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Abstract. In language learning, strong relationships between Gold-style
models and query models have recently been observed: in some quite
general setting Gold-style learners can be replaced by query learners and
vice versa, without loss of learning capabilities. These ‘equalities’ hold
in the context of learning indexable classes of recursive languages.
Former studies on Gold-style learning of such indexable classes have
shown that, in many settings, the enumerability of the target class and
the recursiveness of its languages are crucial for learnability. Moreover,
studying query learning, non-indexable classes have been mainly ne-
glected up to now. So it is conceivable that the recently observed relations
between Gold-style and query learning are not due to common structures
in the learning processes in both models, but rather to the enumerability
of the target classes or the recursiveness of their languages.
In this paper, the analysis is lifted onto the context of learning arbi-
trary classes of r.e. languages. Still, strong relationships between the
approaches of Gold-style and query learning are proven, but there are
significant changes to the former results. Though in many cases learners
of one type can still be replaced by learners of the other type, in general
this does not remain valid vice versa. All results hold even for learning
classes of recursive languages, which indicates that the recursiveness of
the languages is not crucial for the former ‘equality’ results. Thus we
analyse how constraints on the algorithmic structure of the target class
affect the relations between two approaches to language learning.

1 Introduction

In order to model different aspects of human learning and machine learning, dif-
ferent abstract approaches have to be considered. Each model analysed within
the scope of learning theory addresses only special facets of learning. For exam-
ple, in Gold’s [9] model of identification in the limit learning is interpreted as
a limiting process of generating and improving hypotheses about a target con-
cept. These hypotheses are built upon instances of the target concept offered to
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the learner. In the limit, the output of the learner is supposed to stabilize on a
correct guess, but during the learning process one never knows whether or not
the current hypothesis is already correct. The potential of changing its mind is
a crucial quality of the learner.

In contrast to that, Angluin’s [3, 4] model of query learning is concerned with
learning as a finite process in which a learner and a teacher interact. The learner
asks questions of a specified type about the target concept and the teacher
answers these reliably. After finitely many steps the learner is required to return
a single hypothesis, which then correctly describes the target concept. Here the
crucial characteristics of the learner are its access to special information on the
target concept and its confinements in terms of mind changes. Since a query
learner identifies the target concept with just a single hypothesis, we allude to
this scheme as one-shot learning.4

Recently, the combination of these two approaches [11, 12] as well as the
common features of learners in either model [14, 15] have gained interest in the
learning theory community. [14, 15] contributes a systematic analysis of common
features of both approaches, thereby focussing on the identification of formal lan-
guages, ranging over indexable classes of recursive languages, as target concepts,
see [2, 13, 19]. Characterising different types of Gold-style language learning in
terms of query learning has pointed out correspondences between the two mod-
els. In particular, [14, 15] demonstrate how learners identifying languages in the
limit can be replaced by one-shot learners without loss of learning power—and
vice versa. That means, under certain circumstances the capabilities of limit
learners are equal to those of one-shot learners using queries. An important pa-
rameter in this context is the range of possible hypothesis spaces/query spaces
used during the learning process. Despite the fundamental differences in the def-
initions of the two learning paradigms, there are strong relations—at least in the
case of learning indexable families of recursive languages.

The latter restriction had initially been made, since many natural language
classes are indexable. Former studies [19] on Gold-style learning of indexable
classes of languages have shown that, in many settings, the enumerability of the
target class may be the crucial reason for positive learnability results. Moreover,
when studying query learning, non-indexable classes have been mainly neglected
up to now. So it is conceivable that the strong relationships between Gold-style
and query learning observed in [14, 15] are not caused by common structures
in the learning processes in both models, but rather by the enumerability of
the target classes or maybe at least by the recursiveness of the target languages
themselves. In order to determine the actual cause for the relationships observed
before, we now lift the analysis thereof onto more complex classes of languages.

Therefore the current paper concerns the relationships of Gold-style learning
and query learning for the case that arbitrary classes of r.e. languages form the
target. This is additionally based on the following observation: when trying to
learn a class of recursive languages, a certain type of learner may sometimes be

4 Most studies on query learning mainly deal with the efficiency of query learners,
whereas, in what follows, we are only interested in qualitative learnability results.



successful only in case the learner uses a hypothesis space comprising more than
the languages to be learned—such as for instance a hypothesis space given by an
r.e. indexing of r.e. languages. Then a natural question might be whether it is
possible to learn not only the initial target class, but additionally the languages
represented by further queries a learner asks or further hypotheses a learner
states during learning the initial target languages. This again leads to the prob-
lem of learning r.e. languages. Literature, see e.g. [7], knows more examples of
lifting results on learning recursive languages, as in [2], to learning r.e. languages.

From now on assume that arbitrary classes of r.e. languages form the target
classes. Below we prove that in almost all cases, where equivalences between two
learning models A and B had been witnessed for learning indexable classes of
recursive languages, learners of type A can be replaced by learners of type B
without loss of learning power—but no longer vice versa. So, although most of the
equivalences between Gold-style models and query models no longer hold, at least
some of the inclusions hold, thereby forming a hierarchy of inference types. This
shows that huge parts of the relationships shown for learning indexable classes
of recursive languages are maintained; the cause must be common structures of
learning processes in Gold-style and query learning! An important parameter in
the final hierarchy is again the underlying hypothesis space/query space.

Interestingly, all separations of inference types in the final hierarchy can be
witnessed even by (non-indexable) classes of recursive languages. This raises the
question whether the main reason for the equivalence results in [14, 15] is the fact
that the classes considered are enumerable and not that the languages themselves
are recursive. So we analysed whether the results in [14, 15] can be lifted to the
case of learning enumerable classes of r.e. languages. The relationships observed
are somewhat dismal: several of the equivalence results do not hold for learning
enumerable classes of r.e. languages, but at least one of them does. That means
that in most but not in all cases, the main reason for the equivalence results in
[14, 15] lies not only in the enumerability of the target classes.

2 Preliminaries

Familiarity with standard recursion theoretic notions is assumed, see [17, 10].
From now on, a fixed finite alphabet Σ with {a, b} ⊆ Σ is given. A word is
any element from Σ∗ and a language any subset of Σ∗. The complement of a
language L, denoted L, is the set Σ∗ \ L. Any total function t : N → Σ∗ with
{t(i) | i ∈ N} = L is called a text for L. A text t is often identified with an infinite
sequence (t(i))i∈N. Then, given n ∈ N, tn is the initial segment (t(0), . . . , t(n))
and content(tn) denotes the set {t(0), . . . , t(n)}.

In the sequel, ϕ is a Gödel numbering of all partial recursive functions and
K = {i ∈ N | ϕi(i) is defined}. The language family (Wi)i∈N is given by Wi =
{wj | ϕi(j) is defined} for all i ∈ N, where (wj)j∈N is a repetition-free effective
enumeration of Σ∗. Then Wi,s, s ∈ N, is the set of all words wj , such that j < s
and ϕi(j) terminates within s steps. Given A ⊆ N, an A-recursive function is a
function recursive using an oracle for the set A.



A family (Ai)i∈N of languages is uniformly recursive (uniformly r.e.) if there
is a recursive (partial recursive) function f such that Ai = {w ∈ Σ∗ | f(i, w) = 1}
for all i ∈ N. For uniformly recursive families membership is uniformly decid-
able. A family (Ai)i∈N is uniformly K-r.e., if there is a recursive function g such
that Ai = {w ∈ Σ∗ | g(i, w, n) = 1 for all but finitely many n} for all i ∈ N. A
class C of recursive languages over Σ∗ is called an indexable class of recursive
languages (or indexable class for short), if there is a uniformly recursive family
(Li)i∈N of all and only the languages in C.

2.1 Gold-style language learning

Let C be a class of r.e. languages, H = (Ai)i∈N a language family (a hypothesis
space). An inductive inference machine (IIM for short) M is an algorithmic
device that reads longer and longer initial segments σ of a text and outputs
numbers M(σ). Returning i, M is construed to hypothesize the language Ai.

The following definition of learning in the limit is based on [9]. Given a text
t for L ∈ C, M identifies L from t with respect to H = (Ai)i∈N in the limit, if
the sequence of hypotheses output by M , when fed t, stabilizes on a number
i (i.e., past some point M always outputs the hypothesis i) with Ai = L. M
identifies C in the limit from text with respect to H, if it identifies every L′ ∈ C
from every text for L′. In what follows, we focus our studies on uniformly r.e.
families as hypothesis spaces. LimTxt r.e. denotes the collection of all classes C′
for which there is a uniformly r.e. hypothesis space H and an IIM M ′ identifying
C′ in the limit from text with respect to H. A quite natural and often studied
modification of LimTxt r.e. is defined by the model of conservative inference, see
[2, 13] for this concept in the context of learning recursive languages. M is a
conservative IIM for C with respect to H = (Ai)i∈N, if M performs only justified
mind changes, i.e., if M , on some text t for some L ∈ C, outputs hypotheses i
and later j, then M must have seen some element w /∈ Ai before returning j.
The collection of all classes identifiable from text by a conservative IIM with
respect to some uniformly r.e. hypothesis space is denoted by ConsvTxt r.e.. Note
that ConsvTxt r.e. ⊂ LimTxt r.e., as witnessed by the indexable class used in
[19] to separate LimTxt-learnable indexable classes from ConsvTxt-learnable
indexable classes. Another often studied version of Gold-style language learning
is behaviourally correct learning [6]: If C is a class of r.e. languages, H = (Ai)i∈N
any hypothesis space, M an IIM, then M is a behaviourally correct learner for
C from text with respect to H, if for each L ∈ C and each text t for L, for all
but finitely many n, AM(tn) = L is fulfilled. Here M may alternate different
correct hypotheses arbitrarily often instead of converging to a single hypothesis.
Defining the notion BcTxt r.e. as usual yields BcTxt r.e. ⊃ LimTxt r.e. [6].

Since we analyse learning from text, we assume in the sequel that all target
languages are non-empty. One main aspect of human learning is modelled in the
approach of learning in the limit: the ability to change one’s mind. Thus learning
is a process in which the learner may change its hypothesis arbitrarily often until
reaching its final correct guess. In particular, it is in general impossible to find
out when the final hypothesis has been reached, i.e., when a success in learning



has eventuated. The main concern of our analysis will be comparisons of such
inference types to query learning models resulting in a hierarchy reflecting the
capabilities of the corresponding learners.

Finally, note that each class in LimTxt r.e., ConsvTxt r.e., BcTxt r.e. can be
learned using the hypothesis space (Wi)i∈N. We will use this property in our
proofs below. These notions of learning are closely related to the notion of sta-
bilizing sequences [8]. If H = (Ai)i∈N is a hypothesis space, M an IIM, and L
a language, then any finite text segment σ of L is called a LimTxt-stabilizing
sequence (a BcTxt-stabilizing sequence) for M , L, and H, if M(σ) = M(σσ′)
(AM(σ) = AM(σσ′)) for all finite text segments σ′ of L. If L is LimTxt-learned by
M (BcTxt-learned by M) respecting H, then there exists a LimTxt-stabilizing
sequence (a BcTxt-stabilizing sequence) for M , L, and H.

2.2 Language learning via queries

In the query learning model, a learner has access to a teacher that truthfully
answers queries of a specified kind. A query learner M is an algorithmic de-
vice that, depending on the reply on the previous queries, either computes a
new query or returns a hypothesis and halts [3]. Its queries and hypotheses are
coded as natural numbers; both will be interpreted with respect to an under-
lying hypothesis space. We adapt Angluin’s original definition here for learning
r.e. languages as follows: when learning a class C of r.e. languages, any family
(Ai)i∈N of languages may form a hypothesis space.

More formally, let C be a class of r.e. languages, let L ∈ C, let H = (Ai)i∈N
be a hypothesis space, let M be a query learner. M learns L with respect to H
using some type of queries if it eventually halts and its only hypothesis, say i,
represents L, i.e., Ai = L. So M returns its unique and correct guess i after
finitely many queries. Moreover, M learns C with respect to H using some type
of queries, if it learns every L′ ∈ C with respect toH using queries of the specified
type. If L is a target language, a query learner M may ask:

Restricted superset queries. The input is an index of a language L′ ∈ C. The
answer is ‘yes’ or ‘no’, depending on whether or not L′ is a superset of L.

Restricted disjointness queries. The input is an index of a language L′ ∈ C. The
answer is ‘yes’ or ‘no’, depending on whether or not L′ and L are disjoint.

The term ‘restricted’ is used to distinguish these inference types from learning
with superset (disjointness) queries, where, with each negative reply to a query
j the learner is provided a counterexample, i.e., a word in L \Aj (in L ∩Aj).

SupQr.e. and DisQ r.e. denote the collections of all classes C′ for which there
is a uniformly r.e. hypothesis space H and a query learner M ′ learning C′ with
respect to H using restricted superset and restricted disjointness queries, re-
spectively. In the sequel we will omit the term ‘restricted’ for convenience and
will again without loss of generality assume that SupQr.e.-learners and DisQ r.e.-
learners always use the hypothesis space H = (Wi)i∈N. In the literature, see An-
gluin [3, 4], more types of queries, such as (restricted) subset queries, membership



queries, and equivalence queries have been analysed, but in what follows we con-
centrate on the two types explained above. Obviously, superset and disjointness
queries are in general not decidable, i.e., the teacher may be non-computable.

Note that, in contrast to the models of Gold-style language learning intro-
duced above, learning via queries focusses the aspect of one-shot learning, i.e., it
is concerned with scenarios in which learning eventuates without mind changes.

3 Learning indexable classes of recursive languages

Numerous studies on language learning restrict their focus on indexable classes,
since, first, these include many natural classes of languages, and second, many
conceptions can be simplified in this context. In particular, uniformly recursive
families may be considered as hypothesis spaces in the approaches of both Gold-
style and query learning (indicated by a subscript rec instead of r.e.). In this sec-
tion, all results referred to hold for indexable classes only. Recent studies [14, 15]
have shown astonishing relations between the two approaches witnessed by equiv-
alences of pairs of inference types, such as SupQrec = DisQ rec = ConsvTxt r.e.

(= ConsvTxt rec, see a result by Jain in [16]) and DisQ r.e. = LimTxt r.e.. In these
equalities, all inference types are considered restricted to indexable classes.

Concerning characterisations of SupQr.e. and BcTxt rec by similar means,
oracle-IIMs as well as more general hypothesis spaces have been useful. Firstly,
an oracle-IIM is an IIM which is recursive relative to an arbitrary oracle, i.e. its
computation depends on according to which oracle it currently accesses, see e.g.
[18]. For instance, using a K-oracle, such an IIM M becomes a K-recursive IIM
MK . Thus, e.g., ConsvTxt r.e.[K] denotes the collection of classes ConsvTxt r.e.-
learnable with the help of a K-oracle. Restricting such inference types to index-
able classes, one obtains for instance ConsvTxt r.e.[K] = SupQr.e..

Secondly, in order to characterise BcTxt r.e., uniformly K-r.e. hypothesis
spaces have been introduced for query learning, indicated by a subscript K-r.e. as
in SupQK-r.e.. This has lead to the result SupQK-r.e. = DisQK-r.e. = BcTxt r.e..

ConsvTxtr.e. = SupQrec = DisQrec

LimTxtr.e. = LimTxtrec = ConsvTxtrec[K] = DisQr.e.

ConsvTxtr.e.[K] = SupQr.e.

BcTxtr.e. = LimTxtrec[K] = LimTxtr.e.[K] =
SupQK-r.e. = DisQK-r.e.

6

6

6
Figure 1. This graph illustrates
the relations between different
inference types restricted to in-
dexable classes as studied in [14,
15]. Arrows indicate proper in-
clusions of inference types.

4 Learning classes of r.e. languages

In the sequel, a hierarchy as in Figure 1 is established for arbitrary classes of
r.e. languages. A section on query learning with uniformly r.e. hypothesis spaces
is followed by a section dealing with uniformly K-r.e. hypothesis spaces. Note
that indexable hypothesis spaces in general are obsolete here.



4.1 Results for uniformly r.e. hypothesis spaces

Our first comparison already yields a change to the former hierarchy: when
learning arbitrary classes of r.e. languages, ConsvTxt r.e.-learners can in general
no longer be replaced by DisQr.e.-learners.

Theorem 1. DisQ r.e.#ConsvTxt r.e..

Proof. DisQr.e. \ ConsvTxt r.e. 6= ∅ follows from Figure 1. For ConsvTxt r.e. \
DisQ r.e. 6= ∅, consider the following class C.

Let Li = {aibx | x ∈ N}. Let LS
i = {aibx | x ∈ S} for any set S ⊆ N.

Let C1 = {LS
i | i ∈ N, card(S) < ∞,∃e [card(S ∩ {x | x ≤ 2e}) > e + 1]}.

Below, we will define a recursive function f such that, for all i, the following
two properties hold:

(a) Wf(i) ⊆ Li and Wf(i) is recursive (although an index for the characteristic
function of Wf(i) in general cannot be obtained from i);

(b) For all e, card(Wf(i) ∩ {aibx | x ≤ 2e}) ≤ e + 1.
Let C2 = {Wf(i) | i ∈ N}. Let C = C1 ∪ C2. Thus, C is uniformly r.e. and

consists only of recursive languages (however, C is not an indexed family).
C ∈ ConsvTxt r.e. is witnessed by an IIM M which, on target L, first acquires

an i with L ⊆ Li. M outputs f(i), until an e with card({x | aibx ∈ L, x ≤ 2e}) >
e + 1 is found. In the latter case M runs the learning procedure for finite sets.

Let (Mi)i∈N be an enumeration of all DisQ r.e.-learners. We now define f ,
such that (a) and (b) above are fulfilled and for each i, Mi either does not
DisQ r.e.-identify Wf(i), or it does not DisQ r.e.-identify C1.

For any i, s ∈ N, let W s
f(i) denote the subset of Wf(i) enumerated before

stage s. Let W 0
f(i) = {ai}, i.e., the word ai is enumerated in Wf(i) before stage 0.

Go to stage 0. In general, stage s reads as follows.

- Step 1: Run Mi for s steps, where each disjointness query j (representing
Wj) of Mi is answered ‘yes’, if Wj,s ∩W s

f(i) = ∅; ‘no’ otherwise.
- Step 2: If Mi does not output a hypothesis within s steps, go to stage s + 1.

Else dovetail steps 2.1 and 2.2 until one of them succeeds. If 2.1 succeeds
before 2.2, then go to stage s + 1, else if 2.2 succeeds, then go to step 3.
(2.1) Find a query j from step 1 which was answered ‘yes’, but Wj∩W s

f(i) 6= ∅.
(2.2) Find a query j from step 1 which was answered ‘yes’, and aiby ∈ Wj

for some y > 2s.
- Step 3: Let j, y be as found in step 2.2. Enumerate aiby in Wf(i) and go to

stage s + 1 (otherwise stage s never ends).

Fix i. By construction, Wf(i) fulfils the conditions (a) (as either Wf(i) is finite,
or aibs ∈ Wf(i), iff it is enumerated in Wf(i) before stage s) and (b) (as at most
s + 1 elements are enumerated before stage s, and every element enumerated at
or after stage s is of form aiby for some y > 2s). We consider two cases.

Case 1: Stage s starts but does not finish. In this case clearly Wf(i) is finite.
Now, since step 2.1 did not succeed, all questions of Mi in step 1 above for the
input being Wf(i) = W s

f(i), are answered correctly at stage s, and Mi outputs



a hypothesis on Wf(i). Furthermore, all questions j of Mi on Wf(i) which are
answered ‘yes’, have the property that Wj ∩ Li is finite (since step 2.2 did not
succeed). Thus, there exists a finite set S with LS

i ∈ C1 such that Mi behaves the
same way on LS

i as it does on Wf(i). To see this, let S = {x | aibx ∈ Wf(i)}∪{z |
e ≤ z ≤ 2e}, where e = 1 + max({y | aiby ∈ Wj for some query j asked by
Mi on input Wf(i), and answered ‘yes’}) (* note that for each question j asked
by Mi on input Wf(i) and answered ‘yes’, Wj ∩ Li is finite *). Now, Mi can
DisQ r.e.-identify at most one of Wf(i) and LS

i , both of which are in C.
Case 2: Every stage s ends. Consider the following subcases:
Case 2.1: Mi on Wf(i) asks infinitely many questions or never outputs a

hypothesis. In this case clearly, Mi does not DisQ r.e.-identify Wf(i) ∈ C.
Case 2.2: Not case 2.1. In this case let stage s be large enough so that,

if j is a question asked by Mi on Wf(i) (when all the questions are answered
correctly), and Wj ∩Wf(i) 6= ∅, then Wj,s ∩W s

f(i) 6= ∅. Note that then beyond
stage s all questions of Mi are answered correctly in step 1. Now step 2.1 and
2.2 cannot succeed. Thus the only way infinitely many stages can exist is by Mi

not returning any hypothesis. A contradiction.
From the above cases it follows that Mi does not DisQr.e.-identify C.
Thus we obtain DisQ r.e.#ConsvTxt r.e.. �

This incoherency holds since presently DisQr.e. no longer equals LimTxt r.e..
However, an inclusion as in Thm. 2 still indicates a relation between Gold-style
and query learning, albeit weaker than when restricted to indexable classes.

Theorem 2. DisQ r.e. ⊂ LimTxt r.e..

Proof. For the inclusion the congruent proof for indexable classes in [14] can be
adopted. The inequality follows from Thm. 1 and ConsvTxt r.e. ⊆ LimTxt r.e.. �

The relationship between LimTxt r.e. and SupQr.e. remains unchanged from
the former hierarchy, as Thm. 3 shows.

Theorem 3. LimTxt r.e. ⊂ SupQr.e..

Proof. The proof of LimTxt r.e. ⊆ SupQr.e. is omitted. The underlying idea is sim-
ilar to that in the proof of LimTxt r.e. ⊆ DisQ r.e. in [14]. SupQr.e.\LimTxt r.e. 6= ∅
is even witnessed by a uniformly recursive family of languages, see [14]. �

Interestingly, the characterisation SupQr.e. = ConsvTxt r.e.[K] persists when
learning classes of r.e. languages. Here the proof for indexable classes [15] applies.

Theorem 4. SupQr.e. = ConsvTxt r.e.[K].

Though SupQr.e. ⊂ LimTxt r.e.[K] persists (Thm. 5), the relation between
SupQr.e. and BcTxt r.e. changes significantly for arbitrary classes of r.e. languages,
see Thm. 7. The reason is that LimTxt r.e.[K] no longer equals BcTxt r.e. (Thm. 6).

Theorem 5. SupQr.e. ⊂ LimTxt r.e.[K].

Proof. SupQ r.e. ⊆ LimTxt r.e.[K] follows from Thm. 4, since LimTxt r.e.[K] com-
prises ConsvTxt r.e.[K]. As BcTxt r.e. \ ConsvTxt r.e.[K] 6= ∅ [15], Thm. 4 yields
BcTxt r.e. \ SupQr.e. 6= ∅. Thm. 6 then implies LimTxt r.e.[K] \ SupQr.e. 6= ∅. �



Theorem 6. BcTxt r.e. ⊂ LimTxt r.e.[K].

Proof. To show BcTxt r.e. ⊆ LimTxt r.e.[K] suppose C is a class of r.e. languages
in BcTxt r.e.. Let M be an IIM identifying C behaviourally correctly in (Wi)i∈N.

The following oracle-IIM M ′ LimTxt-identifies C with respect to (Wi)i∈N
using an oracle for K. Given a text segment tn of length n+1, M ′ first computes
M(tn). If n = 0, then M ′(tn) = M(tn). If n > 0, then M ′ uses the K-oracle
to determine whether or not there is a word wx for some x ≤ n, such that
wx ∈ WM(tn)∆WM ′(tn−1). If no such word exists, then M ′(tn) = M ′(tn−1). Else
M ′(tn) = M(tn). It is not hard to prove that M ′ learns all languages in C in the
limit respecting (Wi)i∈N. Thus BcTxt r.e. ⊆ LimTxt r.e.[K].

LimTxt r.e.[K] \ BcTxt r.e. 6= ∅ is witnessed by the class CR = {Lf | f is a
recursive function}, where for each partial recursive function f we define Lf =
{axbf(x) | x ∈ N}. (* CR consists only of recursive languages. *) If CR was
BcTxt-learnable, then the class of all recursive functions would be Bc-learnable
as defined in [5]. The latter contradicts a result in [5]. On the other hand, CR is
SupQr.e.-learnable: if L ∈ CR is the target language, a learner can find the least i
with Lϕi ⊇ L. Then Lϕi must equal L. By Thm. 4, then CR ∈ ConsvTxt r.e.[K] ⊆
LimTxt r.e.[K].5 This establishes BcTxt r.e. ⊂ LimTxt r.e.[K]. �

Theorem 7. BcTxt r.e. #SupQr.e..

Proof. For BcTxt r.e. \ SupQr.e. 6= ∅ see [15]. The class CR used to prove Thm. 6
witnesses SupQr.e. \ BcTxt r.e. 6= ∅. �

4.2 Results for uniformly K-r.e. hypothesis spaces

Finally, we consider K-r.e. hypothesis spaces for query learning as in [14, 15].
A family (Ai)i∈N is uniformly K-r.e., if there is a recursive function g with
Ai = {w ∈ Σ∗ | g(i, w, n) = 1 for all but finitely many n} for all i ∈ N. As it
turns out, all the equality results from former studies, as illustrated in Figure 1,
now turn into proper inclusions. So, though there are strong relations between
the corresponding inference types, these are not as strong as in the context of
learning indexable classes. Thms. 8 and 9 state this formally.

Theorem 8. LimTxt r.e.[K] ⊂ DisQK-r.e..

Proof. First, we prove LimTxt r.e.[K] ⊆ DisQK-r.e.. For that purpose, suppose
that C is a class of r.e. languages in LimTxt r.e.[K]. Let M be an oracle-IIM
identifying C in the limit with respect to (Wi)i∈N, using a K-oracle.

Suppose L ∈ C is the target language. Let (Vi)i∈N be a uniformly K-r.e.
family, in which grammars for all queries as posed in the instructions below can
be computed (* such a family exists *). A DisQ-learner M ′ for L with respect
to (Vi)i∈N is defined to act on the following instructions, starting in stage 0.
Stage n reads as follows:
5 CR ∈ LimTxtr.e.[K] also follows from a result in [1], which proves that the access to

an oracle for K permits to learn the class of all recursive functions in the limit, as
defined in [9]. This finally yields LimTxtr.e.[K]-learnability of CR.



- Ask disjointness queries for {w0}, . . . , {wn}. Let L[n] be the set of words
wx, x ≤ n, for which the corresponding query is answered with ‘no’.
(* Note that L[n] = L ∩ {wx | x ≤ n}. *)

- Let (σn
x )x∈N be an effective enumeration of all finite text segments for L[n].

For all x, y ≤ n compute M(σy
x) (* note that for these computations a

K-oracle must be simulated *) as follows: whenever M wants to access a
K-oracle in order to determine whether k ∈ K for some k ∈ N, then pose a
disjointness query for the language

V ′
k =

{
Σ∗ , if k ∈ K ,

∅ , otherwise .

If the answer is ‘yes’, then transmit the answer ‘no’ to M and vice versa.
- For each x, y ≤ n, pose a disjointness query for the K-r.e. language WM(σy

x).
Let Candn = {σy

x | x, y ≤ n and WM(σy
x) ∩ L = ∅} be the set of those

segments, for which the query has been answered with ‘yes’.
(* Note that Candn = {σy

x | x, y ≤ n and L ⊆ WM(σy
x))}. *)

- For all σ ∈ Candn, pose a disjointness query for the K-r.e. language

V ′
σ =


Σ∗ , if, given access to a K-oracle as requested,

M(σσ′) 6= M(σ) for some text segment σ′ of WM(σ) ,

∅ , otherwise .

(* V ′
σ ∩ L = ∅ iff σ is a LimTxt-stabilizing sequence for M and WM(σ). *)

If all these queries are answered ‘no’, then go to stage n+1. Else, if σ ∈ Candn

is minimal with V ′
σ∩L = ∅, then hypothesize a j with Vj = WM(σ) and stop.

M ′ identifies L with disjointness queries in (Vi)i∈N; the proof is omitted. So
C ∈ DisQK-r.e. and LimTxt r.e.[K] ⊆ DisQK-r.e..

LimTxt r.e.[K] 6= DisQK-r.e. can be verified as follows:
We say that an oracle-IIM M is nice, if for all oracles A and all languages L, [if

MA has a stabilizing sequence on L, then every text for L starts with a stabilizing
sequence for MA on L]. Note that from any oracle-IIM M , one can effectively
find an oracle-IIM M ′ such that M ′ is nice, and for all A, LimTxt r.e.[A]-identifies
at least as much as M (a construction in [8] can be seen to easily relativize).

Thus, let M0,M1, . . . be a recursive sequence of nice oracle-IIMs, such that
any class in LimTxt r.e.[K] is LimTxt r.e.[K]-identified by some Mi.

Let Xi = {aibx | x ∈ N}. Let ti be the canonical text aib0, aib1, aib2, . . . for
Xi. Let Xn

i = content(tin) = {aibx | x ≤ n}.
Define Li as follows. If there is no stabilizing sequence for MK

i on Xi, then
let Li = Xi. Else, let tin be a stabilizing sequence for MK

i on Xi (where n is
the least non-zero number such that tin is a stabilizing sequence for MK

i on Xi).
Then if WMK

i (ti
n) ⊃ Xn

i , then let Li = Xn
i ; else let Li = Xn+1

i .
Let C = {Li | i ∈ N}. (* Note that C consists only of recursive languages. *)
Note that MK

i does not LimTxt r.e.[K]-identify Li. Thus C /∈ LimTxt r.e.[K].
We now show how to get a K-r.e. grammar for Li from i. This is clearly

enough to verify C ∈ DisQK-r.e. (as i can be obtained by asking disjointness
queries for L0, L1, . . . , until the unique i to cause a ‘no’-reply is found).



Now aibn ∈ Li iff: (i) n = 0 or
(ii) ∀y ≤ n [tiy is not a stabilizing sequence for MK

i on Xi] or
(iii) ∀y < n [[tiy is not a stabilizing sequence for MK

i on Xi] and WMK
i (ti

n) 6⊃ Xn
i ].

This is a K-r.e. predicate, hence one can obtain a K-r.e. grammar for Li. �

Theorem 9. DisQK-r.e. ⊂ SupQK-r.e..

Proof. First we show DisQK-r.e.⊆SupQK-r.e.. Let C be a class of r.e. languages
DisQ-learnable by some M in a uniformly K-r.e. hypothesis space (Vi)i∈N. Let
(V ′

i )i∈N be a uniformly K-r.e. family, in which grammars for all superset queries
needed below can be computed (* such a family exists *). For a target language
L, an IIM M ′ is defined to execute stage 0.

Stage n: Simulate M . If M poses a disjointness query for Vj , determine the
set Candn of all w ∈ {w0, . . . , wn}, for which a superset query concerning

V ′
w =

{
Σ∗ , if w ∈ Vj ,

∅ , if w /∈ Vj ,

is answered with ‘yes’. (* Candn = {w0, . . . , wn} ∩ Vj . *)
Then pose a superset query for all languages Σ∗ \ {w} with w ∈ Candn. If

all the answers are ‘yes’ (* Candn ∩L = ∅ *), then transmit the answer ‘yes’ to
M , else transmit the answer ‘no’ to M . (* ‘no’-answers are always correct. *)

If M has not returned a hypothesis within n steps, then go to stage n + 1,
else, if M has guessed the language Vi, pose a superset query representing Vi in
(V ′

s )s∈N. If the answer is ‘no’, then go to stage n + 1. If the answer is ‘yes’, then
let J be the set of indices of queries of M , which have been answered with ‘yes’.
For all j ∈ J pose a superset query for

V ′ =

{
Σ∗ , if Vj ∩ Vi 6= ∅ ,

∅ , if Vj ∩ Vi = ∅ .

If all these queries are answered ‘no’, then return a grammar for Vi in (V ′
k)k∈N

(* because all queries are then answered correctly for the language Vi ⊇ L and
for L—so the hypothesis Vi of M must be correct for L *). Else go to stage n+1.

It is not hard to show that M ′ learns L respecting (V ′
i )i∈N. So C ∈ SupQK-r.e..

Second, a class in SupQK-r.e. \DisQK-r.e. can be defined as follows.
Let A be a Π3-complete set. Let Li = {aibj+1ax+1 | j, x ∈ N} and Ls

i =
{aibj+1ax+1 | j ∈ N, x ≤ s} for all i, s ∈ N. Finally, let C = {Li | i ∈ A} ∪ {Ls

i |
i /∈ A, s ∈ N}. (* Note that C consists only of recursive languages. *)

We first show C /∈ DisQK-r.e.. Suppose by way of contradiction that M wit-
nesses C ∈ DisQK-r.e. in some uniformly K-r.e. family (Vi)i∈N. We establish a
contradiction by concluding A ∈ Σ3, though A is Π3-complete. For that pur-
pose, fix recursive sets Q,R with i ∈ A iff ∀x ∃y ∀z [Q(i, x, y, z)]; w ∈ Vi iff
∃y ∀z [R(i, w, y, z)]. Define a Σ3-procedure P on input i ∈ N to begin in stage 0.

Stage n: a) Test whether or not ∃y ∀z [Q(i, n, y, z)] is true. If not, then stop
with the output ‘i /∈ A’. Else go to b).



b) Simulate M for n + 1 steps. Thereby, whenever M poses a disjointness
query k, transmit the answer ‘yes’ to M in case ∃j, x ∃y ∀z [R(k, aibj+1ax+1, y, z)]
is not true (* i.e., if Li∩Vk = ∅ *); the answer ‘no’, otherwise. In case M does not
return any hypothesis within n + 1 steps of computation, go to stage n + 1. Else
stop with the output ‘i ∈ A’. (* If i /∈ A, then there would be some s, such that,
in the scenario above, all answers transmitted to M would be correct for the
languages Ls

i , Ls
i+1, Ls

i+2, . . ., which would all belong to C. Since M returns a
hypothesis, M would fail for infinitely many languages in C—a contradiction. *)

P decides A in Σ3. This contradiction implies that C /∈ DisQK-r.e..
We now show that C ∈ SupQK-r.e..
Let qi

x(t) = min({t} ∪ {r ≤ t | ∀z ≤ t [Q(i, x, r, z)]}). Note that qi
x(t) is

recursive, and limt→∞ qi
x(t) exists iff ∃y ∀z [Q(i, x, y, z)] is true. Let

fi(u, t) =

{
1 , if ∀x ≤ u [qi

x(t) = qi
x(t + 1)] ,

0 , otherwise .

It is easy to verify that Xi = {wu | limt→∞ fi(u, t) = 1}, is finite if i /∈ A, and
equal to Σ∗, if i ∈ A. Moreover, fi is a K-r.e. function for Xi. Thus, a K-r.e.
grammar for Xi can be obtained effectively from i.

Now define M as follows. For a target language L, query Σ∗ \ {aibj+1ax+1},
for various values of i, j, x, until i, j, x are found such that Σ∗\{aibj+1ax+1} 6⊇ L.
By definition of C, this implies that L is of the form Li or Ls

i for some s ∈ N.
Now, pose a superset query for Xi. Note that if i ∈ A, then Xi = Σ∗ ⊇ L, and if
i /∈ A, then Xi 6⊇ L (as Xi would then be finite, while L is infinite). Thus M can
determine whether or not i ∈ A. If i ∈ A, then M outputs a grammar for Li.
If not, then M searches for the minimal s ∈ N such that Ls

i ⊇ L. Now L = Ls
i ,

and M can output a grammar for Ls
i . Thus C ∈ SupQK-r.e. \DisQK-r.e.. �

ConsvTxtr.e. DisQr.e.

LimTxtr.e.

ConsvTxtr.e.[K]

= SupQr.e.

BcTxtr.e.

LimTxtr.e.[K]

DisQK-r.e.

SupQK-r.e.

��� @@I

���@@I

��� @@I

6

6 Figure 2. This graph illustrates
the relations between different
inference types studied above.
Arrows indicate proper inclu-
sions of inference types. Two in-
ference types which are not con-
nected by a path of arrows are
incomparable.

5 Discussion

Above we have seen that many of the equivalences of Gold-style and query
inference types in the context of learning indexable classes no longer hold, if



arbitrary target classes of r.e. languages are considered. Nevertheless, these two
approaches of learning reveal strong relations, expressed in an inclusion hierarchy
of inference types. Altogether, this shows that in many cases all learners of the
one kind of inference types can be transformed into learners of the other kind
without loss of learning power, though in general not vice versa. Interestingly,
our proofs for the inclusions are constructive, i.e. the transformations of learners
can be done uniformly and indicate the essential reasons for the strong relations.

Another outcome is that all our separation results are witnessed by classes
of recursive languages: SupQr.e. \ LimTxt r.e. 6= ∅, BcTxt r.e. \ SupQr.e. 6= ∅, and
LimTxt r.e.[K] \ SupQr.e. 6= ∅ are obtained in [14, 15] using indexable classes
of recursive languages; the other separations displayed in Figure 2 have been
verified with non-indexable classes of recursive languages. For the latter, note
that all classes used in our proofs above consist only of recursive languages. Of
course these proofs would not have worked with indexable classes of recursive
languages, since the corresponding separations do not hold for indexable classes,
see Figure 1. So the equalities are not due to the recursiveness of the target lan-
guages alone. The fact that the target classes are indexable is crucial. This raises
the question whether the new inequalities obtained above hold for uniformly r.e.
classes. As it turns out, at least one of them does not, while some of them do.

When restricting the focus to learning indexable classes, [14] has shown
that the capabilities of DisQK-r.e.-learners and LimTxt r.e.[K]-learners are equal,
which does not hold for general classes of recursive languages, as witnessed in
the proof of Thm. 8. Interestingly, the enumerability of the target class is the
crucial reason for the equality result in [14], as the following theorem illustrates.

Theorem 10. Let C be uniformly r.e. Then C ∈DisQK-r.e. iff C ∈LimTxt r.e.[K].

Proof. LimTxt r.e.[K] ⊆ DisQK-r.e. by Thm. 8. So suppose C ∈ DisQK-r.e. is
uniformly r.e. Let f be a recursive function such that C = {Wf(i) | i ∈ N}. Let
M be a DisQK-r.e.-learner for C in a K-r.e. hypothesis space (Vi)i∈N. Let g be a
recursive function such that w ∈ Vi iff limt→∞ g(i, w, t) = 1.

The idea is to construct a LimTxt r.e.[K]-learner M ′ for C by simulating M .
Given a text segment tn, M ′ searches for a language in C, which is consistent
with tn and for which the behaviour of the known learner M seems reasonable,
at least when taking tn into consideration. The length of the given text segment
serves as a bound for M ′ when trying to analyse whether the behaviour of M is
reasonable. Define M ′(tn) (using an oracle for K) as follows:

– If there exists a j ≤ n such that the following three conditions are satisfied:
1. content(tn) ⊆ Wf(j).
2. M outputs a hypothesis if the questions k of M are answered as follows:

– ‘no’, if there exists a w ∈ content(tn) with g(k,w, n′) = 1 for all n′ ≥ n.
– ‘yes’, otherwise.

3. For any query k made by M in the simulation in 2 above:
if there exists a w ∈ Wf(j),n with g(k, w, n′) = 1 for all n′ ≥ n, then
there also exists a w ∈ content(tn) with g(k, w, n′) = 1 for all n′ ≥ n.
(* i.e., the seeming ‘yes’-answers for content(tn) as a target language
also seem to be ‘yes’-answers for Wf(j) as a target language *).



then output f(j) for the least such j. Else output 0.

Note that these simulations can be done using an oracle for K. We now claim
that M ′ LimTxt r.e.-identifies C using a K-oracle. To see this, suppose L ∈ C and
t is a text for L. Let j be minimal with Wf(j) = L. Fix n large enough such that:

A. If all the questions of M are answered correctly in the simulation made
by M ′(tn), then M outputs a hypothesis.

B. j ≤ n.
C. Let Q denote the set of questions asked as in A above. Then, for all k ∈ Q,

if Vk∩L 6= ∅, then for some w ∈ content(tn), for all n′ ≥ n, g(k,w, n′) = 1 (* i.e.,
answers can be given correctly based on tn *).

D. For all j′ < j, if Wf(j′) 6⊇ L, then Wf(j′) 6⊇ content(tn).
E. For all j′ < j, if Wf(j′) ⊃ L, then for some k ∈ Q with Vk ∩ L = ∅ and

x ∈ Wf(j′),n, for all n′ ≥ n, g(k, x, n′) = 1.
Such an n exists (for (A–D), clearly; for (E), if for j′ < j no such n existed,

then tn could be extended to a text segment for Wf(j) and Wf(j′), with answers
as in (A) being correct for both Wf(j) and Wf(j′). So M would fail to DisQ r.e.-
learn at least one of them). Now, M ′(tn′) = f(j) follows for all n′ ≥ n. �

For the other separations, except for SupQK-r.e. \DisQK-r.e. 6= ∅, we will now
prove that even enumerability of the target class is not sufficient for achieving
the equality results from [14, 15]. Whether or not a similar result holds for the
separation of SupQK-r.e. and DisQK-r.e., remains an open question.

Theorem 11. 1. There exists a uniformly r.e. class in LimTxt r.e. \DisQ r.e..
2. There exists a uniformly r.e. class in SupQr.e. \ BcTxt r.e..
3. There exists a uniformly r.e. class in LimTxt r.e.[K] \ BcTxt r.e..

Proof. ad 1. This is already witnessed by the proof of Thm. 2, where a uniformly
r.e. class of recursive languages is used for the separation.

ad 2 and 3. The idea is to use a class comprising the class CR used in the
proof of Thm. 6. For that purpose, choose a uniformly r.e. family (Li)i∈N of
recursive languages satisfying the following demands:

– for all i ∈ N, Li is either finite or Li ∈ CR,
– for all L ∈ CR there is some i ∈ N such that L = Li,
– L0 = ∅,
– for all i, j ∈ N with Li 6= ∅, if Li ⊂ Lj , then i < j.

Such a family can be constructed with standard methods. Now, if C = {Li | i ∈
N}, then C obviously comprises CR and thus C /∈ BcTxt r.e.. In contrast to that,
C ∈ SupQr.e.: for identifying some L ∈ C a query learner can find the least i such
that Li ⊇ L. The properties of C then imply Li = L.

Thus, C ∈ SupQr.e. and, by Thm. 5, also C ∈ LimTxt r.e.[K]. �

Thus we have seen that in several cases the equivalence results for index-
able classes from previous work are diminished to strict inclusions, regardless of
whether or not the target class (i) consists of recursive languages only, or (ii)



is enumerable (the latter with one exception, see Thm. 10). This shows that
indexable target classes yield a specific situation for Gold-style and query learn-
ing. Strong relationships between the two models are already witnessed in the
general case of learning arbitrary classes of r.e. languages, but only a restriction
to even indexable target classes further intensifies these relationships.
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