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Abstract

This paper explores the implications of approximating a concept based on the

Bayesian decision procedure, which provides a plausible unification of the fuzzy set

and rough set approaches for approximating a concept. We show that if a given

concept is approximated by one set, the same result given by the α-cut in the fuzzy

set theory is obtained. On the other hand, if a given concept is approximated by two

sets, we can derive both the algebraic and probabilistic rough set approximations.

Moreover, based on the well known principle of maximum (minimum) entropy, we

give a useful interpretation of fuzzy intersection and union. Our results enhance the

understanding and broaden the applications of both fuzzy and rough sets.

1. Introduction

The issues of representing and inferring a concept are of fundamental importance

in the design of intelligent systems. In many applications, a class (subset) of objects

can be interpreted as representing a concept. Suppose each object in the universe of
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discourse is described or characterized by the values of a set of attributes. Then the

problem of identifying a concept is reduced to the problem of determining whether

an object belongs to a particular subset based on the description of the object. If the

descriptions of the individual objects are sufficient and precise enough with respect

to a given concept, one can unambiguously describe the class, a subset of objects,

representing the concept. However, the available knowledge in many practical situa-

tions is often incomplete and imprecise (Pawlak, Wong & Ziarko, 1988). Under such

circumstances, it may not be possible to determine the exact membership of every

object in the universe. Instead, one may provide an approximate characterization of

a subset of objects based on their attribute values.

Many methods were proposed to deal with the approximation of a concept. For

example, the well known fuzzy set theory characterizes a concept approximately by a

membership function with a range between 0 and 1. Another approach is based on

the rough set theory which provides the lower and upper approximations of a concept.

The relationship between these approaches was studied by many authors (Dubois &

Prade, 1990, 1987; Wygralak, 1989; Wong & Ziarko, 1987; Pawlak, 1985). The

focus of this paper is to explore the implications of approximating a concept within

the Bayesian decision theoretic framework, which provides a plausible unification of

the fuzzy set and rough set approaches for approximating a concept. We believe

that our formulation broadens the applications of rough sets for machine learning

and decision-making. Moreover, based on the well known principle of maximum

(minimum) entropy, our approach provides a useful interpretation for the different

versions of fuzzy intersection and union.

In Section 2, we suggest two methods to approximate a concept of interest. The

first leads to the notion of α-cut in the fuzzy set theory, and the second leads to

a generalization of the rough set model. In Section 3, we discuss how to combine

concepts, and finally comment on the fuzzy intersection and union.

2. Approximation of Concepts
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The objective in this section is to develop a decision theoretic framework to ap-

proximate a concept which can be interpreted as a label of a class of objects (Hisdal,

1988a; Wong & Ziarko, 1987).

We assume that each object in the universe of discourse is labeled by a set of at-

tribute values. Let A = {A1, . . . , An} be a set of attributes, and let V1, . . . , Vn be the

domains of these attributes. Each object is described by one of the elements in the

Cartesian product, V1× . . .×Vn, which is referred to as the knowledge representation

space. When two objects have the same description, we say that they are indistin-

guishable in such a knowledge representation system. Figure 2.1 depicts a knowledge

representation space and a concept w characterized by a set of objects. The problem

is to define this subset w in terms of the descriptions of the objects. In other words,

given an object described by x, one would like to decide if this object belongs to w

or not. For example, if all the objects with the same description belong to w (see

x1 in Figure 2.1), we have a deterministic decision rule. That is, we can conclude

unambiguously that any object with description x1 definitely belongs to w. However,

if not all the objects with the same description belong to w (see x2 in Figure 2.1),

we have a non-deterministic decision rule. In this case, it is not possible to decide on

the membership of a object with description x2. That is, this object may or may not

be a member of w. Therefore, in many situations we may not be able to precisely

define a concept w based on the descriptions of the objects alone. Instead, one can

only approximately define the set w according to some external decision criteria.

There are many ways to approximate a concept. The approach we adopt here

is based on the Bayesian decision theory. It is perhaps clearer first to consider the

following example to illustrate the practical needs to classify objects based on in-

complete information. Suppose a physician wants to identify those patients, from

a group of patients, who have contracted a particular disease w based only on the

available symptoms of the individual patients. If symptom x suggests that a patient

definitely has contracted the disease w, then the physician can immediately provide

the patient with the proper treatment without undue delay. However, in many cases
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Figure 2.1: A concept w in the knowledge representation space

the symptoms may not be sufficient for the physician to judge if a person suffers

from the disease w. Assume that we are in an emergency situation (i.e., disease w is

life threatening). Under these circumstances, the physician must consider how likely

a patient would have contracted the disease w given symptom x, and consider the

consequences (costs) of not treating a patient who has the disease and treating a pa-

tient who does not have the disease. For a particular disease w, let POS(w) denote

the the set of patients who will receive treatment, and let NEG(w) denote the set

of patients who will not receive treatment immediately. That is, w is approximated

by POS(w). However, in some situations, it may be more appropriate to divide

the patients into three groups POS(w), NEG(w), and DOU(w) instead of just two

groups. In this case, patients in POS(w) require immediate treatment and patients

in NEG(w) do not require the treatment. The set DOU(w) represents those patients

who need further examination before a proper decision can be made by the physician.

In the following subsections, based on the Bayesian decision procedure we will

show that if a concept is approximated by one set, the result of such an approximation
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is the same as the α-cut in the fuzzy set theory. On the other hand, if a concept is

approximated by two sets, we will demonstrate that the rough set model is in fact a

special case of our approach.

2.1. The Bayesian decision procedure

For completeness, we briefly review here the basic notions of the Bayesian decision

procedure pertinent to the approximation of a concept (Duda & Hart, 1973).

Let Ω = {w1, . . . , ws} be a finite set of s states of nature, and A = {a1, . . . , am} be

a finite set of m possible actions. Let P (wj|x) be the probability of an object in state

wj given that the object is described by x. In the following discussions, we assume

that these conditional probabilities P (wj|x) are known.

Let λ(ai|wj) denote the loss for taking action ai when the state is wj. For an object

with description x, suppose action ai is taken. Since P (wj|x) is the probability that

the true state is wj given x, the expected loss associated with taking action ai is given

by:

R(ai|x) =
s∑

j=1

λ(ai|wj)P (wj|x). (2.1)

The quantity R(ai|x) is also called the conditional risk. Given description x, a decision

rule is a function τ(x) that specifies which action to take. That is, for every x,

τ(x) assumes one of the actions, a1, . . . , am. The overall risk R is the expected

loss associated with a given decision rule. Since R(τ(x)|x) is the conditional risk

associated with action τ(x), the overall risk is defined by:

R =
∑

x

R(τ(x)|x)P (x), (2.2)

where the summation is over the entire knowledge representation space. If τ(x) is

chosen so that R(τ(x)|x) is as small as possible for every x, the overall risk R is

minimized. Thus, the Bayesian decision procedure can be formally stated as follows.

For every x, compute the conditional risk R(ai|x) for i = 1, . . . , m defined by equa-

tion (2.1), and then select the action for which the conditional risk is minimum. If
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more than one action minimizes R(ai|x), any convenient tie-breaking rule can be

used.

2.2. Approximation by a single set

Suppose only a single set is used to approximate a concept w. In this case, the

entire universe is partitioned into two regions, a positive region POS(w) and a nega-

tive region NEG(w). The positive region POS(w) is considered as an approximation

of w. Let ¬w denote the complement (negation) of w. Here, we have only two states,

namely, Ω = {w,¬w} and two actions A = {a1, a2}, where a1 and a2 denote the

actions of deciding POS(w) and deciding NEG(w), respectively.

Let λ11 = λ(a1|w) be the cost of deciding POS(w) when the object actually

belongs to w, and let λ12 = λ(a1|¬w) be the cost of deciding POS(w) when the

object does not belong to w. Likewise, let λ21 = λ(a2|w) and λ22 = λ(a2|¬w) be the

cost of deciding NEG(w) when the object actually belongs and does not belong to w,

respectively. Given an object with description x, the expected loss R(ai|x) associated

with taking action ai can be expressed as:

R(a1|x) = λ11P (w|x) + λ12P (¬w|x),

R(a2|x) = λ21P (w|x) + λ22P (¬w|x). (2.3)

By applying the Bayesian decision procedure, we obtain the following minimum-risk

decision rules:

(P) Decide POS(w) if R(a1|x) ≤ R(a2|x);

(N) Decide NEG(w) if R(a2|x) ≤ R(a1|x).

Note that it is necessary to choose a tie-breaking rule to differentiate actions producing

the same risk.

Let us consider a loss function with λ11 < λ21 and λ22 < λ12. That is, the loss of

classifying an object belonging to w into the positive region POS(w) is less than the

loss of classifying it into the negative region NEG(w); whereas the loss of classifying
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an object not belonging to w into the positive region POS(w) is greater than the loss

of classifying it into the negative region NEG(w). With this loss function and the

fact that P (w|x) + P (¬w|x) = 1, the above decision rules can be expressed as:

(P) Decide POS(w) if P (w|x) ≥ α;

(N) Decide NEG(w) if P (w|x) ≤ α,

where

α =
λ12 − λ22

(λ21 − λ22) − (λ11 − λ12)
. (2.4)

Based on the assumptions, λ11 < λ21 and λ22 < λ12, it is not difficult to verify that

0 < α < 1.

When the risk of deciding POS(w) or NEG(w) is the same, suppose POS(w) is

selected. With this tie-breaking criterion, the decision rules become:

(P1) Decide POS(w) if P (w|x) ≥ α;

(N1) Decide NEG(w) if P (w|x) < α.

Thus, the positive and negative regions can be expressed explicitly in terms of the

parameter α, namely:

POS(w, α) =
⋃

P (w|x)≥α

[x],

NEG(w, α) =
⋃

P (w|x)<α

[x], (2.5)

where [x] denotes the set of objects described by x. The positive region POS(w, α)

is indeed an approximation of w:

Apr(w, α) = POS(w, α) =
⋃

P (w|x)≥α

[x]. (2.6)

In fact, one may choose another tie-breaking criterion: if the risk of deciding

POS(w) or NEG(w) is the same, we decide NEG(w). In this case, we obtain the
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following decision rules:

(P2) Decide POS(w) if P (w|x) > α;

(N2) Decide NEG(w) if P (w|x) ≤ α.

The corresponding positive and negative regions, POS(w, α+) and NEG(w, α+), are

defined by:

POS(w, α+) =
⋃

P (w|x)>α

[x],

NEG(w, α+) =
⋃

P (w|x)≤α

[x]. (2.7)

Thus, one can define another approximation of w as:

Apr(w, α+) = POS(w, α+) =
⋃

P (w|x)>α

[x]. (2.8)

For any real number α ∈ (0, 1) computed from equation (2.4) with the loss function

satisfying λ11 < λ21 and λ22 < λ12, the following properties hold:

(I1) POS(w, α) = NEG(¬w, (1 − α)+)

(I2) POS(w, α+) = NEG(¬w, 1 − α)

(I3) NEG(w, α) = POS(¬w, (1− α)+)

(I4) NEG(w, α+) = POS(¬w, 1− α)

Obviously, the two approximations Apr(w, α) and Apr(¬w, (1 − α)+) complement

each other.

The approximation of a concept w by one set can also be analyzed from the fuzzy

set point of view (Kandel, 1986; Dubois & Prade, 1980). Let xo denote the description

of an object o. If we cannot judge, relying on the description xo alone, whether the

object o is a member of the set w, we can define a fuzzy set to characterize such a

membership. Based on the conditional probabilities P (w|x), a membership function

µw̃ with respect to w can be defined as:

µw̃(o) = P (w|xo). (2.9)
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Thus, for any real number α ∈ (0, 1), we can construct an approximation w̃α of the

fuzzy set w̃ as follows:

w̃α = {o|µw(o) ≥ α} = {o|P (w|xo) ≥ α} =
⋃

P (w|x)≥α

[x], (2.10)

which is called an α-cut of the fuzzy set w̃. Similarly, another approximation of w̃

can be defined as:

w̃α+
= {o|µw(o) > α} = {o|P (w|xo) > α} =

⋃

P (w|x)>α

[x], (2.11)

which is known as a strong α-cut of w̃.

It is clear that by comparing the fuzzy set approach with our method, Apr(w, α)

is equivalent to the α-cut of w̃, while Apr(w, α+) is equivalent to the strong α-cut

of w̃. In general, a membership function is not necessarily defined in terms of the

descriptions of the objects and the conditional probabilities involved. The member-

ship function defined by equation (2.9) represents a special kind of fuzzy sets. The

use of probability for defining fuzzy set membership has been a controversial issue

(Hisdal, 1988a, 1988b; Zadeh, 1978). The connections between fuzzy set and proba-

bility have been investigated by many authors (Hisdal, 1988a, 1988b; Wong & Ziarko,

1987; Giles, 1982, 1976; Gaines, 1978; Hersh & Caramazza, 1976; Ruspini, 1969). In

fact, Hisdal (1988a, 1988b) argued quite convincingly that one should not rule out

the possibility that there is a useful probabilistic interpretation of fuzzy membership

functions. Based on the probabilistic interpretation, our analysis provides a plau-

sible justification for using the α-cuts as approximations. Each α-cut, defined by

a cost function, represents a different level of approximation of w. Which level of

approximation is deemed suitable depends of course on the application itself.
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2.3. Lower and upper approximations

Instead of using one set, one may use two sets to approximate a given concept

w. For this purpose, we partition the universe into three regions, the positive re-

gion POS(w), the negative region NEG(w), and the doubtful region DOU(w). The

concept w can be characterized by a lower approximation POS(w) and an upper ap-

proximation POS(w) ∪ DOU(w) (Yao, Wong & Lingras, 1990). In this case, the set

of states remains Ω = {w,¬w}, but the set of actions becomes A = {a1, a2, a3}, where

a1, a2, and a3 represent the three actions, deciding POS(w), deciding NEG(w), and

deciding DOU(w), respectively.

Let λ(ai|w) denote the loss incurred for taking action ai when an object in fact be-

longs to w, and let λ(ai|¬w) denote the loss incurred when the object actually belongs

to ¬w. P (w|x) and P (¬w|x) are the probabilities that an object with description x

belongs to w and ¬w, respectively. Thus, the expected loss R(ai|x) associated with

taking the individual actions can be expressed as:

R(a1|x) = λ11P (w|x) + λ12P (¬w|x),

R(a2|x) = λ21P (w|x) + λ22P (¬w|x),

R(a3|x) = λ31P (w|x) + λ32P (¬w|x), (2.12)

where λi1 = λ(ai|w), λi2 = λ(ai|¬w), and i = 1, 2, 3. The Bayesian decision procedure

leads to the following minimum-risk decision rules:

(P′) Decide POS(w) if R(a1|x) ≤ R(a2|x) and R(a1|x) ≤ R(a3|x);

(N′) Decide NEG(w) if R(a2|x) ≤ R(a1|x) and R(a2|x) ≤ R(a3|x);

(D′) Decide DOU(w) if R(a3|x) ≤ R(a1|x) and R(a3|x) ≤ R(a2|x).

Since P (w|x) + P (¬w|x) = 1, the above decision rules can be simplified such that

only the probabilities P (w|x) are involved. Thus, we can classify any object with

description x based only on the probabilities P (w|x) and the given loss function λij

(i = 1, 2, 3; j = 1, 2).
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Consider a special kind of loss functions with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12.

That is, the loss of classifying an object o belonging to w into the positive region

POS(w) is less than or equal to the loss of classifying o into the doubtful region

DOU(w), and both of these losses are strictly less than the loss of classifying o into

the negative region NEG(w). We obtain the reverse order of losses by classifying an

object that does not belong to w. For this type of loss functions, the minimum-risk

decision rules (P′)-(D′) can be written as:

(P′) Decide POS(w) if P (w|x) ≥ β and P (w|x) ≥ γ;

(N′) Decide NEG(w) if P (w|x) ≤ γ and P (w|x) ≤ δ;

(D′) Decide DOU(w) if δ ≤ P (w|x) ≤ β;

where

β =
λ12 − λ32

(λ31 − λ32) − (λ11 − λ12)
,

γ =
λ12 − λ22

(λ21 − λ22) − (λ11 − λ12)
,

δ =
λ32 − λ22

(λ21 − λ22) − (λ31 − λ32)
. (2.13)

From the assumptions, λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, it follows that β ∈ (0, 1],

γ ∈ (0, 1), and δ ∈ [0, 1). Note that the parameters λij should satisfy the condition

δ ≤ β; otherwise, this approximation problem would be reduced to the one discussed

in Section 2.2. It should be emphasized that the decision rules (P′)-(D′) depend only

on the input parameters β, γ, and δ computed from the λij’s directly supplied by the

user or expert.

Now let us introduce the tie-breaking criteria for two separate cases: (i) δ < β,

and (ii) δ = β.

2.3.1. Case (i) δ < β

In this case, we have δ < γ < β. When the risk of deciding POS(w) or DOU(w)

is the same, we decide POS(w); if the risk of deciding NEG(w) or DOU(w) is the
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same, we decide NEG(w). With these tie-breaking criteria, we obtain from (P′)-(D′)

a simpler set of decision rules:

(P′1) Decide POS(w) if P (w|x) ≥ β;

(N′1) Decide NEG(w) if P (w|x) ≤ δ;

(D′1) Decide DOU(w) if δ < P (w|x) < β.

The positive, negative, and doubtful regions can be explicitly expressed in terms

of the pair of parameters δ and β, namely:

POS(w, β, δ) =
⋃

P (w|x)≥β

[x],

NEG(w, β, δ) =
⋃

P (w|x)≤δ

[x],

DOU(w, β, δ) =
⋃

δ<P (w|x)<β

[x], (2.14)

where [x] denotes the set of objects described by x. We can now define the lower and

upper approximations Apr(w, β, δ) and Apr(w, β, δ) of w as:

Apr(w, β, δ) = POS(w, β, δ) =
⋃

P (w|x)≥β

[x],

Apr(w, β, δ) = POS(w, β, δ)∪ DOU(w, β, δ) =
⋃

P (w|x)>δ

[x]. (2.15)

The algebraic approximations of a concept introduced in the rough set model

(Pawlak, 1984, 1982) can be easily derived from the lower and upper approximations

Apr(w, β, δ) and Apr(w, β, δ). Consider the following loss function:

λ12 = λ21 = 1, λ11 = λ22 = λ31 = λ32 = 0. (2.16)

This means that there is a unit cost if an object belonging to w is classified into the

negative region or if an object not belonging to w is classified into the positive region;

otherwise there is no cost. For such a loss function, we obtain from equation (2.13)

that β = 1 and δ = 0. Hence, according to equation (2.15), we have:

Apr(w, 1, 0) =
⋃

P (w|x)=1

[x],
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Apr(w, 1, 0) =
⋃

P (w|x)>0

[x]. (2.17)

Suppose the probabilities P (w|x) can be estimated from the cardinalities of w ∩ [x]

and [x], namely, P (w|x) = |w ∩ [x]|/|[x]|. In this case, Apr(w, 1, 0) and Apr(w, 1, 0)

can be expressed as:

Apr(w, 1, 0) =
⋃

[x]⊆w

[x],

Apr(w, 1, 0) =
⋃

[x]∩w 6=∅

[x]. (2.18)

These are exactly the lower and upper approximations of w defined in the algebraic

theory of rough sets (Pawlak, 1982). The results given here suggest that the algebraic

rough set model can be viewed as a special case of our decision theoretic approach.

2.3.2. Case (ii) δ = β

Since δ = β, we have δ = γ = β. Here we adopt a different set of tie-breaking rules.

Whenever the risk of classifying an object into POS(w) or DOU(w) is the same, we

decide DOU(w). If the risk of classifying an object into NEG(w) or DOU(w) is the

same, we decide DOU(w). In this case, the decision rules (P′)-(D′) can be written as:

(P′2) Decide POS(w) if P (w|x) > γ;

(N′2) Decide NEG(w) if P (w|x) < γ;

(D′2) Decide DOU(w) if P (w|x) = γ.

Accordingly:

POS(w, γ, γ) =
⋃

P (w|x)>γ

[x],

NEG(w, γ, γ) =
⋃

P (w|x)<γ

[x],

DOU(w, γ, γ) =
⋃

P (w|x)=γ

[x]. (2.19)
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Similar to case (i), we can define the lower and upper approximations of w as:

Apr(w, γ, γ) = POS(w, γ, γ) =
⋃

P (w|x)>γ

[x],

Apr(w, γ, γ) = POS(w, β, δ)∪ DOU(w, γ, γ) =
⋃

P (w|x)≥γ

[x]. (2.20)

Consider a special loss function:

λ12 = λ21 = 1, λ31 = λ32 = 1/2, λ11 = λ22 = 0. (2.21)

That is, a unit cost is incurred if the system classifies an object belonging to w into

the negative region or an object not belonging to w is classified into the positive

region; half of a unit cost is incurred if any object is classified into the doubtful

region. For other cases, there is no cost. Substituting these λij ’s into equation (2.13),

we obtain δ = β = γ = 1/2. It is interesting to note that by replacing γ by 1/2

in equation (2.20), we arrive at the same results obtained by Pawlak, Wong, and

Ziarko (1988). In particular, Apr(w, 1/2, 1/2) and Apr(w, 1/2, 1/2) are identical to

their probabilistic lower and upper approximations of w. We have thus demonstrated

that our approach based on the Bayesian decision theory is a generalization of the

probabilistic rough set model as well.

Given λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, for any pair of real numbers β, δ

(defined by equation (2.13)) satisfying the condition δ ≤ β, the following properties

hold:

(II1) POS(w, β, δ) = NEG(¬w, 1 − δ, 1 − β)

(II2) NEG(w, β, δ) = POS(¬w, 1− δ, 1 − β)

(II3) DOU(w, β, δ) = DOU(¬w, 1 − δ, 1 − β)

Thus, (Apr(w, β, δ), Apr(w, β, δ)) and (Apr(¬w, 1 − δ, 1 − β), Apr(¬w, 1 − δ, 1 − β))

complement each other.

It is perhaps worth mentioning here that in general one can apply, if necessary,

the same procedure to approximate a concept by more than two sets by introducing

an appropriate cost function.
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3. Combination of Concepts

In the previous section, we have shown how the decision procedure can be used

to approximate a single concept represented by a subset of objects in the universe

of discourse. In many applications, it is often necessary to consider a number of

concepts. For example, in the medical diagnostic problem discussed in Section 2,

a physician may be interested in identifying the patients who have contracted both

diseases w and w′. The physician may also be interested in identifying the patients

who have contracted either disease w or disease w′. These two categories of patients

can be represented by the intersection w ∩ w′ and the union w ∪ w′, respectively. If

the conditional probabilities P (w∩w′|x) or P (w∪w′|x) are known, we can compute,

for instance, the approximations Apr(w ∩ w′, α) and Apr(w ∪ w′, α) as defined by

equation (2.6) in Section 2.2.

A probability function satisfies the inequalities:

P (w ∩ w′|x) ≤ P (w|x) , P (w ∩ w′|x) ≤ P (w′|x) ,

P (w ∪ w′|x) ≥ P (w|x) , P (w ∪ w′|x) ≥ P (w′|x) . (3.1)

Based on these inequalities, it can be easily verified that the following properties hold:

(O1) Apr(w ∩ w′, α) ⊆ Apr(w, α) ∩ Apr(w′, α)

(O2) Apr(w ∪ w′, α) ⊇ Apr(w, α) ∪ Apr(w′, α)

(O3) Apr(w ∩ w′, α+) ⊆ Apr(w, α+) ∩ Apr(w′, α+)

(O4) Apr(w ∪ w′, α+) ⊇ Apr(w, α+) ∪ Apr(w′, α+).

These properties can be considered as a generalized version of those satisfied by an

α-cut in the fuzzy set theory (Kandel, 1986; Dubois & Prade, 1980). On the other

hand, when the given concept is approximated by two sets as discussed in Section

2.3, one can show that:

(T1) Apr(w ∩ w′, β, δ) ⊆ Apr(w, β, δ) ∩ Apr(w′, β, δ)
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(T2) Apr(w ∪ w′, β, δ) ⊇ Apr(w, β, δ) ∪ Apr(w′, β, δ)

(T3) Apr(w ∩ w′, β, δ) ⊆ Apr(w, β, δ) ∩ Apr(w′, β, δ)

(T4) Apr(w ∪ w′, β, δ) ⊇ Apr(w, β, δ) ∪ Apr(w′, β, δ)

In fact, these properties subsume those given by Pawlak, Wong, and Ziarko (1988) in

the probabilistic rough set model.

In many situations, one may not know some of the conditional probabilities

P (w∩w′|x) or P (w∪w′|x). However, one may assume that the probabilities P (w|x)

and P (w′|x) are known. Since P (w ∪ w′|x) = P (w|x) + P (w′|x) − P (w ∩ w′|x),

then the task of computing the approximations of w ∩ w′ and w ∪ w′ is reduced to

the estimation of the joint probabilities P (w ∩ w′|x) based on the given marginal

probabilities P (w|x) and P (w′|x). There exist a number of methods to estimate

the joint probabilities from the marginal ones (Lingras, Wong & Yao, 1990; Gokhale

& Kullback, 1978; Ku & Kullback, 1969; Chow & Liu, 1968; Brown, 1959). The

methods we adopt here for estimating P (w ∩ w′|x) are based on the principle of

maximum entropy (Wise & Henrion, 1986; Shore & Johnson, 1980; Jaynes, 1979) and

the principle of minimum entropy (Klir & Folger, 1988; Watanabe, 1985).

Let P = (p1, . . . , pn) be a discrete joint probability distribution. The Shannon

(1948) entropy function is defined by:

H(P) = −
n∑

i=1

pi log pi. (3.2)

The entropy provides a measure of uncertainty conveyed by a given probability dis-

tribution. If the available information about P is insufficient, we can, for example,

estimate the joint distribution by maximizing the entropy function under a set of con-

straints. The resulting probability distribution is said to be maximally non-committal

or minimally prejudiced (Tribus, 1969). In other words, by the principle of maximum

entropy, we adopt the most unbiased view in estimating the joint probabilities. In

contrast, the principle of minimum entropy allows us to take the most biased view.

Obviously, these two principles are not compatible with each other. The choice be-
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tween them depends very much on the particular application. In any case, one cannot

apply both principles simultaneously to the same problem.

To simplify subsequent discussions, let us define the following symbols:

a = P (w|x), b = P (w′|x),
a11 = P (w ∩ w′|x), a12 = P (w ∩ ¬w′|x),
a21 = P (¬w ∩ w′|x), a22 = P (¬w ∩ ¬w′|x).

(3.3)

The joint probabilities should satisfy the following constraints:

a11 + a12 = a a21 + a22 = 1 − a

a11 + a21 = b a12 + a22 = 1 − b (3.4)

These constraints can be conveniently represented by a contingency table:

w′ ¬w′

w a11 a12 a
¬w a21 a22 1 − a

b 1 − b

For the probability distribution P = (a11, a12, a21, a22), the entropy function is defined

by:

H(P) = −(a11 log a11 + a12 log a12 + a21 log a21 + a22 log a22). (3.5)

Based on the constraints (3.4), one can express all the other variables in terms of a11,

namely:

a12 = a − a11,

a21 = b − a11,

a22 = 1 − (a + b) + a11. (3.6)

By substituting these variables into equation (3.5), H(P) can be written as:

H(P) = −a11 log a11 − (a − a11) log(a − a11) − (b − a11) log(b − a11) −

[1 − (a + b) + a11] log[1 − (a + b) + a11]. (3.7)
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From the probability theory, we have:

max(0, P (w|x) + P (w′|x) − 1) ≤ P (w ∩ w′|x) ≤ min(P (w|x), P (w′|x)), (3.8)

or

max(0, a + b − 1) ≤ a11 ≤ min(a, b). (3.9)

That is, the interval [max(0, a + b − 1), min(a, b)] defines the domain of the variable

a11.

By differentiating H(P) with respect to a11 and setting it to zero, we obtain:

dH(P)

da11

= log
(a − a11)(b − a11)

a11[1 − (a + b) + a11]
= 0, (3.10)

which gives the solution a11 = ab. Note that

dH(P)

da11

> 0 for a11 ∈ [max(0, a + b − 1), ab), (3.11)

dH(P)

da11
< 0 for a11 ∈ (ab, min(a, b)]. (3.12)

This means that the entropy function H(P) defined by equation (3.7) increases in the

interval [max(0, a+ b− 1), ab), decreases in (ab, min(a, b)], and obtains the maximum

value at the point a11 = ab. It is therefore clear that the minimum of the entropy

function occurs at one of the two boundary points, max(0, a + b − 1) and min(a, b).

Thus, according to the principle of maximum entropy, the joint conditional proba-

bility a11 = P (w∩w′|x) is equal to the product of a = P (w|x) and b = P (w′|x). The

same result can be obtained by the probabilistic independence assumption. That is,

P (w ∩ w′|x) = P (w|x)P (w′|x) , (3.13)

P (w ∪ w′|x) = P (w|x) + P (w′|x) − P (w ∩ w′|x)

= P (w|x) + P (w′|x) − P (w|x)P (w′|x) . (3.14)

The joint probabilities are summarized in the following table:
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w′ ¬w′

w ab a(1 − b) a
¬w (1 − a)b (1 − a)(1 − b) 1 − a

b 1 − b

Recall that one can define a fuzzy set w̃ for a given concept w by the following

membership function:

µw̃(o) = P (w|xo), (3.15)

where xo denotes the description of an object o. Based on the estimation of the

probabilities given by equations (3.13) and (3.14), and the fuzzy set membership

function defined by equation (3.15), we have:

µw̃∩w̃′(o) = P (w ∩ w′|xo)

= P (w|xo)P (w′|xo)

= µw̃(o)µw̃′(o) (3.16)

µw̃∪w̃′(o) = P (w ∪ w′|xo)

= P (w|xo) + P (w′|xo) − P (w|xo)P (w′|xo),

= µw̃(o) + µw̃′(o) − µw̃(o)µw̃′(o). (3.17)

We can therefore conclude that the principle of maximum entropy enables us to derive

the probabilistic-like definition of fuzzy intersection and union (Bellman & Zadeh,

1970).

As mentioned before, in some applications one can use the principle of minimum

entropy instead to estimate the joint probabilities. Suppose the minimum of entropy

function occurs at the point a11 = max(0, a + b − 1). In this case, we obtain:

P (w ∩ w′|x) = max(0, P (w|x) + P (w′|x) − 1), (3.18)

P (w ∪ w′|x) = P (w|x) + P (w′|x) − P (w ∩ w′|x)

= P (w|x) + P (w′|x) − max(0, P (w|x) + P (w′|x) − 1)

= min(1, P (w|x) + P (w′|x)). (3.19)
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The estimated joint probabilities are summarized in the following table:

w′ ¬w′

w max(0, a + b − 1) min(a, 1 − b) a
¬w min(1 − a, b) max(0, 1 − a − b) 1 − a

b 1 − b

Again, based on definition (3.15) and the above joint probabilities, one can define

another version of fuzzy intersection and union as follows:

µw̃∩w̃′(o) = P (w ∩ w′|xo)

= max(0, P (w|xo) + P (w′|x0) − 1)

= max(0, µw̃(o) + µw̃′(o) − 1), (3.20)

µw̃∪w̃′(o) = P (w ∪ w′|xo)

= min(1, P (w|xo) + P (w′|xo))

= min(1, µw̃(o) + µw̃′(o)). (3.21)

These are, in fact, the bold intersection and union suggested by Giles (1976).

Now suppose the entropy function has the minimum at the point a11 = min(a, b).

It follows:

P (w ∩ w′|x) = min(P (w|x), P (w′|x)), (3.22)

P (w ∪ w′|x) = P (w|x) + P (w′|x) − P (w ∩ w′|x)

= P (w|x) + P (w′|x) − min(P (w|x), P (w′|x))

= max(P (w|x), P (w′|x)). (3.23)

The joint probabilities are summarized below:

w′ ¬w′

w min(a, b) max(0, a − b) a
¬w max(0, b − a) min(1 − a, 1 − b) 1 − a

b 1 − b
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In this case, we obtain the classical definition of fuzzy intersection and union (Zadeh,

1965):

µw̃∩w̃′(o) = P (w ∩ w′|xo)

= min(P (w|xo), P (w′|xo))

= min(µw̃(o), µw̃′(o)) (3.24)

µw̃∪w̃′(o) = P (w ∪ w′|xo)

= max(P (w|xo), P (w′|xo))

= max(µw̃(o), µw̃′(o)) (3.25)

By comparing the last two tables, it becomes evident that Giles’ definition given by

equations (3.20) and (3.21), and Zadeh’s definition given by equations (3.24) and

(3.25) are dual definitions.

Let us summarize the results obtained so far. We have demonstrated that the

probabilistic-like definition of fuzzy intersection and union can be obtained by ap-

plying the maximum entropy principle, which represents the most unbiased view in

estimating the joint probabilities. By applying the minimum entropy principle, we

arrive at Giles’ and Zadeh’s definitions of fuzzy intersection and union. Both of these

definitions represent the most biased view, but the emphases are different. The classi-

cal definition assumes that w and w′ are most correlated, whereas the bold intersection

and union assume the opposite (Wise & Henrion, 1986). Obviously, the probabilistic-

like definition is a median between Giles’ and Zadeh’s definitions (Dubois & Prade,

1980).

It should perhaps be emphasized that our analysis presents a different view for

interpreting fuzzy set connectives. The axiomatic approach for justifying Zadeh’s

definition is based on a mathematical structure (Fung & Fu, 1975; Bellman & Giertz,

1973). However, the physical interpretation of such a structure is not entirely clear

(Giles, 1988). Another justification of fuzzy set connectives is based on the notion

of triangular norms and conorms, which shows that all three definitions discussed

in this paper are special cases (Bonissone, 1987; Bonissone & Decker, 1986; Dubois
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& Prade, 1982). Such a justification does not identify the situations under which

a particular definition is applicable, because each of these definitions satisfies the

conditions for triangular norms and conorms. On the contrary, our analysis shows

that the probabilistic-like definition follows naturally from the principle of maximum

entropy representing the most unbiased view, while Zadeh’s and Giles’ definitions

follow from the principle of minimum entropy representing the most biased views.

If the joint probabilities given by equation (3.13) or (3.18) are used, the resulting

approximations Apr(w∩w′, α), Apr(w∪w′, α), Apr(w∩w′, α+), and Apr(w∪w′, α+)

satisfy properties (O1)-(O2) as well; the approximations Apr(w ∩ w′, β, δ), Apr(w ∪

w′, β, δ), Apr(w∩w′, β, δ), and Apr(w∪w′, β, δ) satisfy properties (T1)-(T4). However,

when the joint probabilities are computed from equation (3.22), the corresponding

approximations satisfy the following properties instead:

(O′1) Apr(w ∩ w′, α) = Apr(w, α) ∩ Apr(w′, α)

(O′2) Apr(w ∪ w′, α) = Apr(w, α) ∪ Apr(w′, α)

(O′3) Apr(w ∩ w′, α+) = Apr(w, α+) ∩ Apr(w′, α+)

(O′4) Apr(w ∪ w′, α+) = Apr(w, α+) ∪ Apr(w′, α+)

and

(T′1) Apr(w ∩ w′, β, δ) = Apr(w, β, δ) ∩ Apr(w′, β, δ)

(T′2) Apr(w ∪ w′, β, δ) = Apr(w, β, δ) ∪ Apr(w′, β, δ)

(T′3) Apr(w ∩ w′, β, δ) = Apr(w, β, δ) ∩ Apr(w′, β, δ)

(T′4) Apr(w ∪ w′, β, δ) = Apr(w, β, δ) ∪ Apr(w′, β, δ)

This implies that the inclusion (⊆ or ⊇) in (O1)-(O4) and (T1)-(T4) becomes an

equality only if maximum correlation between w and w′ is assumed. It should be

noted that the properties (O′1)-(O′4) about α-cuts (Kandel, 1986; Dubois & Prade,

1980) hold only if one adopts Zadeh’s definition of fuzzy intersection and union.

4. Conclusion
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We have proposed in this paper a decision theoretic framework for approximat-

ing concepts, which provides a plausible unification of the fuzzy set and rough set

approaches. We have explicitly shown that if a given concept is approximated by

one set, the same result given by the α-cut in the fuzzy set theory is obtained. On

the other hand, if a given concept is approximated by two sets, we can derive both

the algebraic and probabilistic rough set approximations. Moreover, based on the

well known principle of maximum (minimum) entropy, we give a useful interpreta-

tion of the fuzzy intersection and union. We believe that our results enhance the

understanding and broaden the applications of both fuzzy and rough sets.
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