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Summary. Granulation of the universe and approximation of concepts in the gran-
ulated universe are two related fundamental issues in the theory of rough sets. Many
proposals dealing with the two issues have been made and studied extensively. We
present a critical review of results from existing studies that are relevant to a
decision-theoretic modeling of rough sets. Two granulation structures are studied,
one is a partition induced by an equivalence relation and the other is a covering
induced by a reflexive relation. With respect to the two granulated views of the
universe, element oriented and granule oriented definitions and interpretations of
lower and upper approximation operators are examined. The structures of the fam-
ilies of fixed points of approximation operators are investigated. We start with the
notions of rough membership functions and graded set inclusion defined by condi-
tional probability. This enables us to examine different granulation structures and
the induced approximations in a decision-theoretic setting. By reviewing and com-
bining results from existing studies, we attempt to establish a solid foundation for
rough sets and to provide a systematic way for determining the required parameters
in defining approximation operators.

1 Introduction

The concept of information granulation was first introduced by Zadeh in the
context of fuzzy sets in 1979 [44]. The basic ideas of information granulation
have appeared in fields, such as interval analysis, quantization, rough set
theory, the theory of belief functions, divide and conquer, cluster analysis,
machine learning, databases, and many others [45]. There is a fast growing
and renewed interest in the study of information granulation and computa-
tions under the umbrella term of Granular Computing (GrC), covering the-
ories, methodologies, techniques, and tools that make use of granules in the
process of problem solving [4,7,8,15,17,18,21,22,28,34,43,46].

Granulation of a universe involves the decomposition of the universe into
parts, or the grouping of individual elements or objects into classes, based
on available information and knowledge. Elements in a granule are drawn to-
gether by indistinguishability, similarity, proximity or functionality [45]. With
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the granulation of a universe, a subset of a universe may be considered as a
whole unit rather than individual elements. A set of indistinguishable objects
is considered to be a granule of the universe. One can thus form a granulated
view of the universe. A natural consequence of granulation is the problem
of approximating concepts using granules. The theory of rough sets can be
used for constructing a granulated view of the universe and for interpreting,
representing, and processing concepts in the granulated universe. It offers a
more concrete model of granular computing.

The basis of the theory of rough sets is the indiscernibility or indistin-
guishability of objects or elements in a universe of interest [11,12]. The stan-
dard approach for modeling indiscernibility of objects is through an equiv-
alence relation defined based on their attribute values with reference to an
information table [12]. Two objects are equivalent if they have exactly the
same description. The induced granulation is a partition of the universe, i.e.,
a family of pair-wise disjoint subsets. It is a coarsening of the universe, and is
studied extensively in mathematics under the name of quotient set. The no-
tion of indiscernibility can be generalized into similarity defined by a reflexive
binary relation [9,23,24,20,30,37]. The set of objects similar to an element can
be viewed as an elementary granule or a neighborhood with the element as
its center. Distinct elementary granules may have non-empty overlaps, and
the family of elementary granules with respect to all elements of the universe
form a covering of the universe.

Each equivalence class can be viewed as a basic building block or an ele-
mentary granule. All other sets are to be represented in terms of equivalence
classes (granules). Two formulations are particularly relevant to decision-
theoretic modeling of rough sets [29,30,38–40]. The element oriented method
is based on the notion of rough membership [13]. One can define a rough
membership function with respect to a subset of the universe based on its
overlaps with equivalence classes [13]. Rough membership functions can be
viewed as a special type of a fuzzy membership functions. The core and sup-
port of the membership function are defined as the subsets of objects with full
and non-zero memberships, respectively. They produce the lower and upper
approximations [41]. The granule oriented method is based on the set inclu-
sion relation. An equivalence class is in the lower approximation of a set if it is
contained in the set, and the equivalence class is in the upper approximation
of a set if it has a non-empty overlap with the set. These formulations can
be extended to cases where non-equivalence relations are used [23,20,30,37].

The lower and upper approximation operators as defined by core and sup-
port of a rough membership function represent only two extreme cases. One
is characterized by full membership and the other by non-zero membership.
They may be regarded as qualitative approximations of a set. The actual de-
gree of membership is not taken into consideration. Likewise, the definition
by set inclusion only considers full inclusion, without considering the degree
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of set inclusion. This makes the rough set approach to be very sensitive to
the accuracy of input data and not suitable to process noisy data.

To resolve the problem with qualitative approximations, extended rough
set approximations have been suggested. For the element oriented method,
Pawlak et al. [14] introduced the notion of probabilistic rough set approxima-
tions. The conditional probabilities used to define probabilistic rough sets are
in fact the rough membership functions. The lower probabilistic approxima-
tion is defined as the set of elements with membership values being greater
than 0.5, the upper probabilistic approximation is the set of elements with
membership values being greater than or equal to 0.5. Yao et al. [38,40] pro-
posed and studied a more general type of probabilistic rough set approxima-
tions based on the Bayesian decision theory. A pair of parameters (α, β) with
α > β can be determined from a loss (cost) function. The lower probabilistic
approximation is defined as the set of elements with membership values being
greater than or equal to α and the upper probabilistic approximation as the
set of elements with membership values being greater than β.

The main results of the decision-theoretic rough set model were later
given and studied again by some authors based on graded set inclusion by
extending the granule oriented definition. Ziarko [47] introduced a variable
precision rough set model. A measure called the degree of misclassification
is defined as the inverse of the conditional probabilities or the rough mem-
bership functions. A threshold value α is used. An equivalence class is in the
lower approximation if its degree of misclassification is below or equals to
α. Equivalently, this means that an element belongs to the lower approxi-
mation if its membership value is greater than or equals to 1 − α. Similarly,
an equivalence class is in the upper approximation if its degree of misclassi-
fication is less than 1 − α, or equivalently an element belongs to the upper
approximation if its membership value is greater than α. However, unlike
the decision-theoretic model, there do not exist theoretic justification and a
systematic way to determine the parameter α in the variable precision rough
set model, except it was suggested that value of α must be in the range
[0, 0.5). The parameter of the variable precision rough set model can be eas-
ily interpreted in the decision-theoretic rough set model, as shown by Yao et

al. [39].

Other extensions of granule oriented definition are based on different mea-
sures of the degree of, or graded, inclusion of two sets. Skowron and Stepa-
niuk [20] introduced an abstract notion of vague inclusion. The measure of
vague inclusion is a function that maps every two subsets to a value in the unit
interval [0, 1] and is characterized the monotonicity with respect to the second
argument. An example of vague inclusion can be defined by rough member-
ship function [20]. By extending the notion of rough membership functions
to the power set of the universe, Polkowski and Skowron [16,19] introduced
the notion of rough inclusion which is characterized by additional properties.
Bryniarski and Wybraniec-Skardowska [1] used a family of inclusion relations
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in defining rough set approximation. By choosing a set of threshold values,
one can easily obtain a set of inclusion relations from a measure of graded
inclusion. All those proposals for graded or degree of inclusion can be used
to define rough set approximations, as is done in the variable precision rough
set model.

The introduction of parameterized rough set approximations offers more
flexibilities to the theory and extends its domain of applications. In general,
the existence of parameterized measures is very useful. As there may not exist
universally good measures for all data, one can fine tune the parameters to
search for relevant measures from a family of parameterized measures with
respect to a given set of data [25,26]. When applying this general principle
to parameterized rough set approximations, one can search for relevant ap-
proximations for a given set of data. In order to achieve this goal, we need to
provide intuitive interpretations of the parameters and design a systematic
way to fine tune the parameters.

From the brief summary of studies related to decision-theoretic model
of rough sets, we can now state the objective of this paper. By reviewing
and combining results from existing studies, we attempt to establish a solid
foundation for rough sets and to provide a systematic way for determin-
ing the required parameters in defining rough set approximations. Intuitive
arguments and experimental investigations are important, as reported and
demonstrated by many studies on generalizing rough sets based on the de-
gree of membership or the degree of set inclusion. A solid and sound decision-
theoretic foundation may provide a convincing argument and guidelines for
applying the theory.

Granular computing covers many more topics, such as fuzzy if-then rules
and computing with words. Partitions and coverings represent very simple
granulated views of the universe. For instance, objects of the universe can
have complex structures. The indistinguishability and similarity of such ob-
jects should be defined by taking into consideration their structures. A related
issue is the search for suitable similarity relations and granulations for a par-
ticular application. We will not deal with these advanced topics. Instead, our
discussion is restricted to topics and simple granulation structures related to
rough sets, and particularly related to a decision-theoretic model of rough
sets [38,40]. More specifically, we only deal with two related fundamental
issues, namely, granulation and approximation. Nevertheless, the argument
can be applied to granular computing in general.

The rest of the paper is organized as follows. Section 2 gives a brief
overview of two granulation structures on the universe. One is defined by
an equivalence relation and the other by a reflexive relation. Section 3 fo-
cuses on two definitions of rough set approximations. One is based on rough
membership functions and the other on the set inclusion relation between an
equivalence class and the set to be approximated. Approximation structures
are discussed. Section 4 discusses a decision-theoretic model of rough sets.
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2 Granulation of Universe

The notion of indiscernibility provides a formal way to describe the relation-
ships between elements of a universe under consideration. In the theory of
rough sets, indiscernibility is modeled by an equivalence relation. A granu-
lated view of the universe can be obtained from the equivalence classes. By
generalizing equivalence relations to similarity relations characterized only
by reflexivity [23,37], one may obtain a different granulation of the universe.

2.1 Granulation by equivalence relations

Let E ⊆ U ×U be an equivalence relation on a finite and non-empty universe
U . That is, E is reflexive, symmetric, and transitive. The equivalence relation
can be defined based on available knowledge. For example, in an information
table, elements in the universe are described by a set of attributes. Two
elements are said to be equivalent if they have the same values with respect
to some attributes [12,42]. The equivalence class,

[x]E = {y ∈ U | yEx}, (1)

consists of all elements equivalent to x, and is also the equivalence class
containing x. The relation E induces a partition of the universe U :

U/E = {[x]E | x ∈ U}. (2)

That is, U/E is a family of pair-wise disjoint subsets of the universe and⋃
x∈U [x]E = U . The partition is commonly known as the quotient set and

provides a granulated view of the universe under the equivalence of elements.
Intuitively speaking, the available knowledge only allows us to talk about an
equivalence class as a single unit. In other words, under the granulated view,
we consider an equivalence class as a whole instead of individuals.

The pair apr = (U, E) is referred to as an approximation space, indicating
the intended application of the partition U/E for approximation [11]. Each
equivalence class is called an elementary granule. The elementary granules,
the empty set ∅ and unions of equivalence classes are called definable gran-
ules in the sense that they can be defined precisely in terms of equivalence
classes of E. The meaning of definable sets will be clearer when we discuss
about approximations in the next section. Let Def(U/E) denote the set of
all definable granules. It is closed under set complement, intersection, and
union. In fact, Def(U/E) is a sub-Boolean algebra of the Boolean algebra
formed by the power set 2U of U and an σ-algebra of subsets of U generated
by the family of equivalence classes U/E. In addition, U/E is the basis of the
σ-algebra σ(U/E).
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2.2 Granulation by similarity relations

Indiscernibility as defined by an equivalence relation, or equivalently a parti-
tion of the universe, represents a very restricted type of relationships between
elements of the universe. In general, the notions of similarity, and coverings
of the universe, may be used [9,10,20,23,30,37].

Suppose R is a binary relation on the universe U representing the similar-
ity of elements in U . We assume that R is at least reflexive, i.e., an element
must be similar to itself, but not necessarily symmetric and transitive [23].
For two elements x, y ∈ U , if xRy we say that x is similar to y. The relation
R may be more conveniently represented using the set of elements similar to
x, or the predecessor neighborhood [30], as follows:

(x)R = {y ∈ U | yRx}. (3)

The set (x)R consists of all elements similar to x. By the assumption of
reflexivity, we have x ∈ (x)R. When R is an equivalence relation, (x)R is the
equivalence class containing x. The family of predecessor neighborhoods,

U/R = {(x)R | x ∈ U}, (4)

is a covering of the universe, namely,
⋃

x∈U (x)R = U . For two elements
x, y ∈ U , (x)R and (y)R may be different and have a non-empty overlap.
This offers another granulated view of the universe.

Through the similarity relation, an element x is viewed by the set of
elements similar to it, namely, (x)R. We define an equivalence relation ≡R

on U as follows [31,35]:

x ≡R y ⇐⇒ (x)R = (y)R. (5)

Two elements are equivalent if they have exactly the same neighborhood. If
R is an equivalence relation, then ≡R is the same as R.

The pair apr = (U, R) is referred to as a generalized approximation space.
The neighborhood (x)R is called an elementary granule. Elementary granules,
the empty set ∅ and unions of elementary granules are called definable gran-
ules in apr = (U, R). Let Def(U/R) denote the set of all definable granules.
It is closed under set union, and may not necessarily be closed under set
complement and intersection. The set Def(U/R) contains both the empty set
∅ and the entire set U . From Def(U/R), we define

Defc(U/R) = {Ac | A ∈ Def(U/R)}, (6)

where Ac denotes the complement of A. The new system Defc(U/R) contains
∅ and U and is closed under set intersection. It is commonly known as a
closure system [33]. If the relation R is an equivalence relation, both systems
become the same one. In general, the two systems are not the same.
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3 Rough Set Approximations

In an approximation space or a generalized approximation space, a pair of
rough set approximation operators, known as the lower and upper approx-
imation operators, can be defined in many ways [11,12,29,31,30,41]. Two
definitions are discussed in this section. The element oriented definition fo-
cuses on the belongingness of a particular element to the lower and upper
approximations of a set. The granule oriented definition focuses on the be-
longingness of an entire granule to the lower and upper approximations [35].
While the two definitions produce the same results in an approximation space
apr = (U, E), they produce different results in a generalized approximation
space apr = (U, R).

We pay special attention to two families of subsets of the universe. One
consists of those subsets whose lower approximations are the same as them-
selves, i.e., the fixed points of lower approximation operator. The other con-
sists of those subsets whose upper approximations are the same as themselves,
i.e., the fixed points of upper approximation operator. The structures of the
two families show the structures and consequences of different granulation
methods, and may provide more insights into our understanding of approxi-
mation operators.

3.1 Rough membership functions

In an approximation space apr = (U, E), an element x ∈ U belongs to one
and only one equivalence class [x]E . For a subset A ⊆ U , a rough membership
function is defined by [13]:

µA(x) =
|[x]E ∩ A|

|[x]E |
, (7)

where | · | denotes the cardinality of a set. The rough membership value µA(x)
may be interpreted as the conditional probability that an arbitrary element
belongs to A given that the element belongs to [x]E . In fact, conditional
probabilities were used earlier in the development of a probabilistic rough set
model [14,27,38,40].

Rough membership functions may be interpreted as fuzzy membership
functions interpretable in terms of probabilities defined simply by the cardi-
nalities of sets [32,35,41]. With this interpretation, one can define at most 2|U|

fuzzy sets. Two distinct subsets of U may derive the same rough membership
function. By definition, the membership values are all rational numbers.

The theory of fuzzy sets is typically developed as an uninterpreted math-
ematical theory of abstract membership functions without the above limita-
tions [6]. In contrast, the theory of rough set provides a more specific and
more concrete interpretation of fuzzy membership functions. The source of
the fuzziness in describing a concept is the indiscernibility of elements. The
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limitations and constraints of such an interpreted sub-theory should not be
viewed as the disadvantages of the theory. In fact, such constraints suggest
conditions that may be verified when applying the theory to real world prob-
lems. It might be more instructive and informative, if one knows that a certain
theory cannot be applied. Explicit statements of conditions under which a
particular model is applicable may prevent misuse of the theory.

When interpreting fuzzy membership functions in the theory of rough
sets, we have the constraints:

(m1) µU (x) = 1,

(m2) µ∅(x) = 0,

(m3) y ∈ [x]E =⇒ µA(x) = µA(y),

(m4) x ∈ A =⇒ µA(x) 6= 0,

(m5) x 6∈ A =⇒ µA(x) 6= 1,

(m6) µA(x) = 1 ⇐⇒ [x]E ⊆ A,

(m7) µA(x) > 0 ⇐⇒ [x]E ∩ A 6= ∅,

(m8) A ⊆ B =⇒ µA(x) ≤ µB(x).

Property (m3) is particularly important. It shows that elements in the same
equivalence class must have the same degree of membership. That is, in-
discernible elements should have the same membership value. Such a con-
straint, which ties the membership values of individual elements according
to their connections, is intuitively appealing. Although this topic has been
investigated by some authors [2], there is still a lack of systematic study.
Properties (m4) and (m5) states that an element in A cannot have a zero
membership value, and an element not in A cannot have a full membership.
They can be equivalently expressed as:

(m4) µA(x) = 0 =⇒ x 6∈ A,

(m5) µA(x) = 1 =⇒ x ∈ A,

According to properties (m6) and (m7), µA(x) = 1 if and only if for all y ∈ U ,
x ∈ [y]E implies y ∈ A, and µA(x) > 0 if and only if there exists a y ∈ U
such that y ∈ A and x ∈ [y]E . Since x ∈ [x]E , property (m5) is a special
case of (m6). Property (m8) suggests that a rough membership function is
monotonic with respect to set inclusion.

In a generalized approximation space apr = (U, R) defined by a reflexive
relation, for a subset A of the universe, a rough membership function can be
defined by substituting [x]E with (x)R in equation (7) as follows [31,32]:

µA(x) =
|(x)R ∩ A|

|(x)R|
. (8)

By the reflexivity of R, one can verify that properties (m1), (m2), and (m4)-
(m8) also hold, provided that [x]E is replaced by (x)R. For (m3), we can have
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the weak version:

(m3a) (y ∈ (x)R, µA(x) = 1) =⇒ µA(y) 6= 0,

(m3b) (y ∈ (x)R, µA(x) = 0) =⇒ µA(y) 6= 1.

These two properties are of qualitative nature. They state that membership
values of related elements are related. If an element y is similar to another
element x with full membership, then y cannot have a null membership.
Likewise, if y is similar to an element x with null membership, then y cannot
have a full membership. Properties (m3a) and (m3b) can also be expressed
as:

(m3a) (y ∈ (x)R, µA(y) = 0) =⇒ µA(x) 6= 1,

(m3b) (y ∈ (x)R, µA(y) = 1) =⇒ µA(x) 6= 0.

They can be similarly interpreted. With respect to the equivalence relation
≡R, we have the property:

(m3c) x ≡R y =⇒ µA(x) = µA(y).

It is closer to the original (m3) of the standard rough membership function.
All these properties appear to be intuitively sound and meaningful.

A binary relation only defines a dichotomous relationship. Two elements
are either related or not related. It is not surprising that we can only draw
conclusions with respect to elements with null or full membership, as indi-
cated by the previously stated properties.

The constraints on rough membership functions have significant implica-
tions on rough set operators. Rough membership functions corresponding to
Ac, A ∩ B, and A ∪ B must be defined using set operators and equation (7)
or equation (8).

By laws of probability, we have:

(o1) µAc(x) = 1 − µA(x),

(o2) µA∪B(x) = µA(x) + µB(x) − µA∩B(x),

(o3) max(0, µA(x) + µB(x) − 1) ≤ µA∩B(x) ≤ min(µA(x), µB(x)),

(o4) max(µA(x), µB(x)) ≤ µA∪B(x) ≤ min(1, µA(x) + µB(x)),

Unlike the commonly used fuzzy set operators as typically defined by t-norms
and t-conorms [6], the new intersection and union operators are non-truth-
functional. That is, it is impossible to obtain rough membership functions
of A ∩ B and A ∪ B based solely on the rough membership functions of A
and B. One must also consider their overlaps and their relationships to the
equivalence class [x]E or the predecessor neighborhood (x)R.
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One can verify the following additional properties corresponding to the
properties of t-norms and t-conorms:

(t1) Boundary conditions

(µA(x) = 0, µB(x) = 0) =⇒ µA∩B(x) = 0,

(µA(x) = 1, µB(x) = a) =⇒ µA∩B(x) = a,

(µA(x) = a, µB(x) = 1) =⇒ µA∩B(x) = a,

(t2) Monotonicity

(A ⊆ C, B ⊆ D) =⇒ µA∩B(x) ≤ µC∩D(x),

(t3) Symmetry

µA∩B(x) = µB∩A(x),

(t4) Associativity

µA∩(B∩C)(x) = µ(A∩B)∩C(x);

(s1) Boundary conditions

(µA(x) = 1, µB(x) = 1) =⇒ µA∪B(x) = 1,

(µA(x) = 0, µB(x) = a) =⇒ µA∪B(x) = a,

(µA(x) = a, µB(x) = 0) =⇒ µA∪B(x) = a,

(s2) Monotonicity

(A ⊆ C, B ⊆ D) =⇒ µA∪B(x) ≤ µC∪D(x),

(s3) Symmetry

µA∪B(x) = µB∪A(x),

(s4) Associativity

µA∪(B∪C)(x) = µ(A∪B)∪C(x).

The boundary conditions follow from (o3) and (o4), and monotonicity follows
from (m8). While other properties are very close to the properties of t-norms
and t-conorms, the monotonicity property is much weaker than the mono-
tonicity of a t-norm t and a t-conorm s, i.e., (a ≤ c, b ≤ d) =⇒ t(a, b) ≤ t(c, d)
and (a ≤ c, b ≤ d) =⇒ s(a, b) ≤ s(c, d). For four arbitrary sets A, B, C, D
with µA(x) = a, µB(x) = b, µC(x) = c, µD(x) = d, a ≤ c and b ≤ d,
µA∩B(x) ≤ µC∩D(x) and µA∪B(x) ≤ µC∪D(x) may not necessarily hold.

3.2 Element oriented approximations

In an approximation space apr = (U, E), we define a rough membership func-
tion µA for a subset A ⊆ U . By collecting elements with full and non-zero
memberships, respectively, we obtain a pair of lower and upper approxima-
tions of A as follows:

apr(A) = {x ∈ U | µA(x) = 1} = core(µA),

apr(A) = {x ∈ U | µA(x) > 0} = support(µA). (9)
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They are indeed the core and support of the fuzzy set µA. An equivalent and
more convenient definition without using membership functions is given by:

apr(A) = {x ∈ U | [x]E ⊆ A},

apr(A) = {x ∈ U | [x]E ∩ A 6= ∅}. (10)

The lower and upper approximations can be interpreted as a pair of unary
set-theoretic operators, apr, apr : 2U −→ 2U . They are dual operators in the
sense that apr(A) = (apr(Ac))c and apr(A) = (apr(Ac))c. Other properties
of approximation operators can be found in many articles [5,11,12,31,37,39].

In this definition, we focus on whether a particular element is in the lower
and upper approximations. It is thus referred to as the element oriented
definition of rough set approximations. More specifically, an element x ∈
U belongs to the lower approximation of A if all its equivalent elements
belong to A. It belongs to the upper approximation of A if at least one of
its equivalent elements belongs to A. The element oriented interpretation of
approximation operators is related to the interpretation of the necessity and
possibility operators in modal logic [29,37].

So far, we have shown that, as a consequence of granulation, a set A
is viewed differently. The fuzzification of A leads to a rough membership
function, and the approximation of A leads to a pair of sets. Moreover, ap-
proximations of a set can be viewed as a qualitative characterization of a
rough membership function using the core and support. A study of families
of sets that are invariant under fuzzification and approximation may bring
more insights into the understanding of granulation structures.

A set A is said to be a lower exact set if A = apr(A), an upper exact set
if A = apr(A), and a lower and an upper exact set if apr(A) = A = apr(A).
Lower exact sets are fixed points of the lower approximation operator apr
and upper exact sets are fixed points of the upper approximation operator
apr. Let

E(apr) = {A ⊆ U | A = apr(A)},

E(apr) = {A ⊆ U | A = apr(A)}, (11)

be the set of lower exact sets and the set of upper exact sets, respectively.
By definition, we immediately have the following results.

Theorem 1. In an approximation space apr = (U, E), we have:

E(apr) = E(apr) = Def(U/E). (12)

Theorem 2. In an approximation space apr = (U, E), we have:

µA(x) = χA(x), for all x ∈ U, (13)

if and only if A ∈ Def(U/E), where χA is the characteristic function of A
defined by χA(x) = 1 if x ∈ A and χA(x) = 0 if x 6∈ A.
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Theorem 1 shows that a set in Def(U/E) is both lower and upper exact,
and only a set in Def(U/E) has such a property. For this reason, a set in
Def(U/E) is called a definable set. Theorem 2 states that µA is a crisp set if
and only if A ∈ Def(U/E). All other subsets of U will induce non-crisp fuzzy
sets. The fuzziness is a natural consequence of indiscernibility of elements.

In a generalized approximation space apr = (U, R) defined by a reflexive
relation R, rough set approximations can be defined by replacing [x]E with
(x)R in equations (9) and (10) as follows:

apr(A) = {x ∈ U | (x)R ⊆ A}

= {x ∈ U | µA(x) = 1} = core(µA),

apr(A) = {x ∈ U | (x)R ∩ A 6= ∅}

= {x ∈ U | µA(x) > 0} = support(µA). (14)

The results regarding fuzzification, as well as lower and upper exact sets, are
summarized in the following theorems.

Theorem 3. In a generalized approximation space apr = (U, R) defined by

a reflexive relation R, we have:

a. A = apr(A) if and only if A =
⋃

x∈A

(x)R,

A = apr(A) if and only if A =
⋂

x 6∈A

((x)R)c,

b. E(apr) ⊆ Def(U/R), E(apr) ⊆ Defc(U/R),

c. E(apr) and E(apr) are closed under ∩ and ∪,

d. A ∈ E(apr) if and only if Ac ∈ E(apr),

e. E(apr) ∩ E(apr) is a sub−Boolean algebra of 2U .

Theorem 4. In a generalized approximation space apr = (U, R) defined by

a reflexive relation R, we have:

µA(x) = χA(x), for all x ∈ U, (15)

if and only if A ∈ E(apr) ∩ E(apr).

The sets E(apr) and E(apr) are not necessarily the same and may not
be closed under set complement. While E(apr) is a sub-family of Def(U/R)
closed under both ∩ and ∪, E(apr) is a sub-family of Defc(U/R) closed under
both ∩ and ∪. A lower exact set must be expressed as a union of some
elementary granules. However, not every union of elementary granules is a
lower exact set. A set A is lower and upper exact if and only if µA is a crisp
set.

In defining rough set approximations, only the two extreme points of the
unit interval [0, 1] are used, namely, 0 is used for upper approximations and 1
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for lower approximations. In general, we can use a pair of values (α, β) with
α > β to define a pair of graded lower and upper approximations:

apr
α
(A) = {x ∈ U | µA(x) ≥ α} = (µA)α,

aprβ(A) = {x ∈ U | µA(x) > β} = (µA)β+ , (16)

where (µA)α denotes the α-cut of the fuzzy set µA and (µA)β+ the strong
β-cut of µA. The condition α > β implies that apr

α
⊆ aprβ(A). When α = β,

in order to keep this property, we define:

apr
α
(A) = {x ∈ U | µA(x) > α} = (µA)α+ ,

aprα(A) = {x ∈ U | µA(x) ≥ α} = (µA)α, (17)

By imposing an additional condition α + β = 1, we can obtain a pair of dual
operators [47,39]. For standard approximation operators, we have:

apr(A) = apr
1
(A),

apr(A) = apr0(A). (18)

The probabilistic rough set approximation operators proposed by Pawlak et

al.[14] is given by (apr
0.5

, apr0.5). Properties of rough set approximations
under the pair of parameters (α, β) can be found in [37–40,47].

We can define the notions of lower exact sets and upper exact sets of
graded approximation operators. In an approximation space apr = (U, E),
from property (m3) we can conclude that an entire equivalence class is either
in or not in a lower or an upper approximation. This implies that apr

α
(A) and

aprβ(A) must be in Def(U/E). Conversely, if A is in Def(U/E), apr
α
(A) = A

and aprβ(A) = A for α ∈ (0, 1] and β ∈ [0, 1). It therefore follows that graded
approximations do not change families of lower and upper exact sets.

Theorem 5. In an approximation space apr = (U, E), for α ∈ (0, 1] and

β ∈ [0, 1) we have:

E(apr
α
) = {A ⊆ U | A = apr

α
(A)} = E(apr) = Def(U/E),

E(aprβ) = {A ⊆ U | A = aprβ(A)} = E(apr) = Def(U/E). (19)

The result of Theorem 5 cannot be easily extended to a generalized ap-
proximation space apr = (U, R) defined by a reflexive relation R. The char-
acterization of families of graded lower exact sets and graded upper exact
sets in a generalized approximation space is an interesting problem.

Theorem 6. In a generalized approximation space apr = (U, R) defined by

a reflexive relation R, for α ∈ (0, 1] and β ∈ [0, 1) we have:

E(apr
α
) = {A ⊆ U | A = apr

α
(A)} ⊆ Def(U/≡R),

E(aprβ) = {A ⊆ U | A = aprβ(A)} ⊆ Def(U/≡R), (20)

where Def(U/ ≡R) is the family of definable sets defined by the equivalence

relation ≡R.

The theorem easily follows from the property (m3c). The families E(apr
α
)

and E(aprβ) may not necessarily be closed under ∩ and ∪.
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14 Y.Y. Yao

3.3 Graded inclusion of sets

A rough membership function is defined based on the relationship between
two sets, one is the equivalence class [x]R (or the neighborhood (x)R) of an
element x and the other is a set A. For the maximum membership value 1, we
have [x]E ⊆ A, namely, [x]E is a subset of A. For the minimum membership
value 0, we have [x]E ∩ A = ∅, or equivalently [x]E ⊆ Ac, namely, [x]E is
totally not a subset of A. For a value between 0 and 1, it may be interpreted
as the degree to which [x]E is a subset of A. By extending the notion of rough
membership functions to power set of the universe, one obtains a measure of
graded inclusion of two sets [19,20]:

v(A, B) =
|A ∩ B|

|A|
. (21)

For the case where A = ∅, we define v(∅, B) = 1 and v(∅, ∅) = 1, namely, the
empty set is a subset of any set.

The value v(A, B) can be interpreted as the conditional probability that
a randomly selected element from A belongs to B. It may be used to measure
the degree to which A is a subset of B. There is a close connection between
graded inclusion and fuzzy set inclusion [20].

Measures related to v have been proposed and used by many authors.
Ziarko [47] used the measure,

c(A, B) = 1 − v(A, B) = 1 −
|A ∩ B|

|A|
, (22)

in a variable precision rough set model. One can easily obtain the same re-
sults by using v. Skowron and Stepaniuk [20] suggested that graded (vague)
inclusion of sets may be measured by a function,

v : 2U × 2U −→ [0, 1], (23)

with monotonicity regarding the second argument, namely, for A, B, C ⊆ U ,
v(A, B) ≤ (A, C) for any B ⊆ C. The function defined by equation (21) is an
example of such a measure. In fact, equation (21) considers only the overlap
with the first argument, but not the size of the second argument.

Starting from rough membership functions, Skowron and Polkowski [19]
introduced the concept of rough inclusion defined by a function v : 2U ×
2U −→ [0, 1] satisfying more properties, in addition to the monotonicity with
respect to the second argument. The unit interval [0, 1] can also be generalized
to a complete lattice in the definition of rough inclusion [16]. Rough inclusion
is only an example for measuring degrees of inclusion in rough mereology. A
more detailed discussion on rough mereology and related concepts can be
found in [16,19]. Instead of using a measure of graded inclusion, Bryniarski
and Wybraniec-Skardowska [1] proposed to use a family of inclusion relations
called context relations, indexed by a bounded and partially ordered set called
rank set. The unit interval [0, 1] can be treated as a rank set. From a measure
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of graded inclusion, a context relation with respect to a value α ∈ [0, 1] can
be defined by:

⊆α= {(A, B) | v(A, B) ≥ α}. (24)

In other words, v may be interpreted as a fuzzy relation on 2U , and ⊆α may
be interpreted as an α-cut of the fuzzy relation. The use of a complete lattice,
or a rank set, corresponds to lattice based fuzzy relations in the theory of
fuzzy sets.

3.4 Granule oriented approximations

In an approximation space apr = (U, E), an equivalence class [x]E is treated
as a unit. A granule oriented definition of approximation operators can be
used. Approximations of a set are expressible in terms of unions of equivalence
granules, namely:

apr(A) =
⋃

{[x]E | [x]E ⊆ A},

apr(A) =
⋃

{[x]E | [x]E ∩ A 6= ∅}. (25)

The lower approximation apr(A) is the union of those equivalence granules
which are subsets of A. The upper approximation apr(A) is the union of
those equivalence granules which have non-empty intersections with A. This
definition is equivalent to the element oriented definition.

In a generalized approximation space apr = (U, R), granule oriented rough
set approximations can be defined by generalizing equation (25). The equiv-
alence class [x]E is replaced by the neighborhood (x)R. One of such general-
izations is [30]:

apr′(A) =
⋃

{(x)R | x ∈ U, (x)R ⊆ A},

apr′(A) = (apr′(Ac))c. (26)

We generalize the lower approximation as a union of elementary granules and
define the upper approximation through duality. While the lower approxima-
tion is the union of some granules in U/R, the upper approximation cannot
be expressed in this way [30]. The approximation operators apr′ and apr′

are different from the element oriented definition. The lower exact sets and
upper exact sets are related to Def(U/R) and Defc(U/R).

Theorem 7. In a generalized approximation space apr = (U, R) defined by

a reflexive relation R, we have:

E(apr′) = {A ⊆ U | A = apr′(A)} = Def(U/R),

E(apr′) = {A ⊆ U | A = apr′(A)} = Defc(U/R). (27)
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16 Y.Y. Yao

This theorem generalizes the result of Theorem 1 in the sense that The-
orem 1 considers a sub-class of reflexive relations.

Granule oriented approximations can be generalized into graded approxi-
mations through a graded inclusion measures. We can replace the relation ⊆
by a relation ⊆α for α ∈ (0, 1]. For an approximation space apr = (U, E), we
define a lower approximation operator as:

apr
α
(A) =

⋃
{[x]E | [x]E ⊆α A}

=
⋃

{[x]E | v([x]E , A) ≥ α}. (28)

The graded upper approximation operator can be defined by another param-
eter β ∈ [0, 1). If a pair of dual operators is needed, the corresponding graded
upper approximation operator can be defined by the dual of apr

α
. The gran-

ule oriented graded approximations are the same as those obtained from the
element oriented definition.

For a generalized approximation space apr = (U, R), with respect to a
value α ∈ (0, 1], we define:

apr′
α
(A) =

⋃
{(x)R | (x)R ⊆α A}

=
⋃

{(x)R | v((x)R, A) ≥ α}. (29)

The graded upper approximation can be defined by duality. The granule ori-
ented definition produces different approximations from the element oriented
definition. By definition, the graded lower approximation of a set can be ex-
pressed as the union of some granules. However, not every union of granules
can be the lower approximation of a certain set.

Theorem 8. In a generalized approximation space apr = (U, R) defined by

a reflexive relation R, for α ∈ (0, 1] we have:

E(apr′
α
) = {A ⊆ U | A = apr′

α
(A)} ⊆ E(apr′) = Def(U/R),

E(apr′1−α) = {A ⊆ U | A = apr′1−α(A)} = E(apr′) = Defc(U/R). (30)

Both families E(apr′
α
) and E(apr′1−α) may not necessarily closed under

∩ and ∪. In general, we have E(apr′) 6= E(apr′
α
).

This section not only summarizes the main results from existing studies
on rough set approximations in a unified framework, but also presents many
new results. From the discussion, we can conclude that parameterized rough
set approximations are useful and need further investigation.

4 A Decision-theoretic Model of Rough Sets

In this section, the basic notions of the Bayesian decision procedure for clas-
sification is briefly reviewed [3]. Rough set approximation operators are for-
mulated as classifying objects into three disjoint classes, namely, the positive,
negative and boundary regions.
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Information Granulation and Approximation 17

For clarity, we only consider the element oriented definition with respect
to the granulated view of the universe induced by an equivalence relation.
The same argument can be easily applied to other cases.

4.1 An overview of the Bayesian decision procedure

Let Ω = {w1, . . . , ws} be a finite set of s states, and let A = {a1, . . . , am} be
a finite set of m possible actions. Let P (wj |x) be the conditional probability
of an object x being in state wj given that the object is described by x. In the
following discussions, we assume that these conditional probabilities P (wj |x)
are known.

Let λ(ai|wj) denote the loss, or cost, for taking action ai when the state
is wj . For an object with description x, suppose action ai is taken. Since
P (wj |x) is the probability that the true state is wj given x, the expected loss
associated with taking action ai is given by:

R(ai|x) =

s∑

j=1

λ(ai|wj)P (wj |x). (31)

The quantity R(ai|x) is also called the conditional risk. Given description x,
a decision rule is a function τ(x) that specifies which action to take. That
is, for every x, τ(x) assumes one of the actions, a1, . . . , am. The overall risk
R is the expected loss associated with a given decision rule. Since R(τ(x)|x)
is the conditional risk associated with action τ(x), the overall risk is defined
by:

R =
∑

x

R(τ(x)|x)P (x), (32)

where the summation is over the set of all possible descriptions of objects,
i.e., the knowledge representation space. If τ(x) is chosen so that R(τ(x)|x)
is as small as possible for every x, the overall risk R is minimized.

The Bayesian decision procedure can be formally stated as follows. For
every x, compute the conditional risk R(ai|x) for i = 1, . . . , m defined by
equation (31), and then select the action for which the conditional risk is
minimum. If more than one action minimizes R(ai|x), any tie-breaking rule
can be used.

4.2 Rough set approximation operators

In an approximation space apr = (U, E), with respect to a subset A ⊆ U ,
one can divide the universe U into three disjoint regions, the positive region
POS(A), the negative region NEG(A), and the boundary region BND(A):

POS(A) = apr(A),

NEG(A) = U − apr(A),

BND(A) = apr(A) − apr(A). (33)
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18 Y.Y. Yao

The lower approximation of a set is the same as the positive region. The upper
approximation is the union of the positive and boundary regions, apr(A) =
POS(A)∪BND(A). One can say with certainty that any element x ∈ POS(A)
belongs to A, and that any element x ∈ NEG(A) does not belong to A. One
cannot decide with certainty whether or not an element x ∈ BND(A) belongs
to A.

In an approximation space apr = (U, E), an element x is viewed as [x]E .
That is, the equivalence class containing x is considered to be a description
of x. The classification of objects according to approximation operators can
be easily fitted into the Bayesian decision-theoretic framework. The set of
states is given by Ω = {A,¬A} indicating that an element is in A and not
in A, respectively. We use the same symbol to denote both a subset A and
the corresponding state. With respect to three regions, the set of actions is
given by A = {a1, a2, a3}, where a1, a2, and a3 represent the three actions
in classifying an object, deciding POS(A), deciding NEG(A), and deciding
BND(A), respectively.

Let λ(ai|A) denote the loss incurred for taking action ai when an object
in fact belongs to A, and let λ(ai|¬A) denote the loss incurred for taking the
same action when the object does not belong to A. The rough membership
values µA(x) = P (A|[x]E) and µAc(x) = P (¬A|[x]E) = 1 − P (A|[x]E) are in
fact the probabilities that an object in the equivalence class [x]E belongs to
A and ¬A, respectively. The expected loss R(ai|[x]E) associated with taking
the individual actions can be expressed as:

R(a1|[x]E) = λ11P (A|[x]E) + λ12P (¬A|[x]E),

R(a2|[x]E) = λ21P (A|[x]E) + λ22P (¬A|[x]E),

R(a3|[x]E) = λ31P (A|[x]E) + λ32P (¬A|[x]E), (34)

where λi1 = λ(ai|A), λi2 = λ(ai|¬A), and i = 1, 2, 3. The Bayesian decision
procedure leads to the following minimum-risk decision rules:

(P) If R(a1|[x]E) ≤ R(a2|[x]E) and R(a1|[x]E) ≤ R(a3|[x]E),

decide POS(A);

(N) If R(a2|[x]E) ≤ R(a1|[x]E) and R(a2|[x]E) ≤ R(a3|[x]E),

decide NEG(A);

(B) If R(a3|[x]E) ≤ R(a1|[x]E) and R(a3|[x]E) ≤ R(a2|[x]E),

decide BND(A).

Tie-breaking rules should be added so that each element is classified into
only one region. Since P (A|[x]E) + P (¬A|[x]E) = 1, the above decision rules
can be simplified such that only the probabilities P (A|[x]E) are involved.
We can classify any object in the equivalence class [x]E based only on the
probabilities P (A|[x]E), i.e., the rough membership values, and the given loss
function λij (i = 1, 2, 3; j = 1, 2).
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Information Granulation and Approximation 19

Consider a special kind of loss functions with λ11 ≤ λ31 < λ21 and λ22 ≤
λ32 < λ12. That is, the loss of classifying an object x belonging to A into
the positive region POS(A) is less than or equal to the loss of classifying x
into the boundary region BND(A), and both of these losses are strictly less
than the loss of classifying x into the negative region NEG(A). The reverse
order of losses is used for classifying an object that does not belong to A. For
this type of loss functions, the minimum-risk decision rules (P)-(B) can be
written as:

(P) If P (A|[x]E) ≥ γ and P (A|[x]E) ≥ α, decide POS(A);

(N) If P (A|[x]E) ≤ β and P (A|[x]E) ≤ γ, decide NEG(A);

(B) If β ≤ P (A|[x]E) ≤ α, decide BND(A);

where

α =
λ12 − λ32

(λ31 − λ32) − (λ11 − λ12)
,

γ =
λ12 − λ22

(λ21 − λ22) − (λ11 − λ12)
,

β =
λ32 − λ22

(λ21 − λ22) − (λ31 − λ32)
. (35)

By the assumptions, λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, it follows that
α ∈ (0, 1], γ ∈ (0, 1), and β ∈ [0, 1).

A loss function should be chosen in such a way to satisfy the condition
α ≥ β. This ensures that the results are consistent with rough set approxi-
mations. More specifically, the lower approximation is a subset of the upper
approximation, and the boundary region may be non-empty.

Theorem 9. If a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12

satisfies the condition:

(λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22), (36)

then α ≥ γ ≥ β.

Let l = (λ12 − λ32)(λ21 − λ31) and r = (λ31 − λ11)(λ32 − λ22). While
l is the product of the differences between the cost of making an incorrect
classification and cost of classifying an element into the boundary region, r is
the product of the differences between the cost of classifying an element into
the boundary region and the cost of a correct classification. A larger value of
l, or equivalently a smaller value of r, can be obtained if we move λ32 away
from λ12, or move λ31 away from λ21. In fact, the condition can be intuitively
interpreted as saying that cost of classifying an element into the boundary
region is closer to the cost of a correct classification than to the cost of an
incorrect classification. Such a condition seems to be reasonable.
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When α > β, we have α > γ > β. After tie-breaking, we obtain the
decision rules:

(P1) If P (A|[x]E) ≥ α, decide POS(A);

(N1) If P (A|[x]E) ≤ β, decide NEG(A);

(B1) If β < P (A|[x]E) < α, decide BND(A).

When α = β, we have α = γ = β. In this case, we use the decision rules:

(P2) If P (A|[x]E) > α, decide POS(A);

(N2) If P (A|[x]E) < α, decide NEG(A);

(B2) If P (A|[x]E) = α, decide BND(A).

For the second set of decision rules, we use a tie-breaking criterion so that
the boundary region may be non-empty.

The value of α should be in the range [0.5, 1], in addition to constraint
α ≥ β, as suggested by many authors [20,38,40,47]. The following theorem
gives the condition for α ≥ 0.5.

Theorem 10. If a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12

satisfies the condition:

λ12 − λ32 ≥ λ31 − λ11, (37)

then α ≥ 0.5.

Condition (37) says that the difference between the cost of classifying an
element not in A into positive region and the cost of classifying the element
into the boundary region is more than the difference between the cost of clas-
sifying an element in A into the boundary region and a correct classification.
It forms part of condition (36). However, they do not imply each other. By
combining results from Theorems 9 and 10, we have the condition for α ≥ 0.5
and α ≥ β.

Corollary 1. If a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12

satisfies the conditions,

λ12 − λ32 ≥ λ31 − λ11,

(λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22), (38)

then α ≥ 0.5 and α ≥ β.

If dual approximation operators are required, one needs to impose addi-
tional conditions on a loss function [39].

Theorem 11. If a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12

satisfies the condition:

(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31), (39)

then β = 1 − α.
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Condition (39) does not guarantee that α ≥ β = 1 − α, or equivalently
α ≥ 0.5. The condition for α = 1 − β ≥ 0.5 can be obtained by combining
conditions (36) and (39), or combining conditions (37) and (39).

Corollary 2. If a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12

satisfies the two sets of equivalent conditions,

(i). (λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22),

(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31); (40)

(ii). λ12 − λ32 ≥ λ31 − λ11,

(λ12 − λ32)(λ32 − λ22) = (λ31 − λ11)(λ21 − λ31); (41)

then α = 1 − β ≥ 0.5.

Based on the results obtained so far, we can now investigate loss functions
producing existing rough set approximation operators.

Consider the loss function:

λ12 = λ21 = 1, λ11 = λ22 = λ31 = λ32 = 0. (42)

There is a unit cost if an object belonging to A is classified into the negative
region or if an object not belonging to A is classified into the positive region;
otherwise there is no cost. This loss function satisfies the conditions given in
Corollary 2. A pair of dual approximation operators can be obtained. From
equation (35), we have α = 1 > β = 0, α = 1 − β, and γ = 0.5. According
to decision rules (P1)-(B1), we obtain the standard rough set approxima-
tions [11,12].

Consider another loss function:

λ12 = λ21 = 1, λ31 = λ32 = 0.5, λ11 = λ22 = 0. (43)

That is, a unit cost is incurred if the system classifies an object belonging to
A into the negative region or an object not belonging to A is classified into
the positive region; half of a unit cost is incurred if any object is classified
into the boundary region. For other cases, there is no cost. The loss function
satisfies the conditions given in Corollary 2. In fact, the loss function makes
all ≥ relations in these conditions become =. By substituting these λij ’s into
equation (35), we obtain α = β = γ = 0.5. By using decision rules (P2)-(B2),
we obtained the probabilistic rough set approximation proposed by Pawlak
et al. [14].

The loss function,

λ12 = λ21 = 4, λ31 = λ32 = 1, λ11 = λ22 = 0, (44)

states that there is no cost for a correct classification, 4 units of cost for an
incorrect classification, and 1 unit cost for classifying an object into boundary
region. It also satisfies the conditions in Corollary 2. From equation (35), we
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have α = 0.75, β = 0.25 and γ = 0.5. By decision rules (P1)-(B1), we have a
pair of dual approximation operators apr

0.75
and apr0.25.

In general, the relationships between the loss function λ and the pair of
parameters (α, β) are summarized as follows.

Theorem 12. For a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 <
λ12, we have,

(a1). α is monotonic non-decreasing with respect to λ12 and monotonic non-

increasing with respect to λ32.

(a2). If λ11 < λ31, α is strictly monotonic increasing with respect to λ12 and

strictly monotonic decreasing with respect to λ32.

(a3). α is strictly monotonic decreasing with respect to λ31 and strictly mono-

tonic increasing with respect to λ11.

(b1). β is monotonic non-increasing with respect to λ21 and monotonic non-

decreasing with respect to λ31.

(b2). If λ22 < λ32, β is strictly monotonic decreasing respect to λ21 and

strictly monotonic increasing with respect to λ31.

(b3). β is strictly monotonic increasing with respect to λ32 and strictly mono-

tonic decreasing with respect to λ22.

The connection between threshold values of parameterized rough set ap-
proximations and the loss function has significant implications in applying
the decision-theoretic model of rough sets. For example, if we increase the cost
of an incorrect classification λ12 and keep other costs unchanged, the value
α would not be decreased. Unlike the variable precision rough set model,
the decision-theoretic model requires a loss function. Parameters α and β
are determined from the loss function. One may argue that the loss function
may be considered as a set of parameters. However, in contrast to standard
threshold values, they have an intuitive interpretation. The connections given
in the theorem show the consequences of a loss function and provide an in-
terpretation of the required parameters in terms of a more realistic concept
of loss or cost. One can easily interpret and measure loss or cost in a real
application.

5 Conclusion

Successful applications of the theory of rough sets depend on a clear un-
derstanding of the various concepts involved. For this purpose, a decision-
theoretic model of rough sets is studied in this paper by focusing on two
related fundamental issues, namely, granulation of a universe and approxima-
tion in a granulated universe. The decision-theoretic model not only provides
a sound basis for rough set theory, but also provides a unified framework in
which many existing models of rough set can be derived. The decision model
can also be interpreted in terms of a more familiar and interpretable concept
known as loss or cost.
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Two granulation structures are examined. An equivalence relation induces
a partition of the universe, and a reflexive relation induces a covering of
the universe. Under a granulated view of the universe, a subset of universe
can be fuzzified and approximated. Fuzzification of a set leads to a rough
membership function, which is a special type of fuzzy membership functions.
Approximations of a set can be defined in two ways. The element oriented
formulation is based on rough membership function, and is related to the
notion of α-cut in fuzzy sets. The granule oriented formulation is based on
the set inclusion relation, and in general based on a graded set inclusion
relation related to rough membership function. The two formulations produce
the same results when the universe is granulated by an equivalence relation,
and produce different results when the universe is granulated by a reflexive
relation.

The families of fixed points of lower and upper approximation operators
are studied, which provides insights into our understanding of granulation
structures and the induced approximation structures. With a partition de-
fined by an equivalence relation, the families of fixed points are related to
a sub-Boolean algebra of the power set of the universe. With a covering de-
fined by a reflexive relation, the families of fixed points are related to closure
systems.

The conditions on a loss function are investigated. In particular, we explic-
itly state the connections between the parameters required for defining graded
approximation operators and losses for various classification decisions. This
provide an interpretation for parameters used in other models of rough sets.
We also identify conditions on a loss function so that other rough set approx-
imation operators, such as the standard approximation operators, probabilis-
tic approximation operators, and variable precision approximation operators
can be obtained. The decision-theoretic model is therefore more general than
other models.
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