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Abstract

Rough set theory can be applied to rule induction. There are two different types of
classification rules, positive and boundary rules, leading to different decisions and
consequences. They can be distinguished not only from the syntax measures such as
confidence, coverage and generality, but also the semantic measures such as decision-
monotocity, cost and risk. The classification rules can be evaluated locally for each
individual rule, or globally for a set of rules. Both the two types of classification
rules can be generated from, and interpreted by, a decision-theoretic model, which
is a probabilistic extension of the Pawlak rough set model.

As an important concept of rough set theory, an attribute reduct is a subset
of attributes that are jointly sufficient and individually necessary for preserving a
particular property of the given information table. This paper addresses attribute
reduction in decision-theoretic rough set models regarding different classification
properties, such as: decision-monotocity, confidence, coverage, generality and cost.
It is important to note that many of these properties can be truthfully reflected by
a single measure γ in the Pawlak rough set model. On the other hand, they need to
be considered separately in probabilistic models. A straightforward extension of the
γ measure is unable to evaluate these properties. This study provides a new insight
into the problem of attribute reduction.

Key words: attribute reduction, decision-theoretic rough set model, Pawlak rough
set model

1 Introduction

In recent years, researchers, motivated by a desire to represent information
qualitatively, have proposed many models to incorporate probabilistic ap-
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proaches into rough set theory, which was introduced by Pawlak in 1982 [22,24,26,27].
The proposals include probabilistic rough set models [12,20,28,40,44,45], decision-
theoretic rough set models [43,47,48], variable precision rough set models [52],
rough membership functions [25], parameterized rough set models [27,30], and
Bayesian rough set models [8,9,32,33]. All these proposals share the common
feature by introducing thresholds into the standard model. For example, the
decision-theoretic rough set models was proposed in the early 1990s, in or-
der to generalize the probabilistic rough set model [22]. The decision-theoretic
models systematically calculate the parameters based on a set of loss functions
based on the Bayesian decision procedure. The physical meaning of the loss
functions can be interpreted based on more practical notions of costs and risks.
The results of these studies increase our understanding of rough set theory and
its domain of applications.

The results drawn from rough set based classification can be used for decision
making. In the Pawlak model, one can have two types of rules, positive rules
and boundary rules [45]. A positive rule indicates that an object or an object
set for sure belongs to one decision class, which enables us to make a positive
decision. A boundary rule indicates that an object or an object set partially
belongs to the decision class, which leads to another type of decision. In a
probabilistic rough set model, one can also have positive rules and boundary
rules. A probabilistic positive rule expresses that an object or an object set
belongs to one decision class beyond a certain confidence threshold. A prob-
abilistic boundary rule expresses that an object or an object set belongs to
one decision class beyond another weaker confidence threshold. Besides these
two types of rules, there is another situation, such that one cannot indicate
to which decision class the object or the object set belongs, since the confi-
dence is too low to support any decision making. The probabilistic positive
and boundary rules can be distinguished not only by the syntax measures,
such as confidence, coverage and generality, but also the semantics measures,
such as decision-monotocity, cost and risk. The syntax properties focus on the
discovery of the rules, while the semantics properties focus on the utilization
of the rules, and thus are more practical for the real applications. Measures
regarding the semantics properties are less studied in the rough set literature.

The theory of rough sets has been applied to data analysis, data mining and
knowledge discovery. A fundamental notion supporting such applications is
the concept of attribute reduction [22]. The objective of reduct construction
is to reduce the number of attributes, and at the same time, preserve a certain
property that we want. Different algorithms, approaches and methodologies
have been extensively studied [2,4,11,13,17,20,29,35,41,51]. Suppose we are
interested in the property of concept classification. A reduct should be able to
preserve the original classification power provided by the whole attribute set.
This power may be interpreted by syntax properties and semantics properties
for both positive and boundary rule sets.
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For the Pawlak model, a single measure γ is suggested for evaluating the per-
formance of classification and attribute reduction. For a probabilistic model,
by introducing the probabilistic thresholds, the properties are not necessarily
monotonic with respect to the set inclusion, and cannot be evaluated by a
single measure. Instead, we need to consider multiple properties and multiple
measures for evaluation. More specifically, this paper addresses different cri-
teria, such as confidence, coverage, generality, cost, and decision-monotocity
criteria based on the decision-theoretic rough set models.

2 The Pawlak Rough Set Model

In many data analysis applications, information and knowledge are stored and
represented in an information table, where a set of objects are described by a
set of attributes [22]. An information table represents all available information
and knowledge. That is, objects are only perceived, observed, or measured by
using a finite number of attributes.

Definition 1 An information table is the following tuple:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects, At is a finite nonempty set of
attributes, Va is a nonempty set of values of a ∈ At, and Ia : U → Va is an
information function that maps an object in U to exactly one value in Va.

In classification problems, we consider an information table of the form S =
(U,At = C ∪ {D}, {Va}, {Ia}), where C is a set of condition attributes de-
scribing the objects, and D is a decision attribute that indicates the classes of
objects. In general, we may have a set of decision attributes. A table with mul-
tiple decision attributes can be easily transformed into a table with a single
decision attribute by considering the Cartesian product of the original decision
attributes.

An equivalence relation with respect to A ⊆ At is denoted as EA, or simply
E. That is, EA = {(x, y) ∈ U ×U | ∀a ∈ A(Ia(x) = Ia(y))}. Two objects in U
satisfy EA if and only if they have the same values on all attributes in A. An
equivalence relation is reflexive, symmetric and transitive.

The pair (U,EA) is called an approximation space defined by the attribute set
A. The equivalence relation EA induces a partition of U , denoted by U/EA

or πA. The equivalence class of U/EA containing x is given by [x]EA
= [x]A =

{y ∈ U | (x, y) ∈ EA}, or [x] if EA is understood.
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Consider an equivalence relation E on U . The equivalence classes induced by
the partition π (i.e., U/E) are the basic blocks to construct the Pawlak rough
set approximations. For a subset X ⊆ U , the lower and upper approximations
of X with respect to π are define by [22]:

apr
π
(X) = {x ∈ U | [x] ⊆ X},

= {x ∈ U | P (X | [x]) = 1};
aprπ(X) = {x ∈ U | [x] ∩X 6= ∅},

= {x ∈ U | P (X | [x]) > 0}, (1)

where P (X | [x]) denotes the conditional probability that an object x belongs
to X given that the object is in the equivalence class [x], i.e., P (X | [x]) =
|[x]∩X|
|[x]| .

Based on the rough set approximations of X defined by π, one can divide the
universe U into three disjoint regions: the positive region POSπ(X) indicating
the union of all the equivalence classes defined by π that each for sure can
induce the decision class X; the boundary region BNDπ(X) indicating the
union of all the equivalence classes defined by π that each can induce a partial
decision of X; and the negative region NEGπ(X) which is the union of all
equivalence classes that for sure cannot induce the decision class X [22]:

POSπ(X) = apr
π
(X),

BNDπ(X) = aprπ(X)− apr
π
(X),

NEGπ(X) = U − POSπ(X) ∪ BNDπ(X) = U − aprπ(X) = (aprπ(X))c.(2)

Let πD = {D1, D2, . . . , Dm} be a partition of the universe U , defined by the
decision attribute D, representing m classes, where m = |VD|. The lower and
upper approximations of the partition πD with respect to π are the families of
the lower and upper approximations of all the equivalence classes of πD. That
is [23],

apr
π
(πD) = (apr

π
(D1), apr

π
(D2), . . . , apr

π
(Dm));

aprπ(πD) = (aprπ(D1), aprπ(D2), . . . , aprπ(Dm)). (3)

For this m-class problem, we can solve it in terms of m two-class problems.
Then, POSπ(πD) indicates the union of all the equivalence classes defined by
π that each for sure can induce a decision. BNDπ(πD) indicates the union of
all the equivalence classes defined by π that each can induce a partial decision.
Formally, we have [45]:
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POSπ(πD) =
⋃

1≤i≤m

POSπ(Di),

BNDπ(πD) =
⋃

1≤i≤m

BNDπ(Di),

NEGπ(πD) = U − POSπ(πD) ∪ BNDπ(πD). (4)

We can easily verify the following properties of the three regions in the Pawlak
model:

(1) The three regions are pairwise disjoint, and the union is a covering of U .
Furthermore, POSπ(πD)∩BNDπ(πD) = ∅ and POSπ(πD)∪BNDπ(πD) = U .
That means, for any equivalence class in π, it can either make a sure decision
or a partial decision. Thus, NEGπ(πD) = ∅.

(2) For an equivalence class in POSπ(πD), it associates with at most one decision
class Di ∈ πD. The family of positive regions {POSπ(Di) | 1 ≤ i ≤ m}
contains pairwise disjoint sets, i.e., POSπ(Di) ∩ POSπ(Dj) = ∅, for any
i 6= j.

(3) For an equivalence class in BNDπ(πD), it associates with at least two de-
cision classes Di, Dj ∈ πD. The family of boundary regions {BNDπ(Di) |
1 ≤ i ≤ m} does not necessarily contain pairwise disjoint sets, i.e., it may
happen that BNDπ(Di) ∩ BNDπ(Dj) 6= ∅, for some i 6= j.

An information table is consistent if each equivalence class defined by C de-
cides a unique decision. In this case, BNDπC

(πD) = NEGπC
(πD) = ∅ and

POSπC
(πD) = U . An inconsistent information table contains at least one

equivalence class [x]C ∈ πC, such that it associates with more than one deci-
sion.

3 Decision-Theoretic Rough Set Models

A decision-theoretic rough set model brings new insights into the probabilistic
rough set approaches. The Bayesian decision procedure deals with making
decisions with minimum risk based on observed evidence. We present a brief
description of the procedure from the book by Duda and Hart [6]. Different
probabilistic models can be easily derived from the decision-theoretic model.

3.1 The Bayesian decision procedure

Given an object x, let x be a description of the object, Ω = {w1, . . . , ws} be a
finite set of s states that x is possibly in, and A = {a1, . . . , at} be a finite set
of t possible actions. Let P (wj | x) be the conditional probability of x being
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a1 a2 . . . ai . . . at

w1 λ(a1|w1) λ(a2|w1) . . . λ(ai|w1) . . . λ(at|w1)

w2 λ(a1|w1) λ(a2|w2) . . . λ(ai|w2) . . . λ(at|w2)

. . .

wj λ(a1|wj) λ(a2|wj) . . . λ(ai|wj) . . . λ(at|wj)

. . .

ws λ(a1|ws) λ(a2|ws) . . . λ(ai|ws) . . . λ(at|ws)
Table 1
The s× t matrix for all the values of loss functions

in state wj, and the loss function λ(ai|wj) denote the loss (or cost) for taking
the action ai when the state is wj.

All the values of loss functions can be conveniently expressed as an s×t matrix
illustrated in Table 1, with the rows denoting the set Ω of s states and the
columns the set A of t actions. Each cell denotes the cost λ(ai|wj) for taking
the action ai in the state wj. The cost λ(ai|wj) can be written as λaiwj

for
simplicity.

For an object x with description x, suppose action ai is taken. The expected
cost associated with action ai is given by:

R(ai | x) =
s∑

j=1

λ(ai|wj)P (wj | x). (5)

The quantity R(ai | x) is called the conditional risk.

The s×t matrix has two important applications. First, given the loss functions
and the probabilities, one can compute the expected cost of a certain action.
Furthermore, comparing the expected costs of all the actions, one can decide a
particular action with the minimum cost. Second, according to the loss func-
tions, one can determine the condition or probability for taking a particular
action.

Example 1 The idea of the Bayesian decision procedure can be demonstrated
by the following example. Suppose there are two states: w1 indicates that a
meeting will be over in less than or equal to 2 hours, and w2 indicates that the
meeting will be over in more than 2 hours. Two states are complement. Suppose
the probability for having the state w1 is 0.80, then the probability for having
the state w2 is 0.20, i.e., P (w1 | x) = 0.80 and P (w2 | x) = 1 − 0.80 = 0.20.
There are two actions: a1 means to park the car on meter, and a2 means to
park the car in the parking lot. The loss functions for taking different actions
in different states can be expressed as the following matrix:
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a1 a2

(park on meter) (park in a parking lot)

w1 (≤ 2 hours) $2.00 $7.00

w2 (> 2 hours) $12.00 $7.00

In this case, the cost for each action can be calculated as follows:

R(a1 | x) = $2.00 ∗ 0.80 + $12.00 ∗ 0.20 = $3.00,

R(a2 | x) = $7.00 ∗ 0.80 + $7.00 ∗ 0.20 = $7.00.

Since $3.00 < $7.00, according to the minimum cost, one may decide to park
the car on meter, instead of in a parking lot.

Suppose a person wants to decide where to park the car. It is interesting to
know if parking on meter is more suitable. According to Equation (5), one
obtains:

$2.00 ∗ P (w1 | x) + $12.00 ∗ (1− P (w1 | x))≤ $7.00.

That is, P (w1 | x) ≥ 0.50. Thus, if the probability that the meeting is over
within 2 hours is greater than or equal to 0.50, then it is more profitable to
park the car on meter, otherwise, park in a parking lot.

3.2 Decision-theoretic rough set models

In an approximation space (U,E), the equivalence relation E induces a par-
tition π = U/E. Let Des([x]) denote the description of x. For simplicity,
we write Des([x]) as [x] in the subsequent discussions. The partition π is
the set of all possible descriptions. The classification of objects can be eas-
ily fitted into the Bayesian decision framework. The set of states is given by
Ω = πD = {X,Xc}, indicating that an object is in a decision class X and not
in X, respectively. We use the same symbol to denote both a subset X and
the corresponding state. The probabilities for these two complement states are
denoted as P (X | [x]) = |X∩[x]|

|[x]| and P (Xc | [x]) = 1− P (X | [x]).

With respect to the three regions defined by a partition π, the set of actions
regarding the state X is given by A = {aP , aN , aB}, where aP , aN and aB

represent the three actions of deciding an object to be in the sets POSπ(X),
NEGπ(X) and BNDπ(X), respectively. When an object belongs to X, let λPP ,
λBP and λNP denote the costs of taking the actions aP , aB and aN , respectively.
When an object does not belong to X, let λPN , λBN and λNN denote the costs
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of taking the same three actions. The loss functions regarding the states X
and Xc can be expressed as a 2× 3 matrix as follows:

aP aB aN

X λPP λBP λNP

Xc λPN λBN λNN

The expected costs R(ai | [x]) of taking individual actions can be expressed
as:

R(aP | [x]) = λPP P (X | [x]) + λPNP (Xc | [x]),

R(aN | [x]) = λNP P (X | [x]) + λNNP (Xc | [x]),

R(aB | [x]) = λBP P (X | [x]) + λBNP (Xc | [x]). (6)

The Bayesian decision procedure leads to the following minimum-risk decision
rules:

(P) If R(aP | [x]) ≤ R(aN | [x]) and R(aP | [x]) ≤ R(aB | [x]),

decide [x] ⊆ POSπ(X);

(N) If R(aN | [x]) ≤ R(aP | [x]) and R(aN | [x]) ≤ R(aB | [x]),

decide [x] ⊆ NEGπ(X);

(B) If R(aB | [x]) ≤ R(aP | [x]) and R(aB | [x]) ≤ R(aN | [x]),

decide [x] ⊆ BNDπ(X).

Tie-breaking criteria should be added so that each object is classified into only
one region. Since for any state X, P (X | [x])+P (Xc | [x]) = 1, we can simplify
the rules to classify any object x based only on the probability P (X | [x]) and
the loss functions.

Consider a special kind of loss functions with λPP ≤ λBP < λNP and λNN ≤
λBN < λPN . That is, the cost of classifying an object x into the positive region
POSπ(X) is less than or equal to the cost of classifying x into the boundary
region BNDπ(X), and both of these costs are strictly less than the cost of
classifying x into the negative region NEGπ(X). The reverse order of costs
is used for classifying an object that does not belong to X. This assumption
implies that α ∈ (0, 1], γ ∈ (0, 1), and β ∈ [0, 1). In this case, the minimum-
risk decision rules (P)-(B) can be written as:

(P) If P (X | [x]) ≥ γ and P (X | [x]) ≥ α, decide [x] ⊆ POSπ(X);

(N) If P (X | [x]) ≤ β and P (X | [x]) ≤ γ, decide [x] ⊆ NEGπ(X);

(B) If P (X | [x]) ≥ β and P (X | [x]) ≤ α, decide [x] ⊆ BNDπ(X),
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where

α =
λPN − λBN

(λPN − λBN) + (λBP − λPP )
,

γ =
λPN − λNN

(λPN − λNN) + (λNP − λPP )
,

β =
λBN − λNN

(λBN − λNN) + (λNP − λBP )
. (7)

When (λPN − λBN)(λNP − λBP ) > (λBP − λPP )(λBN − λNN), we have α > β,
and thus α > γ > β. After tie-breaking, we obtain:

(P1) If P (X | [x]) ≥ α, decide [x] ⊆ POSπ(X);

(N1) If P (X | [x]) ≤ β, decide [x] ⊆ NEGπ(X);

(B1) If β < P (X | [x]) < α, decide [x] ⊆ BNDπ(X).

After computing the two parameters α and β from the loss functions, the
probabilistic lower and upper approximations can be defined by:

apr
π(α,β)

(X) = {x ∈ U | P (X | [x]) ≥ α},
aprπ(α,β)

(X) = {x ∈ U | P (X | [x]) > β}. (8)

The probabilistic positive, boundary and negative regions are defined by:

POSπ(α,β)
(X) = apr

π(α,β)
(X),

BNDπ(α,β)
(X) = aprπ(α,β)

(X)− apr
π(α,β)

(X),

NEGπ(α,β)
(X) = U − POSπ(α,β)

(X) ∪ BNDπ(α,β)
(X)

= U − aprπ(α,β)
(X) = (aprπ(α,β)

(X))c. (9)

Similar to the Pawlak rough set model, we can extend the concept of proba-
bilistic approximations and regions of a single decision to a partition πD. For
simplicity, we assume that the same loss functions are used for all decisions.
That is,

apr
π(α,β)(πD)

= (apr
π(α,β)

(D1), apr
π(α,β)

(D2), . . . , apr
π(α,β)

(Dm));

aprπ(α,β)(πD) = (aprπ(α,β)
(D1), aprπ(α,β)

(D2), . . . , aprπ(α,β)
(Dm)). (10)

9

Information Sciences, 178(17), 3356-3373, Elsevier B.V., 2008.



We can define the three regions of the partition πD for the probabilistic rough
set models [45]:

POSπ(α,β)
(πD) =

⋃

1≤i≤m

POSπ(α,β)
(Di),

BNDπ(α,β)
(πD) =

⋃

1≤i≤m

BNDπ(α,β)
(Di),

NEGπ(α,β)
(πD) = U − POSπ(α,β)

(πD) ∪ BNDπ(α,β)
(πD). (11)

We can verify the following properties of the three regions in probabilistic
models:

(1) The three regions are not necessarily pairwise disjoint. Nevertheless, the
union is a covering of U , i.e., POSπ(α,β)

(πD)∪BNDπ(α,β)
(πD)∪NEGπ(α,β)

(πD) =
U . Furthermore, it may happen that POSπ(α,β)

(πD)∩BNDπ(α,β)
(πD) 6= ∅, and

NEGπ(α,β)
(πD) is not necessarily empty.

(2) The family of probabilistic positive regions {POSπ(α,β)
(Di) | 1 ≤ i ≤ m}

does not necessarily contain pairwise disjoint sets, i.e., it may happen that
POSπ(α,β)

(Di) ∩ POSπ(α,β)
(Dj) 6= ∅, for some i 6= j.

(3) The family of probabilistic boundary regions {BNDπ(α,β)
(Di) | 1 ≤ i ≤ m}

does not necessarily contain pairwise disjoint sets, i.e., it may happen that
BNDπ(α,β)

(Di) ∩ BNDπ(α,β)
(Dj) 6= ∅, for some i 6= j.

The Pawlak model, as a special case, can be derived from the general prob-
abilistic model by having (α = 1) > (β = 0), and α = 1 − β [28]. From de-
cision rules (P1)-(B1), we can compute the approximations as apr

π(1,0)
(πD) =

POSπ(1,0)
(πD) and aprπ(1,0)

(πD) = POSπ(1,0)
(πD) ∪ BNDπ(1,0)

(πD) = U .

We can derive the 0.50 probabilistic model [28], the symmetric variable pre-
cision rough set model [52], and the asymmetric variable precision rough set
model [14]. More specifically, we may have the following probabilistic rough
set models [45]:

• If α > 0.50, POSπ(α,β)
(πD) contains pairwise disjoint sets.

• If β > 0.50, POSπ(α,β)
(πD), BNDπ(α,β)

(πD) and NEGπ(α,β)
(πD) contain pair-

wise disjoint sets.
• If β = 0, NEGπ(α,β)

(πD) = ∅.

When generalizing results from the Pawlak rough set model to the proba-
bilistic rough set models, it is necessary to consider the implications of those
properties.

Example 2 Consider an example discussed by Yao and Herbert [42]. Suppose
there are two complementary states after a series of diagnoses for a certain
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type of cancer: wC is a confirmed cancer state and wH is a confirmed no-cancer
state, thus wH = wc

C. There are three actions regarding the three regions of the
decision: aP is to take some cancer-treatments to a patient, aB is to wait-and-
see when the decision is pending, and aN is to discharge the patient without
any further treatment.

The loss function for taking an action should include the cost and risk of fur-
ther testing, follow-up diagnoses, treatments, and the cost of the corresponding
results. For example, the loss function λ(aP |wC) indicates the cost of taking
proper treatments for a confirmed patient and the price of postoperative ef-
fects. The loss function λ(aB|wC) indicates the risk of the potential delay of
the proper treatment to a cancer patient. The loss function λ(aN |wH), indicat-
ing to discharge a no-cancer patient, contains very little cost. Suppose one can
estimate all the values of the loss functions and express them in the following
matrix:

aP aB aN

(treat) (wait-and-see) (discharge)

wC (cancer) $1200.00 $1500.00 $3500.00

wH (no-cancer) $2500.00 $1000.00 $0

According to the given matrix loss functions, we can calculate the values of the
two thresholds α and β according to Equation (7):

α =
$2500.00− $1000.00

($1500.00− $1000.00)− ($1200.00− $2500.00)
= 0.83

β =
$1000.00− $0

($3500.00− $0)− ($1500.00− $1000.00)
= 0.33.

4 Rule Induction

One of the important applications of rough set theory is to induce decision
or classification rules. In this section, we consider two related issues. The first
issue is the form and interpretation of rules. Two different types of classifica-
tion rules are introduced and examined. The second issue is the evaluation of
a single rule and a set of rules. The evaluation is investigated by considering
the local evaluation of each single rule and the global evaluation of a set of
rules.
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4.1 Two types of classification rules

Typically, a rule in rough set theory is expressed in the form of [x] −→ Di,
stating that an object with description [x] would be in the decision class Di.
Based on the notions of positive and boundary regions, we may introduce two
types of rules [45]. One type is called positive rules and the other is called
boundary rules.

Consider a partition π defined by a subset of condition attributes and the
partition πD = {D1, D2, . . . , Dm} defined by the decision attribute. For any
[x] ∈ π, one can induce one of the following two types of classification rules [45]:

• Positive rule: If [x] ⊆ POSπ(α,β)
(πD), the induced rule is a positive rule,

denoted as:

[x] −→P Di, where Di ∈ πD and [x] ⊆ POSπ(α,β)
(Di).

• Boundary rule: If [x] ⊆ BNDπ(α,β)
(πD), the induced rule is a boundary rule,

denoted as:

[x] −→B Di, where Di ∈ πD and [x] ⊆ BNDπ(α,β)
(Di).

In the Pawlak model, we have α = 1 and β = 0. In probabilistic models, we
require α > β. Both models can generate these two types of rules.

Although the two types of rules have the same form and are characterized by
the same quantitative measures, they have different interpretations, and hence
lead to different decisions and actions. For example, Yao and Herbert suggest
that an “immediate positive decision” is made based on a positive rule, and
a “delayed positive decision” is made based on a boundary rule [10,42]. Re-
garding the previous medical example, a positive rule [x] −→P wC means that
treatment should be applied immediately to a patient with a high probability
of having cancer. A positive rule [x] −→P wH results in the discharge of a
patient with a high probability of not having cancer (i.e., low probability of
having cancer). A boundary rule, in forms of [x] −→B wC or [x] −→B wH ,
means that the doctor may put the patient in a wait-and-see status requiring
further diagnoses and investigations.

Another example is the academic paper review process. A positive rule means
a paper is accepted or rejected right away. A boundary rule means a paper
requires minor or major revisions, and the final acceptance/rejection decision
is pending.

In the induction and utilization of rules, we in fact consider two slightly differ-
ent types of decisions or actions. One decision determines the region to which
an equivalence class belongs. According to the decision-theoretic model, we

12

Information Sciences, 178(17), 3356-3373, Elsevier B.V., 2008.



can determine if an equivalence class [x] belongs to the positive region of a
decision class Di, i.e., [x] ⊆ POSπ(Di), or [x] belongs to the boundary re-
gion of Di, i.e., [x] ⊆ BNDπ(Di). Another kind of decision is to determine
the action resulted from a rule. According to a positive rule [x] −→P Di,
we can determine a positive action towards the decision class Di; according
to a boundary rule, we can determine a pending action towards Di. Since
the former decisions determine the latter decisions, we use these two types of
decisions interchangeably in this paper.

4.2 Single rule evaluation

Many quantitative measures associated with rules have been studied [3,5,46,49].
We review some measures for single rule (local) evaluation.

Confidence: Given a rule [x] −→ Di, the confidence measure is defined as
the ratio of the number of objects in an equivalence class [x] that are correctly
classified as the decision class Di and the number of objects in the equivalence
class [x]:

confidence([x] −→ Di) =
# of objects in [x] correctly classified as Di

# of objects in [x]

=
|[x] ∩Di|
|[x]| = P (Di | [x]), (12)

where |.| denotes the cardinality of the set. Confidence focuses on the classifi-
cation of an equivalence class [x]. The higher the confidence, the stronger the
rule is.

The confidence measure is directly associated with the thresholds α and β.
That is, the confidence of a positive rule is greater than or equal to α. A
positive rule can be a certain rule with confidence being 1, or a probabilistic
rule with confidence in [α, 1). For an equivalence class [x] ⊆ POSπ(α,β)

(πD), if
α > 0.50, it induces only one positive rule, and if α ≤ 0.50, it may induce
more than one positive rule. The confidence of a boundary rule is greater than
β and less than α. For an equivalence class [x] ⊆ BNDπ(α,β)

(πD), it induces
only one boundary rule if β > 0.50, and may induce more than one boundary
rule if β ≤ 0.50. If [x] ⊆ NEGπ(α,β)

(πD), the rule with the confidence less than
β is too weak to be meaningful, and does not support any action towards a
decision class of πD.

Coverage: The coverage measure of a rule is defined as the ratio of the number
of correctly classified objects in the decision class Di by an equivalence class
[x] and the number of objects in the decision class Di:
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coverage([x] −→ Di) =
# of objects in [x] correctly classified as Di

# of objects in Di

=
|[x] ∩Di|
|Di| = P ([x] | Di). (13)

Coverage focuses on the recall of a decision class Di ∈ πD by [x]. A rule with
a higher coverage is more general with respect to the decision class Di.

In general, a high confidence rule is not necessarily a low coverage rule, and a
high coverage rule is not necessarily a low confidence rule. In many situations,
however, there may exist an inverse relationship between confidence and cov-
erage. A reduction of confidence may lead to an increase of coverage. Such
a relationship in fact is one of the motivations for the study of probabilistic
rough set models. By weakening the requirement of confidence being 1 in the
Pawlak positive rules, one expects to increase the coverage of probabilistic
positive rules.

Generality: The generality of a rule is the ratio of the number of objects to
which the rule can be applied and the total number of objects in the universe.
It only tells us the degree of applicability of the rule, and does not say anything
about its confidence nor its coverage. The generality measure can be denoted
as:

generality([x] −→ Di) =
# of objects in [x]

# of objects in U

=
|[x]|
|U | . (14)

Cost: A positive rule [x] −→P Di decides that all the objects in [x] are put
into the positive region of the decision class Di with confidence greater than
or equal to α. If a positive action aP of Di is taken for [x], the corresponding
expected cost of applying the positive rule can be calculated as follows:

R([x]−→PDi) =R(aDi
P | [x])

= λPP P (Di | [x]) + λPNP (Dc
i | [x])

= confidence([x] −→P Di)λPP + (1− confidence([x] −→P Di))λPN

= λPN + (λPP − λPN)confidence([x] −→P Di).

(15)

Generally, it is reasonable to assume that λPP < λPN . That is, the cost for
putting an object with the decision Di into the positive region of Di is always
lower than the cost of putting an object not with the decision Di into the
positive region of Di. In this case, the cost measure of positive rules is de-
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creasing with respect to the confidence measure. In decision-theoretic terms,
the threshold α in fact imposes the following upper bound cost for each posi-
tive rule:

R([x]−→PDi)≤αλPP + (1− α)λPN .

For the special case of λPP = 0 and λPN = 1, we have:

R([x] −→P Di) ≤ 1− α.

The quantity 1 − α becomes the error rate of a rule. In this special case, we
in fact impose this upper bound on the error rate for positive rules.

A boundary rule [x] −→B Di decides that all the objects in [x] are put into the
boundary region of the decision class Di with confidence greater than β and
less than α. If a wait-to-see action aB of Di is taken for [x], the corresponding
expected cost of applying the boundary rule can be calculated as follows:

R([x]−→BDi) =R(aDi
B | [x])

= λBP P (Di | [x]) + λBNP (Dc
i | [x])

= confidence([x] −→B Di)λBP + (1− confidence([x] −→B Di))λBN

= λBN + (λBP − λBN)confidence([x] −→B Di).

(16)

From the Equations (15) and (16) we can see that two types of rules do lead to
different decisions and have different costs and consequences. Such differences
are explicitly shown by the cost measure, but cannot be differentiated by both
the confidence and coverage measures.

Example 3 In Example 2, we have calculated α = 0.83 and β = 0.33. Suppose
we have a patient x, whose symptoms are described by the description [x].
Based on the diagnoses, the probability for x getting cancer is 0.90, i.e., the
confidence of the rule is written as confidence([x] −→P wC) = 0.90. The cost
of this positive rule is:

R(awC
P | [x]) = 0.90 ∗ $1200.00 + 0.10 ∗ $2500.00 = $1330.00.

Suppose we have another patient y. Based on the diagnoses, the probability for
y getting cancer is 0.40. In other words, the probability for y not getting cancer
is 0.60. We pick the rule with a higher confidence, i.e. confidence([y] −→B

wH) = 0.60. The cost of the boundary rule is:
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R(awH
B | [y]) = 0.40 ∗ $1500.00 + 0.60 ∗ $1000.00 = $1200.00.

4.3 Rule set evaluation

Given a partition π defined by a subset of condition attributes, we obtain
two sets of rules about the decision classification: the sets of positive rules
and the set of boundary rules. Let PRS and BRS be these two sets of rules,
respectively.

In general, the evaluation of a rule set depends on the interaction of rules and
rule conflict resolution for overlapping rules. These concepts are first discussed
before introducing specific measures.

Definition 2 Given a rule set RS induced from a partition π, if two rules in
RS involving the same equivalence class [x] and different decisions, that is,

[x] −→ Di and [x] −→ Dj with Di 6= Dj,

they are called overlapping rules. The rule set RS is called an overlapping rule
set.

The notion of overlapping rules is also known as conflicting rules or incon-
sistent rules. We want to emphasize the fact that the left-hand-sides of those
rules have an overlap. If α ≤ 0.50, we may have two or more distinct positive
rules for each equivalence class; if β ≤ 0.50, we may have two or more distinct
boundary rules for each equivalence class. In these cases, we may have conflict
decisions for each equivalence class and an overlapping rule set. The condition
α > β > 0.50 is sufficient for obtaining non-overlapping rules and rule sets.
For general cases, the values of α and β are calculated from the loss functions,
and thus are not necessarily bounded by 0.50. The non-overlapping rule set is
a special case of an overlapping rule set.

For a non-overlapping rule set, we can easily induce the unique rule [x] −→ Di

for each equivalence class. For an overlapping rule set, rule conflict resolution
is required. We adopt a simple maximum-confidence criterion for rule conflict
resolution.

Definition 3 For an overlapping rule set RS, the maximum-confidence crite-
rion for each rule involving [x] is denoted as

[x] −→ Dmax([x]), where Dmax([x]) = arg max
([x]−→Di)∈RS

{confidence([x] −→ Di)}.

If λPP < λPN , the maximum-confidence criterion is equivalent to the minimum-
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risk criterion, i.e.,

[x] −→P Dmax([x]), where Dmax([x]) = arg min([x]−→Di)∈RS{R(aDi
P | [x])};

[x] −→B Dmax([x]), where Dmax([x]) = arg min([x]−→Di)∈RS{R(aDi
B | [x])}.

Other conflict resolution methods can also be defined.

We are now ready to examine measures of a set of rules and their relationships
with the measures of single rules.

Confidence: The confidence of the set of positive rules can be interpreted as
the ratio of the number of correctly classified objects and the number of clas-
sified objects covered by all positive rules. We define the confidence measure
as follows:

confidence(PRS) =
# of correctly classified objects by PRS

# of classified objects by PRS

=
|⋃

[x]⊆POSπ(α,β)
(πD)

[x] ∩Dmax([x])|
|⋃

[x]⊆POSπ(α,β)
(πD)

[x]|

=

∑
[x]⊆POSπ(α,β)

(πD) |[x] ∩Dmax([x])|
|POSπ(α,β)

(πD)|

=
∑

[x]⊆POSπ(α,β)
(πD)

|[x]|
|POSπ(α,β)

(πD)| · confidence([x] −→ Dmax([x])).

(17)

That is, for a set of positive rules, its confidence is the weighted sum of the
confidence of individual rules in the set.

Coverage: The coverage of the set of positive rules is the ratio of the number
of correctly classified objects in the set and the number of all objects in the
universe. The coverage measure is defined as follows:

coverage(PRS) =
# of correctly classified objects by PRS

# of objects in U

=
|⋃

[x]⊆POSπ(α,β)
(πD)

[x] ∩Dmax([x])|
|U |

=

∑
[x]⊆POSπ(α,β)

(πD) |[x] ∩Dmax([x])|
|U |

=
∑

[x]⊆POSπ(α,β)
(πD)

|Dmax([x])|
|U | · coverage([x] −→ Dmax([x])).
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(18)

That is, for a set of positive rules, its coverage is the weighted sum of the
coverage of individual rules in the set.

Generality: For the set of positive rules, we can define the generality measure
as follows:

generality(PRS) =
# of objects covered by PRS

# of objects in U

=
|⋃

[x]⊆POSπ(α,β)
(πD)

[x]|
|U |

=
∑

[x]⊆POSπ(α,β)
(πD)

|[x]|
|U |

=
∑

[x]⊆POSπ(α,β)
(πD)

generality([x] −→ Dmax([x]))

=
|POSπ(α,β)

(πD)|
|U | . (19)

Again, the generality of a set of positive rules can be computed from the
generality of individual rules in the set.

Cost: The cost of the set of positive rules is defined as:

R(PRS) = confidence(PRS)λPP + (1− confidence(PRS))λPN

=




∑

[x]⊆POSπ(α,β)
(πD)

|[x]|
|POSπ(α,β)

(πD)| · confidence([x] −→ Dmax([x]))


 · λPP +


1− ∑

[x]⊆POSπ(α,β)
(πD)

|[x]|
|POSπ(α,β)

(πD)| · confidence([x] −→ Dmax([x]))


 · λPN

=
∑

[x]⊆POSπ(α,β)
(πD)

|[x]|
|POSπ(α,β)

(πD)| · [confidence([x] −→ Dmax([x]))λPP +

(1− confidence([x] −→ Dmax([x])))λPN ]

=
∑

[x]⊆POSπ(α,β)
(πD)

|[x]|
|POSπ(α,β)

(πD)| · R([x] −→ Dmax([x])). (20)

That is, for a set of positive rules, the cost equals to the weighted sum of the
cost of individual positive rules in the set.

By following the same argument, the confidence, coverage, generality and cost
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of the boundary rule set can be defined as follows:

confidence(BRS) =
∑

[x]⊆BNDπ(α,β)
(πD)

|[x]|
|BNDπ(α,β)

(πD)| · confidence([x] −→ Dmax([x]));

coverage(BRS) =
∑

[x]⊆BNDπ(α,β)
(πD)

|Dmax([x])|
|U | · coverage([x] −→ Dmax([x]));

generality(BRS) =
∑

[x]⊆BNDπ(α,β)
(πD)

generality([x] −→ Dmax([x]));

R(BRS) =
∑

[x]⊆BNDπ(α,β)
(πD)

|[x]|
|BNDπ(α,β)

(πD)| · R([x] −→ Dmax([x])).

This is, for the evaluation of the boundary rule set, we obtain the measures
by replacing POS with BND in the corresponding positive measures.

According to the relationships between measures on individual rules and mea-
sures on rule sets, we can easily obtain the following theorem.

Theorem 1 For a set of rules,

∀([x] −→ Dmax([x])) ∈ PRS (confidence([x] −→P Dmax([x])) ≥ α)
=⇒ confidence(PRS) ≥ α;

∀([x] −→ Dmax([x])) ∈ BRS (confidence([x] −→B Dmax([x])) > β)
=⇒ confidence(BRS) > β.

Theorem 1 shows that the confidence bound of individual rules is the same
as the confidence bound of the rule set. This implies that in a rule induction
process one can ensure that the confidence of a rule set is above a certain
threshold if one imposes the same bound on each individual rule. However, the
reverse is not necessarily true. Thus, the requirement on the level of confidence
of all individual rules is sufficient to guarantee the same level of performance
of the rule set, but is not necessary.

5 Attribute Reduction in the Pawlak Model

The main results of rule induction in the last section can be summarized
as follows. A subset of attributes defines an equivalence relation. Based on
the corresponding partition, one can induce a set of positive rules and a set of
boundary rules, respectively. An important issue not discussed yet is the choice
of a suitable subset of attributes for rule induction. In machine learning, this is
commonly referred to as the problem of feature selection. In rough set analysis,
the problem is called attribute reduction, and a selected set of attributes for
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rule induction is called a reduct [22]. Intuitively speaking, an attribute reduct
is a minimal subset of attributes whose induced rule sets have the same level
of performance as the entire set of attributes, or a lower but satisfied level of
performance.

5.1 Pawlak reducts

A Pawlak reduct R ⊆ C, more precisely a relative reduct with respect to the
decision attribute D, is defined by requiring that the positive region of πD is
unchanged [22].

Definition 4 Given an information table S = (U,At = C ∪ {D}, {Va | a ∈
At}, {Ia | a ∈ At}), an attribute set R ⊆ C is a Pawlak reduct of C with
respect to D if it satisfies the following two conditions:

(s) Jointly sufficient condition:
POSπR

(πD) = POSπC
(πD);

(n) Individually necessary condition:
for any attribute a ∈ R, POSπR−{a}(πD) 6= POSπC

(πD).

Based on this simple definition of a Pawlak reduct, we can make several im-
portant observations.

Two extreme cases of the confidence: In the definition of a Pawlak reduct,
the positive region of the partition πD is used. Recall that the definition of the
positive region requires an equivalence class [x] to be a subset of a decision
class Di. Thus, the definition of a reduct implicitly uses a condition that
requires a Pawlak positive rule with a confidence of 1, which is the maximum
value of confidence. On the other hand, the confidence of a Pawlak boundary
rule must have a confidence greater than 0, which is the minimum value of
confidence.

Implicit consideration of the boundary region: In the Pawlak model,
for a reduct R ⊆ C, we have POSπR

(πD)∩BNDπR
(πD) = ∅, and POSπR

(πD)∪
BNDπR

(πD) = U . The condition POSπR
(πD) = POSπC

(πD) is equivalent to
BNDπR

(πD) = BNDπC
(πD). Therefore, the requirement of the same boundary

region is implicitly stated in the definition of a Pawlak reduct. It is sufficient
to consider only the positive rule set in the Pawlak model.

Monotocity of positive regions and decision rules: The definition of
a Pawlak reduct is based on the relationships between positive regions and,
in turn, sets of positive rules, induced by different subsets of attributes. By
introducing the concept of decision-monotocity of rules with respect to set
inclusion of attributes, we can shed new lights on the notion of a reduct.
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Consider any two subsets of attributes A,B ⊆ C with A ⊆ B. For any x ∈ U ,
we have [x]B ⊆ [x]A. We immediately obtain the monotocity of the positive
regions with respect to set inclusion of attributes. That is,

A ⊆ B =⇒ ∀Di ∈ πD(POSπA
(Di) ⊆ POSπB

(Di)), and thus

A ⊆ B =⇒ POSπA
(πD) ⊆ POSπB

(πD).

Therefore, if [x]A ⊆ Di for some decision class Di ∈ πD, which implies [x]A ⊆
POSπA

(πD), we can conclude that [x]B ⊆ Di for the same decision class Di,
which implies [x]B ⊆ POSπB

(πD). This suggests that the Pawlak positive
rules induced by different subsets of attributes satisfy the following decision-
monotocity with respect to set inclusion of attributes:

A ⊆ B =⇒ (∀x ∈ U([x]A −→P Di =⇒ [x]B −→P Di)).

That is, if we can make a positive decision based on a smaller set of attributes,
the decision must be consistent with the decision made by a larger set of
attributes. However, the reverse is not necessarily true. By demanding that
a reduct R produces the same positive region as the entire set C, we in fact
ensure the reverse is also true. In terms of rules, condition (s) of a reduct can
be equivalently expressed by:

(s1) ∀x ∈ U([x]R −→P Di ⇐⇒ [x]C −→P Di),

or equivalently,

(s2) ∀x ∈ U([x]R ⊆ Di ⇐⇒ [x]C ⊆ Di).

Monotonicity of the quantitative measures: Many authors [3,11,22,29,38]
use an equivalent quantitative definition of a Pawlak reduct. It is based on the
following measure, called the quality of classification or the degree of depen-
dency of D [24], on an attribute set A ⊆ C:

γ(πD | πA) =
|POSπA

(πD)|
|U | . (21)

Based on the monotocity of positive regions, we can obtain the monotocity of
the γ measure. That is,

A ⊆ B =⇒ γ(πD | πA) ≤ γ(πD | πB).

By monotocity, the condition (s) of the definition can be re-expressed as:

(s3) γ(πD | πR) = γ(πD | πC).

21

Information Sciences, 178(17), 3356-3373, Elsevier B.V., 2008.



In other words, R and C are the same under the γ measure.

In general, any monotonic measure f can be used to define a Pawlak reduct
if it satisfies the condition

(f(πD | πR) = f(πD | πC)) ⇐⇒ (POSπR
(πD) = POSπC

(πD)).

For example, Shannon’s entropy and many of its variations have been explored
to measure the uncertainty in rough set theory [3,7,15,19,28,37,39], and thus
can be understood as different forms of the f measure.

The equivalence of the two conditions γ(πD | πR) = γ(πD | πC) and POSπR
(πD) =

POSπC
(πD) is true under the condition α = 1 used in defining the Pawlak posi-

tive region. They are no longer equivalent in the probabilistic rough set models
when a different value of α is used in defining a probabilistic positive region.

5.2 Interpretations of the γ measure

In order to gain more insights into a reduct defined by the γ measure, we need
to explicitly establish connections between γ and other measures of rule sets
discussed in the last section.

Confidence: The Pawlak positive region is formed by the condition α = 1.
Therefore, each positive rule has a confidence of 1. By Equation (17), we have:

confidence(PRSA) =
|POSπA

(πD)|
|POSπA

(πD)| = 1.

If POSπA
(πD) = ∅, we assume confidence(PRSA) = 1. It can be observed

that the confidence of a Pawlak positive rule set is always 1, independent of
the set of attributes A ⊆ C. Similarly, the confidence of a Pawlak boundary
rule set is always less than 1 and greater than 0, and is independent of the
set of attributes A ⊆ C. The confidence of positive rules is imposed by the
requirement of α = 1, and it determines the positive region used in the γ
measure. On the other hand, the γ measure does not determine the confidence
of rules.

Coverage: According to Equation (18), the coverage of a Pawlak positive rule
set can be computed by:

coverage(PRSA) =
|POSπA

(πD)|
|U | = γ(πD | πA).
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Thus, γ(πD | πA) is in fact the coverage of the Pawlak positive rule set.

Generality: According to Equation (19), the generality of a Pawlak positive
rule set is given by:

generality(PRSA) =
|POSπA

(πD)|
|U | = γ(πD | πA).

In the Pawlak model the coverage and generality of the positive rule set are
the same as the γ measure.

Cost: According to Equation (20), the cost measure of a Pawlak positive rule
set is given by:

R(PRSA) = confidence(PRSA)λPP + (1− confidence(PRSA))λPN = λPP .

This means that the cost of the Pawlak positive rule set is a constant and,
moreover, the γ measure does not tell us anything about the cost.

The following theorem summarizes the main results developed so far:

Theorem 2 For a reduct R ⊆ C, the following conditions are equivalent in
the Pawlak model:

(i.) γ(πD | πR) = γ(πD | πC);
(ii.) POSπB

(πR) = POSπC
(πD);

(iii.) coverage(PRSR) = coverage(PRSC);
(iv.) generality(PRSR) = generality(PRSC);
(v.) for all x ∈ U ([x]R −→P Di) ⇐⇒ ([x]C −→P Di).

Theorem 2 shows that a Pawlak reduct R ⊆ C produces a positive rule set
with the same level of coverage and generality as the entire set C. In addition,
for any rules induced by R, it makes the same classification decision as the
entire set C. The same conclusions of (i.) - (iv.) are also true for the set of
boundary rules induced by R. Therefore, the γ measure is a good choice for
defining a reduct in the Pawlak model.

6 Attribute Reduction in Probabilistic Models

According to the analysis in the previous section, the γ measure truthfully
reflects many properties of a reduct in the Pawlak model. We examine the
possibility of defining a single measure in the probabilistic models and propose
a general definition of an attribute reduct in probabilistic models.
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6.1 A definition of a probabilistic attribute reduct

Being parallel to the study of a Pawlak reduct, a probabilistic attribute reduct
can be defined by requiring that the probabilistic positive region of πD is
unchanged.

Definition 5 Given an information table S = (U,At = C ∪ {D}, {Va | a ∈
At}, {Ia | a ∈ At}), an attribute set R ⊆ C is a reduct of C with respect to D
if it satisfies the following two conditions:

(s) Jointly sufficient condition:
POSπR(α,β)

(πD) = POSπC(α,β)
(πD);

(n) Individually necessary condition:
for any attribute a ∈ R, POSπR−{a}(α,β)

(πD) 6= POSπC(α,β)
(πD).

A similar definition has been proposed by Kryszkiewicz as a β-reduct for the
variable precision rough set model [16]. Based on this definition, we can also
make several observations.

Bounded confidence: In this definition, the probabilistic positive region
of πD is used. The definition of a probabilistic region indicates that the in-
tersection of an equivalence class [x] and a decision class is not empty, i.e.,
[x]∩Dmax([x]) 6= ∅. More specifically, a positive rule [x] −→P Dmax([x]) is con-
strained by the confidence threshold α, and a boundary rule [x] −→B Dmax([x])
is constrained by the confidence threshold β. Note that α is not necessarily
the maximum value 1, and β is not necessarily the minimum value 0.

Ignorance of the boundary region: In probabilistic models, for a reduct
R ⊆ C, we many have POSπR

(πD)∪BNDπR
(πD) 6= U . The γ(α,β) measure only

reflects the probabilistic positive region and does not evaluate the probabilis-
tic boundary region. Attribute reduction in probabilistic rough set models
needs to consider criteria for both the probabilistic positive region and the
probabilistic boundary region.

Non-monotocity of probabilistic positive regions and decision rules:
In a probabilistic model, we cannot obtain the monotocity of the probabilis-
tic positive regions with respect to set inclusion of attributes. That is, for
A,B ⊆ C with A ⊆ B, we may obtain POSπA(α,β)

(Di) ⊇ POSπB(α,β)
(Di)

for some Di ∈ πD, and thus POSπA(α,β)
(πD) ⊇ POSπB(α,β)

(πD). These results

have two consequences. First, for any x ∈ U , we may have two decision rules
involving the equivalence classes [x]A and [x]B, such that they are not con-
nected by the decision-monotocity property. That is, we may make different
decisions based on set A and its super set B of attributes, and the strength
of such two decisions may be different. Second, the equality condition (s)
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POSπR(α,β)
(πD) = POSπC(α,β)

(πD) is not enough for verifying a reduct, and

may miss some reducts. Furthermore, the condition (n) should consider all
the subsets of a reduct R, not only all the subsets R− {a} for all a ∈ R.

Non-monotocity of the γ(α,β) measure: In probabilistic models, many pro-
posals have been made to extend the Pawlak attribute reduction by using
extended and generalized measure of γ. For example, a straightforward trans-
formation of the γ measure is denoted as follows [52]. For A ⊆ C,

γ(α,β)(πD | πA) =
|POSπA(α,β)

(πD)|
|U | .

Based on the fact that the probabilistic positive regions are not monotonic
with respect to set inclusion, the γ(α,β) measure is also non-monotonic. That
is, given A ⊆ B, we may have γ(α,β)(πD | πA) ≥ γ(α,β)(πD | πB).

Based on the condition γ(α,β)(πD | πR) = γ(α,β)(πD | πC), we can obtain
|POSπR(α,β)

(πD)| = |POSπC(α,β)
(πD)|, but cannot guarantee POSπR(α,β)

(πD) =

POSπC(α,β)
(πD). This means that the quantitative equivalence of the prob-

abilistic positive regions does not imply the qualitative equivalence of the
probabilistic positive regions.

6.2 Interpretations of the γ(α,β) measure

Although the definition based on the extended γ(α,β) measure is adopted by
many researchers [4,11,35,52], the measure itself is inappropriate for attribute
reduction in probabilistic models. Even if consider the evaluation of the proba-
bilistic positive rule set only, we have the following observations and problems
regarding the classification measures we have discussed so far.

Confidence: According to Theorem 1, α ≤ confidence(PRS) ≤ 1. The confi-
dence of a probabilistic positive rule set is bounded by the value of α, and it
determines the probabilistic positive regions used in γ(α,β). The γ(α,β) measure
does not determine the confidence of the rules.

Coverage: According to Equation (18), the coverage of the positive rule set
in a probabilistic model is computed as:

coverage(PRSA) ≤
|POSπA(α,β)

(πD)|
|U | = γ(α,β)(πD | πA).
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Thus, γ(α,β)(πD | πA) does not equal to the coverage measure of the proba-
bilistic positive rule set.

Cost: According to Equation (20), the cost of the positive rule set in a prob-
abilistic model is related to the confidence measure and the values of loss
functions. Since the γ(α,β) measure does not determine the confidence of the
rules, it does not determine the cost of the rules.

Generality: According to Equation (19), the generality of the positive rule
set in a probabilistic model is computed as:

generality(PRSA) =
|POSπA(α,β)

(πD)|
|U | = γ(α,β)(πD | πA).

Thus, we can establish a two-way implication between γ(α,β) and the generality
of the positive rule set in a probabilistic model.

The consequence is that Theorem 2 does not hold in probabilistic models.
Instead, we have the following theorem.

Theorem 3 For R ⊆ C, the following conditions are equivalent in a proba-
bilistic model:

(i.) γ(α,β)(πD | πR) = γ(α,β)(πD | πC);
(ii.) |POSπR(α,β)

(πD)| = |POSπC(α,β)
(πD)|;

(iii.) generality (α,β)(PRSR) = generality (α,β)(PRSC).

Theorem 3 shows that a reduct R ⊆ C produces a probabilistic positive rule
set with the same level of generality as the entire set C. The same conclusion
is not true for the set of boundary rules induced by R. The other properties,
such as coverage and decision-monotocity, cannot be kept for both rule sets.

6.3 A general definition of a probabilistic attribute reduct

In light of the previous analysis, although the γ measure is suitable for at-
tribute reduction in the Pawlak model by reflecting many properties of classi-
fication, the straightforward extension of the γ measure might not be suitable
for attribute reduction in probabilistic rough set models. Instead, we need to
consider multiple properties, such as confidence, coverage, generality, cost and
decision-monotocity criteria.

For one certain property, we can use a particular measure as its indicator. A
measure, roughly denoted as e : 2C −→ (L,º), maps a condition attribute set
to an element of a poset L, which is equipped with the partial order relation
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º. That is, º is reflexive, anti-symmetric and transitive. Based on the partial
order relation, we are able to pick the attribute set preserving the property.
The evaluation of a reduct R ⊆ C with respect to e is the same or superior
to e(C), and the evaluation of any subset of R with respect to e is inferior to
e(C).

Given a certain property, a measure representing it is not unique. We have
three basic forms. The first form, denoted as eP,B, is to distinguish the positive
regions from the boundary regions. This allows us emphasize the effectiveness
of positive rules while keeping in mind the effectiveness of boundary rules.
The second form, denoted as eP∪B, keeps tracking all the rules by combining
boundary rules with positive rules. However, by doing so, the certainty of the
positive rules are degraded. The third form, denoted as eP,P∪B, is to evaluate
positive regions and non-negative regions separately. Inuiguch has commented
that the third form should be a better choice for the definition [13]. We may
also have distributed versions of the above three forms. For example, a dis-
tributive measure distr-eP,B is to evaluate the distribution of positive regions
and boundary regions of individual decision classes.

By considering multiple criteria and multiple measures, a general definition of
an attribute reduct can be described as follows.

Definition 6 Given an information table S = (U,At = C ∪ {D}, {Va | a ∈
At}, {Ia | a ∈ At}). Suppose we can evaluate the properties of S by a set
of measures E = {e1, e2, . . .}. An attribute set R ⊆ C is a reduct of C with
respect to D if it satisfies the following two conditions:

(s) Jointly sufficient condition:
e(πD | πR) º e(πD | πC) for all e ∈ E;

(n) Individually necessary condition:
for any subset R′ ⊂ R, e(πD | πR′) ≺ e(πD | πC) for all e ∈ E.

We explain three criteria, decision-monotocity, generality and cost, in the fol-
lowing sub-sections. The confidence and coverage criteria can be explored in
a similar manner.

6.3.1 The decision-monotocity criterion

For a particular object, it is desirable that the decision made with more at-
tributes should stay the same with the decision made with less attributes. Let
R ⊆ C be a reduct. The decision-monotocity property for a set of rules can
be interpreted as:

For all x ∈ U ,
([x]C −→P Dmax([x]C)) =⇒ ([x]R −→P Dmax([x]C)), and
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([x]C −→B Dmax([x]C)) =⇒ ([x]R −→B/P Dmax([x]C)).

The decision-monotocity criterion requires two things. First, the criterion re-
quires that by reducing attributes a positive rule is still a positive rule of the
same decision. That is, for any x ∈ POSπC

(Di), we must have x ∈ POSπR
(Di).

In other words, if x ∈ apr
πC

(Di), then x ∈ apr
πR

(Di). Therefore, apr
πC

(Di) ⊆
apr

πR
(Di) for all Di ∈ πD.

The confidence of the positive rule [x]R −→P Dmax([x]C) is not lower than
the threshold α, but may be lower than the confidence of the positive rule
[x]C −→P Dmax([x]C). In this case, the unique and same decision can be made
for the equivalence class [x] in the positive region. The decreasing confidence
of positive rules causes two consequences: (a.) It increases the generality of the
rule. In the domain of machine learning, this is exactly the idea of pruning an
over-fitted rule to a more general rule by dropping off some descriptions of the
rule. (b.) It increases the cost of the rule. This is because under the general
assumption λPP < λPN , the cost of positive rules is monotonically increasing
with respect to the decreasing confidence. Therefore, for positive rules, the
decision-monotocity property normally means sacrificing the confidence and
the cost for an increased generality.

Second, the criterion requires that by reducing attributes a boundary rule is
still a boundary rule, or is upgraded to a positive rule with the same decision.
That is, for any x ∈ BNDπC

(Di), we must have x ∈ BNDπR
(Di) or x ∈

POSπR
(Di). In other words, if x ∈ aprπC

(Di), then x ∈ aprπR
(Di). Therefore,

aprπC
(Di) ⊆ aprπR

(Di) for all Di ∈ πD.

The confidence of the rule [x]R −→B/P Dmax([x]C) is not lower than the
threshold β, and may be higher than the confidence of the boundary rule
[x]C −→B Dmax([x]C). In this case, the unique and same decision can be made
for the equivalence class [x] in the boundary region. The interpretation of the
decision-monotocity criterion is only one-way upgrading. The degradation is
not allowed by this interpretation. This is ensured by two conditions:

apr
πR(α,β)

(Di)⊇ apr
πC(α,β)

(Di) and

aprπR(α,β)
(Di)⊇ aprπC(α,β)

(Di) for all Di ∈ πD.

In this sense, the decision-monotocity criterion is consistent with the general
definition of a reduct.

A criterion similar to decision-monotocity has been proposed by Slezak as the
majority decision criterion [31] and by Zhang et al. as the maximum distribu-
tion criterion [50]. The majority decision criterion uses a binary information
vector for each equivalence class to indicate to which decision class it be-
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C D

c1 c2 c3 c4 c5 c6

o1 1 1 1 1 1 1 M

o2 1 0 1 0 1 1 M

o3 0 0 1 1 0 0 Q

o4 1 1 1 0 0 1 Q

o5 1 0 1 0 1 1 F

o6 0 0 0 1 1 0 F

o7 1 0 1 0 1 1 F

Table 2
An information table

longs. As Slezak suggested, there are many possibilities to modify, combine
and generalize the majority decision function [31]. For example, instead of us-
ing a binary information vector, Kryszkiewicz defined a rough membership for
each equivalence class with respect to all decision classes [17]. The partition
based on the membership distribution vector is finer and more complex, and
can preserve the quality of the decisions. Li et al. compare the differences of
decision-monotocity criteria recently [18].

Example 4 A simple information table S = (U,At = C ∪ {D}, {Va}, {Ia})
shown in Table 2 is used for exemplifying the decision-monotocity criterion.
Suppose the two thresholds α = 0.81 and β = 0.58 are calculated from the loss
functions for the three states regarding M , Q and F .

The equivalence relation EC partitions the universe into five equivalence classes.
The partition πC induces the following five rules:

{o1}−→P M, (confidence = 1);

{o2, o5, o7} −→B F, (confidence = 0.67);

{o3} −→P Q, (confidence = 1);

{o4} −→P Q, (confidence = 1);

{o6} −→P F, (confidence = 1).

The equivalence relation E{c2,c5} partitions the universe into four equivalence
classes. The partition π{c2,c5} induces the following four rules:

{o1}−→P M, (confidence = 1);

{o2, o5, o6, o7} −→B F, (confidence = 0.75);

{o3} −→P Q, (confidence = 1);
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{o4} −→P Q, (confidence = 1).

For the two equivalence classes of object o6, we have a positive rule [o6]C −→P

F and a boundary rule [o6]{c2,c5} −→B F of the same decision class F . This
result does not satisfy the decision-monotocity criterion of reducts. Thus, the
attribute set {c2, c5} is not a reduct according to the decision-monotocity cri-
terion. It can be easily verified that {c2, c5} satisfies the majority decision
criterion, and thus is a majority decision reduct.

6.3.2 The generality criterion

It is reasonable to request that the generality of the new set of rules is kept or
increased by the partition defined by a reduct. Let R ⊆ C be a reduct. The
generality criterion means that the covered set derived from the partition πR

is more general than the covered set derived from the partition πC, i.e.,

generality(πR −→ πD)≥ generality(πC −→ πD).

Although the generality criterion is used in many rough set models [4,24,52],
it has crucial problems in the probabilistic rough set models. For example,
suppose we have two positive rules [x]C −→P Di and [x]R −→P Dj with:

generality([x]R −→P Dj)≥ generality([x]C −→P Di).

In this case, even though we preserve the generality by the attribute set R,
for these two particular rules, Di and Dj may not be the same, and the rule
[x]C −→P Di may not exist. Therefore, the generality criterion may conflict
with the decision-monotocity criterion.

Example 5 We can use a simple example to demonstrate the problem of the
generality criterion. In information Table 2, suppose the thresholds α = 0.81
and β = 0.58. The equivalence relation E{c5} partitions the universe into two
equivalence classes. The partition π{c5} induces the following two rules:

{o1, o2, o5, o6, o7} −→B F, (confidence = 0.60);

{o3, o4}−→P Q, (confidence = 1).

For the two equivalence classes of object o1, we have a positive rule of the
decision class M , i.e., [o1]C −→P M , with the generality being 1/7, and a
boundary rule of the decision class F , i.e., [o1]{c5} −→B F , with the generality
being 5/7. Thus, the attribute set {c5} is a reduct according to the generality
criterion. Although this result satisfies the generality criterion, it does not
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satisfy the decision-monotocity criterion of reducts. Therefore, the generality
criterion may disagree with the decision-monotocity criterion.

6.3.3 The cost criterion

Let R ⊆ C be a reduct. The cost criterion means that we need to make sure
that the cost derived by the partition πR does not increase, i.e.,

R(πR −→ πD) ≤ R(πC −→ πD).

The cost for the entire rule set can be defined as a distributed form for the
cost of the positive rule set and the cost of the boundary rule set. It can be
defined as the sum of the two costs. In a formal mathematical form:

RP,B(π −→ πD) = (
∑

[x]⊆POSπ(α,β)
(πD)

R(aP | [x]),
∑

[x]⊆BND(α,β)(πD)

R(aB | [x]));

RP∪B(π −→ πD) =
∑

[x]⊆POSπ(α,β)
(πD)

R(aP | [x]) +
∑

[x]⊆BNDπ(α,β)
(πD)

R(aB | [x]).

It is important to note that the cost criterion should not be used alone. It
should be used with decision-monotocity criterion and/or generality criterion.
That is, the decrease of the cost should not change the original decision. Also,
it should not sacrifice the generality of the rule set. This may not always be
achievable.

Example 6 The cost criterion can be illustrated by the same information
Table 2. Suppose the two thresholds α = 0.81 and β = 0.58 are calculated from
the loss functions for the three states regarding M , Q and F .

The partition πC determines three regions: POSπC(0.81,0.58)
(πD) = {o1, o3, o4, o6},

BNDπC(0.81,0.58)
(πD) = {o2, o5, o7} and NEGπC(0.81,0.58)

(πD) = ∅. The cost of the

entire rule set is:

RP∪B(πC −→ πD) = λPP +
2

3
λBP +

1

3
λBN .

The partition π{c2,c5} defines another three regions: POSU/{c2,c5}(0.81,0.58)
(πD) =

{o1, o3, o4}, BNDU/{c2,c5}(0.81,0.58)
(πD) = {o2, o5, o6, o7} and NEGU/{c2,c5}(0.81,0.58)

(πD) =
∅. The cost of the entire rule set is:

RP∪B(π{c2,c5} −→ πD) = λPP +
3

4
λBP +

1

4
λBN .
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Comparing the costs of the two rule sets, if λBP ≤ λBN then {c2, c5} is a
reduct regarding the cost criterion RP∪B, otherwise, it is not.

7 Conclusion

Regarding classification tasks, positive rules and boundary rules, derived from
both the Pawlak model and probabilistic models have different confidence,
coverage, costs and risks, and lead to different decisions and consequences.
An attribute reduct should be able to preserve the classification power of
both positive rules and boundary rules. This can be better understood and
explained in the decision-theoretic rough set models.

We discuss various criteria for attribute reduction for probabilistic rough set
models, such as decision-monotocity, generality and cost. It is noted that these
criteria can be integrated as one simple quantitative measure in the Pawlak
rough set model. However, for probabilistic models, these criteria have different
expressive powers, and lead to different decision making and consequences. A
systematic study of attribute reduction should consider one or more of these
criteria, by using one or more corresponding measures, instead of using an
oversimplified straightforward extension of the Pawlak γ measure.

This study provides a new insight into the problem of attribute reduction.
It suggests that more semantics properties preserved by an attribute reduct
should be carefully examined.
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