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Abstract

This paper examines two interval based uncertain reasoning methods, one
is based on interval fuzzy sets, and the other is based on rough sets. The
notion of interval triangular norms is introduced. Basic issues on the use of
t-norms for approximate reasoning with interval fuzzy sets are addressed.
Inference rules are given for using both numeric intervals and lattice based
intervals. The theory of rough sets is used to approximate truth values of
propositions and to explore modal structures in many-valued logic. Rea-
soning based on rough sets is complementary to reasoning based on interval
fuzzy sets.

1. Introduction

A fuzzy set is defined in terms of a function from a universe to the unit
interval [0, 1]. That is, the membership of each element belonging to a fuzzy
set is a single value between 0 and 1. The intersection and union of fuzzy
sets are defined in terms of min-max system, probabilistic-like system, and
more generally triangular norms and conorms (t-norms and t-conorms for
short). Such a single-value-based system is commonly known as the type-1
fuzzy set system. In practical applications, there is also a need to represent
the membership of an element by using a fuzzy set in [0, 1], instead of a sin-
gle value. This system is known as the type-2 fuzzy set system. Operations
on type-2 fuzzy sets are defined by extending the operations on the fuzzy
sets representing element memberships. Studies on operations of type-2
fuzzy sets have been concentrated mainly on the min-max system [6, 19].
In addition, inference with type-2 fuzzy sets is computationally expensive.
In order to overcome this difficulty, special cases of type-2 fuzzy sets have
been considered [9, 23]. For example, fuzzy sets representing memberships
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of elements may be restricted to fuzzy intervals of [0, 1]. If ordinary subin-
tervals of [0, 1] are used to represent membership, one obtains the interval
fuzzy sets commonly known as Φ-fuzzy sets [23].

Although it is important to study type-2 fuzzy sets, in the general case,
based on the calculus of fuzzy quantities [9], it is equally important to study
some special cases. The particular characteristics of each special case may
offer more efficient algorithms and more insights that may not be obtained
in the general case. For example, one can derive closed-form solutions of
fuzzy set operations for fuzzy intervals [9]. Kenevan and Neapolitan [13]
studied interval fuzzy sets based on the usual min-max system. Dubois and
Prade [9], and Goodman et al. [12] studied the same problem of extending
min-max system to interval fuzzy sets, in connection to Lukasiwicz many-
valued logic and interval analysis. Turksen [25] discussed the notion of
interval-valued fuzzy sets constructed from the disjunctive and conjunctive
normal forms, DNF and CNF, in which certain types of t-norms can be
used. Operations on interval-valued fuzzy sets are defined by considering
all possible combinations of DNF and CNF [26]. On the other hand, in Φ-
fuzzy sets, an interval is merely regarded as the range within which lies the
true membership [13, 23]. The computation of fuzzy set operations may be
simplified. Dubois and Prade [8] introduced the notion of twofold fuzzy sets,
which is a special kind of Φ-fuzzy sets such that the lower bound of a twofold
fuzzy set is included in the core of the upper bound. More specifically,
the lower and upper bounds are interpreted as bounds of necessity and
possibility. Consequently, the min-max system is used to define operations
on twofold fuzzy sets. Bonissone [1, 2] proposed an approximate reasoning
model with interval representation of uncertainty, in which four operations
are defined using t-norms.

The theory of rough sets offers a different interval based method. The
interval approximations stem from a lack of sufficient information or incom-
plete information. A set is assumed to be precisely defined. However, the
available information, given in terms of equivalent classes, does not allow us
to describe the set exactly. In other words, it may be impossible to describe
a precisely defined set with equivalence classes. In this case, a pair of lower
and upper approximations is obtained. The lower approximation contains
all elements necessarily belonging to the set, while the upper approximation
contains all elements possibly belonging to the set. Inference with rough
sets can be done in a similar manner, as in modal logic [30].

The results of the above studies motivate the present investigation of
interval based uncertain reasoning using fuzzy and rough sets. One of the
main objectives of this paper is to study extended t-norms (called interval
t-norms) for interval fuzzy set operations. Interval t-norms are defined as
two-place functions on the closed subintervals of [0, 1] by drawing results
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from interval computation. Using interval t-norms, operations on interval
fuzzy sets can be efficiently computed, i.e., by computing only values of two
extreme points of intervals. A set of inference rules is presented based on
interval t-norms. Inference using interval L-fuzzy sets is also considered.
Another objective is to examine an interval based inference method using
rough sets. It presents a complementary view to reasoning based on interval
fuzzy sets.

2. Interval Computation

An interval number [a, a] with a ≤ a is the set of real numbers defined by:

[a, a] = {x | a ≤ x ≤ a}. (1)

The set of all interval numbers is denoted by I(ℜ). Degenerate intervals of
the form [a, a] are equivalent to real numbers.

One can perform arithmetic with interval numbers through the arith-
metic operations on their members [20, 21]. Let A and B be two interval
numbers, and let ∗ denote an arithmetic operation +, −, · or / on pairs
of real numbers. An arithmetic operation ∗ may be extended to pairs of
interval numbers A,B:

A ∗B = {x ∗ y | x ∈ A, y ∈ B}. (2)

The result A ∗ B is again a closed and bounded interval unless 0 ∈ B and
the operation ∗ is division (in which case, A ∗B is undefined). In fact, the
following formulas can be used: for A = [a, a] and B = [b, b],

A+B = [a+ b, a+ b],

A−B = [a− b, a− b],

A · B = [min(a b, a b, a b, a b),max(a b, a b, a b, a b)],

A / B = [a, a] · [1/b, 1/b] for 0 6∈ [b, b]. (3)

In the special case where both A and B are positive intervals, the multipli-
cation can be simplified to:

A · B = [a b, a b], 0 ≤ a ≤ a, 0 ≤ b ≤ b. (4)

Many properties of the arithmetic operations on pairs of real numbers can
be carried over to the new arithmetic operations on pairs of interval num-
bers. For example, the addition operation + on interval numbers is also
associative and commutative.
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The arithmetic of interval numbers can be easily extended to any func-
tion. Let f be a function from ℜ× ℜ to ℜ. The corresponding function F
of interval numbers can be defined:

F (A,B) = {f(x, y) | x ∈ A, y ∈ B}. (5)

Operations such as addition, subtraction, multiplication, and division are
only special cases. However, in general there is no guarantee that the ex-
tended function F is an interval-valued function. The following theorem
provides a sufficient condition for F to be interval-valued, which can be
easily proved by using the intermediate value theorem for continuous func-
tions.

Theorem 1 Suppose f is a continuous function from ℜ × ℜ to ℜ. Given
any pair of closed and bounded intervals A and B in ℜ, F (A,B) is a closed
interval, namely,

F (A,B) = [ inf
x∈A,y∈B

f(x, y), sup
x∈A,y∈B

f(x, y)]. (6)

This suggests that the extended interval-valued function corresponding
to a continuous function can be easily computed. It is sufficient to find only
the maximum and minimum values. If one further assumes that the func-
tion is isotonic, the computation is reduced to only end points of intervals
as shown in the following corollary [9].

Corollary 1 Suppose f is a continuous isotonic function from ℜ× ℜ to
ℜ, that is, for all x, x′, y, y′ ∈ ℜ,

(x ≤ x′, y ≤ y′) =⇒ f(x, y) ≤ f(x′, y′). (7)

Then,
F (A,B) = [f(a, b), f(a, b)]. (8)

The interval computation method may also be applied to non-numeric
cases [31]. Let L be a lattice with operations ⊗ and ⊕. A closed interval
A = [a, a] of L, with a � a, is the set of elements bounded by a and a.
That is, A = [a, a] = {x ∈ L | a � x � a}. Let I(L) denote the set of all
intervals formed from L. We may extend operations ⊗ and ⊕ to elements
of I(L) as follows:

[a, a] ⊗ [b, b] = {x⊗ y | x ∈ [a, a], y ∈ [b, b]},

[a, a] ⊕ [b, b] = {x⊕ y | x ∈ [a, a], y ∈ [b, b]}. (9)

For simplicity, the same set of symbols has been used for operations on
both L and I(L). In general, these operations may not be closed on I(L).
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Figure 1: A non-distributive lattice

Consider a non-distributive lattice given in Figure 1. For two intervals [a, 1]
and [b, 1], we have:

[a, 1] ⊗ [b, 1] = {0, a, b, 1},

which is not an interval. Similarly, for two intervals [0, a] and [0, c], we
have:

[0, a] ⊕ [0, c] = {0, a, c, 1},

which is also not an interval.
Operations ⊗ and ⊕ on L have isotonicity properties similar to equa-

tion (7), namely,

(a � a′, b � b′) =⇒ a⊗ b � a′ ⊗ b′,

(a � a′, b � b′) =⇒ a⊕ b � a′ ⊕ b′. (10)

It is expected that a simple computation method can be used if extended
operations are indeed closed on I(L). As shown by the following theorem, a
sufficient condition for these operations to be closed is that the lattice L is
distributive. In addition, the extended operations can be easily computed
by considering only ending points of intervals.

Theorem 2 Suppose L is a distributive lattice. Then,

[a, a] ⊗ [b, b] = [a⊗ b, a⊗ b],

[a, a] ⊕ [b, b] = [a⊕ b, a⊕ b]. (11)
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Moreover, I(L), with operations ⊗ and ⊕, forms a distributive lattice.

Proof. The inclusion [a, a]⊗ [b, b] ⊆ [a⊗ b, a⊗ b] follows trivially from the
properties of lattice, namely, a � x � a and b � y � b imply a⊗b � x⊗y �
a⊗ b. Now suppose z ∈ [a⊗ b, a⊗ b]. We only need to show there exists a
pair x ∈ [a, a] and y ∈ [b, b] such that x ⊗ y = z. Let x = (a ⊕ z) ⊗ a and
y = (b ⊕ z) ⊗ b. It is easily verified that[5, page 65]:

x ∈ [a, a], y ∈ [b, b].

It follows,

x⊗ y = ((a⊕ z) ⊗ a) ⊗ ((b⊕ z) ⊗ b)

= ((a⊕ z) ⊗ (b⊕ z)) ⊗ (a⊗ b)

= ((a⊗ b) ⊕ z) ⊗ (a⊗ b)

= z ⊗ (a⊗ b)

= z.

Therefore, [a, a] ⊗ [b, b] = [a ⊗ b, a ⊗ b]. Similarly, we can show that the
operation ⊕ is also closed. It can be easily checked that if L is a distributive
lattice, then I(L) is a distributive lattice. In particular, the order relation
on intervals is given by [a, a] � [b, b] if and only if a � b and a � b. 2

To differentiate it from the original lattice L, we call I(L) an interval
lattice. If L is a Boolean lattice, one may extend the complement operation
⊖ as follows:

⊖[a, a] = {⊖x | x ∈ [a, a]}

= [⊖a,⊖a]. (12)

For a Boolean lattice L, I(L) is not a Boolean lattice but a complete dis-
tributive lattice.

3. T-norms and Interval T-norms

A t-norm is a function from [0, 1]× [0, 1] to [0, 1] and satisfies the following
conditions: for a, b, c ∈ [0, 1],

(i). Boundary conditions

t(0, 0) = 0,

t(1, a) = t(a, 1) = a;
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(ii). Monotonicity

(a ≤ c, b ≤ d) =⇒ t(a, b) ≤ t(c, d);

(iii). Symmetry

t(a, b) = t(b, a);

(iv). Associativity

t(a, t(b, c)) = t(t(a, b), c)).

Some commonly used t-norms are tb(a, b) = max(0, a+ b− 1), tmin(a, b) =
min(a, b), the product operation tp(a, b) = a ·b, and tw defined by boundary
conditions and tw(a, b) = 0, ∀(a, b) ∈ [0, 1) × [0, 1). These t-norms are
related by inequality [7]:

tw(a, b) ≤ tb(a, b) ≤ tp(a, b) ≤ tmin(a, b). (13)

Moreover, any t-norm is bounded by tw and tmin, i.e.,

tw(a, b) ≤ t(a, b) ≤ tmin(a, b). (14)

Suppose n : [0, 1] −→ [0, 1] is an operation called negation. With respect
to a negation operation, the dual of a t-norm is called a t-conorm, which
is a function s mapping [0, 1] × [0, 1] to [0, 1] and satisfying the boundary
conditions

(i′). Boundary conditions

s(1, 1) = 1,

s(a, 0) = s(0, a) = a,

and conditions (ii)-(iv). Suppose the negation operation is defined by
n(a) = 1 − a. The t-conorm s corresponding to a t-norm t is given by:

s(a, b) = n(t(n(a), n(b)))

= 1 − t(1 − a, 1 − b). (15)

The t-conorms of tmin, tp and tb are smax(a, b) = max(a, b), sp(a, b) =
a+ b− ab, and sb(a, b) = min(1, a+ b), respectively.

Based on the results from interval computation, the notion of t-norms on
single values in [0, 1] can be extended to subintervals of [0, 1]. Let I([0, 1])
denote the set of all closed subintervals of [0, 1]. For a given t-norm t, an
extended t-norm is defined by:

T (A,B) = {t(x, y) | x ∈ A, y ∈ B}. (16)

Similarly, an extended t-conorm is defined by:

S(A,B) = {s(x, y) | x ∈ A, y ∈ B}. (17)
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In general, T (A,B) and S(A,B) may not necessarily be subintervals of
[0, 1]. From Corollary 1, one can conclude that they are indeed intervals for
the class of continuous t-norms. In this case, the results of interval t-norms
can be easily computed by considering only extreme points of intervals.

Theorem 3 Suppose t is a continuous t-norm. For any two intervals A =
[a, a] and B = [b, b], the interval t-norm produces the following interval:

T (A,B) = [t(a, b), t(a, b)]. (18)

The interval t-conorm of a continuous t-conorm s produces the interval:

S(A,B) = [s(a, b), s(a, b)]. (19)

This theorem trivially follows from the definitions of t-norms and t-
conorms, and Corollary 1. The extended functions T and S are referred to
as interval t-norms and t-conorms.

For the negation operation n(a) = 1 − a, an extended negation on
intervals of [0, 1] is defined by:

N([a, a]) = {n(x) | x ∈ [a, a]}

= {1 − x | x ∈ [a, a]}

= [1, 1]− [a, a]

= [1 − a, 1 − a]. (20)

An interval t-conorm is related to an interval t-norm in terms of extended
negation by:

S(A,B) = N(T (N(A), N(B)))

= [1, 1] − T ([1, 1]−A, [1, 1]−B). (21)

When degenerated intervals of the form [a, a] are used, interval t-norms
reduce to t-norms. Interval t-norms are interval extension of t-norms [21].
Interval t-norms corresponding to min(a, b), a · b, and max(0, a+ b− 1) can
be computed by:

Tmin(A,B) = [min(a, b),min(a, b)],

Tp(A,B) = [a b, a b],

Tb(A,B) = [max(0, a+ b− 1),max(0, a+ b− 1)].

The corresponding interval t-conorms are:

Smax(A,B) = [max(a, b),max(a, b)],

Sp(A,B) = [(a+ b− a b), (a+ b− a b)],

Sb(A,B) = [min(1, a+ b),min(1, a+ b)].
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Properties of interval t-norms can be obtained from t-norms. Consider
the following relation defined on intervals [9, 21]:

A � B ⇐⇒ (a ≤ b, a ≤ b). (22)

With this relation, the counterpart of equation (13) can be expressed as:

Tb(A,B) � Tp(A,B) � Tmin(A,B). (23)

From the properties of a t-norm, we can derive the following properties of
an interval t-norm:

(I). Boundary conditions

T ([0, 0], [0, 0]) = [0, 0],

T ([1, 1], A) = T (A, [1, 1]) = A;

(II). Monotonicity

(A � C,B � D) =⇒ T (A,B) � T (C,D);

(III). Symmetry

T (A,B) = T (B,A);

(IV). Associativity

T (A, T (B,C)) = T (T (A,B), C).

An interval t-conorm S satisfies the boundary conditions

(I′). Boundary conditions

S([1, 1], [1, 1]) = [1, 1],

S([0, 0], A) = S(A, [0, 0]) = A,

and properties (II)-(IV). Obviously, these properties are counterparts of
properties of t-norms. The intervals [0, 0] and [1, 1] play an important role
in the characterization of interval t-norms.

In the above discussion, interval t-norms are defined as interval exten-
sion of t-norms. Conversely, one may consider an interval t-norm as an
interval-valued function from I([0, 1])×I([0, 1]) to I([0, 1]), satisfying prop-
erties (I)-(IV). Moreover, for each interval t-norms, one can define a t-norm
as shown in the following theorem.

Theorem 4 Let T : I([0, 1]) × I([0, 1]) −→ I([0, 1]) be an interval-valued
function satisfying properties (I)-(IV). The function t : [0, 1] × [0, 1] −→
[0, 1],

t(a, b) = T ([a, a], [b, b]), (24)

is a t-norm.
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Proof. A degenerated interval of the form [a, a] may be considered as
being equivalent to a. For degenerated intervals, the relation � becomes
the standard relation ≤, and properties (I)-(IV) of interval t-norms reduce
to properties (i)-(iv) of t-norms. The same can be said about interval t-
conorms. 2

A t-norm t may be considered as the projection of an interval t-norm T
on [0, 1] when restricted to the set of all degenerated intervals of the form
[a, a], a ∈ [0, 1].

4. Inference with Interval Fuzzy Sets

In their book, Klir and Yuan [16] briefly discussed the problem of approxi-
mate reasoning using interval fuzzy sets. They suggested that t-norms can
be used to carry out this task by directly applied them to the lower and
upper bounds of interval fuzzy sets and relations. In the light of interval
t-norms, we provide a systematic analysis of basic issues, such as interpre-
tations of and set-theoretic operations on interval fuzzy sets.

An important feature of our formulation is that the interpretation, “an
interval fuzzy set is a set of fuzzy sets”, is used as a basic notion. This is
similar to the study of conditional events by Goodman [11]. Under certain
conditions, operations on interval fuzzy sets are derived automatically using
techniques of interval computation. In contrast, many studies treat interval
fuzzy set operations as basic notions, which are typically defined by the
component-wise application of fuzzy set operations [8, 16, 23]. Although
both approaches produce the same mathematical results, our formulation
may enhance our understanding of reasoning with interval fuzzy sets by
providing a concrete interpretation. More importantly, we also identify a
sufficient condition under which t-norms and t-conorms can be applied to
interval fuzzy sets.

A Φ-fuzzy or an interval fuzzy set F can be described by a membership
function µA : U −→ I([0, 1]), where U is called a universe [8, 16]. The in-
terval membership µA(u) = [µ

A
(u), µA(u)] of element u may be interpreted

as the range of the true membership value which is perhaps unknown based
on available information. Any value in the interval may actually be the true
membership value. An interval fuzzy set can be described equivalently by
a set of fuzzy sets bounded by two fuzzy sets A and A, namely,

A = [A,A]

= {X | A ⊆ X ⊆ A}

= {X | ∀u ∈ U(µA(u) ≤ µX(u) ≤ µ
A
(u))}. (25)
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Any fuzzy set inside [A,A] may be the true fuzzy set. This offers a slightly
new interpretation of interval fuzzy sets as compared to the traditional
views that focus mainly on memberships. Interval fuzzy sets can be con-
sidered as a generalization of crisp interval sets [28].

By interpreting an interval fuzzy set as a family of fuzzy sets bounded
by two fuzzy sets, one may immediately apply techniques from interval
computation to define interval fuzzy sets operations: for A = [A,A] and
B = [B,B],

∼ A = {∼ X |X ∈ [A,A]},

A ∩ B = {X ∩ Y |X ∈ [A,A], Y ∈ [B,B]},

A ∪ B = {X ∪ Y |X ∈ [A,A], Y ∈ [B,B]}. (26)

Typically, t-norms and t-conorms are used to define fuzzy set intersection
and union [1, 7, 16]. Suppose t and s are a pair of continuous t-norm and t-
conorm. According to Theorem 3, operations on interval fuzzy sets defined
by equation (26) can be expressed component-wise as:

µ∼A(u) = {1 − x | x ∈ µA(u)}

= [1, 1] − µA(u),

µA∩B(u) = {t(x, y) | x ∈ µA(u), y ∈ µB(u)}

= T (µA(u), µB(u)),

µA∪B(u) = {s(x, y) | x ∈ µA(u), y ∈ µB(u)}

= S(µA(u), µB(u)). (27)

That is, the definition of interval fuzzy set operations by interval t-norms
and t-conorms is a natural consequence of the interpretation given by equa-
tion (25) and the use of continuous t-norms and t-conorms for fuzzy set
operations.

In parallel to the study of the degree of membership in fuzzy sets, one
may consider the degree of truth in fuzzy logic. Given a proposition φ, let
an interval [a, a] denote the range of its truth value, written φ: [a, a]. Infer-
ence with interval truth value involves the derivation of truth values and
tightening of the derived intervals. Suppose t and s are a pair of continuous
t-norm and t-conorm, and T and S are the corresponding interval t-norm
and t-conorm. One can use the following set of inference rules:

(R1) φ: [a, a] =⇒ ¬φ: [1 − a, 1 − a];

(R2) (φ: [a, a], ψ: [b, b]) =⇒ φ ∧ ψ: T ([a, a], [b, b]);

(R3) (φ: [a, a], ψ: [b, b]) =⇒ φ ∨ ψ: S([a, a], [b, b]);

(R4) (φ: [a, a], φ: [b, b]) =⇒ φ: [max(a, b),min(a, b)];
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(R5) (φ: [a, a], φ ∧ ψ: [b, b]) =⇒ φ: [max(a, b), a];

(R6) (φ: [a, a], φ ∨ ψ: [b, b]) =⇒ φ: [a,min(a, b)].

Inference rules (R1)-(R3) can be used to derive bounds of truth values for
composite propositions, while rules (R4)-(R6) can be used to tighten the
bounds. Similar rules have been used in a number of studies [3, 13, 29].

Let L be a distributive lattice and I(L) can be the induced interval lat-
tice. An interval L-fuzzy set A can be described by a membership function:

µA : U −→ I(L). (28)

Corresponding to interval L-fuzzy sets, one may develop interval-valued
fuzzy logic in which the truth value of a proposition is an interval of a
lattice. In this case, the following rules may be used:

(R2′) (φ: [a, a], ψ: [b, b]) =⇒ φ ∧ ψ: [a, a] ⊗ [b, b];

(R3′) (φ: [a, a], ψ: [b, b]) =⇒ φ ∨ ψ: [a, a] ⊕ [b, b];

(R4′) (φ: [a, a], φ: [b, b]) =⇒ φ: [a⊕ b, a⊗ b];

(R5′) (φ: [a, a], φ ∧ ψ: [b, b]) =⇒ φ: [a⊕ b, a];

(R6′) (φ: [a, a], φ ∨ ψ: [b, b]) =⇒ φ: [a, a⊗ b].

They may be considered as counterparts of rules (R2)-(R3). The definition
of negation depends on the choice of a negation operation in a lattice.

Example 1 Kleene’s three-valued logic. In this example, we show that
Kleene’s three-valued logic can be easily interpreted as an interval gener-
alization of two-valued logic, based merely on the semantics of two-valued
logic and interval computation. Consider the standard two-valued logic
with the Boolean lattice L = {T, F}. In this case, I(L) = {[F, F ], [F, T ],
[T, T ]}. The interval [F, F ] indicates that the proposition is false, while the
interval [T, T ] indicates that the proposition is true. On the other hand,
the interval [F, T ] indicates, although the proposition must in fact be either
true or false, the available information is insufficient to determine what its
specific truth status may be. Similar interpretation of three-valued logic
has been explored by Goodman et al. [12] in the study of conditional events.
According to Theorem 2, such an interval-valued logic is characterized by
the following truth tables:

φ ¬φ
[T, T ] [F, F ]
[F, T ] [F, T ]
[F, F ] [T, T ]
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φ ∧ ψ φ ∨ ψ
ψ [T, T ] [F, T ] [F, F ] [T, T ] [F, T ] [F, F ]

φ
[T, T ] [T, T ] [F, T ] [F, F ] [T, T ] [T, T ] [T, T ]
[F, T ] [F, T ] [F, T ] [F, F ] [T, T ] [F, T ] [F, T ]
[F, F ] [F, F ] [F, F ] [F, F ] [T, T ] [F, T ] [F, F ]

φ→ ψ φ↔ ψ
ψ [T, T ] [F, T ] [F, F ] [T, T ] [F, T ] [F, F ]

φ
[T, T ] [T, T ] [F, T ] [F, F ] [T, T ] [F, T ] [F, F ]
[F, T ] [T, T ] [F, T ] [F, T ] [F, T ] [F, T ] [F, T ]
[F, F ] [T, T ] [T, T ] [T, T ] [F, F ] [F, T ] [T, T ]

Each entry in the above tables are computed based on equation (11). For
example, [F, T ] ∧ [T, T ] = [F ∧ F, T ∧ T ] = [F, T ]. These truth tables
coincide with that of Kleene’s three-valued logic [15, 24]. The interval-
valued logic therefore provides an interpretation of three-valued logic in
terms of standard two-valued logic. 2

5. Inference with Rough Sets

Let (B,⊖,⊗,⊕, 0, 1) be a finite Boolean algebra, and (B0,⊖,⊗,⊕, 0, 1) be
a sub-Boolean algebra of B. That is, B0 contains both elements 0 and 1,
and is closed under ⊖, ⊗, and ⊕. Assume that the avaible information is
only sufficient for us to consider elements of B0. If an element not in B0 is
encountered, one must represent it in terms of elements of B0. The theory
of rough sets provides a systematic method to perform this task.

Consider an element a ∈ B. One can associate two elements of B0 with
a as follows:

apr(a) =
⊕

{b | b ∈ B0, b � a},

apr(a) =
⊗

{b | b ∈ B0, a � b}. (29)

The pair apr(a) and apr(a) is referred to as the lower and upper approx-
imations of a. By definition, they are the best approximations of a in the
sense that apr(a) is the largest element in B0 satisfying b � a, while apr(a)
is the smallest element in B0 satisfying a � b. Such a formulation is taken
from Gehrke and Walker [10], in which they use completely distributive
lattice by generalizing Pawlak’s original proposal [22]. Since the Boolean
algebra B is finite, B0 is an atomic Boolean algebra. Let At(B0) denote the
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set of atoms of B0, the lower and upper approximations can be equivalently
defined by:

apr(a) =
⊕

{b | b ∈ At(B0), b � a},

apr(a) =
⊕

{b | b ∈ At(B0), a⊗ b 6= 0}. (30)

This definition is originally used by Pawlak, in which the Boolean algebra
is the power set of the universe, and the atoms of the sub-Boolean algebra
are the equivalence classes [22].

It can be easily verified that the following properties holds: for a, b ∈ B,

(L1) apr(a) = ⊖apr(⊖a),

(L2) apr(1) = 1,

(L3) apr(a⊗ b) = apr(a) ⊗ apr(b),

(L4) apr(a) ⊕ apr(b) � apr(a⊕ b),

(L5) a � b =⇒ apr(a) � apr(b),

(L6) apr(0) = 0,

(L7) apr(a) � a,

(L8) a � apr(apr(a)),

(L9) apr(a) � apr(apr(a)),

(L10) apr(a) � apr(apr(a)),

(U1) apr(a) = ⊖apr(⊖a),

(U2) apr(0) = 0,

(U3) apr(a⊕ b) = apr(a) ⊕ apr(b),

(U4) apr(a⊗ b) � apr(a) ⊗ apr(b),

(U5) a � b =⇒ apr(a) � apr(b),

(U6) apr(1) = 1,

(U7) a � apr(a),

(U8) apr(apr(a)) � a,

(U9) apr(apr(a)) � apr(a),

(U10) apr(apr(a)) � apr(a),

(K) apr(⊖a⊕ b) � ⊖ apr(a) ⊕ apr(b),

(LU) apr(a) � apr(a).

Properties (L1) and (U1) state that two approximations are dual to each
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other. Properties with the same number may therefore be regarded as dual
properties.

Inference with rough sets deals with the lower and upper approxima-
tions of truth values in different systems or with respect to different experts.
Suppose a Boolean algebra B is used by one system, say S1, and any propo-
sition in this system has an exact truth value taking from B. On the other
hand, another system, say S2, may only use a sub-Boolean algebra B0 to
represent its truth values. When statements from S1 are considered in sys-
tem S2, it may not always be possible to specify their truth exactly. One
has to consider approximations of the truth values in B by truth values in
B0.

Given a proposition φ, let a denote its truth value in B, which is repre-
sented by a pair of lower and upper approximations (apr(a), apr(a)) in B0.
Based on the property of rough sets, we can obtain the following inference
rules:

(R1′′) φ: (apr(a), apr(a)) =⇒ ¬φ: (⊖apr(a),⊖apr(a));

(R2′′) (φ: (apr(a), apr(a)), ψ: (apr(b), apr(b))) =⇒

φ ∧ ψ: (apr(a) ⊗ apr(b), apr(a⊗ b)),

(R3′′) (φ: (apr(a), apr(a)), ψ: (apr(b), apr(b))) =⇒

φ ∨ ψ: (apr(a⊕ b), apr(a) ⊕ apr(b)).

These rules are much weaker than their counterparts in interval fuzzy sets.
In both rules (R2′′) and (R3′′), only one of the lower and upper approxima-
tions may be derived from the lower and upper approximations of the two
propositions involved. Since rough sets provide the best lower and upper
approximations, other rules are no longer needed.

Based on the approximation of truth values, we may introduce modal
structures in many-valued logic [24]. More specifically, a necessity operator
is defined in terms lower approximations, and a possibility operator is de-
fined in terms of upper approximations. That is, for any elements a ∈ B,
2a = apr(a) and 3a = apr(a). Let a be the truth value of a proposition
φ. The truth values of modal propositions 2φ and 3φ are given by apr(a)
and apr(a), respectively. Unlike the standard negation, it is impossible to
determine the truth value of φ based on the truth value of 2φ or the truth
value of 3φ. If the maximum element 1 is chosen to be the designated truth
value, the following modal expressions are tautologies:

(i) 2(φ→ ψ) → (2φ→ 2ψ),

(ii) 2φ→ 3φ,

(iii) 2φ→ φ,
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Figure 2: A four elements Boolean algebra

(iv) φ→ 23φ,

(v) 2φ→ 22φ,

(vi) 3φ→ 23φ,

where φ→ ψ is defined by ¬φ∨ψ as in standard two-valued logic. In other
words, each of the above formulas takes the designed truth value 1 for every
assignment of values to the variables in it. This can be easily seen from
the fact that they correspond to the properties (K), (LU), and (L7)-(L10)
of rough set approximation operations. The two-valued modal logic system
S5 also obeys these axioms [4, 14]. One may say that reasoning with rough
sets is related to modal logic.

Example 2 A four-valued modal logic. Consider a four-valued logic sys-
tem in which the truth values are drawn from a Boolean algebra given in
Figure 2. It can be interpreted as the product of two classical two-valued
logic systems, namely, the system C2 × C2 as referred to by Rescher [24].
The truth value 11 can be interpreted as complete truth, and 00 as complete
falsity. They are complements of each other. Both 01 and 10, complement
to each other, are regarded as partial truth or falsity. Such a logic is char-
acterized by the following truth tables [24]:

φ ¬φ
11 00
10 01
01 10
00 11
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φ ∧ ψ φ ∨ ψ
ψ 11 10 01 00 11 10 01 00

φ
11 11 10 01 00 11 11 11 11
10 10 10 00 00 11 10 11 10
01 01 00 01 00 11 11 01 01
00 00 00 00 00 11 10 01 00

φ→ ψ φ↔ ψ
ψ 11 10 01 00 11 10 01 00

φ
11 11 10 01 00 11 10 01 00
10 11 11 01 01 10 11 00 01
01 11 10 11 10 01 00 11 10
00 11 11 11 11 00 01 10 11

If only complete truth or falsity can be used, we may consider the ap-
proximations of the partial truth. In other words, we want to approximate
elements of Boolean algebra B = {00, 01, 10, 11} by elements of the sub-
Boolean algebra B0 = {00, 11}. In this case, we have:

apr(00) = apr(01) = apr(10) = 00, apr(11) = 11,

apr(01) = apr(10) = apr(11) = 11, apr(00) = 00. (31)

The lower and upper approximations of a partial truth are complete falsity
and complete truth, respectively. Based on the rough set approximations,
we define the following truth tables for the necessity and possibility opera-
tions:

φ 2φ 3φ
11 11 11
10 00 11
01 00 11
00 00 00

Such a definition of modal operators has been studied by many authors [24].
As pointed out by Rescher [24], it may be the most suitable choice of four-
valued truth tables for modal operators. 2

6. Concluding Remarks

In this paper, we have studied two complementary interval based uncertain
reasoning methods by using theories of fuzzy sets and rough sets, respec-
tively. In the method based on interval fuzzy sets, it is assumed that one
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is not able to specify the exact membership or truth value. An interval
is adopt to indicate the range of the exact value. In the approach based
on rough sets, it is assumed that the exact truth value of a proposition is
known. When a different language with a smaller truth value set is used, one
must approximate the original truth value. Such an approximation leads to
an interval representation. Starting from these two distinct assumptions,
two different uncertain reasoning methods can be developed.

Uncertain reasoning with interval fuzzy sets can be understood as an
extension of single-value-based many-valued logic to interval-value-based
many-valued logic. A basic concept used is the notion of interval t-norms.
They can either be derived from continuous t-norms or be defined by using
a set of axioms similar to that of t-norms. The concept of L-fuzzy sets
can also be extended to interval L-fuzzy sets. Interval t-norms can be
computed by simply applying the corresponding t-norms on both lower and
upper bounds of interval fuzzy sets. Inference with both numeric and lattice
based interval fuzzy sets has been examined. In contrast, inference with
rough sets explores modal structures in many-valued logic. Lower and upper
approximations can be used to introduce necessity and possibility operators.
In other words, inference based on rough sets can be understood in terms of
many-valued modal logic. More specifically, interval based inference using
rough sets is related to modal logic system S5.

In this paper, we have only considered the extension of t-norms to inter-
val t-norms in a numeric framework and the extension of standard lattice
operations. It is useful to study the notion of t-norms and their interval
extensions using more general mathematic structures. Some initial results
in this regard have been reported by Mayor and Torrens [18] using totally
ordered sets, and by Ma and Wu [17], and Wu [27] using complete lat-
tices. The formulation of rough sets using Boolean algebras corresponds
to the original proposal of Pawlak. It will be interesting to examine other
generalized rough set models discussed by Yao and Lin [30],
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