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Abstract. A simple and more concrete granular computing model may be devel-
oped using the notion of information tables. In this framework, each object in a
finite nonempty universe is described by a finite set of attributes. Based on attribute
values of objects, one may decompose the universe into parts called granules. Ob-
jects in each granule share the same or similar description in terms of their attribute
values. Studies along this line have been carried out in the theories of rough sets and
databases. Within the proposed model, this paper reviews the pertinent existing
results and presents their generalizations and applications.

1 Introduction

The concept of information granulation was first introduced by Zadeh [43]
in the context of fuzzy sets in 1979. The basic ideas of crisp information
granulation have appeared in related fields, such as interval analysis, quan-
tization, rough set theory, Dempster-Shafer theory of belief functions, divide
and conquer, cluster analysis, machine learning, databases, and many oth-
ers. However, fuzzy information granulation has not received enough atten-
tion [47]. In a series of recent papers and invited talks, Zadeh [45–47,49]
proposed the development of a theory of fuzzy information granulation. Mo-
tivated by the work of Zadeh, there is a fast growing interest in the study of
information granulation and computations under the umbrella of Granular

Computing (GrC)1. Roughly speaking, “GrC is a superset of the theory of
fuzzy information granulation, rough set theory and interval computations,
and is a subset of granular mathematics.” [48]

There are theoretical and practical reasons for the study of granular com-
puting. Many authors argued that information granulation is very essential

1 The term “Granular Computing” was suggested by T.Y. Lin to label studies on
information granulation and computations [45]. A Special Interest Group in Gran-
ular Computing in Berkeley Initiative in Soft Computing (BISC/SIG GrC) was
established in 1997 (URL: http://www.mathcs.sjsu.edu/GrC/GrC.html). The co-
ordinators of the group are Tsau Young Lin (leader), Frank Hoffmann, Yiyu Yao,
and Ning Zhong.
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to human problem solving, and hence has a very significant impact on the
design and implementation of intelligent systems. Zadeh [47] identified three
basic concepts that underlie human cognition, namely, granulation, organi-
zation, and causation. “Granulation involves decomposition of whole into
parts, organization involves integration of parts into whole, and causation
involves association of causes and effects.” Yager and Filev [29] pointed out
that “human beings have been developed a granular view of the world”, and
“. . . objects with which mankind perceives, measures, conceptualizes and rea-
sons are granular”. In many practical situations, when a problem involves in-
complete, uncertain, or vague information, it may be difficult to differentiate
distinct elements and one is forced to consider granules. A typical example is
the theory of rough sets [20]. In some situations, although detailed informa-
tion may be available, it may be sufficient to use granules in order to have an
efficient and practical solution. Very precise solutions may in fact not be re-
quired for many practical problems. It may also happen that the acquisition
of precise information is too costly, and coarse-grained information reduces
cost.

In summary, granular computing is inspired by the ways in which humans
granulate information and reason with coarse-grained information. It builds
on existing machinery for fuzzy information processing, such as linguistic
variables, fuzzy if-then rules and fuzzy graphs, generalized constraints, and
computing with words [47]. Granular computing is likely to play an important
role in the evolution of fuzzy logic and its applications.

There are at least three fundamental issues in granular computing: gran-
ulation of the universe, description of granules, and relationships between
granules. Granulation involves decomposition of whole into parts. A gran-
ule is “a clump of points (objects) drawn together by indistinguishability,
similarity, proximity or functionality” [47]. In order to apply this abstract
concept, it is necessary to study criteria for deciding if two elements should
be put into the same granule. In other words, one must provide necessary
semantics interpretations for notions such as indistinguishability, similarity,
and proximity. Two structures can be observed from the granulation of a
universe, the structure of each individual granules and structure induced by
a family of granules. In general, a larger granule may be further divided
into smaller granules, while smaller granules may be combined into a larger
granules. In this way, one may obtain stratified granulation structures of a
universe [34]. Once constructed, it is necessary to describe, to name and to
label granules using certain languages. Each label represents a concept such
that an element in the granule is an instance of the named category, as being
done in classification [7]. The granulated view summarizes available infor-
mation and knowledge about the universe. By considering a class of objects
sharing similar properties, instead of individuals, one may be able to estab-
lish relationships and connection between granules. In fact, this is one of
the main tasks of data mining [42]. It may be argued that the construction,
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interpretation, description, and connections of granules are of fundamental
importance in the understanding, representation, organization and synthesis
of data, information, and knowledge.

A systematic study and a general framework of granular computing were
given in a recent paper by Zadeh [47]. Granules are constructed and defined
based on the concept of generalized constraints. Examples of constraints are
equality, possibilistic, probabilistic, fuzzy, and veristic constraints. Granules
are labeled by fuzzy sets or natural language words. Relationships between
granules are represented in terms of fuzzy graphs or fuzzy if-then rules. The
associated computation method is known as computing with words [44].
On the other hand, many researchers investigated specific and more con-
crete models of granular computing. Lin [9] and Yao [33] studied granular
computing using neighborhood systems for the interpretation of granules.
Pawlak [20], Skowron and Stepaniuk [24], and Polkowski and Skowron [21]
examined granular computing in connection with the theory of rough sets. A
salient features of these studies is that a particular semantics interpretation
of granules is defined, and an algorithm for constructing granules is given.

The main objective of the present study is to develop a simple and more
concrete model for non-fuzzy granular computing using information tables.
With respect to the proposed model, we review studies on non-fuzzy granular
computing and investigate their possible generalizations and applications. In
this framework, each object in a finite nonempty universe is described by a
finite set of attributes. That is, each object is only perceived, observed, or
measured by using a finite number of properties. The universe is decomposed
into granules by grouping objects with the same or similar properties. The
representation of objects by their attribute values provide the semantics for
interpreting the induced granules. For example, a patient may be represented
by a set of symptoms. A set of patients may be divided into subgroups such
that each subgroup of patients suffer from the same disease characterized by
certain symptoms. Several types of relationships between attribute values will
be considered. They induce different granulation structures on the universe.

To illustrate the usefulness of the proposed framework, at the end of this
paper we also discuss two specific problems of granular computing, namely,
approximations induced by granulations and relationships between granules
in data analysis and mining.

2 Information Tables and a Decision Logic Language

The notion of information tables has been studied by many authors as a sim-
ple knowledge representation method, in which objects are described by their
values on a set of attributes [1,12,15,17,19,27,37]. Formally, an information
table is a quadruple:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),
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where

U is a finite nonempty set of objects,

At is a finite nonempty set of attributes,

Va is a nonempty set of values for a ∈ At,

Ia : U −→ Va is an information function.

Each information function Ia is a total function that maps an object of U
to exactly one value in Va. Similar representation schemes may be found in
many fields, such as decision theory, pattern recognition, machine learning,
data analysis, data mining, and cluster analysis [19].

An information table can be conveniently presented in a table form. Ta-
ble 1, taken from an example in [22], is an example of an information table.
The columns are labeled by attributes, the rows are labeled by objects, and
each row represents the information about that object. Pawlak [19] referred
to an information table as an information system, a knowledge representation
system, or an attribute-value system. We prefer to use the name information
tables, in order to avoid confusion with the commonly associated meaning of
information systems [9].

Object Height Hair Eyes Class

o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

Table 1. An information table

An information table contains all available information about the objects
in the universe. Objects are perceived and observed only through their prop-
erties. Objects with the same description cannot be distinguished and they
are considered to be the same [20]. More generally, objects with similar de-
scriptions may also be considered to be approximately the same. This leads
to granulations of the universe. Granular computing using information table
deals mainly with the decomposition of universe based on objects’ descrip-
tions. Information table is a more concrete model that provides semantics for
the notion of granules. However, it is only one of the possible ways in which
granules are formed and interpreted.

Information provided by an information table may also be described in
terms of certain logic languages, in order to make inference easily. Pawlak [19]



Granular Computing using Information Tables 5

discussed a decision logic language (DL-language) with respect to informa-
tion tables. It is a language for describing objects or a group of objects of
the universe. For example, an object can be represented as a conjunction
of attribute-value pairs. A subset of objects can be similarly described. For-
mally, an atomic formula in the DL-language is given by (a, v), where a ∈ At
and v ∈ Va. If φ and ψ are formulas in the DL-language, then so are ¬φ,
φ∧ψ, φ∨ψ, φ→ ψ, and φ ≡ ψ. The semantics of the DL-language is defined
in Tarski’s style through the notions of a model and satisfiability. The model
is an information table S, which provides interpretation for symbols and for-
mulas of the DL-language. The satisfiability of a formula φ by an object x,
written x |=S φ or in short x |= φ if S is understood, is interpreted as follows:

(1) x |= (a, v) iff Ia(x) = v,

(2) x |= ¬φ iff not x |= φ,

(3) x |= φ ∧ ψ iff x |= φ and x |= ψ,

(4) x |= φ ∨ ψ iff x |= φ or x |= ψ,

(5) x |= φ→ ψ iff x |= ¬φ ∨ ψ,

(6) x |= φ ≡ ψ iff x |= φ→ ψ and x |= ψ → φ.

The first four formulas are in fact used in the evaluation of satisfiability of
queries by objects in database systems. For a formula φ, the set of objects
satisfying φ is given by:

mS(φ) = {x ∈ U | x |= φ}. (1)

It is called the meaning of the formula φ in S. If S is understood, we simply
write m(φ). The meaning of a formula φ is the set of all objects having
the property expressed by the formula φ. Therefore, φ may be viewed as
a description of the set of objects m(φ). Two distinct formulas may have
the same meaning in an information table. A granule may have different
representations. The connections between formulas of the DL-language and
subsets of U are expressed as [19]:

(a) m(a, v) = {x ∈ U | Ia(x) = v},

(b) m(¬φ) = −m(φ),

(c) m(φ ∧ ψ) = m(φ) ∩m(ψ),

(d) m(φ ∨ ψ) = m(φ) ∪m(ψ),

(e) m(φ→ ψ) = −m(φ) ∪m(ψ),

(f) m(φ ≡ ψ) = (m(φ) ∩m(ψ)) ∪ (−m(φ) ∩ −m(ψ)),

where −m(φ) = U −m(φ) denotes the set complement of m(φ). They give a
set-theoretic interpretation of logic operations. In particular, logic negation,
conjunction, and disjunction are interpreted as set complement, intersection,
and union, respectively.
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A formula φ is said to be true in an information table S, written |=S φ, if
and only if φ is satisfied by all objects in the universe, namely, m(φ) = U . It
is false if and only if no object satisfies the formula, namely, m(φ) = ∅. For
two formulas φ and ψ, φ → ψ is true if and only if every object satisfying φ
also satisfies ψ, namely, m(φ) ⊆ m(ψ). They are equivalent in S if and only
if m(φ) = m(ψ). In summary, we have [19]:

(i) |=S φ iff m(φ) = U,

(ii) |=S ¬φ iff m(φ) = ∅,

(iii) |=S φ→ ψ iff m(φ) ⊆ m(ψ),

(iv) |=S φ ≡ ψ iff m(φ) = m(ψ).

We can therefore study the relationships between concepts described by for-
mulas of the DL-language based on the relationships between their corre-
sponding sets of objects.

For the information table 1, the following expressions are examples of
formulas of the DL-language:

(Height, tall),

(Height, short),

(Hair, dark),

(Height, tall) ∨ (Height, short),

(Height, tall) ∧ (Hair, dark),

(Height, tall) ∨ (Hair, dark),

(Hair, dark) → (Height, tall),

(Hair, dark) ≡ (Height, tall).

The meanings of these formulas, i.e., the subsets of objects satisfying the
formulas, are given by:

m(Height, tall) = {o3, o4, o5, o6, o7},

m(Height, short) = {o1, o2, o8},

m((Height, tall) ∨ (Height, short)) = U,

m(Hair, dark) = {o4, o5, o7},

m((Height, tall) ∧ (Hair, dark)) = {o4, o5, o7},

m((Height, tall) ∨ (Hair, dark)) = {o3, o4, o5, o6, o7},

m((Hair, dark) → (Height, tall)) = U,

m((Hair, dark) ≡ (Height, tall)) = {o1, o2, o4, o5, o7, o8}.

Among these formulas, two are true in the information table, namely:

|=S (Height, tall) ∨ (Height, short),

|=S (Hair, dark) → (Height, tall).
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The first formula represents the fact that an object’s Height is either tall or
short. The second formula represents the fact that if an object’s Hair is dark,
then its Height is tall. For the subset {o4, o5, o7}, it can be described by both
formulas (Hair, dark) and (Height, tall) ∧ (Hair, dark). This suggests that
|=S (Hair, dark) ≡ ((Height, tall) ∧ (Hair, dark)).

The decision logic language, DL-Language, has been studied by many au-
thors. Orlowska [16] used a similar logic for studying reasoning with vague
concepts. Polkowski and Skowron [21] adopted decision logic for the formula-
tion of an adaptive calculus of granules in the context of information tables.

3 Construction and Interpretation of Granules in

Information Tables

In the order of generality, this section summarizes the constructions of gran-
ules using the equality relation, equivalence relations, and reflexive binary
relations on attribute values. The common practice of using the equality re-
lation, as being done in the development of rough set theory [18], is based
on exact value matching. This in fact does not take into too much considera-
tion of semantic relationships between attribute values. By using other types
of relations, semantic relationships between attribute values can be easily
integrated into information tables.

3.1 Granules induced by equality of attribute values

With respect to an attribute a ∈ At, two objects o and o′ may have the same
value, namely, Ia(o) = Ia(o′). In this case, one cannot differentiate o from o′

based solely on their values on attribute a. They may be put into the same
granule. For v ∈ Va, one obtains the granule corresponding to the atomic
formula (a, v):

Ge(a, v) = {x ∈ U | Ia(x) = v}

= m(a, v). (2)

This granule consists of all objects whose value on attribute a is equal to v.
Such granules are defined by equality constraints in the sense discussed by
Zadeh [47].

The family of granules,

π{a} = {Ge(a, v) 6= ∅ | v ∈ Va}, (3)

forms a partition of the universe [19]. The corresponding equivalence relation
EQ{a} on U is given by:

oEQ{a}o
′ ⇐⇒ Ia(o) = Ia(o′). (4)
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Each equivalence class of the relation EQ{a} is a granule. The equivalence
class containing o ∈ U , written [o]EQ{a}

, is defined by collecting all objects
whose value on attribute a is the same as o’s value:

[o]EQ{a}
= {x ∈ U | Ia(x) = Ia(o)}

= Ge(a, Ia(o)). (5)

The partition π{a} of the universe is referred to as a quotient set of U and
is denoted by U/EQ{a}. It offers a granulated view of the universe. The
sets in π{a} are called elementary granules, as they are the smallest granules
derivable based on values of attribute a. From the elementary granules, large
granules may be built by taking a union of a family of elementary granules.
One can build a hierarchy of granules. If the empty set ∅ is added, one obtains
a sub-Boolean algebra of the Boolean algebra 2U formed by the power set of
U .

The argument for constructing granules can be easily extended to cases
of more than one attribute. For a pair of attributes a, b ∈ At and two values
va ∈ Va, vb ∈ Vb, one can obtain the following granule corresponding to the
formula (a, va) ∧ (b, vb):

Ge((a, va) ∧ (b, vb)) = {x ∈ U | Ia(x) = va ∧ Ib(x) = vb}

= m((a, va) ∧ (b, vb))

= m(a, va) ∩m(b, vb)

= Ge(a, va) ∩Ge(b, vb). (6)

The granule is defined by two equality constraints. The family of granules:

π{a,b} = {Ge((a, va) ∧ (b, vb)) 6= ∅ | va ∈ Va, vb ∈ Vb}, (7)

is a partition of the universe. The corresponding equivalence relation is given
by EQ{a,b} = EQ{a} ∩ EQ{b}, namely,

oEQ{a,b}o
′ ⇐⇒ Ia(o) = Ia(o′) ∧ Ib(o) = Ib(o

′). (8)

Granules in the partition π{a,b} are smaller than granules in partitions π{a}

and π{b}.
For information table 1, with respect to the attribute A = {Hair}, we can

partition the universe into equivalence classes:

{o1, o2, o6, o8}, {o3}, {o4, o5, o7}.

They correspond to formulas (Hair, blond), (Hair, red), and (Hair, dark).
Similarly, the use of attribute Height produces the partition:

{o1, o2, o8}, {o3, o4, o5, o6, o7}.

When the pair of attributes A = {Height,Hair} is used, we consider all
possible combinations of values of Height and Hair, such as (Height, short)∧
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(Hair, blond), (Height, tall) ∧ (Hair, blond), and so on. They produce the
partition of the universe:

{o1, o2, o8}, {o3}, {o4, o5, o7}, {o6}.

They are granules finer than the ones produced by using either Height or
Hair.

For a subset of attributes A ⊆ At, the equivalence relation is given by
EQA =

⋂
a∈AEQ{a}, each equivalence class (granule) is defined by the equal-

ity constraints
∧

a∈A Ia(x) = va, where va ∈ Va. The algebra ({EQA}A⊆At,∩)
is a lower semi-lattice with the zero element EQAt [15]. For two subsets of
attributes A,B ⊆ At, if EQA ⊂ EQB, we say that the partition πA is finer
than πB, or πB is coarser than πA. We will also say that πA is a specialization,
or refinement, of πB, or πB is a generalization, or coarsening, of πA [19]. The
order relation of the semi-lattice represents the generalization-specialization
relationships between partitions, i.e., families of elementary granules. The
empty set ∅ produces the coarsest equivalence relation, i.e., EQ∅ = U × U ,
where × denotes the Cartesian product of sets. The entire set of attributes
produces the finest equivalence relation EQAt. In the construction of gran-
ules, the addition of an attribute leads to a specialization, and hence smaller
elementary granules. Conversely, the deletion of an attribute leads to a gen-
eralization, and hence larger elementary granules.

One may study relationships between attributes using partitions induced
by individual attributes or subsets of attributes [39]. This can be done in an
information-theoretic setting, as discussed by Lee [8] and Malvestuto [14] on
the issues of correlation and interdependency among attributes. The notions
such as functional, multi-valued, hierarchical and join dependencies are stated
in terms of various entropy functions. Additional entropy related measures
and their uses in machine learning and data mining can be found in a paper
by Yao et al. [39].

3.2 Granules induced by equivalence of attribute values

Granules constructed using a single attribute may be either too large or too
small. The addition of more attributes may resolve the former problem. A
solution to the latter problem will be discussed in this section by grouping
values in Va. In particular, values in Va are divided into disjoint classes, i.e.,
a partition of Va, and the corresponding equivalence classes are used as new
attribute values. Two examples of such approaches are the discretization of
real-valued attributes and the use of concept hierarchies [5]. The idea can
be formalized by introducing equivalence relations on the set of attribute
values [4,28].

Suppose Ea is an equivalence relation on the set of values Va of an at-
tribute a ∈ At. It partitions the set Va into a disjoint family of subsets Va/Ea

called quotient set of Va. Let [v]Ea
denote the equivalence class containing v.
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For v ∈ Va, we obtain a granule by replacing = with Ea in Equation (2):

GE(a, v) = {x ∈ U | Ia(x)Eav}

= {x ∈ U | Ia(x) ∈ [v]Ea
}

=
⋃

{m(a, v′) | v′ ∈ Va, v
′ ∈ [v]Ea

}

=
⋃

{m(a, v′) | v′ ∈ Va, v
′Eav}. (9)

It consists of all objects whose value on attribute a is equivalent to v. The
equivalence relation is a generalization of the trivial equality relation =. The
granules given by Equation (9) may be interpreted as the granule defined by
a generalized equality constraint. Many authors [5,9–11] used the equivalence
classes [v]Ea

as higher level concepts in a concept hierarchy. Each value in
v ∈ Va is replaced by its equivalence class [v]Ea

in the original information
table to produce a quotient information table. For the quotient information
table, the following equality constraint can in fact be used: for [v]Ea

∈ Va/Ea,

Ge(a
′, [v]Ea

) = {x ∈ U | [Ia(x)]Ea
= [v]Ea

}

= m(a′, [v]Ea
), (10)

where a′ is used to explicitly express the fact that in the quotient information
table, an attribute takes equivalence classes of Va as its values. For two values
vEav

′, m(a′, [v]Ea
) = m(a′, [v′]Ea

).
The family of granules,

Π{a} = {GE(a, v) 6= ∅ | v ∈ Va}, (11)

form a partition of the universe [19]. The corresponding equivalence relation
E{a} on U is given by:

oE{a}o
′ ⇐⇒ Ia(o)EaIa(o′). (12)

The equivalence class containing o ∈ U , written [o]E{a}
, is:

[o]E{a}
= {x ∈ U | Ia(x)EaIa(o)}

= GE(a, Ia(o))

=
⋃

{m(a, I(o′)) | o′ ∈ U, Ia(o′)EaIa(o)}

=
⋃

{[o′]EQ{a}
| o′ ∈ U, Ia(o′)EaIa(o)}. (13)

It consists of all objects whose value on attribute a is equivalent to that of
the object o. Each of such equivalence granules is a union of some smaller
granules of the equivalence relation defined by the equality relation. The
argument can be easily extended to any subset of attributes.

Equivalence classes in Va/Ea can be combined again to form even larger
granules. The process can be continued until the right sized granules are
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obtained. Alternatively, one may use a sequence of nested equivalence rela-
tions on attribute values. This leads to the formation of a concept hierarchy.
Each equivalence class of attribute values is viewed as a concept. A finer
equivalence relation produces more specific concepts, while a coarser relation
produces more general concepts [34].

3.3 Granules induced by similarity of attribute values

The use of the trivial equality relation = and equivalence relations on at-
tribute values provides a straightforward way for defining granulation struc-
tures on the universe. The type of granulation structures is characterized by
partitions of the universe. With a fixed information table, from a subset of
attributes one can obtain a partition. The converse is not necessarily true.
For an arbitrary partition, one may not be able to find a subset of the at-
tributes producing the same partition. Furthermore, equality and equivalence
represent special cases of similarity. In order to obtain additional granulation
structures, one may use other types of similarity relation on the attribute
values [38,40].

Suppose Ra is a binary relation on Va. For v, v′ ∈ Va, if vRav
′ we say that

v′ is Ra-related to v, v is a predecessor of v′, and v′ is a successor of v. The
binary relation Ra is interpreted as defining the similarity of attribute values.
A value v is similar to v′ if vRav

′. It seems reasonable to assume that Ra is
reflexive, i.e., a value is similar to itself. The property of symmetry may not
necessarily be required, namely, the similarity may not be symmetric [9,25].
By collecting values similar to v, we can form a granule of Va as follows:

Rp
a(v) = {v′ | v′ ∈ Va, v

′Rav}. (14)

The set Rp
a(v) is called the predecessor neighborhood of v induced by the

binary relation [31]. A binary relation and the predecessor neighborhoods
uniquely determine each other. By the reflexivity of Ra, the family of granules
{Rp

a(v) 6= ∅ | v ∈ Va} forms a covering of Va, which is not necessarily a
partition.

For v ∈ Va, by extending Equation (9), we obtain a granule of U :

Gs(a, v) = {x ∈ U | Ia(x)Rav}

= {x ∈ U | Ia(x) ∈ Rp
a(v)}

=
⋃

{m(a, v′) | v′ ∈ Va, v
′ ∈ Rp

a(v)}. (15)

It consists of all objects whose value on attribute a is similar to v. The family
of granules,

C{a} = {Gs(a, v) 6= ∅ | v ∈ Va}, (16)

form a covering of the universe. Each granule is in fact the predecessor neigh-
borhood of certain element of universe induced by the binary relation R{a}

on U :
oR{a}o

′ ⇐⇒ Ia(o)RaIa(o′). (17)
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Unlike the cases of equality and equivalence where an element of the universe
belongs to exactly one equivalence class, the element may belong to more
than one granule. In fact, o is a member of each of the following family of
granules,

{Gs(a, v) | Ia(o) ∈ Rp
a(v), v ∈ Va}. (18)

One the other hand, the granule:

Rp

{a}(o) = {x ∈ U | Ia(x)RaIa(o)}

= Gs(a, Ia(o)), (19)

consists of those elements whose value on a is similar to o’s value. The relation
R{a} preserves properties ofRa. For example, if Ra is a reflexive, a symmetric,
and a transitive relation, R{a} is a reflexive, a symmetric, and a transitive
relation, respectively [40].

For a subset of attributes A ⊆ At, the similarity constraint is given by∧
a∈A Ia(x)Rava, where va ∈ Va. The similarity relation on the universe de-

fined by A is given by:

oRAo
′ ⇐⇒

∧
a∈A Ia(o)RaIa(o′)

⇐⇒
∧

a∈A oR{a}o
′. (20)

That is, RA =
⋂

a∈AR{a}. The relation RA only preserves the common prop-
erties of relations R{a}’s, a ∈ A. Similarly, an element may belong to more
than one granule.

The same process may also used to construct granules using other neigh-
borhoods of a similarity relation. A detailed discussion can be found in a
paper by Yao [31]. Furthermore, all concepts and observations discussed in
the last section, such as generalization, specialization, and semi-lattice struc-
ture of granulations, may be examined for the cases of arbitrary similarity
relations.

4 Rough Set Approximations

With the granulation of a universe, an arbitrary subset of the universe cannot
be represented precisely using granules. One needs to deal with its approxi-
mations. This is in fact one of the main issues of the theory of rough sets [19].
Our discussion of this section follows, to a large extent, a paper by Yao [35].

Consider an equivalence relation E ⊆ U × U on a universe U . The pair
apr = (U,E) is called an approximation space. With respect to the parti-
tion U/E, an arbitrary set X ⊆ U may not necessarily be a union of some
equivalence classes. One may characterize X by a pair of lower and upper
approximations:

apr(X) =
⋃

{G | G ∈ U/E,G ⊆ X},

apr(X) =
⋃

{G | G ∈ U/E,G ∩X 6= ∅}. (21)
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The lower approximation apr(X) is the union of all the equivalence granules
which are subsets of X . The upper approximation apr(X) is the union of all
the equivalence granules which have a non-empty intersection with X .

Lower and upper approximations are dual to each other in the sense:

(Ia) apr(X) = −apr(−X),

(Ib) apr(X) = −apr(−X).

The set X lies within its lower and upper approximations:

(II) apr(X) ⊆ X ⊆ apr(X).

Intuitively, lower approximation may be understood as the pessimistic view
and the upper approximation the optimistic view in approximating a set by
using equivalence granules. One can also verify the following properties:

(IIIa) apr(X ∩ Y ) = apr(X) ∩ apr(Y ),

(IIIb) apr(X ∪ Y ) = apr(X) ∪ apr(Y ).

The lower (upper) approximation of the intersection (union) of a finite num-
ber of sets can be obtained from their lower (upper) approximations. However,
we only have:

(IVa) apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y ),

(IVb) apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y ).

It is impossible to obtain the lower (upper) approximation of the union (in-
tersection) of some sets from their lower (upper) approximations. Additional
properties of rough set approximations can be found in papers by Pawlak [18],
and Yao [32,36].

Equivalence classes of the partition U/E are called the elementary gran-
ules. They represent the available information. All knowledge we have about
the universe are about these elementary granules, instead of about individual
elements. It follows that we also have knowledge about the union of some
elementary granules. As a matter of fact, if X is the empty set ∅ or the union
of one or more elementary granules, then apr(X) = X = apr(X). These sets
are called definable, observable, measurable, or composed granules. The set
of all definable granules is denoted GK(U), which is a subset of the power
set 2U . The set GK(U) is closed under both set intersection and union. It is
an σ-algebra of subsets of U generated by the family of equivalence classes
U/E.

For an element G ∈ GK(U), we have:

apr(G) = G = apr(G). (22)
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For any subset X ⊆ U , we have the equivalent definition of rough set ap-
proximations:

apr(X) =
⋃

{G | G ∈ GK(U), G ⊆ X},

apr(X) =
⋂

{G | G ∈ GK(U), X ⊆ G}. (23)

This definition offers another interesting interpretation. The lower approx-
imation is the largest definable granule contained in X , where the upper
approximation is the smallest definable granule containing X . They there-
fore represent the best approximations of X from below and above using
definable granules.

From similarity relations on attribute values, one can derive a similarity
relationR on the universe U . A covering of the universe can be constructed by
using a particular type of neighborhoods of all elements of U . Let U/R denote
such a covering. Rough set approximations can be defined by generalizing
Equation (21). In particular, an equivalence class is replaced by a granule in
U/R. One of such generalizations is [33]:

apr(X) =
⋃

{G | G ∈ U/R,G ⊆ X},

apr(X) = −apr(−X). (24)

In this definition, we generalize the lower approximation and define the up-
per approximation through duality. In general, apr(X) is different from the
straightforward generalization

⋃
{G | G ∈ U/R,G∩X 6= ∅}. While the lower

approximation is the union of some granules, the upper approximation cannot
be expressed in this way [33].

Subsets in the covering U/R are called elementary granules. By definition,
if X is a union of some elementary granules in U/R, then we have apr(X) =
X . That is, X can be defined by granules in U/R exactly from below. For
this reason, the empty set ∅ or the union of some elementary granules are
referred to as lower definable granules. The set of all lower definable granules
GK(U) is the minimum subset of 2U that contains ∅ and U/R, and is closed
under set union. The complemented system:

GK(U) = {−G | G ∈ GK(U)}, (25)

contains U and is closed under set intersection. In other words, GK(U) is a
closure system [31]. For an element G ∈ GK(U), i.e., −G ∈ GK(U), we have:

apr(G) = G,

apr(−G) = −G. (26)

That is, the system GK(U) consists of upper definable subsets of U . In
general, G = apr(G) 6= apr(G) and apr(G′) 6= apr(G′) = G′ for elements
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G ∈ GK(U) and G′ ∈ GK(U). In terms of lower and upper definable gran-
ules, we have another equivalent definition:

apr(X) =
⋃

{G | G ∈ GK(U), G ⊆ X},

apr(X) =
⋂

{G′ | G′ ∈ GK(U), X ⊆ G′}. (27)

The lower approximation is the largest lower definable granule contained in
X , and the upper approximation is the smallest upper definable granules
containing X . They are related to the definition for the case of partitions, in
which GK(U) and GK(U) become the same. For a covering, the set GK(U)∩
GK(U) consists of both lower and upper definable granules. Obviously, ∅, U ∈
GK(U) ∩GK(U).

The new approximations satisfy properties (I), (II), and (IV). They do
not satisfy property (III). Nevertheless, they satisfy a weaker version:

(Va) apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y ),

(Vb) apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y ).

By definition, apr(X ∩ Y ) can be written as a union of some elementary
granules. Although both apr(X) and apr(Y ) can be expressed as unions of
elementary granules, apr(X) ∩ apr(Y ) cannot be so expressed.

5 Data Analysis and Data Mining

A granule represents a concept such that each element in the granule is an
instance of the concept. Under this interpretation, one of the tasks of data
analysis, knowledge discovery and data mining may be regarded to as finding
connections between concepts represented by their corresponding granules.
In the framework of granular computing, the main results from Yao and
Zhong [41,42] are reviewed.

Let X ⊆ U be a subset of the universe representing a certain concept φX ,
and FG a family of granules whose descriptions are known. We consider the
task of finding a description of A in terms of granules in FG. For a granule
G ∈ FG with description φG, i.e., m(φG) = G, we have either G ∩X = ∅ or
G ∩X 6= ∅. For the case G ∩X = ∅, we say that G and X are not positively

related. However, we have:

G ⊆ −X. (28)

By property (iii), we have:

|=S φG → ¬φX . (29)

Hence, we can establish an if-then type rule:

IF φG THEN not φX . (30)
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This rule enables us to decide that an instance of G is not an instance of X .
It gives the properties that make an element of U not to be an instance of
X . For the case G ∩X 6= ∅, we consider three special sub-cases:

(a) G ⊆ X,

(b) G ⊇ X,

(c) G = X.

In decision logic languages, we have:

|=S φG → φX ,

|=S φX → φG,

|=S φG ≡ φX . (31)

By properties (iii) and (iv), we can form the following set of rules:

IF φG THEN φX ,

OIF φG THEN φX ,

IIF φG THEN φX , (32)

where OIF stands for “only if” and IIF stands for “if and only if”. We express
these rules slightly different from the conventional way, in order to see the
difference between them. The first rule enables us to decide if an element of
the universe is an instance of A. It shows the properties that make an element
of U to be an instance of A. The second rule, which is normally expression
as:

IF φX THEN φG, (33)

tells us the properties that an instance of X must have. The third rule is
the combination of the first two rules. It summarizes the properties that
instances ofX , and only instances ofX , must have. The first two rules may be
interpreted as one-way implication, and the third rule as two-way implication.
In knowledge discovery and data mining, one may be interested in different
rules depending on the situation. Typically, the first rule is referred to as a
decision rule, while the second rule as a characteristic rule.

The rules obtained for the previous cases are certain rules, which reflect
the logical relationships between concepts or granules. In some situations,
though a strict logical connection does not exist, there may still exist some
connection between two granules. This corresponds to the case where G∩X 6=
∅ and neither G ⊆ X nor G ⊇ X is true. In order to characterize such
associations between two concepts φ and ψ, one may generalize logical rules
to association rules of the following form:

IF φ THEN ψ with α1, . . . , αm, (34)
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where α1, . . . , αm denote the degree or strength of relationships [51]. Al-
though keywords such as IF and THEN are used, one should not interpret
the rules as expressing logical implications. Instead, these keywords are used
to simply link concepts together [47]. For clarity, we also simply write φ⇒ ψ.
The values α1, . . . , αm quantifies different types of uncertainty and proper-
ties associated with the rule. Examples of quantitative measures include con-
fidence, uncertainty, applicability, quality, accuracy, and interestingness of
rules. A recent systematic study on uncertain rules was given by Yao and
Zhong [41].

Using the cardinalities of sets, we obtain the contingency Table 2, repre-
senting the quantitative information about the rule φ⇒ ψ, where | · | denotes
the cardinality of a set. The values in the four cells are not independent.
They are linked by the constraint a + b + c + d = n. The 2 × 2 contin-
gency table has been used by many authors for representing information of
rules [2,6,23,26,50].

ψ ¬ψ Totals

φ |m(φ) ∩m(ψ)| |m(φ) ∩m(¬ψ)| |m(φ)|

¬φ |m(¬φ) ∩m(ψ)| |m(¬φ) ∩m(¬ψ)| |m(¬φ)|

Totals |m(ψ)| |m(¬ψ)| |U |

ψ ¬ψ Totals

φ a b a+ b

¬φ c d c+ d

Totals a+ c b+ d a+ b+ c+ d = n

Table 2. Contingency table for rule φ→ ψ

From the contingency table, we can define some basic quantities. The
generality of concept φ is defined by:

g(φ) =
|m(φ)|

|U |
=
a+ b

n
, (35)

which indicates the relative size of the concept φ. A concept is more general if
it covers more instances of the universe. If g(φ) = α, then (100α)% of objects
in U satisfy φ. The quantity may be viewed as the probability of a randomly
selected element satisfying φ. Obviously, we have 0 ≤ g(φ) ≤ 1.
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The absolute support of ψ provided by φ is the quantity:

as(ψ|φ) =
|m(ψ) ∩m(φ)|

|m(φ)|

=
a

a+ b
. (36)

It may be interpreted as the degree to which φ implies ψ. If as(ψ|φ) = α, then
(100α)% of objects satisfying φ also satisfy ψ. It is in fact the conditional
probability of a randomly selected element satisfying ψ given that the element
satisfies φ. In set-theoretic terms, it is the degree to which m(φ) is included
in m(ψ). Clearly, as(ψ|φ) = 1, if and only if m(φ) ⊆ m(ψ). The change of

support of ψ provided by φ is defined by:

cs(ψ|φ) = as(ψ|φ) − g(ψ)

=
an− (a+ b)(a+ c)

(a+ b)n
. (37)

Unlike the absolute support, the change of support varies from −1 to 1.
One may consider g(ψ) to be the prior probability of ψ and as(ψ|φ) the
posterior probability of ψ after knowing φ. The difference of posterior and
prior probabilities represents the change of our confidence regarding whether
φ actually confirms ψ. For a positive value, one may say that φ confirms ψ;
for a negative value, one may say that φ does not confirm ψ. The mutual

support of ψ and φ is defined by:

ms(φ, ψ) =
|m(φ) ∩m(ψ)|

|m(φ) ∪m(ψ)|

=
a

a+ b + c
. (38)

One may interpret the mutual support, 0 ≤ ms(φ, ψ) ≤ 1, as a measure of
the strength of the two-way association φ ⇔ ψ. It measures the degree to
which φ confirms, and only confirms, ψ.

The degree of independence of φ and ψ is measured by:

ind(φ, ψ) =
g(φ ∧ ψ)

g(φ)g(ψ)

=
an

(a+ b)(a+ c)
. (39)

It is the ratio of the joint probability of φ ∧ ψ and the probability obtained
if φ and ψ are assumed to be independent. One may rewrite the measure of
independence as [3]:

ind(φ, ψ) =
as(ψ|φ)

g(ψ)
. (40)
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It shows the degree of the deviation of the probability of ψ in the subpopula-
tion constrained by φ from the probability of ψ in the entire data set [13,30].
With this expression, the relationship to the change of support becomes clear.
Instead of using the ratio, the latter is defined by the difference of as(ψ|φ)
and g(ψ). When φ and ψ are probabilistic independent, we have cs(ψ|φ) = 0
and ind(φ, ψ) = 1. Moreover, cs(ψ|φ) ≥ 0 if and only if ind(φ, ψ) ≥ 1, and
cs(ψ|φ) ≤ 0 if and only if ind(φ, ψ) ≤ 1. This provides further support for
the use of cs as a measure of confidence that φ confirms ψ.

All measures introduced so far have a probabilistic interpretation. They
can be roughly divided into three classes: generality (g), one-way association
(as and cs), and two-way association (ms and ind). Each type of association
measures can be further divided into absolute support and change of support.
The measure of absolute one-way support is as, and the measure of absolute
two-way support is ms. The measures of change of support are cs for one-
way, and ind for two-way. It is interesting to note that all measures of change
of support are related to the deviation of joint probability of φ ∧ ψ from the
probability obtained if φ and ψ are assumed to be independent. In other
words, a stronger association is presented if the joint probability is further
away from the probability under independence. The association can be either
positive or negative.

6 Conclusion

Granular computing may be regarded to as a label of the family of theories,
methodologies, and techniques that make use of granules (i.e., groups, classes,
or clusters of a universe) in the process of problem solving. The construction,
representation, and interpretation of granules, as well as the utilization of
granules for problem solving, are some of the fundamental issues. In order to
understand and investigate these issues, it is necessary to establish a proper
framework. By reviewing some existing studies on non-fuzzy granular com-
puting, we proposed a model of granular computing based on information
tables. Within this model, various methods for the construction, interpreta-
tion, and representation of granules were examined. Two specific problems of
granular computing were also discussed, as an illustration to show the use-
fulness of our model. One may conclude that although the proposed model
is simple, it is powerful for the study of fundamental issues in granular com-
puting.

In this paper, we only considered non-fuzzy granular computing. It is
useful to extend the framework so that fuzzy information may be incorpo-
rated. This may be done by using fuzzy relations on attribute values. One
may have another generalization by considering incomplete information ta-
bles, where an information function maps each object to a set of attribute
values instead of a single value [37]. The major part of our discussion was
focused on information granulation, with very little emphasis on the actual
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computing. Methods for computation based on granulations of universe are
clearly needed. The approaches for constructing rough set approximations
and finding connections between granules represent two such examples.
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