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Abstract. Different formal learning models address different aspects of
learning. Below we compare learning via queries—interpreting learning
as a one-shot process in which the learner is required to identify the target
concept with just one hypothesis—to Gold-style learning—interpreting
learning as a limiting process in which the learner may change its mind
arbitrarily often before converging to a correct hypothesis.
Although these two approaches seem rather unrelated, a previous study
has provided characterisations of different models of Gold-style learning
(learning in the limit, conservative inference, and behaviourally correct
learning) in terms of query learning. Thus under certain circumstances
it is possible to replace limit learners by equally powerful one-shot learn-
ers. Both this previous and the current analysis are valid in the general
context of learning indexable classes of recursive languages.
The main purpose of this paper is to solve a challenging open prob-
lem from the previous study. The solution of this problem leads to an
important observation, namely that there is a natural query learning
type hierarchically in-between Gold-style learning in the limit and be-
haviourally correct learning. Astonishingly, this query learning type can
then again be characterised in terms of Gold-style inference.
In connection with this new in-between inference type we have gained
new insights into the basic model of conservative learning and the way
conservative learners work. In addition to these results, we compare sev-
eral further natural inference types in both models to one another.

1 Introduction

Undeniably, there is no formal scheme spanning all aspects of human learning.
Thus each learning model analysed within the scope of learning theory addresses
only special facets of our understanding of learning. For example, Angluin’s [2, 3]
model of learning with queries focusses learning as a finite process of interaction
between a learner and a teacher. The learner asks questions of a specified type
about the target concept and the teacher answers these questions truthfully.
After finitely many steps of interaction the learner is supposed to return its sole



hypothesis—correctly describing the target concept. Here the crucial features of
the learner are its ability to demand special information on the target concept
and its restrictiveness in terms of mind changes. Since a query learner is required
to identify the target concept with just a single hypothesis, we refer to this
phenomenon as one-shot learning.3

In contrast to that, Gold’s [7] model of identification in the limit is con-
cerned with learning as a limiting process of creating, modifying, and improving
hypotheses about a target concept. These hypotheses are based upon instances
of the target concept offered as information. In the limit, the learner is supposed
to stabilize on a correct guess, but during the learning process one will never
know whether or not the current hypothesis is already correct. Here the ability
to change its mind is a crucial feature of the learner.

[11] is concerned with a first systematic analysis of common features of these
two seemingly unrelated approaches, thereby focussing on the identification of
formal languages, ranging over indexable classes of recursive languages, as tar-
get concepts, see [1, 9, 14]. Characterising different types of Gold-style language
learning in terms of query learning has pointed out interesting correspondences
between the two models. In particular, the results in [11] demonstrate how learn-
ers identifying languages in the limit can be replaced by one-shot learners without
loss of learning power. That means, under certain circumstances the capabilities
of limit learners are equal to those of one-shot learners using queries.

The analysis summarized in this paper has initially been motivated by an
open problem in [11], namely whether or not the capabilities of query learners
using superset queries in Gödel numberings are equal to those of behaviourally
correct Gold-style learners using Gödel numberings as their hypothesis spaces.
Below we will answer this question to the negative, which will lead to the fol-
lowing astonishing observation: there is a natural inference type (learning via
superset queries in Gödel numberings) which lies in-between Gold-style learning
in the limit from text and behaviourally correct Gold-style learning from text in
Gödel numberings.4 Up to now, no such inference type has been known.

This observation immediately raises a second question, namely whether there
is an analogue of this query learning type in terms of Gold-style learning and
thus whether there is also a Gold-style inference type between learning in the
limit and behaviourally correct learning. Indeed such a relation can be observed
with conservative inference in Gödel numberings by learners using an oracle for
the halting problem; see [13] for further results on learning with oracles.

Studying such relations between two different approaches to language learn-
ing allows for transferring theoretically approved insights from one model to the
other. In particular, our characterisations may serve as ‘interfaces’ between an
analysis of query learning and an analysis of Gold-style learning through which
proofs on either model can be simplified using properties of the other.

3 Most studies on query learning mainly deal with the efficiency of query learners,
whereas below we are only interested in qualitative learnability results in this context.

4 That means that the capabilities of the corresponding learners lie in-between. Con-
cerning the notions of inference, see [7, 1, 14] and the preliminaries below.



Most of our proofs provided below make use of recursion-theoretic concep-
tions, thus in particular providing a second quite accessible example—after the
one in [11]—for a class identifiable by a behaviourally correct learner in Gödel
numberings but not identifiable in the limit. The interesting feature of these
classes is that they are defined without any diagonal construction—very unlike
the corresponding classes known before, see for instance [1].

Comparing our results to a result from [13] points out a related open prob-
lem in Gold-style learning: Note that, by [13], an indexable class is learnable
conservatively using an oracle for the halting problem and a uniformly recursive
hypothesis space if and only if it is learnable in the limit. In contrast to that,
we show that conservative learners using an oracle for the halting problem and
a Gödel numbering as a hypothesis space are more capable than limit learners.
This implies that, in the context of conservative inference, oracle learners may
benefit from using a Gödel numbering instead of uniformly recursive numbering
as a hypothesis space. Now the related open problem is: do conservative learners
(without the help of oracles) also benefit from Gödel numberings instead of uni-
formly recursive numberings? Though this question is quite natural, it has not
been discussed in the literature so far. Unfortunately, we can provide an answer
only for a special case: if a learner is required to work both conservatively and
consistently on the relevant data, Gödel numberings do not increase the capabil-
ities when compared to uniformly recursive hypothesis spaces. Additional results
below relate several further natural inference types in both models to each other.

2 Preliminaries

Familiarity with standard recursion theoretic and language theoretic notions is
assumed, see [12, 8]. Subsequently, let Σ be a finite alphabet with {a, b} ⊆ Σ.
A word is any element from Σ∗ and a language any subset of Σ∗. The comple-
ment L of a language L is the set Σ∗ \L. Any infinite sequence t = (wi)i∈N with
{wi | i ∈ N} = L is called a text for L. Then, for any n ∈ N, tn denotes the
initial segment (w0, . . . , wn) and content(tn) denotes the set {w0, . . . , wn}.

A family (Ai)i∈N of languages is uniformly recursive (uniformly r. e.) if there
is a recursive (partial recursive) function f with Ai = {w ∈ Σ∗ | f(i, w) = 1} for
all i ∈ N. A family (Ai)i∈N is uniformly 2-r. e., if there is a recursive function g
with Ai = {w ∈ Σ∗ | g(i, w, n) = 1 for all but finitely many n} for all i ∈ N.
Note that for uniformly recursive families membership is uniformly decidable.

Let C be a class of recursive languages. C is said to be an indexable class
of recursive languages (in the sequel we will write indexable class for short), if
there is a uniformly recursive family (Li)i∈N of all and only the languages in C.
Such a family will subsequently be called an indexing of C.

A family (Ti)i∈N of finite languages is recursively generable, if there is a
recursive function that, given i ∈ N, enumerates all elements of Ti and stops.

In the sequel, let ϕ be a Gödel numbering of all partial recursive functions and
Φ the associated Blum complexity measure, see [5] for a definition. For i, n ∈ N

we will write ϕi[n] for the initial segment (ϕi(0), . . . , ϕi(n)) and say that ϕi[n] is



defined if all the values ϕi(0), . . . , ϕi(n) are defined. For convenience, ϕi[−1] is
always considered defined. Moreover, let Tot = {i ∈ N | ϕi is a total function}
and K = {i ∈ N | ϕi(i) is defined}. The family (Wi)i∈N of languages is given by
Wi = {w∗

j | ϕi(j) is defined} for all i ∈ N, where (w∗
j )j∈N is some fixed effective

enumeration of Σ∗ without repetitions. Moreover, we use a bijective recursive
function coding a pair (x, y) with x, y ∈ N into a number 〈x, y〉 ∈ N.

2.1 Language learning via queries

In the query learning model, a learner has access to a teacher that truthfully
answers queries of a specified kind. A query learner M is an algorithmic device
that, depending on the reply on the previous queries, either computes a new
query or returns a hypothesis and halts, see [2]. Its queries and hypotheses are
coded as natural numbers; both will be interpreted with respect to an underlying
hypothesis space. When learning an indexable class C, any indexing H = (Li)i∈N

of C may form a hypothesis space. So, as in the original definition, see [2], when
learning C, M is only allowed to query languages belonging to C.

More formally, let C be an indexable class, let L ∈ C, let H = (Li)i∈N be
an indexing of C, and let M be a query learner. M learns L with respect to H
using some type of queries if it eventually halts and its only hypothesis, say i,
correctly describes L, i. e., Li = L. So M returns its unique and correct guess i
after only finitely many queries. Moreover, M learns C with respect to H using
some type of queries, if it learns every L′ ∈ C with respect to H using queries of
the specified type. In order to learn a language L, a query learner M may ask:

Membership queries. The input is a string w and the answer is ‘yes’ or ‘no’,
depending on whether or not w belongs to L.

Restricted superset queries. The input is an index of a language L′ ∈ C. The
answer is ‘yes’ or ‘no’, depending on whether or not L′ is a superset of L.

Restricted disjointness queries. The input is an index of a language L′ ∈ C. The
answer is ‘yes’ or ‘no’, depending on whether or not L′ and L are disjoint.

MemQ , rSupQ , and rDisQ denote the collections of all indexable classes C′

for which there are a query learner M ′ and a hypothesis space H′ such that M ′

learns C′ with respect to H′ using membership, restricted superset, and restricted
disjointness queries, respectively. In the sequel we will omit the term ‘restricted’
for convenience and also neglect other types of queries analysed in the litera-
ture, see [2, 3]. Obviously, superset and disjointness queries are in general not
decidable, i. e. the teacher may be non-computable.

Note that learning via queries focusses the aspect of one-shot learning, i. e., it
is concerned with scenarios in which learning eventuates without mind changes.

Having a closer look at the different models of query learning, one easily
finds negative learnability results. Some examples in [11] point to a drawback
of Angluin’s query model, namely the demand that a query learner is restricted
to pose queries concerning languages contained in the class of possible target
languages. That means there are very simple classes of languages, for which any
learner must fail just because it is barred from asking the ‘appropriate’ queries.



To overcome this drawback, it seems reasonable to allow the query learner to
formulate its queries with respect to any uniformly recursive family comprising
the target class C. An extra query learner (see also [10, 11]) for an indexable class
C is permitted to query languages in any uniformly recursive family (L′

i)i∈N com-
prising C. We say that C is learnable with extra superset (disjointness) queries
respecting (L′

i)i∈N iff there is an extra query learner M learning C with re-
spect to (L′

i)i∈N using superset (disjointness) queries concerning (L′
i)i∈N. Then

rSupQrec (rDisQ rec) denotes the collection of all indexable classes C learnable
with extra superset (disjointness) queries respecting a uniformly recursive family.

It is conceivable to permit even more general hypothesis spaces, i. e., to de-
mand a more potent teacher. Thus, let rSupQr.e. (rDisQ r.e.) denote the collection
of all indexable classes which are learnable with superset (disjointness) queries
respecting a uniformly r. e. family. Obviously, each class in rSupQr.e. (rDisQr.e.)
can be identified respecting our fixed numbering (Wi)i∈N. Similarly, replacing
the subscript ‘r. e.’ by ‘2-r. e.’, we consider learning in a uniformly 2-r. e. family.

Note that the capabilities of rSupQ-learners (rDisQ-learners) already in-
crease with the additional permission to ask membership queries. Yet, as has
been shown in [11], combining superset or disjointness queries with membership
queries does not yield the same capability as extra queries do. For convenience,
we denote the family of classes which are learnable with a combination of super-
set (disjointness) and membership queries by rSupMemQ (rDisMemQ).

2.2 Gold-style language learning

Let C be an indexable class, H = (Li)i∈N any uniformly recursive family (called
hypothesis space), and L ∈ C. An inductive inference machine (IIM ) M is an
algorithmic device that reads longer and longer initial segments tn of a text and
outputs numbers M(tn) as its hypotheses. An IIM M returning some i is con-
strued to hypothesize the language Li. Given a text t for L, M identifies L from
t with respect to H in the limit, if the sequence of hypotheses output by M , when
fed t, stabilizes on a number i (i. e., past some point M always outputs the hy-
pothesis i) with Li = L. M identifies C in the limit from text with respect to H,
if it identifies every L′ ∈ C from every corresponding text. LimTxt rec denotes
the collection of all indexable classes C′ for which there are an IIM M ′ and a
uniformly recursive family H′ such that M ′ identifies C′ in the limit from text
with respect to H′. A quite natural and often studied modification of LimTxt rec

is defined by the model of conservative inference, see [1]. M is a conservative
IIM for C with respect to H, if M performs only justified mind changes, i. e., if
M , on some text t for some L ∈ C, outputs hypotheses i and later j, then M
must have seen some element w /∈ Li before returning j. An important property
of conservative learners is that they never hypothesize proper supersets of the
language currently to be learned. The collection of all indexable classes iden-
tifiable from text by a conservative IIM is denoted by ConsvTxtrec. Note that
ConsvTxtrec ⊂ LimTxtrec [14]. Since we consider learning from text only, we
will assume in the sequel that all languages to be learned are non-empty. One
main aspect of human learning modelled in the approach of learning in the limit



is the ability to change one’s mind during learning. Thus learning is a process in
which the learner may change its hypothesis arbitrarily often before stabilizing
on its final correct guess. In particular, it is undecidable whether or not the
final hypothesis has been reached, i. e., whether or not a success in learning has
already eventuated.

If only uniformly recursive families are used as hypothesis spaces, LimTxt rec

coincides with the collection of indexable classes identifiable in a behaviourally
correct manner, see [6]: If C is an indexable class, H = (Li)i∈N a uniformly re-
cursive family, M an IIM, then M is a behaviourally correct learner for C from
text with respect to H, if for each L ∈ C and each text t for C, all but finitely
many outputs i of M on t fulfil Li = L. Here M may alternate different cor-
rect hypotheses instead of converging to a single hypothesis. Defining BcTxt rec

correspondingly as usual yields BcTxt rec = LimTxt rec (a folklore result).
This relation no longer holds, if more general types of hypothesis spaces are

considered. Assume C is an indexable class and H+ = (Ai)i∈N is any uniformly
r. e. family of languages comprising C. Then it is also conceivable to use H+ as
a hypothesis space. For I ∈ {Lim ,Consv ,Bc}, ITxtr.e. denotes the collection
of all indexable classes learnable as in the definition of ITxtrec, if the demand
for a uniformly recursive family H as a hypothesis space is loosened to demand-
ing a uniformly r. e. family H+ as a hypothesis space. Note that each class
in ITxtr.e. can also be ITxt -identified in the hypothesis space (Wi)i∈N. Interest-
ingly, LimTxtrec = LimTxtr.e. (a folklore result), i. e., in learning in the limit, the
capabilities of IIMs do not increase, if the constraints concerning the hypothesis
space are weakened by allowing for arbitrary uniformly r. e. families. In contrast
to that, for BcTxt -identification, weakening these constraints yields an add-on in
learning power, i. e., BcTxt rec ⊂ BcTxtr.e.. In particular, LimTxtrec ⊂ BcTxt r.e.

and so LimTxt- and BcTxt -learning no longer coincide for identification with
respect to arbitrary uniformly r. e. families, see also [4, 1].

The main results of our analysis will be comparisons of these inference types
with different query learning types. For that purpose we will make use of well-
known characterizations based on so-called families of telltales, see [1].

Definition 1. Let (Li)i∈N be a uniformly recursive family and (Ti)i∈N a family
of finite non-empty sets. (Ti)i∈N is a telltale family for (Li)i∈N iff for all i, j ∈ N:

1. Ti ⊆ Li .
2. If Ti ⊆ Lj ⊆ Li, then Lj = Li .

Telltale families are the best known concept to illustrate the specific differ-
ences between indexable classes in LimTxt rec, ConsvTxtrec, and BcTxtr.e.. Their
algorithmic structure has turned out to be crucial for learning, see [1, 9, 4]:

Theorem 1. Let C be an indexable class of languages.

1. C ∈ LimTxtrec iff there is an indexing of C possessing a uniformly r. e. family
of telltales.

2. C ∈ ConsvTxt rec iff there is a uniformly recursive family comprising C and
possessing a recursively generable family of telltales.

3. C ∈ BcTxtr.e. iff there is an indexing of C possessing a family of telltales.



3 Hypothesis spaces in query learning

Concerning the influence of the query and hypothesis spaces in query learning,
various interesting results have been established in [11]. These reveal a hierar-
chy of capabilities of query learners resulting from a growing generality of the
hypothesis spaces. Interestingly, in some but not in all cases, the capabilities of
superset query learners and disjointness query learners coincide:

Theorem 2. [11]
rSupQrec = rDisQ rec ⊂ rDisQ r.e. ⊂ rSupQr.e. ⊆ rSupQ2-r.e. = rDisQ2-r.e. .

In [11] it has remained open, whether or not there is an indexable class
in rSupQ2-r.e. \ rSupQr.e.—a problem which will be solved below. Moreover,
[11] studies original superset (disjointness) query learners which are additionally
permitted to ask membership queries. Their capabilities are in-between those of
the original learners and extra query learners.

Theorem 3. [11] (a) rSupQ ⊂ rSupMemQ ⊂ rSupQrec .
(b) rDisQ ⊂ rDisMemQ ⊂ rDisQrec .

Comparing these results, notice that Theorem 2 analyses the relationship
between superset and disjointness query learning, whereas Theorem 3 avoids
corresponding statements. That means, it has remained open, how the inference
types rSupQ and rSupMemQ relate to rDisQ and rDisMemQ .

As an answer to this question, we can state that rSupQ and rSupMemQ are
incomparable to both rDisQ and rDisMemQ , an immediate consequence of the
following theorem.

Theorem 4. (a) rSupQ 6⊆ rDisMemQ . (b) rDisQ 6⊆ rSupMemQ .

Proof. We provide the separating indexable classes without a proof.
(a) The class Ca containing L = {b} and Lk = {ak, b} for k ≥ 0 belongs to

rSupQ \ rDisMemQ .
(b) A class Cb ∈ rDisQ \ rSupMemQ is defined as follows: for k ∈ N, let

Cb contain the languages Lk = {akbz | z ≥ 0} and L′
k = {ba〈k,j〉 | j ≥ 0}.

Additionally, if k /∈ K, then Cb contains L1
k,j = {ba〈k,j〉} for all j ∈ N; whereas,

if k ∈ K, then Cb contains L2
k,j = {akbz | z ≤ Φk(k) or z > Φk(k) + j} as well as

L3
k,j = {ba〈k,j〉} ∪ {akbΦk(k)+j} for all j ∈ N. 2

The more challenging open question is whether or not the inference types
rSupQr.e. and rSupQ2-r.e. coincide. Interestingly, this is not the case, that means,
2-r. e. numberings provide a further benefit for learning with superset queries.

Theorem 5. rSupQr.e. ⊂ rSupQ2-r.e..

Though our current tools allow for a verification of this theorem, the proof
would be rather lengthy. Since a characterisation of rSupQr.e. in terms of Gold-
style learning simplifies the proof considerably, we postpone the proof for now.



4 Query learning and Gold-style learning — relations

In [11], a couple of relations between query learning and Gold-style learning have
been elaborated. The following theorem summarizes the corresponding results.

Theorem 6. [11] (a) rSupQrec = rDisQrec = ConsvTxtrec .
(b) rDisQr.e. = LimTxtrec = BcTxtrec .
(c) rSupQ2-r.e. = rDisQ2-r.e. = BcTxtr.e. .

By Theorems 2 and 5 this implies LimTxt rec ⊂ rSupQr.e. ⊂ BcTxtr.e., i. e.,
we have found a natural type of learners the capabilities of which are strictly
between those of LimTxt-learners and those of BcTxt-learners. This raises the
question whether the learning type rSupQr.e. can also be characterised in terms
of Gold-style learning. This is indeed possible if we consider learners which have
access to some oracle. In the sequel the notion ConsvTxt r.e.[K] refers to the
collection of indexable classes which are learnable in the sense of ConsvTxt r.e.,
if also K-recursive learners are admitted, see [13].

Theorem 7. rSupQr.e. = ConsvTxtr.e.[K] .

Proof. First, we prove rSupQr.e. ⊆ ConsvTxtr.e.[K]. For that purpose assume
C is an indexable class in rSupQ r.e.. Let M be a query learner identifying C in
(Wi)i∈N and assume wlog that each hypothesis ever returned by M corresponds
to the intersection of all queries answered with ‘yes’ in the preceding scenario.5

Let L ∈ C, t a text for L. Let M ′(t0) be an index of the language content(t0).
Given n ≥ 1, a learner M ′ works on input tn as follows: M ′ simulates M for n
steps of computation. Whenever M asks a superset query i, M ′ transmits the
answer ‘yes’ to M , if content(tn) ⊆ Wi, the answer ‘no’, otherwise (* this test
is K-recursive *). If M returns a hypothesis i within n steps of computation,
let M ′ return i on tn; otherwise let M ′(tn) = M ′(tn−1).

Note that there must be some n, such that M ′ answers all queries of M
truthfully respecting L. Thus it is not hard to verify that the K-recursive IIM M ′

learns L in the limit from text. Moreover, WM ′(tn) 6⊃ L for all n: assuming
WM ′(tn) ⊃ L implies, by normalisation of M , that all queries M ′ has answered
with ‘yes’ in the simulation of M indeed represent supersets of L. Since all
‘no’-answers are truthful respecting L by definition, this yields a truthful query-
scenario for L. As M learns L from superset queries, the hypothesis i must
correctly describe L—a contradiction. So M ′ learns C without ever returning an
index of a proper superset of a language currently to be identified. Now it is not
hard to modify M ′ into a K-recursive IIM which works conservatively for the
class C (a hypothesis will only be changed if its inconsistency is verified with the
help of a K-oracle). Thus C ∈ ConsvTxt r.e.[K] and rSupQr.e. ⊆ ConsvTxtr.e.[K].

5 Think of M as a normalisation of a superset query learner M−: M copies M− until
M− returns the hypothesis i. Now M asks a query for the language Wi instead of
returning a hypothesis. Then let M return a hypothesis j representing the intersec-
tion of all queries answered with ‘yes’ in its preceding scenario. Given a fair scenario
for Wi and a successful learner M−, this implies Wi = Wj and thus M is successful.



Second, we show ConsvTxtr.e.[K] ⊆ rSupQr.e.. For that purpose assume C is
an indexable class in ConsvTxtr.e.[K]. Let M be a K-recursive IIM identifying C
with respect to (Wi)i∈N. Suppose L ∈ C is the target language. An rSupQ-
learner M ′ for L with respect to (Wi)i∈N is defined by steps, starting in step 0.
Note that representations in (Wi)i∈N can be computed for all queries to be asked.
In step 0, M ′ finds the minimal m, such that the query for Σ∗\{w∗

m} is answered
‘no’. M ′ sets t(0) = w∗

m and goes to step 1. In general, step n+1 reads as follows:

– Ask a superset query for Σ∗\{w∗
n+1}. If the answer is ‘no’, let t(n+1) = w∗

n+1;
if the answer is ‘yes’, let t(n + 1) = t(n).
(* Note that content(tn+1) = L ∩ {w∗

x | x ≤ n + 1}. *)
– Simulate M on input tn+1. Whenever M wants to access a K-oracle for the
question whether j ∈ K, formulate a superset query for the language

W ′
j =

{

Σ∗ , if ϕj(j) is defined ,

∅ , otherwise .

and transmit the received answer to M .
(* Note that W ′

j is uniformly r. e. in j and W ′
j ⊇ L iff ϕj(j) is defined. *)

As soon as M returns i = M(tn+1), pose a superset query for Wi. If the answer
is ‘yes’, then return the hypothesis i and stop (* since M learns L conservatively,
we have Wi 6⊃ L and thus Wi = L *). If the answer is ‘no’, then go to step n+2.

Now it is not hard to verify that M ′ learns C with superset queries in (Wi)i∈N.
Details are omitted. Thus C ∈ rSupQr.e. and ConsvTxtr.e.[K] ⊆ rSupQr.e.. 2

Using this characterisation, Theorem 5 translates as follows:

Theorem 5’ ConsvTxtr.e.[K] ⊂ BcTxt r.e. .

Proof. By Theorems 6 and 7 it suffices to prove BcTxtr.e. \ConsvTxtr.e.[K] 6= ∅.
For that purpose we provide an indexable class Cbc ∈ BcTxtr.e.\ConsvTxtr.e.[K].
For all k ∈ N, Cbc contains the language Lk = {akbz | z ≥ 0}. Moreover, for all
k, i, j ∈ N for which ϕk[i − 1] is defined and j ≤ i, let Cbc contain the language

Lk,i,j =

{

{akbz | z ≤ j} , if ϕk(i) is undefined ,

{akbz | z ≤ j} ∪ {baΦk(i)} , if ϕk(i) is defined .

To show that Cbc ∈ BcTxt , it suffices by Theorem 1 to prove the existence
of telltales corresponding to some indexing of Cbc. This is quite simple: as each
language Lk,i,j ∈ Cbc is finite, it forms a telltale for itself. Moreover, as for all k
there are only finitely many subsets of Lk in Cbc, telltales for Lk must exist, too.

Finally, it remains to prove that Cbc /∈ ConsvTxtr.e.[K]. Assume the opposite,
i. e., there is some K-recursive IIM M which ConsvTxt-identifies Cbc in (Wi)i∈N.
The idea is to deduce a contradiction by concluding that Tot is K-recursive. For
that purpose, define a K-recursive procedure on input k as follows:

– Let t = ak, akb, akb2, . . . be the ‘canonical’ text for Lk.
– Simulate M on input t0, t1, t2, . . . until some n is found with content(tn) ⊂
WM(tn) ⊆ Lk. (* n exists, as M learns Lk. Determining n is K-recursive. *)
– If ϕk(i) is defined for all i ≤ n, then return ‘1’; otherwise return ‘0’.



Obviously, this procedure is K-recursive. Note that it returns ‘0’ only in
case ϕk is not total. So assume it returns ‘1’. Then there is some n such that
content(tn) ⊂ WM(tn) ⊆ Lk. If ϕk was not total, the minimal i for which ϕk(i)

is undefined would be greater than n. Thus L = {akbz | z ≤ n} ∈ Cbc. Now tn is
also a text segment for L, but L = content(tn) ⊂ WM(tn). Thus M hypothesizes
a proper superset of L on input tn and hence M fails to learn L conservatively.
This contradicts the choice of M , so ϕk is total.

Consequently, our procedure decides Tot , i. e., Tot is K-recursive. As this is
impossible, we have Cbc /∈ ConsvTxt r.e.[K]. 2

In particular, the class Cbc defined in this proof constitutes a second quite ac-
cessible example—after the one in [11]—for a class identifiable by a behaviourally
correct learner in Gödel numberings but not identifiable in the limit. An interest-
ing feature is that these classes are defined without any diagonal construction—
very unlike the corresponding classes known before, see for instance [1].

Finally, thus Theorem 5 is proven, too. This is an example for the advantages
of our characterisations; verifying Theorem 5 without Theorems 6 and 7 would
have been possible, but more complicated. So features of Gold-style learning
can be exploited in the context of query learning. Note that, with Theorems 6
and 7, we have characterised all types of extra query learning in terms of Gold-
style learning. In order to better describe and understand the capabilities of the
original query learners (the types rSupQ , rSupMemQ , rDisQ , rDisMemQ), let
us have a closer look at the results established up to now.

We know that rSupQrec = rDisQrec = ConsvTxtrec. Note that, according
to [9], for successful conservative learning, it is decisive, whether or not the
learner is allowed to hypothesize languages not belonging to the target class.
That means, if we denote by PConsvTxt the family of all indexable classes C,
for which there is an indexing (Li)i∈N exactly describing C and an IIM ConsvTxt-
learning C in (Li)i∈N, then we obtain PConsvTxt ⊂ ConsvTxtrec.

Similarly, the decisive difference between extra query learners and the original
query learners is the ability to pose queries representing languages not belonging
to the target class.

This raises the question how the original types of query learning can be
compared to class-preserving conservative inference. As it turns out, PConsvTxt-
learners have much in common with rSupMemQ-learners. In contrast, significant
discrepancies between PConsvTxt and the query learning types rSupQ , rDisQ ,
and rDisMemQ can be observed.

Theorem 8. (a) PConsvTxt ⊂ rSupMemQ .
(b) T #PConsvTxt for all T ∈ {rSupQ , rDisQ , rDisMemQ} .

Proof. (a) The proof of PConsvTxt ⊆ rSupMemQ results from a slight modifi-
cation of the proof of ConsvTxtrec ⊆ rSupQ in [10]:

Fix C ∈ PConsvTxt . Then there is an indexing (Li)i∈N of C and an IIM M ,
such that M is a PConsvTxt -learner for C in (Li)i∈N. Note that, as in the general
case of conservative inference, if L ∈ C and t is a text for L, then M never returns
an index i with L ⊂ Li on any initial segment of t.



An rSupMemQ-learner M ′ identifying any L ∈ C may use membership
queries to construct a text for L and then simulate M on this text until M
returns an index of a superset of L. This index is then returned by M ′:

First, to effectively enumerate a text t for L, M ′ determines the set T of all
words in Σ∗, for which a membership query is answered with ‘yes’. Any recursive
enumeration of T yields a text for L.

Second, to compute its hypothesis, M ′ executes steps 0, 1, 2, . . . until it
receives a stop signal. In general, step n, n ∈ N, reads as follows:

– Determine i := M(tn), where t is a recursive enumeration of the set T . Pose
a query referring to Li. If the answer is ‘yes’, hypothesize the language Li and
stop. (* As M never hypothesizes a proper superset of L, Li equals L. *) If the
answer is ‘no’, then go to step n + 1.

It is not hard to verify that M ′ is a successful rSupMemQ-learner for C.
Further details are omitted. So PConsvTxt ⊆ rSupMemQ .

To prove rSupMemQ\PConsvTxt 6= ∅, we provide a separating class Csup: for
all k ∈ N, let Csup contain the language Lk = {akbz | z ≥ 0} and, if k ∈ K, addi-
tionally the languages L1

k,j = {akbz | z ≤ Φk(k) or [z > Φk(k)+ j and z is odd]}

and L2
k,j = {akbz | z ≤ Φk(k) or [z > Φk(k) + j and z is even]}.

Using the indexing (L′
〈k,j〉)k,j∈N, given by L′

〈k,0〉 = Lk, L′
〈k,2j+y〉 = Ly

〈k,j〉 if

k ∈ K, and L′
〈k,2j+y〉 = Lk if k /∈ K, one easily verifies Csup ∈ rSupQ and thus

Csup ∈ rSupMemQ . In contrast to that, Csup /∈ PConsvTxt , because otherwise
K would be recursive. Details are omitted.

(b) rDisQ \ PConsvTxt 6= ∅ and rDisMemQ \ PConsvTxt 6= ∅ follow from
Theorems 8(a), 3(b), and 4(b). For the other claims we just provide the separat-
ing classes: PConsvTxt \ rDisMemQ 6= ∅ is witnessed by the class Ca from the
proof of Theorem 4(a). The class Csup (see above) belongs to rSupQ\PConsvTxt ,
whereas the class consisting of the language L = {a}∗∪{b} and all the languages
Lk = {a, . . . , ak}, k ≥ 0, belongs to PConsvTxt \ rSupQ . 2

5 Discussion

New relations have been established between learning via queries and Gold-style
language learning—depending on the hypothesis space. In particular, learning
with superset queries in uniformly r. e. numberings has revealed a natural in-
ference type in-between LimTxtr.e. and BcTxt r.e.. In correspondence to other
characterisations this inference type has an analogue in Gold-style learning.

As we have seen, the learning capabilities of query learners depend on the
choice of the query and hypothesis space. A similar phenomenon may be ob-
served also in the context of Gold-style language learning, where for instance
BcTxt r.e. ⊃ BcTxt rec = LimTxtrec. In contrast to that, for some models of
Gold-style learning, the choice of the hypothesis space is ineffectual: Recall that
LimTxtr.e. = LimTxtrec. Now assume (Ai)i∈N is any family (not necessarily uni-
formly r. e.) and C is any indexable class of recursive languages. It is not hard
to prove that



- If C is LimTxt-learnable wrt (Ai)i∈N, then C ∈ LimTxtrec .
- If C is BcTxt -learnable wrt (Ai)i∈N, then C ∈ BcTxtr.e. .

But to what extent is the choice of the hypothesis space relevant in conservative
learning in the limit? Whereas each class C ∈ LimTxt rec can even be identified
with respect to a uniformly recursive indexing exactly enumerating C (a folklore
result), class-preserving conservative learners may be poor compared to unre-
stricted ConsvTxtrec-learners, i. e., PConsvTxt ⊂ ConsvTxtrec, see [9]. So it
remains to analyse the relevance of uniformly r. e. hypothesis spaces in the con-
text of conservative learning. It turns out that uniformly r. e. numberings are not
sufficient for conservative IIMs to achieve the capabilities of LimTxt-learners.

Theorem 9. ConsvTxtr.e. ⊂ LimTxtrec .

Proof. ConsvTxtr.e. ⊆ LimTxtrec follows from LimTxtr.e. ⊆ LimTxtrec.
LimTxt rec \ ConsvTxt r.e. 6= ∅ is witnessed by an indexable class C from [9]:

For each k, C contains the language Lk = {akbz | z ≥ 0} and, if k ∈ K,
additionally the languages Lk,j = {akbz | z ≤ j} for all j ≤ Φk(k). [9] shows
that C ∈ LimTxtrec \ ConsvTxtrec. Adopting the corresponding proof one can
verify C /∈ ConsvTxtr.e. and thus ConsvTxt r.e. ⊂ LimTxt rec. 2

Whether or not each class in ConsvTxt r.e. can also be identified conserva-
tively in some uniformly recursive numbering, remains unanswered. Interestingly,
if a class C ∈ ConsvTxt r.e. can be identified by a learner which is conservative
and consistent for C, then C ∈ ConsvTxt rec—see Theorem 10. If (Ai)i∈N is any
family of languages, M an IIM, and C some indexable class, then we say that M
learns C consistently in (Ai)i∈N, if content(tn) ⊆ AM(tn) for all text segments tn
of languages in C. For convenience, we denote by Cons-ConsvTxtr.e. the family
of all indexable classes C, for which there is a uniformly r. e. family (Ai)i∈N and
an IIM M , such that M learns C both consistently and conservatively in (Ai)i∈N.

The proof of Theorem 10 will make use of the fact that ConsvTxt rec =
Cons-ConsvTxtrec according to [9], where Cons-ConsvTxt rec is defined as usual.

Theorem 10. ConsvTxtrec = Cons-ConsvTxtr.e. .

Proof. By ConsvTxtrec ⊆ Cons-ConsvTxt rec ⊆ Cons-ConsvTxtr.e. it remains
to prove Cons-ConsvTxtr.e. ⊆ ConsvTxt rec. For that purpose suppose C is an
indexable class in Cons-ConsvTxtr.e.. If C is finite, then C trivially belongs to
ConsvTxtrec. So suppose C is an infinite class.

By definition, there is an IIM M which learns C consistently and conserva-
tively in the limit in (Wi)i∈N. Moreover, let (Li)i∈N be an indexing for C.

Given k ∈ N, define the canonical text tk for Lk as follows: tk(0) = w∗
m,

where m = min{i | w∗
i ∈ Lk}. For n > 0 let tk(n) = w∗

m+n, if w∗
m+n ∈ Lk;

tk(n) = tk(n− 1), if w∗
m+n /∈ Lk. Now let (ki, ni)i∈N be an effective enumeration

of all pairs (k, n) of indices such that n = 0 or M(tkn) 6= M(tkn−1).
The aim is to define an indexing (L′

i)i∈N comprising C and a recursively
generable family (T ′

i )i∈N of telltales for (L′
i)i∈N. Using Theorem 1 this implies

C ∈ ConsvTxtrec. For that purpose we will define several auxiliary indexings.



Define an indexing (Ai)i∈N as follows: for j ∈ N let

A′
j =

{

Lkj
if M(t

kj

nj+x) = M(t
kj

nj ) for all x ≥ 0 ,

content(t
kj

nj+x−1) if x is minimal with M(t
kj

nj+x) 6= M(t
kj

nj ) .

Claim 1. For each L ∈ C there is some i ∈ N with A′
i = Lki

= L.
The proof of Claim 1 is omitted.

Fix an indexing (Ai)i∈N enumerating all the languages A′
j without repeti-

tions. This is possible, since, by Claim 1, (A′
i)i∈N comprises the infinite class C.

Accordingly, let (yi, zi)i∈N be an effective enumeration with tyi
zi

= t
kj

nj if Ai = A′
j .

Claim 2. For each L ∈ C there is some i ∈ N with Ai = Lyi
= L.

Claim 3. Let i ∈ N. Then Ai ⊆ Wh for h = M(tyi
zi

).

Claim 4. Let i ∈ N. Ai = Lyi
iff Wh = Lyi

for h = M(tyi
zi

).

The proof of Claims 2–4 is left to the reader. Now we define indexings (Bi)i∈N,
(Ti)i∈N: for i ∈ N, construct Bi and Ti according to the following procedure:

(* The construction will yield Bi = Ai or Bi = ∅. Finally, it will be uniformly
decidable whether or not Bi = ∅. *)
– If t

yj

zj 6= tyi
zi

for all j < i, then let Bi = Ai and Ti = content(tyi
zi

).
– If some j < i fulfils t

yj

zj = tyi
zi

, then act according to the following instructions:

- Let h = M(tyi
zi

) and {j1, . . . , js} = {j < i | t
yj

zj = tyi
zi
}.

- Execute Searches (a) and (b) until one of them terminates:

(a) Search for some x with M(tyi

zi+x) 6= h.
(b) Search for xj1 , . . . , xjs

with M(t
yj

zj+xj
) 6= h for all j ∈ {j1, . . . , js}.

(* Note that, for all j ∈ {j1, . . . , js}, there must be some x with M(tyi

zi+x) 6= h
or M(t

yj

zj+x) 6= h (= M(t
yj
zj )). Otherwise one would obtain Ai = Lyi

and

Aj = Lyj
. Since h = M(tyi

zi
) = M(t

yj

zj ), Claim 4 would imply Wh = Lyi
= Lyj

and thus Ai = Aj . This is impossible since (Ai)i∈N avoids repetitions. *)
- If Search (a) terminates first, let Bi = Ti = ∅. If Search (b) terminates first,

then execute Searches (b.1) and (b.2) until one of them terminates:

(b.1) Search for some x with M(tyi

zi+x) 6= h.
(b.2) Search for wj1 , . . . , wjs

with wj ∈ Ai \ Bj for all j ∈ {j1, . . . , js}.

(* Suppose j ∈ {j1, . . . , js}. Note that there is some x with M(tyi

zi+x) 6= h
or some w ∈ Ai \ Bj . Otherwise we would have Ai ⊆ Bj and M(tyi

zi+x) = h
for all x ∈ N. This yields Ai = Lyi

and, with Claim 4, Ai = Wh. Therefore
Wh ⊆ Bj . Claim 3 then implies Bj ⊆ Wh and hence Ai = Wh = Bj = Aj ,
which is a contradiction to the injectivity of the indexing (Ai)i∈N. *)

- If Search (b.1) terminates first, let Bi = Ti = ∅. If Search (b.2) terminates
first, then let Bi = Ai and Ti = content(tyi

zi
) ∪ {wj1 , . . . , wjs

}.

This procedure yields a uniformly recursive indexing (Bi)i∈N and a recursively
generable family (Ti)i∈N of (possibly empty) finite sets with Ti ⊆ Bi for all i.
The proof is left to the reader. Note that Ti = ∅ iff Bi = ∅. Moreover, Bi = Ai

iff Bi 6= ∅. In particular, it is uniformly decidable whether or not Bi = ∅.



Claim 5. (Bi)i∈N comprises C.
Proof of Claim 5. Let L ∈ C. By Claim 2 there is some i ∈ N with Ai = Lyi

= L.
So, by definition, M(tyi

zi+x) = M(tyi
zi

) = h for all x ∈ N. Thus either t
yj
zj 6= tyi

zi
for

all j < i or Searches (b) and (b.2) terminate first in the construction of Bi. This
yields Bi = Ai = L. Hence (Bi)i∈N comprises C. qed Claim 5.

Finally, define an indexing (L′
i)i∈N by removing the empty language from

(Bi)i∈N. For i and j with L′
i = Bj let T ′

i = Tj . Thus (T ′
i )i∈N is a recursively

generable family of non-empty finite sets with T ′
i ⊆ L′

i for all i. It remains to
show that C, (L′

i)i∈N, and (T ′
i )i∈N fulfil the conditions of Theorem 1.2, i. e.,

(i) (L′
i)i∈N comprises C,

(ii) (T ′
i )i∈N is a telltale family for (L′

i)i∈N.

ad (i). This is an immediate consequence of Claim 5 and the definition of (L′
i)i∈N.

ad (ii). To show that T ′
i ⊆ L′

j ⊆ L′
i implies L′

j = L′
i, suppose T ′

i′ ⊆ L′
j′ ⊂ L′

i′

holds for some i′, j′ ∈ N. Let i, j ∈ N with L′
i′ = Bi and L′

j′ = Bj . This yields
L′

i′ = Ai and L′
j′ = Aj . By the properties of canonical texts, tyi

zi
is an initial

segment of tyj . Therefore one of the segments t
yj
zj , tyi

zi
is an initial segment of the

other. Let hi = M(tyi
zi

), hj = M(t
yj

zj ) and consider three cases.
Case 1. zj < zi. Then t

yj

zj is a proper initial segment of tyi
zi

. In particular,
tyi
zj

= t
yj
zj and M(tyi

zj
) = hj . Note that content(tyi

zi
) ⊆ T ′

i′ ⊆ L′
j′ = Aj . Moreover,

by Claim 3, Aj ⊆ Whj
and thus content(tyi

zi
) ⊆ Whj

. Since M is conservative on
any text for Lyi

⊇ Ai, this yields hj = M(tyi
zj

) = M(tyi

zj+1) = · · · = M(tyi
zi

). By

definition of the family (ki, ni)i∈N, we have M(tyi
zi

) 6= M(tyi

zi−1). This results in
zi = zj and thus in a contradiction.

Case 2. zi < zj. Then tyi
zi

is a proper initial segment of t
yj

zj . In particular,
t
yj
zi = tyi

zi
and M(t

yj
zi ) = hi. Note that content(t

yj
zj ) ⊆ L′

j′ ⊆ L′
i′ = Ai. Moreover,

by Claim 3, Ai ⊆ Whi
and thus content(t

yj

zj ) ⊆ Whi
. Similarly as above, this

results in zi = zj and thus in a contradiction.
Case 3. zi = zj . Then tyi

zi
= t

yj
zj . First, assume i > j. Since Bi 6= ∅, in the

construction of Bi some w ∈ Ai \Bj is included in Ti. This yields w ∈ T ′
i′ ⊆ L′

j′ .
So w ∈ L′

j′ \ Bj in contradiction to L′
j′ = Bj . Second, assume i < j. Since

Bj 6= ∅, during the construction of Bj some w ∈ Aj \ Bi is found. This yields
w ∈ L′

j′ \ L′
i′ in contradiction to L′

j′ ⊆ L′
i′ .

Since each case yields a contradiction, our assumption has been wrong, i. e.,
there are no indices i′, j′ ∈ N such that T ′

i′ ⊆ L′
j′ ⊂ L′

i′ . This finally proves (ii).

By Theorem 1.2, the families (L′
i)i∈N and (T ′

i )i∈N witness C ∈ ConsvTxt rec.
Since C ∈ Cons-ConsvTxt r.e. was chosen arbitrarily, our argument directly proves
Cons-ConsvTxtr.e. ⊆ ConsvTxtrec and so ConsvTxtrec = Cons-ConsvTxtr.e.. 2

As it turns out, throughout the whole proof we never use the fact that the
hypothesis space for Cons-ConsvTxt -identification is uniformly r. e. This implies
the following corollary: Assume (Ai)i∈N is any family of languages (not neces-
sarily uniformly r. e.) and C is any indexable class of recursive languages.

- If C is Cons-ConsvTxt-learnable wrt (Ai)i∈N, then C ∈ ConsvTxtrec .



The following figure summarizes our main results.

PConsvTxtrSupQ rDisQ

rSupMemQ rDisMemQ

ConsvTxtrec rSupQ
rec

Cons-ConsvTxtr.e. rDisQ
rec

LimTxtrec rDisQ
r.e.

LimTxtr.e. BcTxtrec

ConsvTxtr.e.[K] rSupQ
r.e.

ConsvTxtr.e.

BcTxtr.e. rSupQ
2-r.e.

rDisQ
2-r.e.

6 66

66 6

6

6

6

This graph illustrates the rela-
tions between different inference
types studied above. If two infer-
ence types are contained in one
box, they are equal. Each vec-
tor indicates a proper inclusion
of inference types, whereas miss-
ing links symbolize incompara-
bility. The dashed box around
ConsvTxt r.e. is used to indicate
that it is not yet known, whether
or not ConsvTxtr.e. belongs to
the adjacent box below.
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