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Abstract The problem of concept formation and learning is examined from the
viewpoint of granular computing. Correspondences are drawn between granules and
concepts, between granulations and classifications, and between relations over gran-
ules and relations over concepts. Two learning strategies are investigated. A global
attribute-oriented strategy searches for a good partition of a universe of objects and
a local attribute-value-oriented strategy searches for a good covering. The proposed
granular computing paradigm for concept learning offers twofold benefits. Results
from concept formulation and learning enrich granular computing and a granular
computing viewpoint sheds new light on concept formulation and learning.

1 Introduction

Concepts are basic units of human thought and have been considered in different dis-
ciplines, including philosophy, cognitive science, inductive learning, cluster analysis
and machine learning. Many views of concepts and categories have been proposed
and studied, such as the classical view, the prototype view, the exemplar view, the
frame view, and the theory view [8, 15, 21]. Each view captures a particular per-
spective and emphasizes a specific aspect, with different intended applications. A
comprehensive understanding of concepts is based on an integration of those differ-
ent views. While some views are suitable for human concept formation and learning,
other views are appropriate for machine-oriented approaches. The classical view of
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concepts is perhaps one of the most used ones in machine-oriented concept learn-
ing [32].

In the classical view, a concept is understood as a pair of intension and extension.
The intension of a concept consists of all properties or attributes (more generally,
some formulas of a language) that are valid for all those objects to which the con-
cept applies. The extension of a concept is the set of objects or entities which are
instances of the concept. A concept is thus described jointly by its intension and ex-
tension. The simple classical view of concepts can be easily related to the notion of
granules in an emerging field of study known as granular computing. Specifically,
the extension of a concept may be considered as a granule and the intension of the
concept as the description of the granule. Consequently, concept learning may be
reconsidered in the paradigm of granular computing.

There are two crucial tasks in concept learning. One is to find a good descrip-
tion of a concept based on its extension; the other is to derive relations between
concepts based on their corresponding extensions. We typically employ a rule to de-
scribe a relationship between two concepts, in which the intensions of concepts are
used. To make a concept learning algorithm effective and its results meaningful, we
must consider several issues. One issue is the selection of a set of meaningful ba-
sic concepts, from which target concepts can be expressed and interpreted. Another
issue is to design strategies for learning. Different strategies may lead to different
descriptions of the target concepts.

Based on results from the rough set theory [17], a granular computing paradigm
of concept learning is introduced and examined in this chapter. Two learning strate-
gies will be studied in an information table, in which a finite set of objects is de-
scribed by using a finite set of attributes. An attribute-oriented strategy constructs a
partition of the universe by using a subset of attributes. The basic granules are equiv-
alence classes of the partition. Concept learning is formulated as a divide and con-
quer method in search of a good subset of attributes. The results are a decision tree,
which can be translated into a family of disjoint rules. An attribute-value-oriented
strategy constructs a covering of the universe. The basic granules are subsets of ob-
jects defined by a family of attribute-value pairs. Concept learning is formulated as a
chip and conquer method in search of a good family of sets of attribute-value pairs.
The results are a family of decision trees, from which a set of overlapping rules can
be derived.

The rest of this chapter is organized as follows. Section 2 presents an overview of
a triarchic theory of granular computing. Section 3 discusses connections between
granular computing and concept learning. Section 4 proposes a model of concept
learning based on granular computing, involving an investigation of two classes of
strategies for concept learning.
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2 A Triarchic Theory of Granular Computing

The notions of categorization, abstraction, formulation and approximation at multi-
ple levels of granularity play a crucial role in human perception, cognition, under-
standing and problem solving [12, 24, 28, 31]. One would also expect that they play
equal important role in intelligent systems. For a system to be called intelligent, it
must have similar built-in mechanisms that support human intelligence. Granular
computing, as an emerging field of study, aims at a systematic investigation of gran-
ule based theories and methodologies for supporting human problem solving on one
hand and machine problem solving on the other [27, 33].

The triarchic theory of granular computing [25, 26, 27, 29, 30] provides a con-
ceptual model by adopting useful structures called granular structures and weaving
together three powerful ideas: structured thinking, structured problem solving, and
structured information processing. It emphasizes the exploitation of useful struc-
tures that properly reflect multiple levels of granularity or a granularity pyramid.
A single hierarchical granular structure called a hierarchy provides a multilevel un-
derstanding and representation of a problem or a system. But it typically captures
one particular aspect and therefore offers one view. By constructing a family of hi-
erarchies, it is possible to obtain multiple different views. Granular structures are a
family of complementary hierarchies working together for a complete and compre-
hensive multiview understanding and representation. The use of granular structures,
characterized by multilevel and multiview, establishes a solid basis on which sit
structured thinking, structured problem solving and structured information process-
ing.

Philosophy:

Methodology: Computation:

structured thinking

structured problem solving structured information processing

Granular
Structures

Fig. 1 The Granular Computing Triangle

The main ideas of the triarchic theory of granular computing are summarized by
the granular computing triangle of Fig. 1. The center of the triangle is granular struc-
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tures, the three angles represent three perspectives of granular computing centered
around granular structures.

2.1 Multilevel, Multiview Granular Structures

A key to the success of granular computing is the use of properly constructed gran-
ular structures. In the triarchic theory, a hierarchy is used to achieve one particular
multilevel view and a family of hierarchies is used to achieve multiview. Granu-
lar structures are a family of hierarchies. Fig. 2 illustrates a multilevel hierarchical
granular structure. Its main ingredients are explained as follows.

2.1.1 Granules and Granularity

Granules are a primitive notion of granular computing. They are the basic vocabu-
laries of granular computing. Granules are the basic elements in forming granular
structures. Using the terminology of systems theory, a granule represents a part of a
whole. Granular computing studies the whole through an integration of its parts in
terms of their interrelations and their connections to the whole. In Fig. 2, granules
are small circle or dots on a plane and each represents a part of the whole given by
the entire plane. The physical interpretations and construction of granules are left to
particular applications.

The granularity of a granule may be interpreted as an intrinsic or inherent prop-
erty of the granule. Intuitively, granularity may be interpreted as the degree of ab-
straction, generalization, complexity or details. A granule with higher degree of
granularity is more abstract. It is reasonable to assumed that granularity can be at
least partially ordered, so it is possible to form a granularity pyramid. The concept
of granularity is essential for constructing and interpreting granules.

2.1.2 Granulations and Levels

Each granule provides a local description of a specific part of a problem or a system.
By collecting a family of granules of similar nature or similar granularity, we obtain
a complete description of a problem or a system. Such a family of granules is called
a granulation of the problem at a particular level. Granules in the family are called
focal elements of discussion at the level. In Fig. 2, each level is represented by a
plane. While granules at the same level are of similar nature, granules at different
levels may be very different. Consequently, we may use different vocabularies and
languages for descriptions at different levels.

The processing methods at different levels may also be different. Institutively,
each level of granulation may be considered to be a particular viewpoint of the
problem. Thus, a hierarchy provides a family of multiple levels of viewpoints. The
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. . .

Fig. 2 Multilevel Hierarchical Granular Structure

concept of levels is a very versatile and universal notion that appears in a wide range
of disciplines [1, 5, 7, 11, 31]. An interpretation of a granulation hierarchy in terms
of levels makes a granular structure to be flexible and useful [31]. The properties
of a particular level, namely, a granulation, is determined collectively by a family of
granules through their connections and interactions.

2.1.3 Partial Orderings of Granules and Levels

Granules can be ordered based on their relationship or granularity. This leads to a
refinement-coarsening relationship between granules. Under this relationship, one
can identify dual-roles of a granule. A granule may be considered to be a part that
is to be coarsened with other granules into the whole of a coarser or more abstract
granule. It may be considered to be a whole that is to be refined into a family of finer
or more specific granules. In Fig. 2, the ordering of granules are given by dotted lines
between granules in two adjacent levels. It is reasonable to assume that the ordering
relation is transitive. In Fig. 2, we omit the connections between no-adjacent levels,
as they can be obtained by transitivity.
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The ordering of granules leads naturally to the ordering of levels, the result is a
multilevel granulation hierarchy as shown in Fig. 2. Although multilevel structures
may be rather restrictive to reflect accurately about the reality, it does lead to simpli-
fication of computational issues and practical and reasonable approximate solutions
to many real world problems.

2.1.4 Three Properties of Granules

A granule has at least three properties: internal properties, external properties, and
contextual properties. The individual elements of a granule and their interactions
determine internal properties of the granule; the external properties characterize the
granule as an inseparable whole; a granule is only meaningful in a certain context.
The individual elements of a granule are parts of the granule and are themselves
granules. Actually, when forming a granule, we have to ignore the subtle differ-
ences between its elements, as well as the connections between each other. In other
words, a group of elements are put into the same granule by considering their sim-
ilar properties and connections and ignoring the subtle differences. We may focus
on different issues and form granules with different granularity based on different
situations in problem solving.

2.1.5 Relations and Operations on Granules

In a hierarchy, we consider three types of relations on granules. The in-level rela-
tions are relationships between granules within the same level. They show the inter-
relationships and interactions between granules at a particular level. In Fig. 2, they
are depicted by solid lines connecting granules on the same plane. In fact, they can
be used to study the internal properties of granules in the next upper level. Down-
ward refinement relations show how a coarser granule can be refined into a family
of finer granules in the next lower level. They are related to downward operations on
granules, such as refinement operation, decomposition operation, or zoom-in oper-
ation on granules. Upward coarsening relations show how a family of finer granules
is coarsened into a coarser granule in the next upper level. They are related to up-
ward operations on granules, such as coarsening operation, composition operation
or zoom-out operation on granules. In Fig. 2, the last two classes of relations are
represented by dotted lines between granules in two adjacent levels.

In a hierarchy, we assume that operations on granules are only defined for gran-
ules in two immediately adjacent levels. By repeated applications of operations, it
is possible to connect granules in all levels. This assumption, although restrictive,
makes computation with a granulation hierarchy tractable.
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2.2 Philosophy: Structured Thinking

Granular computing promotes structured approaches based on multilevel hierarchi-
cal granular structures. From existing studies, it may be observed that the philosophy
of granular computing is not entirely new but draws extensively from reductionist
thinking, levelism [3, 6, 11] and systems thinking [23].

Reductionist thinking focuses on breaking a complex problems into relatively
simpler parts and inferring properties of the whole by a summary of properties of
its parts. It offers an effective technique of analytic thinking. In a top-down fashion,
a complex system or problem can be decomposed into many parts and these parts
can be further divided if needed. When the top-down decomposition is applied to
granular computing, a multilevel hierarchical granular structure may be derived. In
a bottom-up manner, one may explain entities (i.e., granules) in an upper level based
on entities in a lower level.

Levelism makes use of levels of abstraction and takes a hierarchical view that
a complex problem may be divided and stratified into levels. The notion of levels
may be interpreted in many different ways, including, for example, objective levels
of reality, epistemological levels of understanding and explanation, methodological
levels of study [3, 6, 11]. To a large extent, levelism is more relevant to granular
computing, where the notion of levels of granularity plays a crucial role. Granu-
lar structures are stratified levels and levelist thinking leads to level-wise granular
processing.

Systems thinking stresses on systemic properties of a whole system that are
emerged from the composition, organization and interaction of its parts and cannot
be reduced to the properties of its parts. It offers a technique of synthetic thinking
for obtaining a holistic view of a system. Moreover, systems thinking also considers
different system levels and has the ability to shift attention between system levels.
In the context of granular computing, ideas from systems thinking can be used to
study emergent properties at different levels of granularity.

Structured thinking of granular computing emphasizes the importance of useful
multilevel structures that are common in reductionist thinking, levelist thinking and
systems thinking. It takes advantage of those existing philosophical views, in order
to develop its own philosophical standpoint.

2.3 Methodology: Structured Problem Solving

Methodology of granular computing is structured problem solving guided by struc-
tured thinking, involving the construction and utilization of multilevel, multiview
granular structures. Granular computing relies on a set of practical heuristics and
systematic approaches that make effective use of multiple levels of granularity.
Like the classical 3R (reading, writing, and arithmetic), granular computing may
be viewed as the fourth R, representing a set of problem solve skills that can be used
by everyone.
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The working principles of structured problem solving have been studied in many
disciplines. In some sense, granular computing attempts to extract these principles
and make them discipline independent and, hence, more accessible. As examples,
we examine a few of such principles.

The first two principles concern mainly multilevel and multiview understanding
and a plea for the use of granular structures. They can be stated as follows:

• the principle of multilevel view;
• the principle of multiview understanding.

While the multilevel principle emphasizes multiple levels, i.e., viewpoints within a
particular view, the multiview principle states the needs for a holistic understanding
from many different angles. By the complementing nature of a family of hierarchies,
the limitation of a particular hierarchy may be avoided, and a best hierarchy may be
chosen.

The advantages of methodology of granular computing are derived from explor-
ing granular structures. The next three principles deal with the exploration of gran-
ular structures. They are stated as:

• the principle of focused efforts;
• the principle of view switching;
• the principle of granularity conversion.

The principle of focused efforts is a kind of divide and conquer strategy and can
be applied to both a family of hierarchies and a single hierarchy. With respect to
a family of hierarchies, it requires that one concentrates on a particular hierarchy
relatively independent of other hierarchies; with respect to a single hierarchy, it
requires that one pays attention to a particular level without too much interference
from other levels.

The principle of view switching demands a comparative study of the same prob-
lem under different views. It is necessary to switch to a different view when needed.
The principle of granularity conversion guides top-down and bottom-up conversion
with respect to a particular hierarchy. Through refinements and coarsening, one is
able to work on different levels of granularity.

2.4 Computation: Structured Information Processing

Granular computing is a paradigm of structured information processing. It can be
described by an information processing pyramid [2]. Granulations at multiple lev-
els of differing granularity and their conversion are a base of granular information
processing.

Representation and process are two basic tasks of computing with granular struc-
tures. A representation usually associates with a formal system that explicitly de-
scribes entities. Representations in granular computing must reflect multilevel and
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multiview structures. A process can be interpreted as actions that carry out informa-
tion processing tasks. Downward refinement operations, upward coarsening opera-
tions and the zoom-in, zoom-out operations are examples of process.

With a multilevel granular structure, we have at least three modes of structured
information processing. Starting with the top level, one can progressively compute
in a top-down manner towards lower levels through refinement operations. An ap-
proximate solution obtained at a higher level is refined into a more accurate solution
at a lower level. The process can be terminated whenever a required approximate
solution is obtained. In contrast, one may start with the bottom levels and move in
a bottom-up manner towards upper levels through coarsening operations. The pro-
cesses can be terminate when the required level of abstraction is obtained. A third
mode is a middle-out approach that starts with a particular level and moves up or
down the hierarchy. In general, granular information processing may be an interac-
tive process involving a mixture of the three modes. Moreover, a granular structure
is not given prior to the processing, but is constructed during the processing.

3 Granular Computing and Concept Learning

By drawing correspondences between granules and concepts, categorization and
granulations, granule construction and concept formation, we demonstrate that gran-
ule computing is relevant to concept learning.

3.1 Granules and Concepts

A concept is a mental representation or a mental symbol of human thought [13, 14].
There are many views of concept and concept learning, such as the classical view,
prototype view, exemplar view and explanation-based view. Each view explains con-
cepts and concept learning in an unique way, with its advantages and disadvantages.
In this chapter, we adopt the classical view of concepts by establishing a correspon-
dence between concepts and granules [32].

The classical view treats a concept as basic unit of thought that consists of two
parts, namely, the intension and extension. The intension is a subset of attributes or
properties, which are valid for instances (objects) of the concept; the extension is the
set of instances of the concept. That is, the intension provides an abstract description
of common features shared by a set of instances, while extension employs the set of
instances to interpret the concept. All objects or concrete examples in the extension
have the same set of common properties described by the intension.

The meaning triangle proposed by Ogden and Richards [16] illustrates the clas-
sical view of a concept with an added node to represent natural language coding
of a concept. As depicted in Fig. 3, the meaning triangle makes a distinction be-
tween Word, Concept and Referent in concept formation. The Concept, also called
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the intension, thought, or idea, represents an abstract entity usually associated with
human thinking. The Word, also called symbol or name, is the concrete linguistic
entity embodied in speech or written text. The Referent, also called the extension or
object, represents a physical object in the external world. An arrow from Word to
Concept shows that concepts are coded by a language. Another arrow from Concept
to Referent describes that the extensional objects are mapped into intensional con-
cepts through perception. The dashed line from Word to Referent depicts an indirect
mapping through coding and perception [20, 22].

Concept

Word Referent

Fig. 3 The meaning triangle of a concept

Name of a granule

Description of a granule

Instances in a granule

Fig. 4 The meaning triangle of a granule

In the context of concept formation and learning, one may view a granule in terms
of the meaning triangle of a concept. As showed in Fig. 4, a granule can be jointly
characterized by three elements: Name of a granule, Description of a granule and
Instances in a granule. The Description of a granule is a representation of a granule,
which is a logic formula in this study, the Instances in a granule are the family of
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objects forming the granule, and the Name of a granule is a label assigned to the
granule so that the granule can be conveniently referred to.

We may employ a logical language to study description of granules and a set-
theoretic language to study instances of granules. According to the connection be-
tween concepts and granules, we have a formal definition of a granule in the context
of concept learning.

Definition 1. A granule is defined as a triplet:

(g, i(g),e(g)),

where g is the name assigned to the granule, i(g) is a representation of a granule,
and e(g) is a set of objects that are instances of the granule.

In many cases, i(g) and g are the same. Suppose L is a logic language, U is a set
of objects, and W is a set of words or labels. Then, i(g) is a formula of language L,
e(g) is a subset of U , and g is an element from W .

3.2 Granulation and Classification

A granulation of a universe is a family of granules, with each granule being a subset
of the universe. Two types of granulations, called partitions and coverings, can be
formed. For simplicity, we only consider a finite nonempty universe.

Definition 2. A family of nonempty subsets of a finite universe U , π = {b1,b2, . . . ,bk},
is called a partition of U . If it satisfies the following properties:

(P1) bi∩b j = /0, f or i 6= j,1≤ i, j ≤ k, (1)

(P2)
⋃

π =
k⋃

i=1

bi = U, (2)

each subset b ∈ π is called a block of π .

Definition 3. Suppose Π is the family of all partitions on a finite universe U , a
partial order (i.e., a reflexive, antisymmetric and transitive relation) can be defined
on Π as follows, for π1,π2 ∈Π ,

π1 � π2⇐⇒∀b ∈ π1∃b′ ∈ π2(b⊆ b′).

The partial ordering provides a refinement-coarsening relation over partitions.
When π1 � π2, π1 is called a refinement of π2 and π2 a coarsening of π1. The rela-
tion can be used to build multilevel granulations of a universe, which is a granular
structure.

A partition of universe is often called a classification of the universe, where each
block represents the extension of a concept. With respect to a partition, granules are
pair-wise disjoint. As a generalization, one may consider a covering of a universe.
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Definition 4. A family of nonempty subsets of a finite universe U , θ = {c1,c2, . . . ,cm},
is called a covering of U if it satisfies the condition,

(C1)
⋃

θ =
m⋃

i=1

ci = U. (3)

It is called a non-redundant covering if it satisfies the condition:

(C2)
⋃

(θ −{c}) 6= U, ∀c ∈ θ . (4)

That is, each of the subsets in θ is necessary.
Similar to partial ordering on partitions, one can introduce a relation on the fam-

ily of all coverings.

Definition 5. Suppose Θ is the family of all coverings on a finite universe U . One
can define a refinement-coarsening relation on Θ as,

θ1 � θ2⇐⇒∀c ∈ θ1∃c′ ∈ θ2(c⊆ c′). (5)

The ordering relation � is reflexive and transitive, but not necessarily antisym-
metric. When the relation is restricted to the family of all non-redundant coverings,
it is also antisymmetric.

3.3 Concept Learning as Searching

An interesting result in cognitive science claims that a concept can be represented by
a family of rules that distinguish objects and determine the categorization to which
they might belong [8]. This immediately leads to rule-based concept learning. In
concept formation and learning, once a concept is formed, it can be used to define
new concepts. That is, a crucial task of concept formation and learning is to define
new concepts by using existing known concepts.

3.3.1 Learning a single concept

Consider first the task of learning a single concept. Suppose K is a family of subsets
of a finite universe U , representing extensions of a family of known concepts. Let
e(g) ∈ K be the extension of a known concept, and C = e(c) ⊆U the extension of
a target concept named c that is to be learned. When e(g) ⊆C, we can formulate a
rule,

i(g)→ i(c),

That is, if an object is described by i(g) then it is an instance of concept c. In this
way, we partially define an unknown concept c by a known concept g. In general,
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one can form a family of rules i(gi)→ i(c), i = 1,2, . . . , p, to represent c by several
known concepts based on the condition e(g1)∪ e(g2)∪·· ·∪ e(gp)⊆C.

When defining an unknown concept, one may expect that number of rules are as
small as possible and each rule is as general as possible.

Definition 6. Suppose C is the extension of an unknown concept and e(g1),e(g2) ∈
K are extensions of two known concepts, c is the name of the unknown concept.
If e(g1) ⊆ C,e(g2) ⊆ C and e(g1) ⊆ e(g2), we say that e(g2) is more general than
e(g1) and e(g1) is more specific than e(g2) in specifying C.

Based on the set-inclusion relation on extensions of concepts, one can design
algorithms to search for the best description of unknown concepts by some known
concepts.

3.3.2 Learning a classification

For a classification problem, we have a target classification and a family of known
concepts, the task is to represent the target classification through known concepts.
A solution to a classification problem can be modeled as a search in the space of
partitions or coverings whose elements are known concepts.

Definition 7. Let πD = {D1,D2, . . . ,Dt} denotes a target classification. A partition
π is called a partition solution to the classification problem if

π � πD.

Similarly, a covering θ is called a covering solution if

θ � πD.

If π � πD is a solution, then each b ∈ π is included in a class D j ∈ πD, namely,
b⊆ D j. Thus, we can form a classification rule,

i(b)→ i(D j),

A family of classification rules can be formulated based on all blocks in π .
In practical situations, an arbitrary solution may not be satisfactory. One needs to

impose certain conditions. For example, one may require that blocks in π are as large
as possible, in other words, their corresponding concepts are as general as possible.
This requirement can be precisely stated based on the refinement-coarsening relation
� on Π .

Definition 8. Suppose π � πD and π ′ � πD are two solutions to the classification
πD. If π � π ′, we say that π ′ is a more general solution than π .

Definition 9. A solution π � πD is called a maximal general solution if there do not
exists another solution π ′ � πD such that π ′ 6= π and π � π ′.
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A maximal general solution may not be unique and there may exist many
maximal general solutions. Based on the notations introduced so far, the problem
of learning classification rules may be modeled as a search for a partition such
that π � πD. In particular, one may search for a maximal general solution. The
refinement-coarsening relation� provides search direction. One way is to start from
a more specific solution, i.e., a finer partition, to move towards a more general so-
lution, i.e., a coarser partition. Alternatively, one may start from a coarser partition
that is not a solution and then refine it until a solution is obtained.

The same framework can be easily applied to search for a covering solution. In
this case, one needs to consider additional properties on a covering. For example, a
covering must be non-redundant so that no redundant rules would be produced. A
covering must contain subsets that have least overlap so that a set of less overlapping
classification rules would be generated.

4 A Model for Learning a Classification

Based on the discussions of the previous sections, we present a model for learn-
ing a classification. The model explicitly considers the following issues raised in
Section 3:

• Define a logic language for representing intensions of concepts;
• Construct a family of known concepts;
• Construct a space of partitions for the purpose of searching for a partition solution

to a classification;
• Construct a space of coverings for the purpose of searching for a covering solu-

tion to a classification.

These issues are investigated by drawing results from rough set theory. A partition-
based learning strategy, also called an attribute-oriented strategy, is obtained from
algorithms such as ID3 [18], C4.5 [19] and reduct construction in rough set the-
ory [17]. A covering-based strategy, also called an attribute-value-oriented strategy,
is obtained from the class of sequential covering algorithms such as the PRISM
algorithm [4] and LERS algorithms [9].

4.1 A Decision Logic Language in an Information Table

For precisely defining intension and extension of a concept, rough set theory uses
an information table, in which a set of objects is described by a set of attributes.

Definition 10. An information table is a system S = (U,At,{Va | a ∈ At},{Ia | a ∈
At}), where U is a finite nonempty universe of objects, At is a finite nonempty set
of attributes, Va is the domain of attribute a ∈ At, and Ia : U →Va is an information
function that maps an object x ∈U to a value v ∈Va.
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We consider a logic language in an information table defined by using attribute-
value pairs or logic conjunctive operator ∧.

Definition 11. A decision logic language (DL) is recursively defined as:

1. Atomic formulas: for any a ∈ At,v ∈Va, (a = v) is an atomic formula.
2. Composite formulas: if φ and ψ are formulas, φ ∧ψ is a formula.

The logic language defined in this study is only a sublanguage of a decision
logic language used in rough set theory [17]. In particular, we are only interested in
concepts that are conjunctively defined by a set of atomic formulas.

The semantics of formulas in DL is defined through a meaning assignment that
associates each formula with a subset of objects in U , based on the satisfiability of
a formula by an object [17, 34].

Definition 12. An object x∈U satisfies an atomic formula a = v, written x |= (a = v),
if Ia(x) = v; it satisfies a formula φ ∧ψ if it satisfies both φ and ψ , namely, x |= φ ∧ψ

if and only if x |= φ and x |= ψ .

Definition 13. Suppose DL is the set of all formulas of the language DL. The mean-
ing of a formula φ ∈ DL is a subset of objects defined by:

m(φ) = {x ∈U | x |= φ}. (6)

It is possible that two distinct formulas may produce the same meaning set in an
information table. This suggests that a concept may have more than one description.
The meaning assignment satisfies the following two properties:

(m1) m(a = v) = {x ∈U | Ia(x) = v},
(m2) m(φ ∧ψ) = m(φ)∩m(ψ).

We can compute the meaning of a composite formula from its atomic formulas.
By the construction of formulas in DL, one can more conveniently represent a
formula by a set of attribute-value pairs as follows. Let A(φ) denote the set of
all attribute-value pairs corresponding to atomic formulas in φ . It follows that
A(a = v) = {(a,v)} and A(φ ∧ψ) = A(φ)∪A(ψ). In the following discussion, we
will use φ and A(φ) interchangeably.

With the introduced logic language, we have a precise representation of a concept
or a granule. The intension of a concept is given by a logic formula of DL and the
extension is the meaning of the formula.

4.2 Conjunctively Definable Concepts

The language DL enables us to precisely define a concept by a logic formula. How-
ever, due to the expressive power and the limitation of the set of attributes, we may
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not find a formula for an arbitrary subset of objects. This implies that the language
DL only allows us to define a sub-family of the power set 2U of U .

Definition 14. Suppose that a subset of objects C ⊆U represents the extension of a
concept. We say that C is a conjunctively definable set or concept under DL if and
only if there exists a formula φ ∈ DL such that

C = m(φ). (7)

Otherwise, it is conjunctively undefinable. The set of all conjunctively definable
concepts is given by:

K = {m(φ) | φ ∈ DL} ⊆ 2U . (8)

The family of conjunctively definable concepts consists of the building blocks,
namely, known concepts, from which new unknown concepts may be learned. That
is, we use known concepts to express other concepts.

4.3 Attribute-oriented Search Strategies in a Space of Partitions
Defined by Subsets of Attributes

A crucial step in learning a classification is to construct a space of partitions based on
the family of conjunctively definable sets K. Theoretically speaking, one can obtain
such a space by collecting all partitions whose blocks are definable concepts from
K. However, constructing and searching the space of all such partitions is practically
difficult. Instead, one may use a subspace by considering partitions with additional
properties [36]. Rough set theory uses a space of partitions defined by subsets of
attributes.

In an information table, each subset of attributes defines an equivalence relation
on U .

Definition 15. Suppose P⊆ At is a subset of attributes, an equivalence relation de-
fined by P is given by: for x,y ∈U ,

xEPy⇐⇒∀a ∈ P(Ia(x) = Ia(y)). (9)

That is, x and y are equivalent if they have the same values on all attributes in P. The
induced partition is given by U/EP = {[x]EP

| x ∈U}, where [x]EP = {y ∈U | xEPy}
is the equivalence class containing x.

It can be verified that [x]EP is defined by a logic formula
∧

a∈P a = Ia(x), that is,
m(

∧
a∈P a = Ia(x)) = [x]EP . Thus, U/EP ⊆ K is a partition whose blocks are con-

junctively definable sets. More importantly, the set-inclusion relation on subsets of
attributes leads to a refinement-coarsening relation on their induced partitions. For
two subsets of attributes, P1,P2 ⊆ At with P1 ⊆ P2, the following implication holds:

P1 ⊆ P2 =⇒U/EP2 �U/EP1 . (10)
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Algorithm 1: Construction of a Relative Reduct by Deletion
Input: A classification table S = (U,At = C∪D,{Va},{Ia});

A fitness functin δ ;
Output: A relative reduct R

1 begin
2 R = C;
3 unchecked = C;
4 while unchecked 6= /0 do
5 Compute the fitness of all the attributes in unchecked using a fitness function δ ;
6 Select an attribute a ∈ unchecked with minimum fitness;
7 unchecked = unchecked−{a};
8 if πR−{a} � πD then R = R−{a};
9 end

10 end

Fig. 5 Attribute-oriented Relative Reduct Construction

Consequently, searching in the space ΠAt = {U/EP | P ⊆ At} may be viewed as
searching in the space 2At .

In rough set theory, searching for a partition solution to a classification is formu-
lated as finding an attribute reduct.

Definition 16. Suppose S = (U,At =C∪D,{Va},{Ia}) a consistent classification or
a decision table, where C is the set of condition attributes, D is the set of classifica-
tion or decision attribute and πC � πD. A subset R⊆C, is called a relative reduct of
C with respect to D, if R satisfies two conditions:

1. U/ER �U/ED;
2. ∀a ∈ R,¬(U/E(R−{a}) �U/ED).

Condition (1) suggests that πR is a solution to the classification πD. That is, at-
tributes in R are jointly sufficient. Suppose P ⊆ C is a subset of attributes with
πP � πD. An attribute in P is said to be redundant if πP−{a} � πD. Condition (2)
of Definition 16 states that R does not contain any redundant attributes. That is, at-
tributes in R are individually necessary. The two conditions together imply that πR
is a maximal general solution to πD in ΠC.

There are three searching strategies for finding a reduct, namely, deletion strat-
egy, addition-deletion strategy and addition strategy [35]. A deletion strategy starts
from the entire set of conditional attributes and sequentially deletes redundant at-
tributes. An addition-deletion strategy starts with the empty set and sequentially
adds attributes until a subset of attributes satisfying condition (1) of Definition 16.
is obtained; it then delete redundant attributes. An addition strategy only adds at-
tributes that will form a reduct.

Fig. 5 gives an algorithm that implements a deletion strategy for constructing a
reduct. The algorithm starts from the most specific partition solution πC. At each
iteration of the while loop, an attribute may be deleted to generate a more general
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solution. When every attribute is checked, the algorithm produces a reduct that pro-
vides a maximal general solution. Many authors have introduced and studied fitness
functions, including dependency measures, mutual information, conditional entropy
and others.

4.4 Attribute-value-oriented Search Strategies in a Space of
Coverings Defined by Families of Sets of Attribute-Value Pairs

The partition based model can be modified to formulate a covering based model.
Recall that each definable concept in K is defined by a conjunction of a family
of atomic formula and it can be eventually expressed by the corresponding set of
attribute-value pairs. Thus, a covering θ ⊆ K of the universe U can be viewed as a
family of sets of attribute-value pairs. This leads to attribute-value-oriented search
strategy in a space of coverings.

The set of all definable set K is a covering of U . The problem of finding a cover-
ing solution can be formulated in terms of a reduct of K relative to πD.

Definition 17. A covering θR ⊆ K is called a relative reduct of K with respect to πD
if θR satisfies the following conditions:

1. θR � πD;
2. For any c ∈ θR,∀c′ ∈ K(c⊂ c′ =⇒¬(((θR−{c})∪{c′})� πD));
3. For any c ∈ θR,¬(

⋃
(θR−{c}) = U ∧ ((θR−{c})� πD)).

Condition (1) states that the covering must be a solution to πD. The covering
(θR−{c})∪{c′} is produced by replacing c in θR with one of its proper supersets
in K. Condition (2) states that such a replacement will not produce a new solution.
This implies that each set in θR must be maximal. Condition (3) states that each set
in θR is necessary; the deletion of any of them will produce a family of sets that is
either not a covering or not a covering solution to πD.

By the definition of a relative attribute-value reduct, we can select a family of sets
from K based on conditions (1)-(3) of Definition 17. In order to ensure condition (1),
each set in a covering must be a subset of a class in πD. Thus, we construct a covering
solution to πD as follows:

θK = {c ∈ K | ∃D j ∈ πD(c⊆ D j)}

According the requirement that each set in a covering must be a maximal set by
condition (2), we simplify θK by removing the sets in θK that are subsets of other
sets in θK :

θ
∗
K = {c ∈ θK | ¬(∃c′ ∈ θK(c⊂ c′))}.

That is, θ ∗K is a covering such that no set in θ ∗K is a subset of another set in θ ∗K .
Finally, we can delete sequentially redundant set in θ ∗K .

Fig. 6 is an algorithm for constructing a covering. It should be pointed out that the
proposed algorithm is a straightforward implementation based on the definition of
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Algorithm 2: Construction of a relative attribute-value reduct
Input: A decision table S = (U,At = C∪D,{Va},{Ia});

a fitness function γ ;
Output: A relative attribute-value reduct θR

1 begin
2 θK = {c ∈ K | ∃D j ∈ πD(c⊆ D j)};
3 θ ∗K = {c ∈ θK | ¬(∃c′ ∈ θK(c⊂ c′))};
4 θR = θ ∗K ;
5 unchecked = θR;
6 while unchecked 6= /0 do
7 Compute the fitness of all the sets in unchecked using the fitness function γ ;
8 Select a set c ∈ unchecked with minimum fitness ;
9 uncheked = unchecked−{c};

10 if ∪(θR−{c}) = U ∧ (θR−{c})� πD then θR = θR−{c};
11 end
12 end

Fig. 6 Attribute-value-oriented Relative Reduct Construction

relative reduct. One may consider more efficient implementations based on existing
sequential covering algorithm such as PRISM [4] and LERS [9, 10].

5 Conclusion

This chapter examines a granular computing paradigm for concept learning. To a
large degree, it reformulates and reinterprets some existing results in the proposed
paradigm with two purposes. One is to provide a concrete model of granular com-
puting and the other to provide a different view for concept learning.

The triarchic theory of granular computing is briefly summarized. The connec-
tions between granules in granular computing and concepts in concept learning are
established. We argue that a concept may be expressed by a granule based on the
classical view of concepts. For classification, the notion of a granulation, i.e., a fam-
ily of granules, is introduced. Two types of granulation, namely, partitions and cov-
erings, are investigated. The two types of granulation lead to two classes of strate-
gies for solving a classification problem. A model for learning a classification is
proposed. Based on the rough set theory and other concept learning algorithms,
two strategies are introduced, namely, an attribute-oriented strategy for searching a
space of partitions and an attribute-value oriented strategy for search space of cov-
erings. More importantly, the notion of a relative attribute-value reduct is formally
expressed, which is complementary to the widely used notion of a relative attribute
reduct.
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