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Abstract
An interval set is an interval in the power set lattice
based on a universal set and is a family of subsets of
the universal set. Interval sets and interval-set algebras
provide a tool for modeling and processing partially
known concepts and for approximating undefinable or
complex concepts. Existing results on interval sets and
interval-set algebras are reviewed and new results are
given. Two types of interval-set algebras are examined
based on an inclusion ordering and a knowledge order-
ing, respectively. Related studies are summarized.

1. Introduction

A concept, in the classical view, is defined by a pair
of intension and extension [34]. The extension consists
of the instances to which the concept applies; the inten-
sion is a set of singly necessary and jointly sufficient
conditions that describe the instances of the concept.
Concepts are assumed to have well-defined boundaries
and their extensions can be precisely defined by sets of
objects. Based on the intension-exetension interpreta-
tion, in this paper we sometimes use the terms concepts
and sets (i.e., extensions of concepts) interchangeably.

Concepts, in many practical situations, cannot be
precisely defined and their extensions may not be given
exactly by sets of objects. For this reasons, many pro-
posals have been made to generalize the notion of sets
for representing inexact, imprecise, vague, or partially
known concepts. In generalizing standard, crisp sets for
representing real-world concepts, one may consider at
least the following scenarios:

• Concepts with grey boundaries. There is not
a well-defined boundary that differentiates the in-
stances from the non-instances of the concept. For
some objects, the concept only applies partially in-
stead of fully. There may exist a sequence of ob-
jects that gradually change from non-instances to

instances of the concept. Typically, one can define
such degree of belongingness in quantitative terms.

• Partially known concepts. In some situations, an
object may actually be either an instance or not an
instance of a concept. On the other hand, due to a
lack of information and knowledge, one can only
express the state of instance and non-instance for
some objects, instead of all objects. That is, one
has a partially known concept defined by a lower
bound and upper bound of its extension.

• Undefinable concepts and approximations. In
general, the intension of a concept may be de-
fined by using a logical language, such as the de-
cision logic language in rough set theory [23] and
knowledge representation languages of description
logic [1]. It may happen that some objects can-
not be differentiated due to the use of a fixed and
limited set of attributes for their description. The
language may not be able to define certain sets of
objects that are the extensions of some concepts.
That is, we have some undefinable concepts with
respect to a particular language. We have to ap-
proximate undefinable concepts by definable con-
cepts [15, 23, 47].

• Complex concepts and approximations. In this
case, one knows the exact extension of a concept
and the language can precisely define the concept.
However, the description may be too complex to
be of any practical value; it may be difficult to un-
derstand and manipulate. This may require us to
approximate the concept by some concepts with
simple descriptions.

Each of these scenarios represents a different semantics
interpretation of inexact, imprecise or vague concepts.

These non-classical semantics of concepts require
distinct generalizations of standard sets. The theory
of fuzzy sets provides a generalization of crisp sets
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for representing concepts with grey boundaries [54].
The last three scenarios are suggested and discussed by
Marek and Truszczyński [15] for motivating the theory
of rough sets. A closer examination of Pawlak’s pro-
posal [22, 23] shows that the theory of rough sets was
originally formulated as a model for approximating un-
definable concepts by definable concepts. To some ex-
tent, it also covers approximation of complex concepts
by simple concepts. Studies of undefinable concepts,
complex concepts and approximations are closely re-
lated. Practically speaking, concepts with very com-
plex descriptions may be viewed as undefinable con-
cepts and concepts with simple descriptions as definable
concepts. Shadowed sets [25], as approximations of
fuzzy sets, provide another appropriate model for study-
ing approximation of concepts with grey boundaries.

Partially known concepts may be considered as
qualitative grey concepts, which can be modeled by
three-valued logic [50]. The boundary of a partially
known concept is made up objects whose belongingness
to the concept are unknown. Interval sets seem to pro-
vide a more suitable model for studying partially known
concepts [42, 50, 52, 53].

The main objective of this paper is to review main
results and to report new results on interval sets and
interval-set algebras. In Section 2, two semantics in-
terpretations of interval sets are examined. Interval
sets can be used for modeling and processing partially
known concepts, and for approximating undefinable or
complex concepts. In Section 3, operations on inter-
val sets are defined based on the notion of lifted oper-
ations in power algebras [2]. In Section 4, two kinds
of interval-set algebras are investigated based on an in-
clusion ordering and a knowledge ordering [15, 36], re-
spectively. Section 5 reviews additional studies related
to interval sets.

2. Interval Sets

Interval sets are defined and interpreted in a simi-
lar way that interval numbers are introduced in interval
analysis [18]. Interval sets and associated algebras may
be considered as counterparts of interval numbers and
interval arithmetics. The results from the latter can be
used in the study of the former [42].

Interval sets and interval-set algebras are similar to
flou sets and systems [8, 20] in terms of their mathe-
matical structures. However, our emphasis is on the se-
mantics interpretations. A flou set is treated as a pair
of sets or a three-valued membership function [8, 20].
Although an interval set corresponds to a pair of sets, it
consists of a family of sets. Interval sets are constructed
based on two specific semantics interpretations.

2.1. Interval sets for modeling partially known
concepts

The notion of interval sets is a new kind of sets,
represented by a pair of sets, namely, its lower and up-
per bounds [42, 50, 52, 53]. Mathematically, interval
sets are defined as follows. Let U be a finite set, called
the universe or the reference set, and 2U be its power
set. A subset of 2U of the form,

A = [Al ,Au] = {A ∈ 2U | Al ⊆ A⊆ Au}, (1)

is called a closed interval set, where it is assumed that
Al ⊆ Au. Being an interval of the power set lattice 2U ,
an interval set A is also a lattice, with the minimum
element Al , the maximum element Au, and the standard
set-theoretic operations. The set of all closed interval
sets is denoted by:

I(2U ) = {[Al ,Au] | Al ,Au ⊆U,A1 ⊆ Au}. (2)

Degenerate interval sets of the form [A,A] are equivalent
to ordinary sets.

Semantically, an interval set, when interpreted as a
family of sets of objects, provides an appropriate means
to represent a partially known concept [41, 42]. Al-
though the extension of a concept is actually a subset
of U , a lack of knowledge makes us unable to specify
this subset. We can only provide a lower bound Al and
an upper bound Au. Any subset A that lies between Al
and Au, namely, Al ⊆ A ⊆ Au, can be the actual exten-
sion of the concept. The set,

BND([Al ,Au]) = Au−Al , (3)

is called the boundary of the interval set [Al ,Au]. For
those elements, we are unable to tell if they are in-
stances or non-instances of the concept.

Interval sets are subsets of the universe U . The
symbols ∈,⊆,=,∩,∪ may be used, in their usual set-
theoretic sense, to represent relationships between ele-
ments of 2U and an interval set, and between different
interval sets. Thus, A ∈ [Al ,Au] means that A is a subset
of U such that Al ⊆ A⊆ Au. We write [Al ,Au]⊆ [Bl ,Bu]
if the interval set [Al ,Au] as an ordinary set is con-
tained in [Bl ,Bu] as an ordinary set. In other words,
by [Al ,Au] ⊆ [Bl ,Bu] we mean that Bl ⊆ Al ⊆ Au ⊆ Bu.
Similarly, two interval sets are equal, written A = B,
if they are equal in set-theoretic sense, that is A = B if
and only if Al = Bl and Au = Bu.

Consider an example for interpreting interval set.
Suppose U is a set of patients and A ⊆U is the subset
of patients having a particular disease. Typically, it may
be impossible to identify the set A based on observable
symptoms, available tests results, and current medical
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knowledge. The set Al consists of patients who for sure
have the disease; the set U−Au consists of patients who
do not have the disease; the set Au−Al consists patients
who may or may not have the disease but we are unable
to tell which is the case. We only have a pair of bounds
for A and any subset that lies within the bounds may be
the actual set A.

Consider now another example. Let U be the set of
papers submitted to a conference. After the first round
of review, one may form three sets, the set of accepted
papers Al , the set of rejected papers U − Au, and the
set of papers subject to a second round of review Au−
Al . Although papers in Au−Al will eventually be either
accepted or rejected, one has no knowledge about it at
the current stage. One has to make plan based on an
interval set [Al ,Au] at this stage, with an assumption that
any subset A that lies within Al and Au may be the set of
finally accepted papers.

2.2. Interval sets for approximating undefin-
able or complex concepts

The discussions of interval sets so far have not
made any assumptions on the two ending point of an
interval set. This enables us to consider the family of
all possible interval sets. When using interval sets to
approximate undefinable or complex concepts, we only
consider families of interval sets whose ending sets sat-
isfy certain conditions. For modeling undefinable con-
cepts, the ending sets of an interval set must be exten-
sions of definable concepts; for modeling approximate
concepts, the ending sets must be extensions of sim-
ple concepts. In the context of rough set theory, the
former was suggested by Iwiński [7] and studied by
Yao [42, 44], and the latter was suggested by Marek
and Truszczyński [15]. The former interpretation is also
consistent with the interpretation of interval numbers;
the two ending numbers of an interval number are num-
bers that must be representable in a computer.

In rough set theory, a family of definable sets is
constructed from an equivalence relation (i.e., a reflex-
ive, symmetric, and transitive relation). Consider an
equivalence relation E on the universe U . It induces a
partition of the universe and is denoted by U/E. From
U/E, we can construct an σ -algebra, σ(U/E), which
contains the empty set /0, equivalence classes of E, and
is closed under set intersection, union and complement.
The partition U/E is a base of σ(U/E). The σ -algebra
σ(U/E) consists of all definable subsets of U . Detailed
discussions on the construction of equivalence relations
in an information table and the definability of subsets in
σ(U/E) can be found in references [15, 23, 47].

For a pair of definable sets Al ,Au ∈ σ(U/E) with

Al ⊆ Au, an interval set is defined by:

A = [Al ,Au]
= {A ∈ 2U | Al ⊆ A⊆ Au,

Al ,Au ∈ σ(U/E)}. (4)

This interval set corresponds to the pair of definable sets
(A1,Au) that was called a rough set first by Iwiński [7]
in a sense different from Pawlak’s rough sets. Yao [44]
referred to the pair (Al ,Au) as an Iwiński rough set to
be differentiated from a Pawlak rough set. Marek and
Truszczyński [15] called the pair 〈Al ,Au〉 an approxi-
mation of any subset of A ⊆U such that Al ⊆ A ⊆ Au
or a rough set. Furthermore, they showed that every
Iwiński rough set is a Pawlak rough set and vice versa
if and only if every equivalence class contains at least
two objects.

With respect to the family of definable sets
σ(U/E), the set of all closed interval sets is denoted
by:

IR(2U ) = {[Al ,Au] | Al ,Au ∈ σ(U/E),A1 ⊆ Au}. (5)

In general, we have I(2U ) ⊂ IR(2U ). An interval set
in I(2U ) represents a partially known concept. An in-
terval set in IR(2U ) represents an approximation of an
undefinable set. There are subtle semantics differences
between those interpretations of interval sets.

Alternatively, one may construct an σ -algebra in
which each subset representing a concept with a sim-
ple description. A subset not in the σ -algebra repre-
sent a concept with a complex description. The same
argument can be easily applied to this case where we
can approximate a complex concept by a pair of simple
concepts.

3. Interval Set Operations

Recall that an interval set is interpreted as a set of
sets. Interval-set operations can be defined as lifted op-
erations in a power algebraic setting [42].

3.1. Power algebras

The notion of power algebras was proposed and
studied by Brink [2]. Let U be a set and ◦ a binary
operation on U . One can define a binary operation ◦+
on subsets of U as follows [2]:

X ◦+ Y = {x◦ y | x ∈ X ,y ∈ Y}, (6)

for any X ,Y ⊆U . In general, one may lift any operation
f on elements of U to an operation f + on subsets of U ,
called the power operation of f . Suppose f : Un −→U
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(n≥ 1) is an n-ary operation on U . The power operation
f + : (2U )n −→ 2U is defined by [2]:

f +(X1, . . . ,Xn) =
{ f (x1, . . . ,xn) | xi ∈ Xi for i = 1, . . . ,n}, (7)

for any X1, . . . ,Xn ⊆ U . This provides universal-
algebraic construction approach. For any algebra
(U, f1, . . . , fk) with base set U and operations f1, . . . , fk,
its power algebra is given by (2U , f +

1 , . . . , f +
k ).

The power operation f + may carry some properties
of f . For example, for a binary operation f : U2 −→U ,
if f is commutative and associative, f + is commutative
and associative, respectively. If e is an identity for some
operation f , the set {e} is an identity for f +. If an unary
operation f : U −→U is an involution, i.e., f ( f (x)) =
f (x), f + is also an involution. On the other hand, many
properties of f are not carried over by f +. For instance,
if a binary operation f is idempotent, i.e., f (x,x) = x,
f + may not be idempotent. If a binary operation g is
distributive over f , g+ may not be distributive over f +.

A special type of power algebra is called interval
algebra, in which operations on elements of a poset U
are lifted to intervals of U , instead of arbitrary subsets
of U . In doing so, the power operation f + may carry
additional properties of f . The notion of interval alge-
bras forms a basis of uncertain reasoning with intervals.
Interval-set algebras may be considered to be a special
case.

3.2. Interval-set operations as lifted operations

Let ∩,∪ and − be the usual set intersection, union
and difference defined on 2U , respectively. Following
the results of power algebras, we can lift set operations
into interval-set operations. Specifically, for two inter-
val sets A = [Al ,Au] and B = [Bl ,Bu] we have:

A uB = {A∩B | A ∈A ,B ∈B},
A tB = {A∪B | A ∈A ,B ∈B},
A \B = {A−B | A ∈A ,B ∈B}. (8)

These operations are referred to as interval-set intersec-
tion, union and difference. They are closed on I(2U ),
namely, A uB, A tB and A \ B are interval sets.
In fact, these interval sets can be explicitly computed by
using the following formulas:

A uB = [Al ∩Bl ,Au∩Bu],
A tB = [Al ∪Bl ,Au∪Bu],
A \B = [Al−Bu,Au−Bl ]. (9)

Similarly, the interval-set complement ¬[Al ,Au] of
[Al ,Au] is defined as [U,U ] \[Al ,Au]. This is equiva-
lent to [U −Au,U −Al ] = [Ac

u,A
c
l ], where Ac = U −A

denote the usual set complement operation. Clearly, we
have ¬[ /0, /0] = [U,U ] and ¬[U,U ] = [ /0, /0].

Based on these operations, one can show the cor-
respondence between systems of interval sets, Iwiński
rough sets and flou sets. All of them share similar math-
ematical structures, but with different semantics inter-
pretations.

For operations u,t and ¬, the following properties
hold: for A ,B,C ∈ I(2U ),

(I1) Idempotent :
A uA = A ,

A tA = A ;
(I2) Commutativity :

A uB = BuA ,

A tB = BtA ;
(I3) Associativity :

(A uB)uC = A u (BuC ),
(A tB)tC = A t (BtC ),

(I4) Distributivity :
A u (BtC ) = (A uB)t (A uC ),
A t (BuC ) = (A tB)u (A tC );

(I5) Absorption :
A u (A tB) = A ,

A t (A uB) = A ;
(I6) De Morgan’s laws :

¬(A uB) = ¬A t¬B,

¬(A tB) = ¬A u¬B;
(I7) Double negation law :

¬¬A = A ,

(I8) [U,U ] and [ /0, /0] are the unique identities for
interval-set intersection and union, that is,
A = X uA = A uX for all A ∈ I(2U )
⇐⇒X = [U,U ],

A = Y tA = A tY for all A ∈ I(2U )
⇐⇒ Y = [ /0, /0].

These properties may be regarded as the counterparts of
the properties of the corresponding set-theoretic opera-
tions. However, for an interval set A , A u¬A is not
necessarily equal to [ /0, /0], A t¬A is not necessarily
equal to [U,U ], and A \ A is not necessarily equal to
[ /0, /0]. Nevertheless, the following properties hold:

(I9) /0 ∈A u¬A ,

U ∈A t¬A ,

/0 ∈A \ A .
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Therefore, I(2U ) is a completely distributive lattice but
not a Boolean algebra [20].

The proposed operations u, t, \, and ¬ are not the
same as the standard set operations. The following rela-
tionship holds between the standard set intersection and
the interval-set intersection:

[Al ,Au]∩ [Bl ,Bu]⊆ [Al ,Au]u [Bl ,Bu]. (10)

However, there do not exist similar relationships be-
tween other set and interval-set operations. When only
degenerate interval sets are used, the interval-set oper-
ations u, t and \ reduce to the usual set intersection,
union and difference.

4. Interval-Set Algebras

We study two types of algebras based on two or-
dering relations defined on the family of interval sets,
one is called inclusion or truth ordering and the other is
called knowledge ordering [15, 36].

4.1. Algebra based on inclusion ordering

Suppose A and B are two sets representing exten-
sions of two partially known concepts. They can be
expressed as interval sets [Al ,Au] and [Bl ,Bu], respec-
tively. Although we may not know the exact members
of A and B, we may have additional information sug-
gesting A ⊆ B. Based on interval-set representation, it
is reasonable to require that Al ⊆ Bl and Au ⊆ Bu. This
leads to the introduction of an inclusion ordering v on
interval sets[7, 15, 36, 42].

The inclusion of interval sets may be defined by:

[Al ,Au]v [Bl ,Bu]
⇐⇒ Al ⊆ Bl ∧Au ⊆ Bu

⇐⇒ (∀A ∈ [Al ,Au] ∃B ∈ [Bl ,Bu] A⊆ B)∧
(∀B ∈ [Bl ,Bu] ∃A ∈ [Al ,Au] A⊆ B). (11)

Based on this definition, for two interval sets A and B,
A = B if and only if A vB and B vA .

For A ,B,C ,D ∈ I(2U ), the following properties
hold for the v relation:

(i1) A vB⇐⇒A uB = A ,

A vB⇐⇒A tB = B;
(i2) A vB and C vD =⇒A uC vBuD ,

A vB and C vD =⇒A tC vBtD ;
(i3) A uB vA , A uB vB,

A vA tB, B vA tB.

Like its counterpart in set theory, the relation v on
I(2U ) is a reflexive and transitive relation. On the other

hand, for two interval sets A and B with A vB, the
difference A \ B is not necessarily equal to [ /0, /0]. In
this case, we only have A vB =⇒ /0 ∈A \B.

The inclusion relation v is the ordering relation
that defines the lattice with operations u and t. We
obtain two interval-set algebras. One algebra is a com-
pletely distributive lattice (I(2U ),u,t), or (I(2U ),v),
consisting of all possible interval sets. The other
is a completely distributive lattice (IR(2U ),u,t), or
(IR(2U ),v), consisting of all interval sets whose end-
ing sets are from an σ -algebra σ(U/E).

4.2. Algebra based on knowledge ordering

An interval set is a family of sets. We can apply
standard set operations and relations to interval sets.
Consider two interval sets with [Al ,Au] ⊆ [Bl ,Bu]. It is
reasonable to say that we have more knowledge about
the concept represented by [Al ,Au] than the concept
represented by [Bl ,Bu], as we are more sure about the
former than the latter. This suggests that the standard
set inclusion provides a knowledge ordering on interval
sets [15, 36].

A knowledge ordering �k on interval sets can be
defined by [15]:

[Bl ,Bu]�k [Al ,Au]
⇐⇒ [Al ,Au]⊆ [Bl ,Bu]
⇐⇒ Bl ⊆ Al ⊆ Au ⊆ Bu. (12)

In some sense, the knowledge ordering reflect the fact
that [Al ,Au] is tighter than [Bl ,Bu]. Again, two interval
sets are equal, namely, A = B, if and only if Al = Bl
and Au = Bu. For easy interpretation, we will use the
standard set inclusion ⊆ as a knowledge ordering.

The set intersection of two interval sets is an inter-
val set, namely, for A = [Al ,Au] and B = [Bl ,Bu],

A ∩B =

 [Al ∪Bl ,Au∩Bu], Al ∪Bl ⊆ Au∩Bu;

[ /0, /0], otherwise.
(13)

However, A ∪B is not necessarily an interval set in
general; it is an interval set when A ⊆B or B ⊆ A .
For A ,B,C ,D ∈ I(2U ), the following properties hold
for the ⊆ relation on interval sets:

(k1) A ⊆B⇐⇒A ∩B = A ,

A ⊆B⇐⇒A ∪B = B;
(k2) A ⊆B and C ⊆D =⇒A ∩C ⊆B∩D ;
(k3) A ∩B ⊆A , A ∩B ⊆B.

In these properties, we only consider a standard set op-
eration on interval sets when the result is also an interval
set.
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The relation⊆ on I(2U ) is a reflexive and transitive
relation. It is the ordering relation for defining the semi-
lattice operation ∩. With respect to the knowledge or-
dering ⊆, we again have two interval-set algebras. One
algebra is the semi-lattice (I(2U ),∩), or (I(2U ),⊆),
and the other algebra is the semi-lattice (IR(2U ),∩), or
(IR(2U ),⊆).

5. Studies Related to Interval Sets

In this section, we briefly review additional studies
related to interval sets in order to further demonstrate
the potential of interval sets and interval-set algebras.

Interval sets and rough sets: Pawlak rough sets,
Iwiński rough sets and interval sets are related to pairs
of definable sets. Many studies treat Iwiński rough sets
as if they are Pawlak rough sets by ignoring their subtle
differences. Pawlak rough-set operations are non-truth-
functional and Iwiński rough-set operations are truth-
functions [44, 57].

Many studies on rough sets are related to inter-
val sets. Davvaz [5] proposed T-rough sets based
on set-valued mapping. They are Iwiński rough sets,
or interval sets, constructed based on two universes.
Many authors, including, for example, Wong et al. [37],
Yao [44], Pei and Xu [28], Shu and He [31], Li [10], Li
and Zhang [11], Gong and Sun [6], Mi et al. [16] and
Pei and Fan [27], studied rough sets and fuzzy rough
sets over universes. The results can be easily related to
interval sets and interval fuzzy sets [52]. Yamaguchi et
al. [38] proposed the notion of grey-rough sets based
on interval-valued attributes and compared it with other
definitions of rough sets and interval sets. Oukbir [21]
examined the connections between rough sets and in-
terval sets and considered their potential applications in
spatial information systems. Kerre [8] examined con-
nections among flou sets, fuzzy sets, and rough sets.

Mousavi and Jabedar-Maralani [19] examined the
relationships between relative sets and interval sets. The
relative sets consider both inclusion (truth) ordering and
knowledge ordering of a bilattice. They pointed out that
the original interval-set algebra considers only the in-
clusion ordering but not the knowledge ordering. The
studies by Marek and Truszczyński [15] and by Wol-
ski [36] consider both orderings. In the Section 4.2 of
this paper, we also consider the knowledge ordering, al-
though slightly different from these studies. Wang and
Zhang [35] investigated two implication operators on
interval sets and rough sets and studied other structures
of interval-set algebras. Zhang and Jia [58] proposed
the notion of lattice-valued interval sets and examined
the differences between flou sets and interval sets.

Interval sets and granular computing: Granular
computing is a new paradigm of human-inspired com-
puting [12, 26, 40, 49]. The triarchic theory of granu-
lar computing consists of the structured thinking, struc-
tured problem solving and structured information pro-
cessing with multi-level granular structures [46, 48]. A
central notion of granular computing is a granule that
presents an entity or a focal point under discussion.
Rough set theory [23, 24], quotient space theory [56]
and fuzzy set theory [54, 55] provide concrete mod-
els of granular computing [45]. Interval-number alge-
bra and interval-set algebra are also concrete models of
granular computing [45]. Tahayori et al. [33] argue that
distributed intervals can be used to establish a formal
framework for information granulation, where interval-
set algebra is a special case.

Interval sets, three-valued logic, and reasoning:
As suggested by Yao [42], interval sets provide another
qualitative sets in comparison with fuzzy sets. An inter-
val set can be characterized by a three-valued member-
ship function from U to the three-elements set {0,u,1},
where 0 stands for a non-membership, 1 for member-
ship, and u for an unknown membership that may ac-
tually be either 0 or 1. For an interval set [Al ,Au], el-
ements in Al have the membership value 1, elements
in Au−Ul have the membership value u, and elements
in U −Au have membership value 0. The same mem-
bership function can be used to interpret a flou set [8].
Under this setting, interval-set operations are defined
by Kleene’s three-valued logic [50]. Yao [44] showed
that interval sets and operations are related to Iwiński
rough sets and operations. Dai [3, 4] discussed con-
nections between rough sets and 3-valued Łukasiewicz
algebras based essentially on Iwiński rough sets. Rea-
soning based on interval sets have been examined by
several authors (for example, Yao [43], Yao and Li [50],
Yao and Wong [53], Yamauchi and Mukaidono [39],
Qi [29], and Qi et al. [30]).

With respect to the same mathematical structure
used, we have very different semantics interpretations.
A flou set is a set defined by a three-valued membership
function, and an interval set is a family of sets.

Interval set clustering: Many clustering ap-
proaches treat clusters as sets with well-defined bound-
ary or fuzzy sets with quantitatively gradually changing
boundary. Motivated by the notions of lower and up-
per approximations in rough sets, Lingras [13, 14] pro-
posed and studied rough set clustering and interval set
clustering. A basic assumption is that the actual set cor-
responding to a cluster is not entirely known. For each
cluster, it is only possible to provide a pair of lower
and upper bounds based on the available information.
This assumption seems to be consistent with the inter-
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pretation of interval sets as representations of partially
known concepts. The extensive results from Lingras’
group demonstrate that interval set clustering is appli-
cable to real-world problems.

Interval-set-valued information tables and anal-
ysis: In an interval-set-valued information table, an ob-
ject may have an interval set as its value on an attribute.
This presents a generalization of set-valued information
tables. Yao and Liu [51] introduced a generalized deci-
sion logic for interval-set-valued information tables.

Leung et al. [9] and Miao et al. [17] considered
the problem of attribute reduction and rule learning in
interval-valued information tables. Sun et al. [32] con-
sidered attribute reduction in interval-valued fuzzy in-
formation tables. The results may be applied to attribute
reduction in interval-set-valued information tables.

6. Conclusion

Interval sets provide a new means for representing
partially known concepts or for approximating undefin-
able concepts or complex concepts. Interval sets are
closely related to, and complementary to, fuzzy sets,
rough sets, and flou sets. An important characteristic
of interval sets is that an interval set is a family of sets.
Based on this interpretation, operations on interval sets
are investigated. Based on an inclusion ordering and a
knowledge ordering, two types of interval-set algebras
are examined. A brief summary of studied related to
interval sets is provided.

By studying interval sets and interval-set algebras,
we hope to gain more insights into the representation
and processing of imprecise or partially known con-
cepts, and into the approximations of undefinable or
complex concepts. One would find more development
and applications of interval sets in the near future.
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