
Competitive search in symmetric trees

David Kirkpatrick1 and Sandra Zilles2

1 Department of Computer Science, University of British Columbia, Canada
kirk@cs.ubc.ca

2 Department of Computer Science, University of Regina, Canada
zilles@cs.uregina.ca

Abstract. We consider the problem of searching for one of possibly many goals
situated at unknown nodes in an unknown tree T . We formulate a universal search
strategy and analyse the competitiveness of its average (over all presentations
of T) total search cost with respect to strategies that are informed concerning
the number and location of goals in T . Our results generalize earlier work on
the multi-list traversal problem, which itself generalizes the well-studied m-lane
cow-path problem. Like these earlier works our results have applications in areas
beyond geometric search problems, including the design of hybrid algorithms and
the minimization of expected completion time for Las Vegas algorithms.

1 Introduction

The m-lane cow-path problem specifies a sequence of m rays (lanes) of un-
bounded length incident on a common origin (crossroad). A goal (pasture) lies
at some unknown distance d from the origin along some (unknown) ray. The
objective is to formulate a provably good strategy (minimizing the total search
cost) for an agent (cow) to reach the goal, starting from the origin.

The cow-path problem is a special instance of a family of problems called
search games, in which a searcher tries to minimize the time needed to find
a hidden goal. For a detailed study of search games, the reader is referred
to [1]. The cow-path problem itself has been studied in several variations, in-
cluding directionally dependent traversal costs, turnaround penalties, shortcuts
and dead-ends [4, 6, 11, 12, 15]. It has also been analysed in terms of worst-case
and average-case competitive ratio (using d as a benchmark), as well as in a
game-theoretic framework [3, 8, 16–18].

Essentially the same ideas as those used in solving the cow-path problem
have been used in the synthesis of deterministic and randomized hybrid algo-
rithms with (near) optimal competitive ratios [2, 7]. Given are a number of basic
algorithms each of which might (or might not) be useful in solving some prob-
lem. The goal is to synthesize a hybrid algorithm from these basic components
by some kind of dovetailing process. Memory limitations may restrict the num-
ber of processes that can be suspended at any given time (the alternative being
a complete restart with successively larger computation bounds).

More recently, the cow-path problem has been generalized in a new and
fundamentally different direction. The multi-list traversal problem [10] assumes
that every ray leads to a goal, i.e. there is a pasture at the end of every track, and
the objective is to minimize the total search cost in finding a goal on at least
one path. (Conventional one-goal cow-path problems correspond to the special
case in which all goals but one are located arbitrarily far from the origin). Es-
sentially the same problem has been studied by McGregor et al. [14] as an “oil
searching problem”, where the objective is to maximize the number of goals
(wells) discovered for a specified budget. Even earlier, similar results were pre-
sented by Luby et al. [13] for the problem of minimizing the expected execution
time of Las Vegas algorithms (viewed as an infinite sequence of deterministic
algorithms with unknown completion times.)

Them-lane cow paths problem, the multi-list traversal problem, and its vari-
ants can all be thought of as search-with-backtracking problems, in which back-
tracking always brings the algorithm back to the origin of search, from where a
new path can be chosen or search in a previously visited path can be resumed.
In many real-world search problems, it is often the case that part of the search
effort invested into one search path eases the search along another path. Back-
tracking would then allow the search algorithm to return to a fork part-way
along the current path and to search along a new path branching from the cur-
rent one (without repeating the search effort to reach the fork from the origin).
The simplest search domain allowing this kind of backtracking is a tree.

Motivated by the desire to understand the limitations of oblivious backtrack-
ing algorithms, we consider a generalization of the multi-list traversal problem
in which the search domain is an unknown unbounded fully-symmetric tree T
with goals at one or more nodes. The search begins at the root of T and proceeds
by always exploring a child of some previously explored node, until a goal node
is visited.

Fleischer et al. [5] considered search problems on trees as part of a more
general study of algorithms that minimize the optimal search ratio: essentially
the worst case ratio of the cost of finding a goal in a search domain to the length
of the shortest path to that goal. For our competitive analysis we compare un-
informed algorithms to those that know T , including the locations of all goals,
but not the specific presentation of T (i.e. the ordering of the children at each of
its internal nodes). In fact, McGregor et al. [14] already introduced a general-
ization of their oil-searching problem to symmetric trees in an appendix to their
paper. Unfortunately, their algorithm exhibits a rather poor competitive ratio for
general symmetric trees, motivating a more in-depth treatment of the symmetric
tree search problem. Note that while it is possible to study backtracking in asym-
metric trees (or more general graphs), it is natural to restrict attention to search

domains in which all search paths are equivalent up to relabeling: as McGregor
et al. [14] point out, asymmetries serve to amplify the knowledge (concerning
goal locations) of informed algorithms, making competitive analysis simultane-
ously more difficult and less meaningful.

1.1 Symmetric tree traversal

In many respects our treatment of search in symmetric trees parallels and gen-
eralizes earlier work on the multi-list search problem. Where previously an al-
gorithm would be evaluated with respect to possible input presentations rang-
ing over all possible permutations of a multi-set of list lengths, we are now
interested in inputs that correspond to presentations of some fixed symmetric
tree. Thus an instance of our symmetric tree traversal problem is an unbounded
rooted unordered fully-symmetric3 tree T , one or more nodes of which are dis-
tinguished as goal nodes, called goals for short. We assume, without loss of
generality, that the path from the root to any goal does not contain any other
goal. We denote by Π(T) the set of all presentations of the problem instance
T . Each such presentation is an ordering of T , i.e. for each internal node x of
T , a bijection from the set {1, . . . , dx} to the edges joining x to the dx chil-
dren of x. In this way, every presentation of T assigns to every node x, and in
particular every goal, in T a labeled path from the root to x. We interpret the
concatenation of labels on this path as the index of x in the given presentation.

We assume that in general algorithms take an arbitrary presentation π of
T as input, and know nothing about the number or location of goals in T . Al-
gorithms proceed in a stepwise fashion. In the first step the root node is ex-
plored, and in every subsequent step a specified child of some previously ex-
plored node is explored, continuing until some goal node is reached. We denote
by search cost(A, π) the total search cost (number of explored nodes) of al-
gorithm A on input presentation π.4 We analyse this search cost of algorithms
(both deterministic and randomized) for specific problem instances T in both
the worst and average cases (over all presentations of T). For worst-case be-
haviour we can think of an adversary choosing the least favorable presentation
of T , knowing the search strategy of the algorithm. We view randomized (Las
Vegas) algorithms as probability distributions over deterministic algorithms; in
this case we are interested in expected search cost.

For the purpose of competitive analysis we contrast general uninformed al-
gorithms with several informed variants that are only required to behave cor-
rectly on problem instances that satisfy certain constraints on the number or

3 all nodes at the same level ` have the same number of children d`
4 Our results apply equally well when the cost of backtracking is taken into account, i.e., when

the search cost includes the cost of re-visiting nodes.

location of the goals. An instance-informed algorithm knows the problem in-
stance, i.e. the location of goals in T , but not their index in the given input
presentation. A level-count-informed algorithm knows the number of goals at
each level of T , but not their location. A cost-informed algorithm knows an up-
per bound on the worst-case search cost that is realizable by the best instance-
informed algorithm for the given instance.

We start by restricting our attention to the case where T is a full binary tree
(i.e. d` = 2, at every level). Section 2 considers the situation where all goals are
known to lie on one fixed level of T , and results are developed for both the full
search cost as well as the search cost restricted to the goal level. These results
are extended, in Section 3, to the general situation where goals may appear on
multiple levels. Finally, the restriction to binary trees is relaxed in Section 4.
Most of the proofs in this last section are most easily understood as elaborations
of the proofs of corresponding results for binary trees.

In general, our oblivious search algorithms not only significantly improve
the search bounds provided by the tree-searching algorithm of McGregor et
al. [14], but they also are arguably close to optimal in the competitive ratio
of their search cost with that of non-oblivious counterparts. For example, for
binary trees with k goals on one fixed level h, our algorithm guarantees an av-
erage search cost that is within a factor h of that achievable by any algorithm
that is only required to perform efficiently on presentations of one fixed tree.
In the same situation, the strategy proposed in [14] is only claimed to have a
corresponding competitive ratio which is bounded by the square of the number
of nodes in the tree!

2 The case where all goals are known to lie at the same level

In the multi-list traversal problem the best uninformed strategy employs a non-
uniform interleaving (dubbed “hyperbolic dovetailing” in [10]) of strategies
each of which searches all lists uniformly to some fixed depth. Motivated by
that, we first consider the case where all goals are known to lie at some fixed
level h. In this case, it does not make any sense for an algorithm to explore
paths in T to a level more or less than h. Therefore we initially consider T to be
truncated at level h and count just the number of probes an algorithm makes of
nodes at the leaf level h, ignoring the cost associated with reaching those nodes.
In this restricted setting, a level-count-informed algorithm knows the number k
of goals at level h in T , but not their location. We denote by probe cost(A, π)
the total number of nodes on level h explored by algorithm A on input presen-
tation π.

Since every presentation of the full binary tree T of height h fixes, for each
of its 2h− 1 internal nodes x, one of two possible labelings on the pair of edges
leading to the children of x , we have the following:

Observation 1 If T is a full binary tree of height h then |Π(T)| = 22h−1.

2.1 Worst-case probe cost

It is clear that an arbitrary uninformed probing algorithm will never need to
make more than 2h−k+1 probes at level h, when faced with a problem instance
T with exactly k goals at level h. On the other hand, an adversary can force
this many probes by any fixed (even count-informed) algorithm by choosing
a suitable problem instance T with exactly k goals at level h and a suitable
presentation π ∈ Π(T). Thus,

Observation 2 For every deterministic level-count-informed algorithmA, there
exists a problem instance T with exactly k goals at level h such that
maxπ∈Π(T) probe cost(A, π) = 2h − k + 1.

As we observe next, fully informed probing algorithms can, at least for some
problem instances, have significantly lower worst-case probe cost. In the next
section, we show that similar reductions are always achievable if we measure
instead the average or expected probe cost.

Observation 3 There exists a deterministic instance-informed algorithmA and,
for every j ≥ 0, a problem instance Tj with exactly 2j goals at level h, such that
maxπ∈Π(Tj) probe cost(A, π) ≤ 2h−j .

Proof. If tree Tj has goals at all 2j leaves of some subtree rooted at an internal
node at level h− j, then it suffices to probe one leaf in each of the 2h−j subtrees
rooted at level h − j, in any presentation of Tj . As a second example, if Tj has
one goal in each of its 2j subtrees rooted at internal nodes at level j, it suffices
to explore all 2h−j leaves in any one of these subtrees, in any presentation of
Tj . ut

It follows from Theorem 4 below that instances like Tj above are the least
complex, in terms of their worst-case probe cost, for fully informed algorithms.
As Theorem 5 and its corollary demonstrate, the most complex such instances
have a significantly higher worst-case probe cost.

Theorem 4 For every deterministic instance-informed algorithm A, and every
problem instance T with exactly k goals at level h,
maxπ∈Π(T) probe cost(A, π) ≥ 2h/k.

Proof. For any node x in T and any index i of a fixed probe location at level h,

x is assigned index i in exactly 22h−1

2h presentations of T , since any presentation
that maps x to a fixed probe location fixes the labels associated with the h edges
on the path to that goal, and only those edges. Thus, for any i, there are exactly

k 22h−1

2h presentations that assign one of k goals to the probe with location index

i. It follows that any deterministic algorithm that uses fewer than 2h

k probes at
level h fails to detect a goal for at least one presentation of T . ut

Theorem 5 For every r, 0 ≤ r ≤ h, there exists a problem instance Tr,h with
k =

∑h
j=r

(
h
j

)
goals at level h, such that for every deterministic instance-

informed algorithm A, maxπ∈Π(Tr,h) probe cost(A, π) ≥ 2r.

Proof. In what follows we denote by 〈r, h〉 the expression
∑h

j=r

(
h
j

)
. It is an

immediate consequence of familiar properties of binomial coefficients that (i)
〈0, h〉 = 2h, (ii) 〈h, h〉 = 1, and (iii) 〈r, h〉 = 〈r, h− 1〉+ 〈r − 1, h− 1〉.

The tree Tr,h is defined recursively for 0 ≤ r ≤ h: (i) T0,h is the complete
tree with 2h leaves, all of which are goals; (ii) Th,h is the complete tree with 2h

leaves, exactly one of which is a goal; and (iii) Tr,h is the complete tree whose
root has subtrees Tr,h−1 and Tr−1,h−1, when 0 < r < h. (See Figure 1 for
illustration.)

Fig. 1. The tree T3,4. The goals reside in the filled nodes.

We argue, by induction on r and h, that (i) Tr,h has 〈r, h〉 goals at level h
and (ii) for any set of fewer than 2r probes in Tr,h there is a presentation of Tr,h
for which no probe coincides with a goal.

For the first part, it suffices to observe that, by definition, T0,h has 2h =
〈0, h〉 goals, Th,h has 1 = 〈h, h〉 goals and so, by straightforward induction,
Tr,h has 〈r, h− 1〉+ 〈r − 1, h− 1〉 = 〈r, h〉 goals.

For the second part, suppose that fewer than 2r probes are assigned to Tr,h.
When r = 0, then obviously all presentations of Tr,h have the property that
there is no goal-probe coincidence. Similarly, if r = h then there is always a

presentation of Tr,h that maps an unprobed leaf onto the sole goal. If 0 < r < h,
then an assignment of fewer than 2r probes to Tr,h corresponds to an assignment
of fewer than 2r−1 probes to one, say the left, of the subtrees at the root of Tr,h,
and fewer than 2r probes to the right. If the left subtree happens to be Tr−1,h−1

and the right Tr,h−1 then, by induction, there is a presentation of each of these
subtrees such that no probe coincides with a goal within either subtree. ut

2.2 Average and expected-case probe cost

Theorem 4 extends to average case behaviour of fully informed algorithms:

Theorem 6 For every deterministic instance-informed algorithm A, and every
problem instance T with exactly k goals at level h,
avgπ∈Π(T)probe cost(A, π) ≥ 2h−2/k.

Proof. As shown in the proof of Theorem 4, for any i, there are exactly k 22h−1

2h

presentations that assign one of k goals to the location index i. Thus, any deter-
ministic algorithm using fewer than 2h−1

k probes at level h fails to detect a goal
in at least half of the presentations of T . Hence every deterministic algorithm
uses at least 2h−1

k probes at level h on at least half of its input presentations. ut

Theorem 6 can be strengthened to apply to the expected case behaviour
of randomized instance-informed algorithms A, by viewing A as a probability
distribution over deterministic algorithms:

Theorem 7 For every randomized instance-informed algorithm A, and every
problem instance T with exactly k goals at level h,
avgπ∈Π(T)E[probe cost(A, π)] ≥ 2h−2/k.

Proof. Let T be any problem instance with exactly k goals at level h and let A
be any randomized fully-informed probing algorithm. We can view A as a prob-
ability distribution over deterministic probing algorithms Aj , where algorithm
Aj is executed with probability pj .

Since every deterministic algorithm succeeds after at most 2h

2k probes on at
most half of the presentations π ∈ Π(T) (by the argument in Theorem 6), it
follows that

∑
π∈Π(T)

probe cost(Aj , π) ≥ 22h−1

2
· 2

h

2k
=

2h22h−1

4k
.

Thus, ∑
π∈Π(T)

E[probe cost(A, π)] =
∑

π∈Π(T)

[
∑
Aj

pjprobe cost(Aj , π)]

=
∑
Aj

pj [
∑

π∈Π(T)

probe cost(Aj , π)]

=
∑
Aj

pj ·
2h22h−1

4k

=
2h22h−1

4k
.

Hence, the average of E[probe cost(A, π)], over all 22h−1 presentations
π ∈ Π(T), is at least 2h

4k . ut

The following theorem, whose proof embodies the central idea of our gen-
eral oblivious tree-searching strategy, shows that the lower bound of Theorem 6
is realizable to within a constant factor, even by an uninformed algorithm.

Theorem 8 There is a deterministic uninformed algorithm A0 such that, for
every problem instance T with exactly k goals at level h,
avgπ∈Π(T)probe cost(A0, π) ≤ 2h+2/k.

Proof. For any r, 0 ≤ r ≤ h, we can interpret an arbitrary presentation of T as
a bottom tree T ′, consisting of all nodes of T at level at most r, together with
2r top trees, each with 2h−r leaves.

The algorithm A0 proceeds in rounds: at the completion of round r ≥ 0,
exactly one leaf in each of the 2r trees rooted at nodes on level r has been
probed. (Figure 2 provides an illustration.) The algorithm terminates if a goal is
discovered in at least one of its probe locations. The total number of probes in
round r is just 2r − 2r−1 = 2r−1.

Fig. 2. The tree T after round r: filled circles indicate probed nodes at level h.

We count the fraction Φr of presentations of T for which algorithm A0

terminates by the end of round r. Each goal resides in one of the 2r top trees
with 2h−r leaves, and coincides with the probed leaf in that tree in exactly 1

2h−r

of the presentations of that top tree. Thus each individual goal is probed in 1
2h−r

of the presentations of T , by the end of round r.
Of course, some presentations map two or more goals to probe positions.

So to count Φr we number the goals arbitrarily and, for 1 ≤ i ≤ k, we count,
among the presentations of T that map none of the first i − 1 goals to a probe
position, the fraction fi that map the i-th goal to a probe position. Clearly, Φr =∑

1≤i≤k fi · [
∏

1≤j<i(1 − fj)]. Furthermore, fi ≥ 1
2h−r , where equality holds

just when none of the first i− 1 goals occupy the same top tree as the i-th goal.
If we define Fx =

∑
x≤i≤k fi · [

∏
x≤j<i(1 − fj)], for 1 ≤ x ≤ k, then

Fk = fk and, for 1 ≤ x < k, Fx = fx + (1 − fx)Fx+1. It is straightforward
to confirm by induction that Fx ≥ 1 − (1 − 1

2h−r)k−x+1. Thus Φr = F1 ≥
1− (1− 1

2h−r)k > 1− (1
e)
k/2h−r

.

Now if 2h−j ≤ k < 2h+1−j , then at most (1
e)
k/2h−j−i ≤ (1

e)
2i

of the pre-
sentations of T have not terminated after r = j + i rounds. Hence the average,
over all presentations of T , of the number of probes of algorithm A0 is at most
2j +

∑
i≥1(2

j+i−1(1
e)

2i−1
) < 2j(1 +

∑
s≥1(s(

1
e)
s)) < 2j(1 + e

(e−1)2
) < 42h

k .
ut

Remark 1. Choosing k = 2h−1 in Theorem 8 and r = h/2 in Theorem 5
demonstrates a large gap between the average and worst-case behaviours of
deterministic instance-informed algorithms. Specifically, the problem instance
Th/2,h with 2h−1 goals at level h has the property that algorithm A0 has av-
erage probe cost of at most 8, whereas every deterministic instance-informed
algorithm requires at least 2h/2 probes in the worst case.

Remark 2. It is easy to see that the total additional search cost in round r of
Algorithm A0 is 2r−1(h− r + 1). Thus if 2h−j ≤ k < 2h+1−j the proof above
implies that the average total search cost is at most 2j(h−j)+

∑
i≥1(2

j+i−1(h−
j−i+1)(1

e)
2i−1

) < 2j(h−j)(1+
∑

s≥1(s(
1
e)
s)) = O((h−j)2h

k) = O(2h

k (1+
lg k)).

By simply randomizing the given presentation before running algorithmA0

the average-case bound of Theorem 8 can be realized as the worst-case expected
cost, providing a tight complement to the lower bound of Theorem 7:

Corollary 9 There is a randomized uninformed algorithm A1 such that, for
every problem instance T with exactly k goals at level h,
maxπ∈Π(T)E[probe cost(A1, π)] ≤ 2h+2/k.

2.3 Taking full search cost into consideration

As noted above, the algorithm A0 outlined in Section 2.2 has probe cost O(2h

k)
but total search cost O(2h

k (1+ lg k)). For some problem instances, e.g., the tree
Tj (described in Theorem 3) with goals at its leftmost k = 2j leaves, even fully
informed algorithms require average total search cost Ω(2h

k (1 + lg k)), since at
least one probe must be made in at least half of the top-level trees of size k, or
the algorithm will fail on at least half of the permutations. Hence this additional
lg k factor is unavoidable in some cases, even when k = o(2h)).

Nevertheless, we have not been able to formulate a notion of intrinsic total
search cost that would permit a tighter general competitive bound than that given
by the following:

Theorem 10 The uninformed algorithm A0 has the property that, for every
problem instance T , avgπ∈Π(T)search cost(A0, π) = O(cinf(T) · (h + 1 −
lg(cinf(T)))), where cinf(T) denotes the minimum, over all informed algo-
rithms B, of avgπ∈Π(T)probe cost(B, π).

Proof. Suppose that input T has k goals. By Theorem 6, cinf(T) is Ω(2h/k).
Furthermore, it is easy to see from the proof of Theorem 8 that the average, over
all presentations π ∈ Π(T), of the total search cost of A0 on presentation π is
O(2h

k (1 + h− lg(2h

k))) = O(cinf(T) · (h+ 1− lg(cinf(T)))). ut

Following Corollary 9, it is easy to see that the competitive bound in Theo-
rem 10 holds for the expected search cost of Algorithm A1 as well. This should
be contrasted with the O(cinf(T) · 4h) bound, given by Theorem 23 of McGre-
gor et al. [14], for the expected cost of their uninformed search strategy in this
same situation.

3 The case where goals may appear on many different levels

To this point we have assumed that all problem instances have the property that
all goals lie on one fixed level h. In this section we develop a dovetailing strategy
that allows us to relax this assumption.

We have already noted that the uninformed algorithm A0 described in The-
orem 8 is competitive (in terms of expected total search cost), to within a factor
of at most h, with the best fully informed algorithm, for input instances all of
whose goals lie on level h. For more general instances, we first generalize The-
orem 6, establishing a lower bound on the intrinsic total expected search cost,
and then show how algorithm A0 can be modified to minimize its competitive
ratio with this bound. We then argue that the competitive ratio achieved by this

modified uninformed algorithm cannot be improved, by more than a logarithmic
factor, even by an algorithm that is cost-informed (that is, is constrained only to
work correctly for problem instances of a known bounded intrinsic cost).

Theorem 11 For every deterministic instance-informed algorithmA, and every
problem instance T with exactly kt goals at level t,
avgπ∈Π(T)search cost(A, π) ≥ mint≥0{t+ 2t

2kt
}/2.

Proof. Let T be any problem instance with exactly kt goals at level t and let
A be any informed goal-searching algorithm. Suppose A makes pt probes at
level t, and let m = max{t | pt > 0} and p =

∑
t≥0 pt. We consider the

fraction of the presentations of T that take some goal to some probe loca-
tion. We can restrict our attention to the 22m−1 presentations of T truncated
at levelm. By the argument in Theorem 4, at most ptkt 2

2m−1

2t presentations take
a goal on level t to a probe on level t. Thus at most a fraction

∑m
t=0

ptkt

2t ≤
p/mint≤m{ 2t

kt
} of the presentations of T take some goal to some probe loca-

tion. It follows that if p < mint≤m{ 2t

kt
}/2 thenA fails to detect a goal for at least

half of the presentations of T . Thus, any deterministic algorithm must make at
least minm≥0 max{m,mint≤m{ 2t

kt
}/2} = mint≥0 max{t, 2t

2kt
} ≥ mint≥0{t+

2t

2kt
}/2 probes on at least half of the presentations of T . ut

Algorithm A0, as described in the proof of Theorem 8, makes 2r equally
spaced probes, for increasing values of r, at one fixed level h, at a total cost
of 2r(h − r + 1). To spread the cost equitably among levels we formulate a
modification A2 of algorithm A0 that, for increasing values of r, probes all 2r

nodes at level r, and makes 2r−i equally spaced probes at all 2i levels in the
interval (r − 2 + 2i, r − 2 + 2i+1], for 1 ≤ i < r.

Algorithm A2 effectively simulates algorithm A0, for all values of h. The
total cost of algorithm A2, up to a fixed value r0 of the parameter r, is (r0 +
1)2r0 . Let t0 = arg mint≥0{(t+ 1)2t/kt}. Then, from the proof of Theorem 8,
we know that the fraction of presentations for which algorithmA2 requires more
than 2j2t0/kt0 probes on level t0 before hitting a goal is less than (1

e)
2j

. It
follows that the average number of probes made on level t0 before hitting a goal
on that level is O(2t0/kt0) and the average total search cost of algorithm A2 is
O((r0 + 1)2r0+1), provided 2r0 ≥ (t0 − r0 + 1)2t0/kt0 .

We summarize this result in the following:

Theorem 12 The uninformed algorithm A2 has the property that, for every
problem instance T with exactly kt goals at level t,
avgπ∈Π(T)search cost(A2, π) ≤ mint≥0{(t+ 1) 2t

kt
} · lg(mint≥0{(t+ 1) 2t

kt
}).

When kt0 = 2t0/t0 and kt = 0, when t 6= t0, the ratio of the O(t20 lg t0)
average search cost of Algorithm A2 (given by Theorem 12) and the Ω(t0)
lower bound on the same cost for any instance-informed algorithm (given by
Theorem 11), is maximized. It turns out that at least a quadratic cost inflation is
unavoidable, even for cost-informed algorithms:

Theorem 13 For every cost c ≥ 0, there is a family F of problem instances,
each member of which can be searched with worst-case total search cost at most
c by some fully informed deterministic search algorithm, such that any cost-
informed search algorithm A must have average, over all input presentations,
total search cost at least Ω(c2), on at least half of the instances in the family.

Proof. (Sketch) F includes instances Ti with 2i+1/(c− i) goals equally-spaced
on level i. For each such instance (c − i)/2 probes at level i (and at most c
total search cost) suffices in the worst case, by a instance-informed algorithm
(cf. Theorem 3), and (c − i)/8 probes at level i are necessary on average (by
Theorem 6). ut

4 General symmetric trees

To this point we have restricted our attention to full binary trees. Not surpris-
ingly, all of our results generalize to arbitrary symmetric trees. There are some
subtleties, however, arising both from nodes with just one child, which can be
used to form trees whose number of leaves is significantly smaller than the num-
ber of internal nodes, and nodes with a very large number of children, which
complicate our round-based algorithms. In the remainder of this section, we
outline our generalized results.

We denote by Di,j the expression
∏j
`=i d`, where d`, recall, denotes the

number of children of all internal nodes at level `. Clearly, the number of nodes
at level h is now D0,h−1, and Observation 1 generalizes to the following:

Observation 14 If T is a general symmetric tree of height h then |Π(T)| =∏h−1
j=0 d

D0,j−1

j .

Using this, Theorems 4, 6 and 7 generalize directly to arbitrary symmetric
trees, with 2h replaced by D0,h−1. Theorem 8 generalizes in the same way, by
a relatively straightforward modification of algorithm A0:

Theorem 15 There is a deterministic uninformed algorithm A0 such that, for
every problem instance T with exactly k goals at level h,
avgπ∈Π(T)probe cost(A0, π) = O(D0,h−1/k).

Proof. As in the proof of Theorem 8, for any r, 0 ≤ r ≤ h, we interpret an
arbitrary presentation of T as a bottom tree T ′, consisting of all nodes of T at
level at most r, together with D0,r−1 top trees, each with Dr,h−1 leaves.

The modified algorithm A0 proceeds in rounds as before: at the completion
of round r exactly one leaf in each of the D0,r−1 trees rooted at nodes on level
r have been probed. The total number of new probes made in round r is just
D0,r−1 − D0,r−2 = (dr−1 − 1)D0,r−2, and the total additional search cost is
(dr−1−1)D0,r−2(h−r+1). Note that if dr−1 = 1 then round r involves no new
probes. On the other hand, if dr−1 > 2, the analysis is made easier by breaking
round r into dr−1 − 1 sub-rounds, each of which makes one new probe in one
previously unprobed tree rooted at one of the children of each of the D0,r−2

nodes at level r − 1. So, on completion of the sub-round s of round r, exactly
s+1 of the dr−1 subtrees rooted at the children of each node on level r−1 have
been probed.

We count the fraction Φr,s of presentations of T for which algorithm A0

terminates by the end of sub-round s of round r. Each goal resides in one of the
the D0,r−2 subtrees rooted at level r − 1, and coincides with one of the s + 1
probed leaves in that tree in exactly (s + 1)/Dr−1,h−1 of the presentations of
that top tree. Thus each individual goal is probed in (s + 1)Dr−1,h−1 of the
presentations of T , by the end of sub-round s of round r.

As before, to count Φr,s we number the goals arbitrarily and, for 1 ≤ i ≤ k,
we count, among the presentations of T that map none of the first i − 1 goals
to a probe position, the fraction fi that map the i-th goal to a probe position.
Clearly, Φr,s =

∑
1≤i≤k fi · [

∏
1≤j<i(1 − fj)]. Furthermore, fi ≥ s+1

Dr−1,h−1
,

where equality holds just when none of the first i − 1 goals occupy the same
level-r − 1 subtree as the i-th goal.

If we define Fx =
∑

x≤i≤k fi · [
∏
x≤j<i(1 − fj)], for 1 ≤ x ≤ k, then

Fk = fk and, for 1 ≤ x < k, Fx = fx + (1− fx)Fx+1. It is straightforward to
confirm by induction that Fx ≥ 1− (1− s+1

Dr−1,h−1
)k−x+1. Thus

Φr,s = F1 ≥ 1− (1− s+ 1
Dr−1,h−1

)k > 1− (
1
e
)k(s+1)/Dr−1,h−1 .

Now if Dj−1,h−1/2y ≤ k < Dj−1,h−1/2y−1, for some y, 1 ≤ y ≤ dlg dje,
then it follows that after 2y+i − 1 sub-rounds of round j at most
(1
e)
k2y+i/(Dj−1,h−1) ≤ (1

e)
2i

of the presentations of T have not terminated.
Furthermore, after 2i − 1 sub-rounds of round j + v at most

(
1
e
)k2

i/(Dj+v−1,h−1) ≤ (
1
e
)2

i−yDj−1,h−1/Dj+v−1,h−1 ≤ (
1
e
)2

i−yDj−1,j+v−2

of the presentations of T have not terminated.

Hence, the average, over all presentations of T , of the number of probes
made by algorithm A0 to the end of round j is at most

2yD0,j−2 +
∑

0≤i≤dlg dj−1e−t

(
1
e
)2

i
(2y+i+1 − 2y+i)D0,j−2

≤ 2yD0,j−2[1 +
∑
i≥0

2i(
1
e
)2

i
]

< 2yD0,j−2[1 +
∑
s≥1

s(
1
e
)s]

= O(D0,h−1/k).

Furthermore, the average, over all presentations of T , of the number of
probes made by algorithm A0 from the end of round j + v − 1 to the end of
round j + v is at most

∑
0≤i≤dlg dj+v−1e

(
1
e
)2

i−yDj−1,j+v−2(2i+1 − 2i)D0,j+v−2

= 2yD0,j−2

∑
0≤i≤dlg dj+v−1e

(
1
e
)2

i−y(Dj−1,j+v−22i−yDj−1,j+v−2.

Thus, the average, over all presentations of T , of the number of probes made
by algorithm A0 from the end of round j on is at most

∑
v≥1

2yD0,j−2

∑
0≤i≤dlg dj+v−1e

(
1
e
)2

i−yDj−1,j+v−22i−y)Dj−1,j+v−2

< 2yD0,j−2

∑
s≥1

s(
1
e
)s

= O(D0,h−1/k).

ut

The next theorem gives a generalization of Theorem 11. It should be noted
that our analysis presented here sacrifices comprehensiveness for brevity; it is
possible to tighten the analysis to better exploit the situation where the degrees
on many successive levels are all one (giving rise to subtrees whose number of
leaves is far exceeded by their number of internal nodes).

Theorem 16 For every deterministic instance-informed algorithmA, and every
problem instance T with exactly kt goals at level t,
avgπ∈Π(T)search cost(A, π) = Ω(mint≥0{t+D0,t−1/kt}).

Proof. Let T be any problem instance with exactly kt goals at level t and let
A be any informed goal-searching algorithm. Suppose that A makes pt probes
at level t, and let m = max{t | pt > 0} and p =

∑
t≥0 pt. We consider the

fraction of the presentations of T that take some goal to some probe location.
Clearly we can restrict attention to the 2σm presentations of T truncated at level
m. By the arguments in Theorem 4, at most a fraction ptkt/D0,t−1 of the pre-
sentations take some goal to some probe on level t. Thus at most a fraction∑m

t=0
ptkt

D0,t−1
≤ p/mint≤m{D0,t−1

kt
} of the presentations of T take some goal

to some probe location. It follows that if p < mint≤m{D0,t−1

kt
}/2 then A fails

to detect a goal for at least half of the presentations of T . Thus, any deter-
ministic algorithm must make at least minm≥0 max{m,mint≤m{D0,t−1

kt
}/2} =

mint≥0 max{t, D0,t−1

2kt
} ≥ mint≥0{t + D0,t−1

2kt
}/2 probes on at least half of the

presentations of T . ut

Next, we give a generalization of Theorem 12. We begin by describing al-
gorithm A3, the general tree variant of binary tree search algorithm A2. We
dovetail, as in Theorem 12, but in rounds that are partitioned into sub-rounds.
Let σr =

∑
0≤j≤rD0,j−1, the total number of nodes of T on levels 0 through

r. After round r ≥ 0, the tree T has been completely searched up to level r, at a
cost of σr. In addition, for 0 ≤ j < lgD0,r−1, D0,r−1/2j nodes on all levels in
the interval (r−1+σr/D0,r−12j , r−1+σr/D0,r−12j+1] have been searched,
at an additional total cost of σr lgD0,r−1.

More generally, after sub-round s of round r, s + 1 of the dr−1 children of
each node on level r − 1 have been probed, at a cost of σr−1 + (s+ 1)D0,r−2.
In addition, for 0 ≤ j < lg((s + 1)D0,r−2), (s + 1)D0,r−2/2j nodes on all
levels in the interval (r − 2 + (σr−1 + (s+ 1)D0,r−2)/((s+ 1)D0,r−2)2j , r −
2 + (σr−1 + (s + 1)D0,r−2)/((s + 1)D0,r−2)2j+1] have been searched, at an
additional total cost of (σr−1 + (s+ 1)D0,r−2) lg((s+ 1)D0,r−2).

Theorem 17 The uninformed algorithm A3 has the property that, for every
problem instance T with exactly kt goals at level t, avgπ∈Π(T)search cost(A3, π)

= O(mint≥0{(t+ 1)D0,t−1

kt
} · lg(mint≥0{(t+ 1)D0,t−1

kt
})).

Proof. As soon as (s + 1)D0,r−2/2j ≥ D0,t−1/kt > (s + 1)D0,r−2/2j+1 for
some t ∈ (r− 2+ (σr−1 +(s+1)D0,r−2)/((s+1)D0,r−2)2j , r− 2+ (σr−1 +
(s + 1)D0,r−2)/((s + 1)D0,r−2)2j+1] Algorithm A2 discovers a goal on level
t, with average cost at most

(σr−1 + (s+ 1)D0,r−2) lg((s+ 1)D0,r−2)

= Θ((t− r + 1)(s+ 1)
D0,r−2

2j
lg((s+ 1)D0,r−2))

= Θ(
(t− r + 1)D0,t−1

kt
lg((s+ 1)D0,r−2))

= Θ(
(t− r + 1)D0,t−1

kt
lg(

(t− r + 1)D0,t−1

kt

(s+ 1)D0,r−2

σr−1 + (s+ 1)D0,r−2
))

= O(
(t− r + 1)D0,t−1

kt
lg(

(t− r + 1)D0,t−1

kt
)).

If t0 = arg mint≥0{(t+ 1)D0,t−1

kt
}, then it follows that

avgπ∈Π(T)search cost(A3, π) = O((t0 + 1)D0,t0−1

kt0
· lg((t0 + 1)D0,t0−1

kt0
)).
ut

Contrasting Theorems 16 and 17, we obtain competitive bounds comparable
to those achieved in the case of binary trees; of course, the competitive limit
captured by Theorem 13 still applies.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References

1. S. Alpern and S. Gal. The Theory of Search Games and Rendezvous. Kluwer Academic
Publishers (2003).

2. Y. Azar, A. Z. Broder, and M. S. Manasse. On-line choice of on-line algorithms. Proc. 4th
Annual ACM-SIAM Symposium on Discrete Algorithms (1993), 432-440.

3. R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins. Searching in the plane. Inform.
Comput. 106,2 (1993), 234-252.

4. E. Demaine, S. Fekete, and S. Gal. Online searching with turn cost. Theoret. Comput. Sci.
361 (2006), 342-355.

5. R. Fleischer, T. Kamphans, R. Klein, E. Langetepe, and G. Trippen. Competitive online
approximation of the optimal search ratio. Proc. 12th Annual European Symposium on Al-
gorithms (2004), 335-346.

6. M.-Y. Kao and M. L. Littman. Algorithms for informed cows. AAAI-97 Workshop on On-
Line Search (1997).

7. M.-Y. Kao, Y. Ma, M. Sipser, and Y. Yin. Optimal constructions of hybrid algorithms. J.
Algorithms 29,1, (1998), 142-164.

8. M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal
randomized algorithm for the cow-path problem. Inform. Comput. 131,1 (1996), 63-79.

9. C. Kenyon. Best-fit bin-packing with random order. Proc. 7th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (1996), 359-364.

10. D. Kirkpatrick. Hyperbolic dovetailing. Proc. 17th Annual European Symposium on Algo-
rithms (2009), 516-527.

11. E. Koutsoupias, C. Papadimitriou, and M. Yannakakis. Searching a fixed graph. Proc. 23rd
International Colloquium on Automata, Languages and Programming (1996), 280-289.

12. A. Lopez-Ortiz and S. Schuierer. The ultimate strategy to search on m rays. Theoret. Com-
put. Sci. 261 (2001), 267-295.

13. M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms. Proc.
Second Israel Symposium on Theory of Computing and Systems, Jerusalem, (June 1993),
128-133.

14. A. McGregor, K. Onak, and R. Panigrahy. The oil searching problem. Proc. 17th Annual
European Symposium on Algorithms (2009), 504-515.

15. C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Proc. 16th Interna-
tional Colloquium on Automata, Languages and Programming (1989), 610-620.

16. A. Schönhage. Adaptive raising strategies optimizing relative efficiency. Proc. 30th Inter-
national Colloquium on Automata, Languages and Programming (2003), 611-623.

17. S. Schuierer. Lower bounds in on-line geometric searching. Comp. Geom. 18 (2001), 37-53.
18. S. Schuierer. Lower bounds for randomized searching on m rays. In R. Klein et al. (Eds):

Comp. Sci. in Perspective (Ottmann Festschrift) LNCS 2598 (2003), 264-277.

