ai|[x]E) associated with taking the individual actions can be expressed as:

R(a1|[x]E) = λ11P (A|[x]E) + λ12P (¬A|[x]E),

R(a2|[x]E) = λ21P (A|[x]E) + λ22P (¬A|[x]E),

R(a3|[x]E) = λ31P (A|[x]E) + λ32P (¬A|[x]E), (30)

where λi1 = λ(ai|A), λi2 = λ(ai|¬A), and i = 1, 2, 3. The Bayesian decision
procedure leads to the following minimum-risk decision rules:

(P) If R(a1|[x]E) ≤ R(a2|[x]E) and R(a1|[x]E) ≤ R(a3|[x]E),

decide POS(A);

(N) If R(a2|[x]E) ≤ R(a1|[x]E) and R(a2|[x]E) ≤ R(a3|[x]E),

decide NEG(A);

(B) If R(a3|[x]E) ≤ R(a1|[x]E) and R(a3|[x]E) ≤ R(a2|[x]E),

decide BND(A).

Tie-breaking rules should be added so that each element is classified into
only one region. Since P (A|[x]E) +P (¬A|[x]E) = 1, the above decision rules
can be simplified such that only the probabilities P (A|[x]E) are involved.
We can classify any object in the equivalence class [x]E based only on the
probabilities P (A|[x]E), i.e., the rough membership values, and the given loss
function λij (i = 1, 2, 3; j = 1, 2).

Consider a special kind of loss functions with λ11 ≤ λ31 < λ21 and λ22 ≤
λ32 < λ12. That is, the loss of classifying an object x belonging to A into
the positive region POS(A) is less than or equal to the loss of classifying x
into the boundary region BND(A), and both of these losses are strictly less
than the loss of classifying x into the negative region NEG(A). The reverse
order of losses is used for classifying an object that does not belong to A.
For this type of loss functions, the minimum-risk decision rules (P)-(B) can
be written as:

(P) If P (A|[x]E) ≥ γ and P (A|[x]E) ≥ α, decide POS(A);

(N) If P (A|[x]E) ≤ β and P (A|[x]E) ≤ γ, decide NEG(A);

(B) If β ≤ P (A|[x]E) ≤ α, decide BND(A);

where

α =
λ12 − λ32

(λ31 − λ32) − (λ11 − λ12)
,
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γ =
λ12 − λ22

(λ21 − λ22) − (λ11 − λ12)
,

β =
λ32 − λ22

(λ21 − λ22) − (λ31 − λ32)
. (31)

By the assumptions, λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, it follows that
α ∈ (0, 1], γ ∈ (0, 1), and β ∈ [0, 1).

A loss function should be chosen in such a way to satisfy the condition α ≥
β. This ensures that the results are consistent with rough set approximations.
Namely, the lower approximation is a subset of the upper approximation, and
the boundary region may be non-empty. When α > β, we have α > γ > β.
After tie-breaking, we obtain the decision rules:

(P1) If P (A|[x]E) ≥ α, decide POS(A);

(N1) If P (A|[x]E) ≤ β, decide NEG(A);

(B1) If β < P (A|[x]E) < α, decide BND(A).

When α = β, we have α = γ = β. In this case, we use the decision rules:

(P2) If P (A|[x]E) > α, decide POS(A);

(N2) If P (A|[x]E) < α, decide NEG(A);

(B2) If P (A|[x]E) = α, decide BND(A).

For the second set of decision rules, we use a tie-breaking criterion so that
the boundary region may be non-empty.

The standard and other probabilistic rough set models can be easily de-
rived by choosing different loss functions. Consider the loss function:

λ12 = λ21 = 1, λ11 = λ22 = λ31 = λ32 = 0. (32)

There is a unit cost if an object belonging to A is classified into the negative
region or if an object not belonging to A is classified into the positive region;
otherwise there is no cost. In this case, we have α = 1 > β = 0, α = 1 − β,
and γ = 0.5. According to decision rules (P1)-(B1), we obtain the standard
rough set approximations (Pawlak, 1982, 1991). Another loss function is
given by:

λ12 = λ21 = 1, λ31 = λ32 = 0.5, λ11 = λ22 = 0. (33)
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A unit cost is incurred if the system classifies an object belonging to A into
the negative region or an object not belonging to A is classified into the
positive region; half of a unit cost is incurred if any object is classified into
the boundary region. There is no cost for other cases. It follows that α =
β = γ = 0.5. By using decision rules (P2)-(B2), we obtain the probabilistic
rough set approximation proposed by Pawlak et al. (1988).

Suppose a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12 satisfies
the conditions,

λ12 − λ32 ≥ λ31 − λ11,

(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31). (34)

We have α = 1 − β ≥ 0.5. This leads to the variable precision rough set
model (Ziarko, 1993).

4 Probabilistic measures for rule induction

An important application of rough sets is data analysis and rule induc-
tion (Grzymala-Busse, 1992; Pawlak, 1991; Tsumoto, 1998; Wong and Ziarko,
1986). This section reviews probabilistic and information-theoretic measures
used in rule induction algorithms (Yao, 2003b; Yao and Zhong, 1999).

4.1 Information tables

An information table provides a convenient way to describe a finite set of
objects by a finite set of attributes (Pawlak, 1991). In this paper, we use an
extended information table by adding binary relations on attribute values,
and two languages (Yao, 2001b). Formally, an information table can be
expressed as:

S = (U,At, Lv, Lr, {Va | a ∈ At}, {Ra | a ∈ At}, {Ia | a ∈ At}),
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where

U is a finite nonempty set of objects,

At is a finite nonempty set of attributes,

Lv a language dealing with values of objects,

Lr a language dealing with relations of objects,

Va is a nonempty set of values for a ∈ At,

Ra is a nonempty set of binary relations on Va, a ∈ At,

Ia : U → Va is an information function.

Each information function Ia is a total function that maps an object of U
to exactly one value in Va. An information table represents all available
information and knowledge. That is, objects are only perceived, observed,
or measured by using a finite number of properties.

In the language Lv, an atomic formula is given by (a,R, v), where a ∈ At,
R ∈ Ra, and v ∈ Va. If φ and ψ are formulas, then so are ¬φ, φ ∧ ψ, φ ∨ ψ,
φ→ ψ, and φ ≡ ψ. The semantics of the language Lv can be defined in the
Tarski’s style through the notions of a model and satisfiability. The model
is an information table S, which provides an interpretation for symbols and
formulas of Lv. The satisfiability of a formula φ by an object x, written
x |=S φ or in short x |= φ if S is understood, is given by the following
conditions:

(m1) x |= (a,R, v) iff Ia(x) R v,

(m2) x |= ¬φ iff not x |= φ,

(m3) x |= φ ∧ ψ iff x |= φ and x |= ψ,

(m4) x |= φ ∨ ψ iff x |= φ or x |= ψ,

(m5) x |= φ→ ψ iff x |= ¬φ ∨ ψ,

(m6) x |= φ ≡ ψ iff x |= φ→ ψ and x |= ψ → φ.

If φ is a formula, the set mS(φ) defined by:

mS(φ) = {x ∈ U | x |= φ}, (35)

is called the meaning of the formula φ in S. If S is understood, we simply
write m(φ). The following properties hold:

(a) m(a,R, v) = {x ∈ U | Ia(x) R v},
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(b) m(¬φ) = ¬m(φ),

(c) m(φ ∧ ψ) = m(φ) ∩m(ψ),

(d) m(φ ∨ ψ) = m(φ) ∪m(ψ),

(e) m(φ→ ψ) = ¬m(φ) ∪m(ψ),

(f) m(φ ≡ ψ) = (m(φ) ∩m(ψ)) ∪ (¬m(φ) ∩ ¬m(ψ)).

The meaning of a formula φ is therefore the set of all objects having the
property expressed by the formula φ. In other words, φ can be viewed as
the description of the set of objects m(φ). Thus, a connection between for-
mulas of Lv and subsets of U is established. When the relation R is chosen
to be the equality relation =, we obtain the conventional decision logic lan-
guage (Pawlak, 1991).

With the introduction of language Lv, we have a formal description of
concepts. A concept definable in an information table is a pair (φ,m(φ)),
where φ ∈ Lv. More specifically, φ is a description of m(φ) in S, the in-
tension of concept (φ,m(φ)), and m(φ) is the set of objects satisfying φ,
the extension of concept (φ,m(φ)). A concept (φ,m(φ)) is said to be a
sub-concept of another concept (ψ,m(ψ)), or (ψ,m(ψ)) a super-concept of
(φ,m(φ)), if m(φ) ⊆ m(ψ). A concept (φ,m(φ)) is said to be a smallest
non-empty concept in S if there does not exist another proper non-empty
sub-concept of (φ,m(φ)). Two concepts (φ,m(φ)) and (ψ,m(ψ)) are disjoint
if m(φ) ∩m(ψ) = ∅. If m(φ) ∩m(ψ) 6= ∅, we say that the two concepts have
a non-empty overlap and hence are related.

The language Lr is defined in a similar manner as Lv, except that an
atomic formula is given by (a,R), where R ∈ Ra and a ∈ At. Semantics of
formulas of Lr are interpreted by pairs of objects in U . That is,

(m1′) (x, y) |= (a,R) iff Ia(x) R Ia(y).

For formula φ, the set mS(φ) defined by:

mS(φ) = {(x, y) ∈ U × U | (x, y) |= φ}, (36)

is called the meaning set of φ in S. If S is understood, we simply write
m(φ). A pair (x, y) ∈ m(φ) is said to satisfy the expression φ. Similarly, the
formula φ can be viewed as the description of the set of object pairs m(φ),
and each object pair in m(φ) as an instance of the concept given by φ.
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4.2 Two types of rules

Knowledge derivable from an information table is commonly represented in
the form of rules. Roughly speaking, rules show the connections between
attributes, which are normally characterized by the problem of determining
the values of one set of attributes based on the values of another set of at-
tributes. Depending on the meanings and forms of rules, one may classify
rules in many ways. A clear classification of rules is useful for the under-
standing of the basic tasks of machine learning and data mining.

Rules can be classified into two groups in terms of their directions, one-
way and two-way connections, and further classified into two levels in terms
of their applicability, local and global connections (Yao, 2001b, 2003b; Yao
and Zhong, 1999). A one-way connection shows that the values of one set of
attributes determine the values of another set of attributes, but does not say
anything about the reverse. A two-way connection is a combination of two
one-way connections, representing two different directions of connection. A
local connection is characterized by a rule showing the relationship between
one specific combination of values on one set of attributes and one specific
combination of values on another set of attributes. A global connection is
characterized by a rule showing the relationships between all combinations
of values on one set of attributes and all combinations of values on another
set of attributes.

For clarity, we only consider one-way connections and the equality relation
on attribute values, as was commonly done in rough sets. In this case, a local
one-way connection is expressed by a rule of the form using formulas of Lv:

(a,=, va) ⇒ (b,=, vb), (37)

where a, b ∈ At, and va ∈ Va, vb ∈ Vb. It can be more conveniently expressed
as: for x ∈ U ,

Ia(x) = va ⇒ Ib(x) = vb. (38)

The rule is commonly paraphrased as “if the value of an object is va on an
attribute a, then its value is vb on another attribute b.” A global one-way
connection is expressed by a rule of the form using formulas of Lr:

(a,=) ⇒ (b,=), (39)

where a, b ∈ At, or conveniently as, for (x, y) ∈ U × U ,

Ia(x) = Ia(y) ⇒ Ib(x) = Ib(y). (40)
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That is, “if two objects have the same value on an attribute a, then they have
the same value on another attribute b.” Functional dependency in database
is an example of such global rules.

The formulation of rules using atomic formulas can be easily extended to
any formulas of languages Lv and Lr. A local rule states knowledge about
one object. A local one-way rule shows that if the object has a specific value
on one set of attributes, then it will have a specific value on another set of
attributes. On the other hand, a global rule states knowledge about a pair
of objects. A global one-way rule suggests that if a pair of objects have the
same value on one set of attributes, then they will have the same value on
another set of attributes. Based on this observation, a global rule is also
called a high order rule, while a local rule is called a low order rule (Yao,
2003a).

4.3 Interpretation of rough set theory in information

tables

The abstract theory of rough sets can be explained by using an information
table. Such an interpretation is useful for rule induction.

Let W = {W1, . . . ,Wn} ⊆ At be a set of attributes in an information
table. We form a family of elementary formulas FW = {

∧n
i=1(Wi,=, wi) | wi ∈

VWi
} of the language Lv. For simplicity, let VW = VW1

× . . .× VWn
. We also

express the family of elementary formulas by FW = {W = w | w ∈ VW}. The
family of non-empty meaning sets form a partition of the universe, namely,

πW = {m(
∧n
i=1(Wi,=, wi)) 6= ∅ | wi ∈ VWi

}. (41)

It is referred to as the partition induced by the set of attributes W . For
the same set of attributes, we can construct a formula

∧n
i=1(Wi,=) of the

language Lr. The meaning of the formula,

EW = m(
∧n
i=1(Wi,=)) = {(x, y) ∈ U × U | IWi

(x) = IWi
(y), 1 ≤ i ≤ n}.

(42)
is an equivalence relation on U . Similarly, another set of attributes Z =
{Z1, . . . , Zm} defines another partition πZ and the corresponding equivalence
relation EZ .

Rough set approximations of a single subset is relevant to the induction
of local or low order rules. Consider a formula

∧m
j=1(Zj,=, zj). In terms of
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attributes in W , one can obtain various local rules of the following format:

∧n
i=1(Wi,=, wi) ⇒

∧m
j=1(Zj,=, zj). (43)

Let φW =
∧n
i=1(Wi,=, wi) and ψZ =

∧m
j=1(Zj,=, zj). With respect to the

three regions of rough set approximations, we can construct three classes of
rules:

(I) Positive region : certain positive rules

m(φW ) ⊆ m(ψZ),

φW → ψZ ;

(II) Boundary region : uncertain positive rules

m(φW ) 6⊆ m(ψZ) and m(φW ) ∩m(ψZ) 6= ∅,

φW ⇒ ψZ ;

(III) Negative region : certain negative rules

m(φW ) ∩m(ψZ) = ∅,

φW → ¬ψZ .

Certain rules can be considered as the degenerated cases of uncertain rules.
Since certain rules can be interpreted using the logical connective →, we use
the same symbol. All three classes of rules express the relationship between
two concepts in terms of their meaning sets. Probabilistic measures intro-
duced earlier can be used to quantify the uncertainty of rules. For example,
a measure from the rough membership function,

|m(φW ) ∩m(ψZ)|

|m(φW )|
, (44)

can be used to measure the accuracy of one rule. Other measures associated
with approximation can be used to show the characteristic of a set of rules.
For instance, the measure suggested by Gediga and Düntsch (2001):

γ
πW

(m(ψZ)) =
|apr

πW

(m(ψZ))|

|m(ψZ)|

=

∑

φW ∈FW ,m(φW )⊆m(ψZ ) |m(φW )|

|m(ψZ)|
, (45)

is the ratio of objects correctly classified by all certain positive rules to the
objects satisfying the condition ψZ . Similarly, the accuracy of approximation
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απW
(m(ψZ)) is the ratio of objects correctly classified by all certain positive

rules to the objects classified by both certain and uncertain positive rules.
Approximation of one partition based on another partition can be sum-

marized by the following rule:
∧n
i=1(Wi,=) ⇒

∧m
j=1(Zj,=), or simply W ⇒ Z. (46)

The measures απW
(πZ) and γπW

(πZ) can be used to measure the strength of
the global, high order rule.

A more detailed probabilistic and information-theoretic analysis of low
and high order rules is given in the following subsections (Yao, 2003b; Yao
and Zhong, 1999).

4.4 Probabilistic measures for low order rules

Suppose φ and ψ are two formulas of the language Lv. For a rule φ⇒ ψ, its
characteristics can be summarized by the following contingency table:

ψ ¬ψ Totals
φ a b a+ b
¬φ c d c+ d

Totals a+ c b+ d a+ b+ c+ d = |U |

a = |m(φ ∧ ψ)|, b = |m(φ ∧ ¬ψ)|,
c = |m(¬φ ∧ ψ)|, d = |m(¬φ ∧ ¬ψ)|.

Different measures can be defined to reflect various aspects of rules.
The generality of φ is defined by:

G(φ) =
|m(φ)|

|U |
=
a + b

|U |
, (47)

which indicates the relative size of the concept φ. Obviously, we have 0 ≤
G(φ) ≤ 1. A concept is more general if it covers more instances of the
universe. A sub-concept has a lower generality than its super-concept. The
quantity may be viewed as the probability of a randomly selected element
satisfying φ.

The absolute support of ψ provided by φ is the quantity:

AS(φ⇒ ψ) = AS(ψ|φ)

=
|m(ψ) ∩m(φ)|

|m(φ)|
=

a

a+ b
. (48)
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The quantity, 0 ≤ AS(ψ|φ) ≤ 1, states the degree to which φ supports ψ. It
may be viewed as the conditional probability of a randomly selected element
satisfying ψ given that the element satisfies φ. In set-theoretic terms, it is
the degree to which m(φ) is included in m(ψ). Clearly, AS(ψ|φ) = 1, if and
only if m(φ) 6= ∅ and m(φ) ⊆ m(ψ). That is, a rule with the maximum
absolute support 1 is a certain rule.

The change of support of ψ provided by φ is defined by:

CS(φ⇒ ψ) = CS(ψ|φ) = AS(ψ|φ) −G(ψ)

=
a

a + b
−
a+ c

|U |
. (49)

Unlike the absolute support, the change of support varies from −1 to 1.
One may consider G(ψ) to be the prior probability of ψ and AS(ψ|φ) the
posterior probability of ψ after knowing φ. The difference of posterior and
prior probabilities represents the change of our confidence regarding whether
φ is actually related to ψ. For a positive value, one may say that φ is
positively related to ψ; for a negative value, one may say that φ is negatively
related to ψ.

The change of support relative to ψ is given by:

RCS(ψ ⇒ ψ) =
CS(ψ|φ)

G(ψ)
=
AS(ψ|φ)

G(ψ)
− 1 =

G(ψ ∧ φ)

G(ψ)G(φ)
− 1

=
|U | |m(ψ) ∩m(φ)|

|m(ψ)| |m(φ)|
− 1 =

a|U |

(a+ c)(a+ b)
− 1. (50)

It is interesting to note that the first term in the relative change of support
is related to the probabilistic independence of ψ and φ.

The generality G(ψ) is related to the satisfiability of ψ by all objects in
the database, and AS(φ⇒ ψ) is related to the satisfiability of ψ in the subset
m(φ). A high AS(φ ⇒ ψ) does not necessarily suggest a strong association
between φ and ψ, as a concept ψ with a large G(ψ) value tends to have a
large AS(φ ⇒ ψ) value. The change of support CS(φ ⇒ ψ), or the relative
change of support RCS(φ⇒ ψ), may be more accurate.

4.5 Information-theoretic measures for high order rules

Recall that a set of attributes W induces a partition πW of the universe. Let

P (w) = P (m(W = w)) =
|m(W = w)|

|U |
. (51)
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Shannon’s entropy function of πW , simply written as H(P (W )), is given by:

H(P (W )) = EP (W )[− logP (W )]

= −
∑

w∈VW

P (w) logP (w), (52)

where EP (W )[·] denotes the expected value with respect to the probability
distribution of W . For two sets of attributes W and Z, their joint entropy is
defined by:

H(Z,W ) = −
∑

z∈VZ

∑

w∈VW

p(z, w) log p(z, w). (53)

The conditional entropy H(Z|W ) is defined as the expected value of subpop-
ulation entropies H(Z|w) with respect to the probability distribution P (W ):

H(Z|W ) =
∑

w∈VW

P (w)H(Z|w)

= −
∑

w∈VW

P (w)
∑

z∈VZ

P (z|w) logP (z|w)

= −
∑

z∈VZ

∑

w∈VW

P (z, w) logP (z|w)

= EP (Z,W )[− logP (Z|W )]. (54)

Conditional entropy is non-negative and non-symmetric, namely, H(Z|W ) ≥
0 and in general H(Z|W ) 6= H(W |Z). Conditional entropy can also be
expressed by:

H(Z|W ) = H(Z,W )−H(W ). (55)

It measures the additional amount of information provided by Z if W is
already known.

The probability P (z) is the generality of the granule m(Z = z). The
function − logP (z) is a monotonic decreasing transformation of P (z). As
the expected values of − logP (z), the entropy function is related to the
granularity of the partition πZ .

The probability P (z|w) is a measure for the local rule, W = w ⇒ Z = z.
As an expected value, the conditional entropy H(Z|W ) provides a measure
for the global rule W ⇒ Z. It may be viewed as an inverse measure of global
one-way association of two sets of attributes (Pawlak et al., 1988):

IC1(W ⇒ Z) = H(Z|W ). (56)
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A normalized version is given by (Pawlak et al., 1988):

IC2(W ⇒ Z) =
H(Z|W )

log |VZ|
. (57)

For an attribute Z, conditional entropy can be used to select important
attributes for discovering a one-way association W ⇒ Z. Measures IC1 and
IC2 can be used to rank attributes in an increasing order. If one prefers
to rank attributes in a decreasing order, the following corresponding direct
measures of one-way association can be used:

C1(W ⇒ Z) = log |VZ| −H(Z|W ), (58)

C2(W ⇒ Z) = 1 −
H(Z|W )

log |VZ |
. (59)

In these measures, the attribute entropy H(Z) may be used in place of
log |VZ |. We obtain the following measures:

C3(W ⇒ Z) = H(Z) −H(Z|W ) = I(Z;W ), (60)

C4(W ⇒ Z) = 1 −
H(Z|W )

H(Z)
=
I(Z;W )

H(Z)
. (61)

Measure C3 is in fact the mutual information between W and Z. It is com-
monly referred to as information gain and is widely used in machine learn-
ing (Quinlan, 1986). Like the change of support for local rules, C3 may be
viewed as changes of entropy for global rules. Similarly, C4 may be viewed
as a relative change of entropy for global rules.

5 Conclusion

While non-probabilistic studies of rough sets focus on algebraic and qualita-
tive properties of the theory, probabilistic approaches are more practical and
capture quantitative properties of the theory. The granularity of a partition
can be quantified by information-theoretic measures. Existing measures of
accuracy and quality of approximations can be quantified by probability re-
lated measures. The probabilistic and information-theoretic approaches are
particular useful in rule induction, an important application of rough set
theory.
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Most of the measures discussed in this paper are based on simple count-
ing of the number of elements of a set. Furthermore, we have restrict our
discussion to granulations by equivalence relations or partitions. It should
be pointed out that the argument can be easily extended to more general
probability functions and general granulation structures.
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