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Abstract

Studying the learnability of classes of recursive functions has attracted considerable
interest for at least four decades. Starting with Gold’s (1967) model of learning in
the limit, many variations, modifications and extensions have been proposed. These
models differ in some of the following: the mode of convergence, the requirements
intermediate hypotheses have to fulfill, the set of allowed learning strategies, the
source of information available to the learner during the learning process, the set of
admissible hypothesis spaces, and the learning goals.

A considerable amount of work done in this field has been devoted to the char-
acterization of function classes that can be learned in a given model, the influence
of natural, intuitive postulates on the resulting learning power, the incorporation of
randomness into the learning process, the complexity of learning, among others.

On the occasion of Rolf Wiehagen’s 60th birthday, the last four decades of research
in that area are surveyed, with a special focus on Rolf Wiehagen’s work, which has
made him one of the most influential scientists in the theory of learning recursive
functions.

1 Introduction

Emerging from the pioneering work of Gold [52,53], Solomonoff [103,104],
Barzdin 2 [17], Thiele [106], Blum and Blum [21], and the work done in

1 Sandra Zilles was supported by the Alberta Ingenuity Fund.
2 The names “Barzdin,” “Barzdins” and “Bārzdiņš,” as used in this article, refer
to the same researcher. But in our understanding the author of a paper is given on
the title page of the article in question. Since Bārzdiņš used different spellings of
his name, we cite the papers here as they are in print.
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Riga [13–15], inductive inference of recursive functions has fascinated many
researchers.

By definition, inductive inference is the process of generating hypotheses for
describing an unknown object from finitely many data points about the un-
known object. For example, when exploring a physical phenomenon by per-
forming experiments, a physicist obtains a finite sequence of pairs (x0, f(x0)),
(x1, f(x1)), . . . , (xn, f(xn)). From these examples the physicist tries to infer
the law f describing the connection between x and f(x). Usually f is a math-
ematical expression, a formula, i.e., in a very general scenario an algorithm
computing the function f . Using more and more examples, the hypothesis on
hand may be confirmed or falsified. If it is falsified, usually a new hypothesis
is generated.

Many philosophers have studied inductive inference during the last 2000 years,
too, and several of their findings and principles have served as philosophical ba-
sis of the mathematical theory of inductive inference which in turn shed more
light on these findings and principles or has suggested alternatives and refine-
ments (cf., e.g., William of Ockham [89], Freivalds 3 [40], Board and Pitt [23],
Popper [95], Case and Smith [30] as well as Klette and Wiehagen [71]).

The mathematical basis for the work presented in this survey goes back to
Solomonoff [103,104] who proposed criteria for selecting a hypothesis explain-
ing given data best, Putnam [96] who anticipated several of the earlier results
(though on an informal basis) and Gold [52,53] who has provided a thorough
recursion theoretic basis of inductive inference.

Gold [53] considers inductive inference to be an infinite process. The objects
to be inferred are recursive functions. In every step n = 0, 1, 2, . . . of the
inference process the inference algorithm has access to successively growing
initial segments (x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)) of the graph of the
target function. Using these initial segments, the inference algorithm com-
putes hypotheses hn which are interpreted as numbers of programs in a given
computable numbering of (all) partial recursive functions. We refer to such
a given numbering as a hypothesis space. Usually it is required that the hy-
pothesis space contains a program that is correct for the target function. If
hn 6= hn+1, then we say that a mind change occurred. The sequence of all
hypotheses is required to converge to a correct program for the target func-
tion. That is, beyond some point, no further mind change occurs, and the
hypothesis repeated from that point on is a program that computes the target
function without errors.

3 The names “Freivalds” and “Freivald,” as used in this article, refer to the same
researcher. But in our understanding the author of a paper is given on the title page
of the article in question. Since Freivalds used different spellings of his name, we
cite the papers here as they are in print.

2



The model just described is Gold’s [53] identification in the limit (cf. Defini-
tion 8). Based on identification in the limit, a huge variety of inference models
has been proposed and studied. Possible modifications comprise the specifica-
tion of correctness, the mode of convergence, requirements on the intermediate
hypotheses output, the set of allowed inference algorithms, the set of admissi-
ble hypothesis spaces, and the source of information available, among others.

Nowadays there is a largely developed mathematical theory and many re-
sults have found their way into monographs [13–15,78], books [90,62], and
surveys [6,7,35,71]. On the one hand, the results obtained have considerably
enlarged our understanding of inference processes and learning and their con-
nections to philosophy, cognitive science, psychology, and artificial intelligence.
On the other hand, younger counterparts of learning theory and machine learn-
ing share with inductive inference several methods, approaches, ideas, tech-
niques and even algorithms and throughout this survey we shall occasionally
point to them.

Whenever one tries to survey such a large field, one has to make a certain
selection. In the present survey we focused to a larger part on the earlier
work done in the field and on research performed by Rolf Wiehagen and re-
searchers who worked on similar problems. An obvious reason for this choice
is of course Rolf Wiehagen’s 60th birthday which inspired this project. An-
other aspect was the availability of the relevant literature and presence and
non-existence, respectively, of surveys covering already part of the research un-
dertaken in inductive inference of recursive functions. For example, there are
beautiful surveys concerning the learnability of recursive functions via queries
(cf. Gasarch and Smith [50]), by teams of inductive inference machines (cf.
Smith [100]), or probabilistic inductive inference (cf., e.g., Pitt [92], Ambai-
nis [4]). So, these parts of the theory are only touched in the present paper
as is the material presented in Angluin and Smith [6,7]. Likewise, we had no
intention to rewrite the comprehensive paper by Case and Smith [30] which
covers many earlier theoretical results of the inductive inference of recursive
functions. But of course, some overlapping occasionally occurs.

After introducing some basic notions and notations in Section 2, we start with
a list of desiderata seemingly arising naturally when one wishes to define a
learning model. In Section 3, we study the resulting learning model, provide
different characterizations of it and point to its strengths and weaknesses. We
continue with possible alternatives to enlarge the learning power of the first
model. This directly leads us to the notion of consistent learning. Consistency,
which here means that inference algorithms always return hypotheses agreeing
with the information they have seen so far, is often presupposed in applica-
tions. The question to which extent this affects learning – and the resulting
(in)consistency phenomenon – are studied in this survey in more detail (cf.
Section 4 and 7).
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This study performed in Section 4 as well as the results obtained earlier suggest
to introduce further learning models, among them Gold’s [53] original model
of learning in the limit (cf. Section 5). Here we also look at different variations
of learning in the limit by changing the mode of convergence, by varying the
set of admissible strategies and the information supply.

For gaining a better understanding of the similarities and differences of the
various learning types presented so far, we then continue with characterizations
in terms of complexity and of computable numberings (cf. Sections 6 and 8,
respectively).

While having provided a rather comprehensive treatment of the material men-
tioned so far, in Section 9 we briefly survey some additional research such as
learning from good examples, intrinsic complexity and uniformity. The reason
we only sketch these areas is the same mentioned above, i.e., there are already
comprehensive articles in print that cover these areas. Finally, we provide a
summary and discuss open problems.

2 Preliminaries

Unspecified notations follow Rogers [97]. In addition to or in contrast with
Rogers [97] we use the following. By N = {0, 1, 2, . . . } we denote the set of
all natural numbers. We set N+ = N \ {0}. The set of all finite sequences of
natural numbers is denoted by N∗.

The cardinality of a set S is denoted by |S|. We write ℘(S) for the power set
of set S. Let ∅, ∈, ⊂, ⊆, ⊃, ⊇, and # denote the empty set, element of,
proper subset, subset, proper superset, superset, and incomparability of sets,
respectively.

By P and T we denote the set of all partial and total functions of one vari-
able over N. The set of all partial recursive and recursive functions of one
respectively two variables over N is denoted by P , R, P2, R2, respectively.
Let f ∈ P , then we use dom(f) to denote the domain of the function f , i.e.,
dom(f) = {x | x ∈ N, f(x) is defined}. Additionally, by Val(f) we denote
the range of f , i.e., Val(f) = {f(x) | x ∈ dom(f)}. We use R{0,1} to denote
the set of all f ∈ R satisfying Val(f) ⊆ {0, 1}. We refer to R{0,1} as to the
set of recursive predicates. A function f ∈ P is said to be monotone provided
for all x, y ∈ N with x ≤ y we have, if both f(x) and f(y) are defined then
f(x) ≤ f(y). By Rmon we denote the set of all monotone recursive functions.

Any function ψ ∈ P2 is called a numbering. Moreover, let ψ ∈ P2, then
we write ψi instead of λx.ψ(i, x) and set Pψ = {ψi | i ∈ N} as well as
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Rψ = Pψ ∩ R. Consequently, if f ∈ Pψ, then there is a number i such that
f = ψi. If f ∈ P and i ∈ N are such that ψi = f , then i is called a ψ–program
for f . Let ψ be any numbering, and i, x ∈ N; if ψi(x) is defined (abbr. ψi(x)↓ )
then we also say that ψi(x) converges. Otherwise, ψi(x) is said to diverge (abbr.
ψi(x)↑ ).

For functions f, g ∈ P and m ∈ N we write f =m g iff {(x, f(x)) | x ≤
m and f(x)↓ } = {(x, g(x)) | x ≤ m and g(x)↓ }; otherwise we write f 6=m g.

A numbering ϕ ∈ P2 is called a Gödel numbering (cf. Rogers [97]) iff Pϕ = P ,
and for any numbering ψ ∈ P2, there is a compiler c ∈ R such that ψi = ϕc(i)
for all i ∈ N. Göd denotes the set of all Gödel numberings. Let ϕ ∈ Göd and
let f ∈ P ; then we use minϕ f to denote the least number i such that ϕi = f .

Furthermore, let NUM = {U | (∃ψ ∈ R2) [U ⊆ Pψ]} denote the family of all
subsets of all recursively enumerable classes of recursive functions.

Following [75] we call any pair (ϕ,Φ) a measure of computational complexity
provided ϕ is a Gödel numbering of P and Φ ∈ P2 satisfies Blum’s [22] axioms.
That is, (1) dom(ϕi) = dom(Φi) for all i ∈ N and (2) the predicate “Φi(x) = y”
is uniformly recursive for all i, x, y ∈ N.

Sometimes it will be suitable to identify a recursive function with the sequence
of its values, e.g., let α = (a0, . . . , ak) ∈ N∗, j ∈ N, and p ∈ R{0,1}; then we
write αjp to denote the function f for which f(x) = ax, if x ≤ k, f(k+1) = j,
and f(x) = p(x − k − 2), if x ≥ k + 2. Let g ∈ P and α = (a0, . . . , ak) ∈ N∗;
we write α v g iff α is a prefix of the sequence of values associated with g,
i.e., for any x ≤ k, g(x) is defined and g(x) = ax. If U ⊆ R, then we denote
by [U ] the set of all prefixes of functions in U . Also, it is convenient to have
a notation for the set of all finite variants of functions in U . We use [[U ]] for
this set, i.e., [[U ]] = {f | f ∈ R, ∃f ′ ∈ U ∧∀∞x[f(x) = f ′(x)]}. The quantifier
∀∞, as used here, means “for all but finitely many.”

Furthermore, using a fixed encoding 〈. . .〉 of N∗ onto N we write fn instead of
〈(f(0), . . . , f(n))〉, for any n ∈ N, f ∈ R. Furthermore, the set of all permu-
tations of N is denoted by Π(N). Any element X ∈ Π(N) can be represented
by a unique sequence (xn)n∈N that contains each natural number precisely
once. Let X ∈ Π(N), f ∈ P and n ∈ N. Then we write fX,n instead of
〈(x0, f(x0), . . . , xn, f(xn))〉 provided f(xk) is defined for all k ≤ n.

Finally, a sequence (jn)n∈N of natural numbers is said to converge to the num-
ber j iff all but finitely many numbers of it are equal to j. A sequence (jn)n∈N
of natural numbers is said to finitely converge to the number j iff it converges
in the limit to j and for all n ∈ N, jn = jn+1 implies jk = j for all k ≥ n.

In the following section, we introduce the subject of this survey, i.e., learning
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of recursive functions. For making this survey self-contained, first we briefly
outline what we have to specify in order to arrive at a learning model for
recursive functions. Then we provide an important example.

3 Defining a Learning Model

In the following, the learner will be an algorithm. We refer to it as a strategy S.
That is, we shall require S ∈ P . The objects to be learned are recursive
functions. Thus, the next question we have to address is from what information
recursive functions should be learned. The information fed to the strategy are
finite lists of pairs “argument-value,” i.e., lists (x0, f(x0)), . . . , (xn, f(xn)). So,
for technical convenience we describe this information by using the notation
fX,n defined above. If the order in which examples are presented does not
matter, then we restrict ourselves to present examples in natural order, i.e.,
we consider lists (0, f(0)), (1, f(1)), . . . , (n, f(n)). If examples are presented in
natural order, the argument X is redundant. Thus, we can use the notation
fn defined above to describe the information fed to the strategy.

Additionally, we require that the entirety of the local information completely
describes the function f to be learned. That means, for every n ∈ N there
must be a finite list containing (n, f(n)).

Using the local information fX,n, the strategy computes a number i which is
referred to as a hypothesis. Thus, when successively fed the sequence (fX,n)n∈N,
the strategy computes a sequence of hypotheses which is interpreted with re-
spect to a suitably chosen hypothesis space. Hypothesis spaces are numberings
ψ ∈ P2 which are required to contain at least one program for every function
to be learned.

Finally, we require the sequence of hypotheses formed in the way described
above to converge to a program that correctly computes the target function.

Usually, we consider sets U of recursive functions. Given a class U ⊆ R we
then have to ask whether or not the resulting learning problem is solvable.
For obtaining an affirmative answer we have to provide a strategy S learning
every function in U . Otherwise, we have to show that there is no strategy S
which can learn every function in U .

In order to have some examples, it is useful to define some function classes
which we shall use quite often throughout this survey. First, let

U0 = {f | f ∈ R and ∀∞n[f(n) = 0]}

be the class of all functions that are almost everywhere zero. This class is
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also known as the class of functions of finite support. It is easy to see that
U0 ∈ NUM.

Next, let (ϕ,Φ) be any fixed complexity measure. We set

U(ϕ,Φ) = {Φi | ϕi ∈ R}

and refer to U(ϕ,Φ) as to the class of all recursive complexity functions.

Another quite popular class is the class of self-describing functions defined as
follows. Let ϕ ∈ P2 be any fixed Gödel numbering; we set

Usd = {f | f ∈ R and ϕf(0) = f} .

Note that neither U(ϕ,Φ) nor Usd belong to NUM as we shall prove next.

Lemma 1. U(ϕ,Φ), Usd /∈ NUM

Proof. For showing that U(ϕ,Φ) /∈ NUM we first observe that for every class
U ∈ NUM there is a function b ∈ R such that ∀∞x[f(x) ≤ b(x)] for every
function f ∈ U . This can be seen as follows. Let ψ ∈ R2 be such that U ⊆ Rψ.
Then it suffices to set b(x) = max{ψi(x) | i ≤ x}. Supposing U(ϕ,Φ) ∈ NUM
there would be such a function b for the class U(ϕ,Φ). The desired contradiction
is obtained by the following claim.

Claim 1. Let f ∈ R be arbitrarily fixed. Then there is a ϕ-program i such that
ϕi = f and Φi(x) > b(x) for all x ∈ N.

Let s ∈ R be chosen such that

ϕs(j)(x) =

 f(x), if ¬[Φj(x) ≤ b(x)]

ϕj(x) + 1, if Φj(x) ≤ b(x) .

By the fixed point theorem (cf., e.g., Smith [99]) there is a number i such that
ϕs(i) = ϕi. Suppose there is an x such that Φi(x) ≤ b(x). By construction
ϕi(x) = ϕs(i)(x) = ϕi(x) + 1, a contradiction. So, this case cannot happen and
we get ϕi = ϕs(i) = f . This proves the claim.

Consequently, U(ϕ,Φ) /∈ NUM.

In order to show that Usd /∈ NUM we first prove that R /∈ NUM. Suppose
the converse, i.e., there is a numbering ψ ∈ R2 such that R ⊆ Rψ. We define
a function f by setting f(x) = ψx(x)+1 for all x ∈ N. Since ψ ∈ R2 we obtain
f ∈ R. Hence, there should be a ψ-program for f , say j, i.e., ψj = f . But
ψj(j) = f(j) = ψj(j) + 1, a contradiction. So we have R /∈ NUM.
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Now the proof of Usd /∈ NUM is obtained by the following claim.

Claim 2. For every f ∈ R there is an i ∈ N such that ϕi(0) = i and ϕi(x+1) =
f(x) for all x ∈ N.

Let f ∈ R be any function and let s ∈ R be chosen such that for all j ∈ N

ϕs(j)(x) =

 j, if x = 0

f(x− 1), if x > 0 .

Again, by the fixed point theorem there is a number i such that ϕs(i) = ϕi.
By construction, ϕi(0) = i and ϕi(x + 1) = f(x) for all x ∈ N. This proves
Claim 2.

Now, if Usd ∈ NUM, then, by erasing the first argument, one can directly
obtain a numbering ψ such that R = Rψ, a contradiction to R /∈ NUM. 2

The following classes are due to Blum and Blum [21]. Let (ϕ,Φ) be any com-
plexity measure, and let τ ∈ R be such that for all i ∈ N

ϕτ(i)(x) =


1, if Φi(x)↓ and Φx(x) ≤ Φi(x),

0, if Φi(x)↓ and ¬[Φx(x) ≤ Φi(x)],

↑ , otherwise.

Now we set

Umahp = {ϕτ(i) | i ∈ N and Φi ∈ Rmon}

(the class of monotone approximations to the halting problem) and

Uahp = {ϕτ(i) | i ∈ N and Φi ∈ R}

(the class of approximations to the halting problem).

Note that Umahp, Uahp /∈ NUM. For a proof, we refer the reader to Stephan
and Zeugmann [105].

Whenever appropriate, we shall use these function classes for illustration of the
learning models defined below, by analyzing whether or not the corresponding
learning problem is solvable.

Next, we exemplify the definition of a learning model and characterize the
collection of all function classes U for which the learning problem is solvable.
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3.1 The Learning Types R- T OTALarb and R- T OTAL

Let us start with a list of desiderata. First, we do not make any assumption
concerning the order in which examples are presented. Second, our strategy
should be defined on all inputs, i.e., we require S ∈ R. This may seem con-
venient, since it may be hard to know which inputs to the strategy may oc-
cur. Third, every hypothesis should describe a recursive function. Again, this
looks natural, since any hypothesis not describing a recursive function can-
not be correct. Thus allowing a strategy to output hypotheses not describing
recursive functions may be a source of potential errors which we avoid by
our requirement. Moreover, this requirement is also nicely in line with Pop-
per’s [95] refutability principle requiring that we should be able to refute every
incorrect hypothesis.

Definition 1 (Wiehagen [111]). Let U ⊆ R and let ψ ∈ P2. The class U
is said to be R–totally arb-learnable with respect to ψ if there is a strategy
S ∈ R such that

(1) ψS(n) ∈ R for all n ∈ N,
(2) for all f ∈ U and every X ∈ Π(N), there is a j ∈ N such that ψj = f ,

and (S(fX,n))n∈N converges to j.

If U is R–totally arb-learnable with respect to ψ by a strategy S, we write U ∈
R- T OTALarb

ψ (S). Moreover, let R- T OTALarb
ψ = {U | U is R–totally arb-

learnable w.r.t. ψ}, and let R- T OTALarb =
⋃
ψ∈P2R- T OTALarb

ψ .

Some remarks are mandatory here. Let us start with the semantics of the
hypotheses produced by a strategy S. As described above, we always inter-
pret the number S(fX,n) as a ψ–number. This convention is adopted to all
the definitions below. The “arb” in arb-learnable points to the fact that we
require learnability with respect to any arbitrary order of the input. Moreover,
according to the definition of convergence, only finitely many data points of
the graph of a function f were available to the strategy S up to the unknown
point of convergence. Therefore, some form of learning must have taken place.
Thus, the use of the term “learn” in the above definition is indeed justified.

Note that R- T OTALarb is sometimes also called PEX, where the EX stands
for explain and P refers to Popperian strategies, i.e., strategies that can di-
rectly use Popper’s [95] refutability principle (cf. [30]). But we think this inter-
pretation of Popper’s [95] refutability principle is too narrow. A more detailed
discussion is provided throughout this survey.

In order to study the impact of the requirement to learn with respect to any
order of the input, next we relax Definition 1 by demanding only learnability
from input presented in natural order.
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Definition 2 (Wiehagen [111]). Let U ⊆ R and let ψ ∈ P2. The class U is
said to be R–totally learnable with respect to ψ if there is a strategy S ∈ R
such that

(1) ψS(n) ∈ R for all n ∈ N,
(2) for each f ∈ U there is a j ∈ N such that ψj = f , and (S(fn))n∈N

converges to j.

R- T OTALψ(S), R- T OTALψ, and R- T OTAL are defined analogously to
the above.

It is technically advantageous to start with the following result showing that,
as far as R–total learning is concerned, the order in which the graph of the
function is fed to the learning strategy does not matter.

Theorem 1. R- T OTAL = R- T OTALarb

Proof. Obviously, if we can learn from arbitrary input then we can learn from
input presented in natural order, i.e., R- T OTALarb ⊆ R- T OTAL.

For the opposite direction, let U ∈ R- T OTAL. Hence there is a numbering
ψ ∈ P2 and a strategy S ∈ R such that U ∈ R- T OTALψ(S). The desired
strategy S ′ is obtained from S by adding a preprocessing. If S ′ receives an en-
coded list fX,n it looks for the largest numberm such that (0, f(0)), . . . , (m, f(m))
are all present in fX,n. If this number m exists, then S ′ simulates S on input
fm and outputs the hypothesis computed. Otherwise, i.e., if (0, f(0)) does not
occur in fX,n, then S ′ simply returns a fixed program of the constant zero
function as an initial auxiliary hypothesis.

Now it is easy to see that U ∈ R- T OTALarb
ψ (S ′). We omit the details. 2

The following lemma is both of technical and of epistemological importance. It
actually states that, if we can R-totally learn with respect to some numbering,
then we can also learn with respect to any Gödel numbering. As we shall see
later, its proof directly transforms to almost every learning type considered in
this survey.

Lemma 2. Let U ⊆ R, let ψ ∈ P2 be any numbering and let S ∈ R be such
that U ∈ R- T OTALψ(S). Furthermore, let ϕ ∈ P2 be any Gödel numbering.

Then there is a strategy Ŝ ∈ R such that U ∈ R- T OTALϕ(Ŝ).

Proof. By the definition of a Gödel numbering there is a compiler function
c ∈ R such that ψi = ϕc(i) for all i ∈ N. Thus, we can define Ŝ(fn) = c(S(fn))
and the lemma follows. 2

Expressed differently, we have just shown that R- T OTAL = R- T OTALϕ
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for every Gödel numbering ϕ. But it is often advantageous to use special
numberings having special properties facilitating learning. A first example is
provided by Theorem 2 below. Additionally, this theorem also characterizes
the classes in R- T OTAL.

Theorem 2. R- T OTAL = NUM

Proof. The proof is done by showing two claims.

Claim 1. R- T OTAL ⊆ NUM

Let U ∈ R- T OTAL. Then there is a strategy S ∈ R and a numbering ψ ∈ P2

such that U ∈ R- T OTALψ(S). We have to construct a numbering τ ∈ R2

such that U ⊆ Rτ .

For all i, x ∈ N we define τ(i, x) = ψS(i)(x). By Condition (1) of Definition 2
we know that ψS(i) ∈ R. Thus, we directly obtain τ ∈ R2. It remains to show
that U ⊆ Rτ . Let f ∈ U . By Condition (2) of Definition 2 there exists a j
such that ψj = f and (S(fn))n∈N converges to j. Let k be minimal such that
S(fn) = j for all n ≥ k. Thus, for i = fk we obtain

τi = ψS(i) = ψS(fk) = ψj = f ,

and consequently, U ⊆ Rτ . This proves Claim 1.

Claim 2. NUM ⊆ R- T OTAL

Let U ∈ NUM. Hence there is a numbering ψ ∈ R2 such that U ⊆ Rψ. Es-
sentially, Claim 2 is proved by using Gold’s [53] famous identification by enu-
meration strategy. The idea behind the identification by enumeration strategy
to learn a function f ∈ U is to search for the least index j in the enumeration
ψ0, ψ1, ψ2, . . . such that ψj = f . So on input fn one looks for the least i such
that ψni = fn.

The only difficulty we have to overcome is to ensure that S satisfies Condi-
tion (1) of Definition 2 for all f ∈ R, that is, also in case f ∈ R \ U . Then
there may be no program i at all such that ψni = fn.

Therefore, using a fixed enumeration of N∗ (cf. Rogers [97]) we define a num-
bering χ as follows. Let α be the ith tuple of N∗ enumerated. We set χi = α0∞.
Thus, χ ∈ R2 and U0 = Rχ.

Next, we define a numbering τ ∈ R2 by setting τ2i = ψi and τ2i+1 = χi for all
i ∈ N. Now, taking into account that [U0] = [R] = N∗, we can directly use the
identification by enumeration strategy by using the numbering τ to R-totally
learn the class U . This proves Claim 2.
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Claim 1 and Claim 2 together yield the theorem. 2

On the one hand, NUM is a rich collection of function classes. As a matter of
fact, the class of all primitive recursive functions is in NUM. Moreover, the
characterization obtained by Theorem 2 directly allows a very strong corollary,
which first requires the following simple definition.

Definition 3. Let LT be any learning type and let (Si)i∈N be a recursive
enumeration of strategies fulfilling the requirements of the learning type LT .
We call LT closed under recursively enumerable union if there is a strategy S
fulfilling the requirements of LT such that

⋃
i∈N LT (Si) ⊆ LT (S).

Corollary 3. R- T OTAL is closed under recursively enumerable union.

On the other hand, none of the classes U(ϕ,Φ), Usd , Umahp, and Uahp is in NUM
as pointed out above.

So, we have to explore some ways to enlarge the learning capabilities of
R- T OTAL. Before doing this, we also characterize R- T OTAL in terms of
complexity, since it may help to gain a better understanding of the properties
making a function class learnable or non-learnable, respectively.

The idea behind the following characterization can be explained easily. Sup-
pose we want to learn a class U with respect to any fixed Gödel numbering ϕ.
Then a strategy may try to find a program i such that ϕni = fn. Though this
search will succeed, the strategy may face serious difficulties to converge. To
see this, suppose on input fn a program i as described has been found. Next,
the strategy sees also f(n + 1). Now it may try to compute ϕi(n + 1) and,
in parallel to find again an index, say j, such that ϕn+1

j = fn+1. Once j is
found and the computation of ϕi(n+1) has not stopped yet, the strategy must
make a decision. Either it tries to compute ϕi(n+ 1) further or it switches its
hypothesis to j. The latter would be a bad idea if ϕj 6= f but ϕi = f . On the
other hand, it would be a good idea if ϕi(n + 1) ↑ . Since the halting prob-
lem is undecidable, without any additional information, the strategy cannot
decide which case actually occurs. Thus, it is intuitively clear that informa-
tion concerning the computational complexity of the functions to be learned
can only help. We illustrate this by reproving Barzdin’s and Freivalds’ [16]
Extrapolation Theorem here in our setting.

Let t ∈ R, and let (ϕ,Φ) be any fixed complexity measure. Following Mc-
Creight and Meyer [83], we define the complexity class

Ct = {ϕi | ∀∞n[Φi(n) ≤ t(n)]} ∩ R .

For further information concerning these complexity classes, we refer the in-
terested reader to e.g., [24,33,75,117].
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Theorem 4 (Barzdin and Freivalds [16]). For every class U ⊆ R we have:
U ∈ R- T OTAL if and only if there is a function t ∈ R such that U ⊆ Ct.

Proof. Necessity. Let U ∈ R- T OTAL. Then, by Theorem 2, we know that
there is a numbering ψ ∈ R2 such that U ⊆ Rψ. Now let c ∈ R be any fixed
compiler such that ψi = ϕc(i) for all i ∈ N. We set t(n) = max{Φc(i)(n) | i ≤
n}. Clearly, U ⊆ Ct.

Sufficiency. Suppose U ⊆ Ct. By Theorem 2, it suffices to show that Ct ∈
NUM. For proving this, we use the observation that f ∈ Ct if and only if there
are j, n, k ∈ N such that f = ϕj, Φj(x) ≤ k for all x ≤ n and Φj(x) ≤ t(x)
for all x > n. Now let c3 be the canonical enumeration of N × N × N. For
c3(i) = (j, n, k) and x ∈ N we define

ψ(i, x) =


ϕj(x), if x ≤ n and Φj(x) ≤ k

ϕj(x), if x > n and Φj(x) ≤ t(x)

0, otherwise.

By construction, we clearly have ψ ∈ R2. Now let f ∈ Ct. Using the observation
made above, choose i such that c3(i) = (j, n, k), where f = ϕj, Φj(x) ≤ k for
all x ≤ n and Φj(x) ≤ t(x) for all x > n. Hence, ψi = ϕj = f and thus
f ∈ Rψ. Consequently, Ct ∈ NUM. 2

There is another nice characterization of R- T OTAL in terms of a different
learning model which we would like to include. First we define the learning
model which was introduced by Barzdin [17].

Definition 4 (Barzdin [17]). A class U ⊆ R of functions is said to be
predictable if there exists a strategy S ∈ R such that S(fn) = f(n+ 1) for all
f ∈ U and all but finitely many n ∈ N.

The resulting learning type is denoted by NV . Here, NV stands for “next-
value.” So, in NV learning we have to correctly predict the next value of the
target function for almost all n.

Theorem 5 (Barzdin [17]). NV = R- T OTAL

We do not prove this theorem here but refer the interested reader to Case and
Smith [30] (cf. Theorem 2.19).

But we would like to discuss another interesting aspect. If the value predicted
by an NV learner is wrong, i.e., if S(fn) 6= f(n + 1), then we say that a
prediction error occurs. Analogously, if an R- T OTAL learner changes its
hypothesis, i.e., if S(fn) 6= S(fn+1), then S performs a mind change.
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Now, when using the identification by enumeration strategy, in order to learn
the nth function enumerated in the numbering ψ, one needs n mind changes in
the worst case and this approach also leads to n prediction errors in the worst
case. Therefore, it is only natural to ask whether or not we can do any better. In
fact, an exponential speed-up is possible. For the sake of simplicity, we present
the solution here only for classes of recursive predicates, i.e., U ⊆ R{0,1} and
for prediction errors.

Theorem 6 (Barzdin and Freivalds [19]). Let ψ ∈ R2 such that ψi ∈
R{0,1} for all i ∈ N. Then there exists an NV learner FP for U making at
most O(log n) prediction errors for every function f ∈ U , where n is the least
number j such that ψj = f .

Proof. Let f ∈ U be the target function. The desired NV learner works in
stages. In each Stage i it considers the subset of the block of functions Bi =
{ψk | 22i + 1 ≤ k ≤ 22i+1} that coincide with all the data seen so far. Then
it makes its prediction in accordance with the majority of the functions still
in the block. After having read the true value, it eliminates the functions not
coinciding with the new value from block Bi. If all functions are eventually
eliminated, Stage i is left and Stage i + 1 is started. Clearly, if the target
function f belongs to block Bi, Stage i is never left. Before analyzing this
prediction algorithm we give a formal description of it. In order to make it
better readable, we also add the arguments to the data presentation.

Algorithm FP: “On successive input 〈0, f(0), 1, f(1), 2, f(2), . . . 〉 do the fol-
lowing: Execute Stage 0:

Stage 0: Set V0 = {0, 1, 2, 3, 4}, x0 = 0.
While V0 6= ∅ execute (A) else goto Stage 1.

(A) Read x0. Compute V 0
0 = {k | k ∈ V0, ψk(x0) = 0}, and V 1

0 = {k | k ∈
V0, ψk(x0) = 1}.

If |V 0
0 | ≥ |V 1

0 | then predict 0; otherwise predict 1.
Read f(x0), and increment x0. If f(x0) = 0 set V0 = V 0

0 ; otherwise set
V0 = V 1

0 .
Stage i, i ≥ 1: Set xi = xi−1, and compute Vi = {k ∈ N | 22i + 1 ≤ k ≤

22i+1
, ψk(x) = f(x) for all 0 ≤ x ≤ xi}.

(* Vi is the set of those indices of functions in block i that coincide with
all the data seen so far. *)

While Vi 6= ∅ execute (B) else goto Stage i+ 1.
(B) Read xi. Compute V 0

i = {k | k ∈ Vi, ψk(xi) = 0}, and V 1
i = {k | k ∈

Vi, ψk(xi) = 1}.
If |V 0

i | ≥ |V 1
i | then predict 0; otherwise predict 1.

Read f(xi), and increment xi. If f(xi) = 0 set Vi = V 0
i ; otherwise set

Vi = V 1
i .

We start our analysis by asking how many stages the algorithm FP has to
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execute. Let n be the least number j such that ψj = f . Furthermore, let i be
the least number m such that n ∈ Vm. Thus, i = dlog log ne − 1. The total
number of prediction mistakes is the sum of all the prediction mistakes made
on each of the blocks V0, V1, . . . Vi. The number of prediction mistakes made on
V0 is 3. For every 1 ≤ z < i the number of prediction mistakes made on Vz will
be at most dlog(|Vz|)e. To see this, remember that each prediction is made in
accordance with the majority of computed values for all the remaining indices
in Vz. Thus, whenever a prediction error occurs, at least half of the indices in
Vz is deleted. Since all indices are eventually deleted, we arrive at the stated
bound. Analogously, the number of prediction mistakes made on Vi is at most
dlog |Vi|e − 1. Obviously, |Vz| = 22z(22z − 1), and thus dlog |Vz|e ≤ 2z+1.

Therefore, the maximum number of prediction mistakes is upper bounded by

21 + · · ·+ 2i+1 = 2i+2 − 1

≤ 2dlog logne−1+2 − 1

≤ 4 · 2log logn

= 4 log n

=O(log n) . 2

The algorithm FP invented by Barzdin and Freivalds is nowadays usually
referred to as the halving algorithm. This algorithm as well as different gen-
eralizations of it have found many applications in machine learning (cf. e.g.,
[26,54,59,82,86]). The halving algorithm can be modified to R-totally learn
every class of recursive predicates from NUM with at most O(log n) mind
changes. However, in order to achieve this result, the resulting strategy must
use a Gödel numbering as its hypothesis space and not the numbering ψ.
Furthermore, all these results can be generalized to learn or to predict arbi-
trary classes from NUM, thereby still achieving the O(log n) bound. For a
detailed presentation and further information, we refer the reader to Freivalds,
Bārzdiņš and Podnieks [41].

The results obtained so far provide some insight concerning the problem how
to extend the learning capabilities of R- T OTAL. First, we could restrict our
demands to the strategy to hold only on initial segments from [U ] instead of
from [R]. Second we could modify our demands to the intermediate hypothe-
ses. The demand to output only programs computing recursive functions seems
rather strong.

Third, we could have a closer look at the identification by enumeration strat-
egy. The most obvious point here is that we do not need the requirement
ψi ∈ R. For example, if the predicate “ψi(x) = y” was uniformly recursive for
all i, x, y ∈ N it would still work. But as we shall see, there is more we can do.
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Fourth, looking at the definition of the complexity class Ct, we see that the
bound t does not depend on the functions f to be learned. So, some modifi-
cations are suggesting themselves.

We continue this section by trying the first approach. The other modifications
are discussed later. So, let us relax the definition of R- T OTAL as described
above.

Definition 5 (Freivalds and Barzdin [39]). Let U ⊆ R and let ψ ∈ P2.
The class U is said to be totally learnable with respect to ψ if there is a
strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined and ψS(fn) ∈ R,
(2) there is a j ∈ N such that ψj = f , and (S(fn))n∈N converges to j.

T OTALψ(S), T OTALψ and T OTAL are defined analogously as above.

Note that any strategy that learns in the sense of T OTAL can directly use
Popper’s [95] refutability principle. But obviously, Usd ∈ T OTAL and thus
total learning is more powerful than R-total inference.

Theorem 7. R- T OTAL ⊂ T OTAL

But the price paid is rather high, since, in contrast to Corollary 3, now we can
easily prove that T OTAL is not closed under union.

Theorem 8. U0 ∪ Usd /∈ T OTAL

Proof. Suppose the converse. Then there must exist a strategy S such that
U0∪Usd ∈ T OTAL(S). Since [U0] = [R], we can conclude S ∈ R and ϕS(i) ∈ R
for all i ∈ N. Hence, S would witness U0 ∪ Usd ∈ R- T OTAL(S). So, by
Theorem 2, we obtain U0 ∪ Usd ∈ NUM, a contradiction to Lemma 1. 2

T OTAL has another interesting property. Modifying Definition 5 in the op-
posite way we have obtained R- T OTAL from R- T OTALarb , we get the
learning type T OTALarb . Then, using the same ideas as in the proof of The-
orem 1, one can easily show the following theorem first announced in Jantke
and Beick [66].

Theorem 9. T OTAL = T OTALarb

As we have seen above, the characterizations of a learning type in terms
of complexity or in terms of computable numberings help to gain a better
understanding of the problem how to design learning algorithms. As far as
R- T OTAL was concerned, the answer obtained was very satisfying, since it
showed that every class U ∈ R- T OTAL can be identified by the identification
by enumeration strategy.
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So, let us ask whether or not we can also characterize T OTAL in terms
of complexity or in terms of computable numberings. Hopefully, we can ob-
tain a deeper insight into the question how learning algorithms may be de-
signed for classes that are totally learnable. Interestingly, while characterizing
T OTAL in terms of complexity remains an open problem, a characteriza-
tion of T OTAL in terms of computable numberings was obtained by Wieha-
gen [111]. This characterization theorem shows that every totally learnable
class can be learned in a uniform manner, which, in addition, has a strong
resemblance to identification by enumeration. Therefore we continue with this
characterization.

Theorem 10 (Wiehagen [111]). Let U ⊆ R. Then we have: U ∈ T OTAL
if and only if there exists a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ,
(2) There is a function g ∈ R such that ψi =g(i) f implies ψi ∈ R for every

function f ∈ U and every program i.

Proof. Necessity. Let U ∈ T OTAL and let ϕ ∈ Göd. By Lemma 2 we can
assume that there is a strategy S ∈ P such that U ∈ T OTALϕ(S). Let d ∈ R
be chosen such that d enumerates dom(S) without repetitions. Furthermore,
for i ∈ N let n be the length of the tuple enumerated by d(i). We set ψ(i, x) =
ϕS(d(i))(x) and g(i) = n. Definition 5 directly implies that Conditions (1) and
(2) are satisfied.

Sufficiency. First we describe the basic idea for a strategy. Suppose f ∈ U and
we have already found a program i such that ψi =g(i) f . Then Condition (2)
allows to check whether or not f(x) = ψi(x) for all x provided the strategy
knows f(x). So, if f = ψi, the strategy will converge. Otherwise it will find a
witness proving f 6= ψi and it can restart its search. So, the main problem is
to verify ψi =g(i) f . For overcoming it, let c ∈ R be such that ψi = ϕc(i) for all
i ∈ N. Now the idea is to use the input length to provide a bound on Φc(i)(x).

The desired strategy S is formally defined as follows. Let z be any fixed number
such that ψz ∈ R.

S(fn) = “Compute M = {i | i ≤ n, g(i) ≤ n, Φc(i)(x) ≤ n and ψi(x) =
f(x) for all x ≤ g(i)}. Execute Instruction (I).
(I) If M = ∅ then output z.

If M 6= ∅ then let i = minM and compute ψi(x) for all x such that
g(i) < x ≤ n. If one of these values is not defined, then S(fn) is not
defined, either.
Otherwise check whether or not ψi =n f . If this is the case, output i.
In case ψi 6=n f execute (I) for M := M \ {i}.”

It remains to show that U ∈ T OTALψ(S). Let f ∈ U . If M = ∅ then we have
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ψS(fn) = ψz ∈ R. If M 6= ∅, then the definition of M ensures that we already
know ψi =g(i) f . Hence by Condition (2) we also have ψi ∈ R. Thus, S(fn)
is defined and ψS(fn) ∈ R for all n ∈ N. Finally, the definition of S directly
implies that (S(fn))n∈N converges to the least number i with ψi = f . 2

Having already shown that total learning is more powerful than R-total iden-
tification, it is only natural to ask whether or not we can also totally learn the
class U(ϕ,Φ). Answering this question additionally sheds light to the strength of
the demand to exclusively output hypotheses describing recursive functions.
The negative answer provided below shows that this may be a too strong
demand. Therefore, we finish this section by showing that U(ϕ,Φ) /∈ T OTAL
provided the complexity measure (ϕ,Φ) fulfills a certain intuitive property.

A complexity measure (ϕ,Φ) is said to satisfy Property ext provided for all
i, n ∈ N such that Φi(0)↓ , . . . ,Φi(n)↓ there is a Φz ∈ R such that Φi =n Φz.

Note that the following proof uses an idea from Case and Smith [30].

Theorem 11. U(ϕ,Φ) /∈ T OTAL for all complexity measures (ϕ,Φ) fulfilling
Property ext.

Proof. Let r ∈ R be chosen such that Φi = ϕr(i) for all i ∈ N. Further-
more, by the padding lemma r can be chosen in a way such that r is strongly
monotonously increasing, i.e., r(i) < r(i + 1) for all i ∈ N (cf. Smith [99]).
Hence, Val(r) is recursive. Next, choose s ∈ R such that

ϕs(j)(0) =

 0, if there is an i such that r(i) = j

↑ , otherwise .

In order to define ϕs(j) for all j and all x > 0, suppose there is a strategy
S ∈ P such that U(ϕ,Φ) ∈ T OTALϕ(S). For all x ≥ 0 let

ϕs(j)(x+ 1) =


0, if ϕj(y)↓ , for all y ≤ x and S(ϕxj )↓ and

ϕkx(x+ 1)↓< ϕj(x+ 1), where kx = S(ϕxj )

↑ , otherwise .

By the fixed point theorem (cf. Smith [99]) there is a number i such that
ϕs(r(i)) = ϕi. We continue to show inductively that ϕi ∈ R and that S fails to
totally learn Φi.

For the induction base, by construction, ϕs(r(i))(0) = 0, since j = r(i). Hence,
ϕi(0) = 0 and thus Φi(0) = ϕr(i)(0)↓ .
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Next, consider the definition of ϕi(1).

ϕi(1) = ϕs(r(i))(1) =


0, if Φi(0)↓ and S(Φ0

i )↓

and ϕk0(1)↓< Φi(1), where k0 = S(Φ0
i )

↑ , otherwise .

Since Φi(0) ↓ we know by Property ext that there is a Φz ∈ R such that
Φi(0) = Φz(0). Consequently, S(Φ0

i )↓ and ϕk0 ∈ R, where k0 = S(Φ0
i ). Thus,

by Property (2) of the definition of complexity measure, one can effectively
decide whether or not ϕk0(1) < Φi(1). Clearly, if ϕk0(1) < Φi(1), then ϕi(1) =
0 and hence defined. On the other hand, if ϕk0(1) ≥ Φi(1) then Φi(1)↓ , too,
but, by construction, ϕi(1)↑ , a contradiction to Property (1) of the definition
of complexity measure. Hence ϕi(1) is defined.

The induction step is done analogously. That is,

ϕi(x+ 1) = ϕs(r(i))(x+ 1) =


0, if Φi(y)↓ , for all y ≤ x and S(Φx

i )↓ and

ϕkx(x+ 1)↓< Φi(x+ 1), where kx = S(Φx
i )

↑ , otherwise .

By the induction hypothesis, Φi(y) ↓ for all y ≤ x and thus, by Property
ext, there is a Φz ∈ R such that Φi =x Φz and therefore S(Φx

i ) ↓ . Let
kx = S(Φx

i ), then ϕkx ∈ R and one can effectively decide whether or not
ϕkx(x+ 1) < Φi(x+ 1). If it is, ϕi(x+ 1) = 0 and thus Φi(x+ 1)↓ . If it is not,
we have ϕkx(x + 1) ≥ Φi(x + 1) but ϕi(x + 1)↑ , a contradiction to Property
(1) of the definition of complexity measure. Hence, ϕi(x+ 1) is defined.

Therefore, we obtain ϕi ∈ R and hence Φi ∈ R, too. Consequently, Φi ∈ U(ϕ,Φ).
By supposition, S has to learn Φi, i.e., the sequence (kx)x∈N has to converge,
say to k, and k must be a ϕ-program for Φi. But by construction we have
ϕk(x+ 1) < Φi(x+ 1) for all but finitely many x ∈ N, a contradiction. 2

Now we are ready to explore the other ways mentioned above to enlarge the
learning capabilities of R- T OTAL. This brings us directly to another sub-
ject Rolf Wiehagen has been interested in for many years, i.e., learning and
consistency.

4 Learning and Consistency – Part I

Looking back at the proof of Theorem 2, we see that an R-total strategy
is always completely and correctly reflecting the data seen so far. Such a
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hypothesis is called consistent. Hypotheses not behaving thus are said to
be inconsistent. Consequently, if a strategy has already seen the examples
(x0, f(x0)), . . . , (xn, f(xn)) and is hypothesizing the function g and if g is in-
consistent, then there must be a k ≤ n such that g(xk) 6= f(xk). Note that
there are two possible reasons for g to differ from f on argument xk. Either
g(xk) ↑ or g(xk) ↓ but does not equal f(xk). In any way, an inconsistent hy-
pothesis is not only wrong but it is wrong on an argument for which the learn-
ing strategy does already know the correct value. Thus, one may be tempted
to completely exclude strategies producing inconsistent hypotheses. So, let us
follow this temptation and let us see what we get. We start with the strongest
version of consistent learning which was already considered in [21]. Note that
Blum and Blum [21] called this form of consistency the overkill property.

Definition 6 (Blum and Blum [21]). Let U ⊆ R and let ψ ∈ P2. U ∈
T - CONSarb

ψ if there is a strategy S ∈ R such that

(1) for all f ∈ U and every X ∈ Π(N), there is a j ∈ N such that ψj = f ,
and (S(fX,n))n∈N converges to j,

(2) ψS(fX,n)(xm) = f(xm) for every permutation X ∈ Π(N), f ∈ R, n ∈ N,
and m ≤ n.

T - CONSarb
ψ (S) as well as T - CONSarb are defined in analogy to the above.

That means a T - CONSarb strategy is required to return consistent hypotheses
even if the input does not belong to any function in the target class U .

Our next goal is to characterize T - CONSarb in terms of complexity and in
terms of computable numberings. To achieve this goal, first we recall Mc-
Creight and Meyer’s [83] definition of an honesty complexity class. Let h ∈ R2;
then

Ch = {ϕi | ∀∞n[Φi(n) ≤ h(n, ϕi(n))]} ∩ R
is called honesty complexity class. So, honesty means that every function f ∈
Ch does possess a ϕ-program i computing it, i.e., ϕi = f and the complexity of
this ϕ-program can be bounded by using the function h ∈ R2 and the function
values f(n).

Second, we need a new family of numberings.

Definition 7 (Blum [22]). A numbering ψ ∈ P2 is said to be measurable if
the predicate “ψi(x) = y” is uniformly recursive in i, x, y.

The next theorem completely characterizes T - CONSarb in terms of complex-
ity and of computable numberings. The proof presented below is a combination
of results from Blum and Blum [21] (Assertion (1) and (2)) and from Mc-
Creight and Meyer [83] who showed the equivalence of Assertion (2) and (3).
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Theorem 12 (Blum and Blum [21], McCreight and Meyer [83]).

Let (ϕ,Φ) be any complexity measure and let U ⊆ R. Then the following
conditions are equivalent.

(1) U ∈ T - CONSarb.
(2) There is a function h ∈ R2 such that U ⊆ Ch.
(3) There is a measurable numbering ψ ∈ P2 such that U ⊆ Pψ.

Proof. The proof is done by showing three claims.

Claim 1. (1) implies (2).

Let U ∈ T - CONSarb
ϕ (S) be witnessed by S ∈ R and ϕ ∈ Göd. Furthermore,

let c2 : N × N → N be the standard Cantor coding of all pairs of natural
numbers. We define an order ≺ on N×N. Let (x1, y1), (x2, y2) ∈ N×N. Then

(x1, y1) ≺ (x2, y2) if and only if c2(x1, y1) < c2(x2, y2) .

Clearly, ≺ is computable.

Furthermore, for (x, y) we denote by SEQ(x , y) the set of all finite sequences
σ = ((x0, y0), . . . , (xn, yn), (x, y)) for which (x0, y0) ≺ · · · ≺ (xn, yn) ≺ (x, y).
Note that for every pair (x, y) the set SEQ(x , y) is finite and computable.
Since S is consistent in the sense of T - CONSarb we additionally have

ϕS(〈σ〉)(x) = y for all σ ∈ SEQ(x , y) . (1)

Now we are ready to define the desired function h. For all x, y ∈ N let

h(x, y) = max{ΦS(〈σ〉)(x) | σ ∈ SEQ(x , y)} .

Since for every pair (x, y) the set SEQ(x , y) is finite and computable, by (1)
we directly get h ∈ R2.

Now let f ∈ U . We have to show f ∈ Ch. Note that ≺ induces precisely one
enumeration (x0, f(x0)), (x1, f(x1)), . . . of the graph of f . By the definition of
T - CONSarb the strategy S has to converge to a number j with ϕj = f when
successively fed this enumeration. Thus, for all sufficiently large n we have
S(〈(x0, f(x0)), . . . , (xn, f(xn))〉) = j. By the definition of h we can directly
conclude Φj(xn) ≤ h(xn, ϕj(xn)) for all sufficiently large n. Consequently,
f ∈ Ch, and Claim 1 is shown.

Claim 2. (2) implies (3).

Let h ∈ R2 and let f ∈ Ch. Then there exists a triple (j, n, k) such that ϕj = f ,
Φj(x) ≤ k for all x ≤ n and Φj(x) ≤ h(x, ϕj(x)) for all x > n. Using ideas
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similar to those applied in the proof of the sufficiency part of Theorem 4 we
can define the desired numbering ψ. Again, let c3 be the canonical enumeration
of N× N× N. For c3(i) = (j, n, k) and x ∈ N we define

ψ(i, x) =


y, if [x ≤ n→ Φj(x) ≤ k and ϕj(x) = y]

or [x > n→ Φj(x) ≤ h(x, y) and ϕj(x) = y]

↑ , otherwise.

Obviously, we have ψ ∈ P2 and by the observation made above it is easy to see
that U ⊆ Pψ. It remains to show that ψ is measurable. So, we have to provide
an algorithm uniformly deciding on input i, x, y whether or not ψ(i, x) = y.
The desired algorithm is displayed in Figure 1. Note that rounded rectangles
denote tests. This proves Claim 2.

Φj(x) ≤ k ϕj(x) = y
yes yesyes

no no

yes yes

nono

compute

h(x, y)

ϕj(x) = yΦj(x) ≤ h(x, y)

x ≤ n output 1

output 0 output 0

output 1

output 0output 0

Fig. 1. An algorithm uniformly deciding on input i, x, y whether or not ψ(i, x) = y;
here (j, n, k) = c3(i).

Claim 3. (3) implies (1).

Let U ⊆ R and let ψ ∈ P2 be a measurable numbering such that U ⊆ Rψ.
Moreover, as in the proof of Theorem 2 we chose χ ∈ R2 such that U0 = Rχ.
Again, we set τ2i = ψi and τ2i+1 = χi for all i ∈ N. Obviously, τ ∈ P2, τ is
measurable, and U ⊆ Rτ . Now let X ∈ Π(N) and n ∈ N. We define

S(fX,n) = “Search the least i such that τi(xm) = f(xm) for all 0 ≤ m ≤ n. If
such an i has been found, output i.”

Since τ is measurable, it is easy to see that S ∈ R. Moreover, if f ∈ U ,
then the sequence (S(fX,n))n∈N has to converge, since the search can never
go beyond the least τ -program j with τj = f . When converging, say to j, the
strategy yields τj = f . Thus, U ∈ T - CONSarb

τ (S).
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This proves Claim 3, and hence the theorem is shown. 2

Having Theorem 12, we can easily show that, in general, T - CONSarb extends
the learning capabilities of R- T OTAL. However, when restricted to classes of
recursive predicates, both T - CONSarb andR- T OTAL are of the same learn-
ing power. Furthermore, we get closure under recursively enumerable union
for T - CONSarb , nicely contrasting Theorem 8. The following corollary sum-
marizes these results.

Corollary 13 (Blum and Blum [21]).

(1) R- T OTAL ⊂ T - CONSarb and
(2) R- T OTAL ∩ ℘(R{0,1}) = T - CONSarb ∩ ℘(R{0,1}).
(3) T - CONSarb is closed under recursively enumerable union.

Proof. For the first part, by Lemma 1 and Theorem 2 we have U(ϕ,Φ) /∈
R- T OTAL. On the other hand, for every complexity measure (ϕ,Φ), Φ ∈ P2

is measurable. Hence U(ϕ,Φ) ∈ T - CONSarb . Consequently, T - CONSarb \
R- T OTAL 6= ∅. Furthermore, R- T OTAL ⊆ T - CONSarb by Theorem 2
and Theorem 12.

For the second part, if U ∈ T - CONSarb then there is a function h ∈ R2 such
that U ⊆ Ch. But since U ⊆ R{0,1}, we can define t(x) = h(x, 0) + h(x, 1)
for all x ∈ N. Hence, we get U ⊆ Ct, and thus by Theorem 2 we know U ∈
NUM = R- T OTAL.

Assertion (3) is proved by using Theorem 12. Let (Si)i∈N be a recursive enu-
meration of strategies fulfilling the requirements of T - CONSarb . Without loss
of generality we can assume that all strategies Si learn with respect to some
fixed Gödel numbering ϕ. As the proof of Claim 1 in the demonstration of
Theorem 12 shows, for every strategy Si we can effectively obtain a function
hi ∈ R2 such that T - CONSarb

ϕ (Si) ⊆ ℘(Chi). We define

h(x, y) = max{hi(x, y) | i ≤ x} for all x, y ∈ N .

Clearly, h ∈ R2 and by construction
⋃
i∈N Chi ⊆ Ch. Applying again Theo-

rem 12 we get that there is a strategy S such that Ch ∈ T - CONSarb
ϕ (S).

Consequently,
⋃
i∈N T - CONSarb

ϕ (Si) ⊆ T - CONSarb
ϕ (S). 2

Furthermore, T OTAL and T - CONSarb both extend the learning capabilities
of R- T OTAL, but in different directions. Before showing this, we consider
the variant of T - CONSarb where the strategy is only required to learn from
input presented in natural order. The resulting learning type is denoted by
T - CONS (see also Definition 15 in Subsection 5.1).

Corollary 14. T OTAL # T - CONSarb
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Proof. By Theorem 11 we have U(ϕ,Φ) ∈ T - CONSarb \T OTAL. On the other
hand, Usd ∈ T OTAL. We claim that Usd /∈ T - CONS, and thus we also have
Usd /∈ T - CONSarb .

Let ϕ be any fixed Gödel numbering. Suppose there is a strategy S ∈ R such
that Usd ∈ T - CONSϕ(S). By an easy application of the fixed point theorem
we can construct a function f such that f = ϕi, f(0) = i and for all n ∈ N

f(n+ 1) =

 0, if S(fn0) 6= S(fn)

1, if S(fn0) = S(fn) and S(fn1) 6= S(fn).

Note that one of the two cases in the definition of f must happen for all n ≥ 1.
Thus, we clearly have f ∈ Usd . On the other hand, S(fn) 6= S(fn+1) for all
n ∈ N a contradiction to Usd ∈ T - CONSϕ(S). Hence Usd /∈ T - CONS. 2

Note that the proof of this Corollary also showed that for every T -consistent
strategy S ∈ R one can effectively construct a function f such that {f} /∈
T - CONSϕ(S).

We finish this section by mentioning that for T -consistent learning identifi-
cation from arbitrarily ordered input and learning from input presented in
natural order makes a difference. Thus, the following theorem nicely contrasts
with Theorems 1 and 9. For a proof we refer the reader to Grieser [56].

Theorem 15. T - CONSarb ⊂ T - CONS

We continue by defining some more concepts of learning. This is done in the
next section.

5 Defining More Learning Models

So far, we have started from a learning model which, at first glance looked
quite natural, i.e., R- T OTALarb and continued by looking for possibilities to
enlarge its learning power. Though, conceptually, we shall follow this line of
presentation, it is technically advantageous to introduce several new concepts
of learning at once in this section.

The following learning model is the one with which it all started, i.e., Gold’s
famous learning in the limit model. In this model, all requirements on the
intermediate hypotheses such as being ψ-programs of recursive functions or
being consistent are dropped.

Definition 8 (Gold [52,53]). Let U ⊆ R and let ψ ∈ P2. The class U is
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said to be learnable in the limit with respect to ψ if there is a strategy S ∈ P
such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,
(2) there is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N converges

to j.

If U is learnable in the limit with respect to ψ by a strategy S, we write U ∈
LIMψ(S). Let LIMψ = {U | U is learnable in the limit w.r.t. ψ}, and let
LIM =

⋃
ψ∈P2 LIMψ.

Again, some remarks are mandatory here. Note that LIMϕ = LIM for
any Gödel numbering ϕ. This can be shown by using exactly the same ideas
as above (cf. Lemma 2). In the above definition LIM stands for “limit.”
There are also other notations around to denote the learning type LIM.
For example, in [13–15] the notation GN is used. Here GN stands for Gödel
numbering. Case and Smith [30] coined the notation EX which stands for
“explain.”

As we have seen above when studying the learning types R- T OTAL and
T OTAL, it can make a difference with respect to the resulting learning power
whether or not we require the strategy to be in R or in P (cf. Theorem 7).
On the other hand, the learning type LIM is invariant to the demand S ∈ R
instead of S ∈ P . This was already shown by Gold [52] and for the sake of
completeness we include this result here.

Theorem 16 (Gold [52]). Let (ϕ,Φ) be a complexity measure. There is a
function s ∈ R such that ϕs(i) ∈ R and LIMϕ(ϕi) ⊆ LIMϕ(ϕs(i)) for all
i ∈ N.

Proof. For every (y0, . . . , yn) ∈ N∗ we set

ϕs(i)(〈(y0, . . . , yn)〉) =



0, if Φi(〈(y0, . . . , yx)〉) > n

for all x ≤ n

ϕi(〈(y0, . . . , yx′)〉), if x′ is the biggest x ≤ n such

that Φi(〈(y0, . . . , yx)〉) ≤ n .

Now let f ∈ R be such that (ϕi(f
n))n∈N converges, say to j, and ϕj = f .

Then, by construction, the sequence (ϕs(i)(f
n))n∈N also converges to j, but

possibly with a certain delay. Thus, ϕs(i) learns f in the limit, too. 2

Hence, there exists a numbering ψ ∈ R2 such that for every U ∈ LIM
there is a strategy S ∈ Rψ satisfying U ∈ LIM(S). Clearly, it suffices to set
ψi = ϕs(i). This in turn implies that there is no effective procedure to construct
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for every strategy ϕs(i) a function fi ∈ R such that {fi} /∈ LIM(ϕs(i)). In
order to see this, suppose the converse. Hence, the class {fi | i ∈ N} would be
in NUM \ LIM, a contradiction, since we obviously have NUM ⊆ LIM.

Furthermore, a straightforward modification of Definition 8 yields LIMarb,
i.e., learning in the limit from arbitrary input. Using the same idea as in the
proof of Theorem 1 one can easily show that LIM = LIMarb.

In the following subsections we consider a variety of new learning models.
These models are obtained from identification in the limit by varying the
mode of convergence, the set of admissible strategies, and the information
supply. Occasionally, we also modify the learning goal.

5.1 Varying the Mode of Convergence

Note that in general it is not decidable whether or not a strategy has already
converged when successively fed some graph of a function. With the next
definition we consider a special case where it has to be decidable whether or
not a strategy has already learned its input function. That is, we replace the
requirement that the sequence of all created hypotheses “has to converge” by
“has to converge finitely.”

Definition 9 (Gold [53], Trakhtenbrot and Barzdin [107]). Let U ⊆ R
and let ψ ∈ P2. The class U is said to be finitely learnable with respect to ψ
if there is a strategy S ∈ P such that for any function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,
(2) there is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N finitely

converges to j.

If the class U is finitely learnable with respect to ψ by a strategy S, we write
U ∈ FIN ψ(S). Let FIN ψ = {U | U is finitely learnable w.r.t. ψ}, and let
FIN =

⋃
ψ∈P2 FIN ψ.

Though the following result is not hard to prove, it provides some nice insight
into the limitations of finite learning. For stating it, we need the notion of
accumulation point. Let U ⊆ R; then a function f ∈ R is said to be an
accumulation point of U if for every n ∈ N there is a function f̂ ∈ U such that
f =n f̂ but f 6= f̂ .

Theorem 17 (Lindner [79]). Let U ⊆ R be any class such that U ∈ FIN .
Then U cannot contain any accumulation point.

Proof. Suppose the converse, i.e., there is a class U ∈ FIN containing an
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accumulation point f . Let S ∈ P such that U ∈ FIN (S). Then there must
exist an n ∈ N such S(fn) = S(fn+1) = j. That is, the sequence (S(fn))n∈N
has finitely converged to j and ϕj = f must hold. On the other hand, since f is

an accumulation point, there must be an f̂ ∈ U such that f =n+1 f̂ but f 6= f̂ .
Clearly, by the definition of finite convergence we have S(f̂n) = S(f̂n+1) = j,
too, but ϕj = f 6= f̂ . This is a contradiction to U ∈ FIN (S). 2

This theorem directly yields the following corollary.

Corollary 18. R- T OTAL # FIN

Proof. FIN \ R- T OTAL 6= ∅ is witnessed by Usd . Moreover, 0∞ ∈ U0 is
clearly an accumulation point of U0. Thus, by Theorems 17 and 2 we get
U0 ∈ R- T OTAL \ FIN . 2

Note that Theorem 53 provides a complete answer to the question under which
circumstances a class U ⊆ R is finitely learnable.

Next, we look at another mode of convergence which goes back to Feldman [36]
who called it matching in the limit and considered it in the setting of learning
languages. The difference to the mode of convergence used in Definition 8,
which is actually syntactic convergence, is to relax the requirement that the
sequence of hypotheses has to converge to a correct program by semantic
convergence. Here by semantic convergence we mean that after some point all
hypotheses are correct but not necessarily identical. Nowadays, the resulting
learning model is usually referred to as behaviorally correct learning. This term
was coined by Case and Smith [30]. As far as learning of recursive functions
is concerned, behaviorally correct learning was formalized by Barzdin [11,18].

Definition 10 (Barzdin [11,18]). Let U ⊆ R and let ψ ∈ P2. The class U
is said to be behaviorally correctly learnable with respect to ψ if there is a
strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,
(2) ψS(fn) = f for all but finitely many n ∈ N.

If U is behaviorally correctly learnable with respect to ψ by a strategy S, we
write U ∈ BCψ(S). BCψ and BC are defined analogously to the above above.

Clearly, we have LIM ⊆ BC. On the other hand, even BC learning is not
trivial, i.e., we have R /∈ BC. This is a direct consequence of the next theorem
which shows the even stronger result that BC is not closed under union. In
the proof below we use the convention that 0k denotes the empty string for
k = 0. When we identify a function with the sequence of its values then we
mean by i0020∞ the function f expressed by i20∞, i.e., f(0) = i, f(1) = 2 and
f(x) = 0 for all x ≥ 2.
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Theorem 19 (Barzdin [18]). BC is not closed under finite union.

Proof. For showing the theorem it suffices to prove that Usd ∪ U0 /∈ BC. The
proof is done indirectly. Suppose the converse, i.e., there is a strategy S ∈ P
such that Usd ∪ U0 ∈ BC(S). Then we can directly conclude S ∈ R.

Now we have to fool the strategy S such that it would have to “change its mind
semantically” infinitely often in order to learn the function to be constructed.
For all i ∈ N we define a function fi as follows. Set fi(0) = i for all i ∈ N. The
definition continues in stages.

Stage 1. Try to compute ϕS(〈i〉)(1), ϕS(〈i0〉)(2), . . . , ϕS(〈i0k〉)(k + 1), . . . , until
the first value k1 is found such that ϕS(〈i0k1 〉)(k1 + 1)↓ .

Let y1 = ϕS(〈i0k1 〉)(k1 + 1). Then we set fi(x) = 0 for all 1 ≤ x ≤ k1 and
fi(k1 + 1) = y1 + 1.
Goto Stage 2.

If none of the values ϕS(〈i〉)(1), ϕS(〈i0k〉)(k+1), k ∈ N+, is defined, then Stage 1
is not left. But in this case we are already done, since then {i0∞} /∈ BC(S).

For making the proof easier to access, we also include Stage 2 here.

Stage 2. Try to compute ϕS(〈i0k1f(k1+1)〉)(k1 +2), ϕS(〈i0k1f(k1+1)0〉)(k1 +3), . . . ,
ϕS(〈i0k1f(k1+1)0k〉)(k1 + k + 2), . . . , until the first value k2 is found such that
ϕS(〈i0k1f(k1+1)0k2 〉)(k1 + k2 + 2)↓ .

Let y2 = ϕS(〈i0k1f(k1+1)0k2 〉)(k1 + k2 + 2). Then we set fi(x) = 0 for all
k1 + 2 ≤ x ≤ k1 + k2 + 1 and fi(k1 + k2 + 2) = y2 + 1.
Goto Stage 3.

Again, if none of the values ϕS(〈i0k1f(k1+1)〉)(k1+2), ϕS(〈i0k1f(k1+1)0k〉)(k1+k+2),
k ∈ N+, is defined, then Stage 2 is not left. But in this case we are again done,
since then {i0k1f(k1 + 1)0∞} /∈ BC(S).

Now this construction is iterated. We assume that Stage n, n > 1 has been
left. Then numbers k1, . . . , kn have been found such that

ϕ
S(f

k1+···+k`+`
i )

(k1 + · · ·+ k` + `)↓ for ` = 1, . . . , n .

So, fi(x) is already defined for all 0 ≤ x ≤ k1 + · · ·+ kn + n.

Stage n+ 1, n ≥ 2. Try to compute
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ϕS(〈i0k1fi(k1+1)···0knfi(k1+···+kn+n)〉)(k1 + · · ·+ kn + n+ 1)

ϕS(〈i0k1fi(k1+1)···0knfi(k1+···+kn+n)0〉)(k1 + · · ·+ kn + n+ 2)

·
·
·

ϕS(〈i0k1fi(k1+1)···0knfi(k1+···+kn+n)0k〉)(k1 + · · ·+ kn + n+ k + 1)

·
·
·

until the first value kn+1 is found such that

ϕS(〈i0k1fi(k1+1)···0knfi(k1+···+kn+n)0kn+1 〉)(k1 + · · ·+ kn + n+ kn+1 + 1)↓ .

Let yn+1 = ϕS(〈i0k1fi(k1+1)···0knfi(k1+···+kn+n)0kn+1 〉)(k1 + · · ·+kn+n+kn+1 +1).

Then we set fi(x) = 0 for all k1+· · ·+kn+n+1 ≤ x ≤ k1+· · ·+kn+n+kn+1,
and set fi(k1 + · · ·+ kn + kn+1 + n+ 1) = yn+1 + 1.

As before, if Stage n+ 1 is not left, we are already done. Thus, it remains to
consider the case that Stage n is left for all n ≥ 1. Let s ∈ R be chosen such
that ϕs(i) = fi for all i ∈ N. By the fixed point theorem (cf., e.g., Smith [99])
there is a number j such that ϕs(j) = ϕj. Since fj = ϕs(j) = ϕj and fj(0) = j
we get fj ∈ Usd . But by construction we have ϕ

S(f
k1
j )

(k1 + 1) 6= fj(k1 + 1),

ϕ
S(f

k1+k2+1
j )

(k1 + k2 + 2) 6= fj(k1 + k2 + 2), . . . , ϕ
S(f

k1+···kn+n−1
j )

(k1 + · · · +

kn + n) 6= fj(k1 + · · · + kn + n), . . . . Therefore, when successively fed fnj the
strategy S outputs infinitely many wrong hypotheses, and thus fj /∈ BC(S), a
contradiction to U0 ∪ Usd ∈ BC(S). 2

This proof directly yields the following corollary.

Corollary 20.

(1) R /∈ BC.
(2) LIM is not closed under finite union.
(3) R /∈ LIM.

Proof. (1) is a direct consequence of Theorem 19. Clearly, Usd ,U0 ∈ LIM and
LIM ⊆ BC. Since Usd ∪U0 /∈ BC, Assertion (2) follows. Finally, (3) is directly
implied by Assertion (2). 2

Adleman and Blum [1] have shown that, under canonical formalization, the
degree of the algorithmic unsolvability of “R ∈ LIM” is strictly less than
the degree of the algorithmic unsolvability of the halting problem. Brand [25]
studied the related problem of identifying all partial recursive functions. Of
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course, it is also algorithmically unsolvable but its degree and the degree of
the halting problem are equivalent.

In another direction, Aps̄ıtis et al. [9] found n’s, n > 2 such that: 1. whenever,
out of n-identifiable classes, the union of any n−1 of them is identifiable, then
so is the union of all n, yet 2. there are n − 1 identifiable classes such that
every union of n− 2 of them is identifiable, but the union of all n− 1 of them
is not.

On the other hand, many more function classes are learnable behaviorally
correctly than are learnable in the limit. In order to state this result and for
pointing to another interesting property of behaviorally correct learning, we
modify Definition 8 by relaxing the learning goal. By R∗ and T∗ we denote
the class of all functions f ∈ P and f ∈ P, respectively, for which dom(f)
is cofinite. For f, g ∈ T∗ and a ∈ N we write f =a g and f =∗ g if |{x ∈
N | f(x) 6= g(x)}| ≤ a and |{x ∈ N | f(x) 6= g(x)}| < ∞, respectively. Note
that there are three possibilities for a number x to belong to the sets just
considered: both f(x)↓ and g(x)↓ , but f(x) 6= g(x), or f(x)↓ while g(x)↑ ,
or f(x)↑ and g(x)↓ .

Definition 11 (Case and Smith [30]). Let U ⊆ R and let ψ ∈ P2. Let
a ∈ N∪ {∗}. The class U is said to be learnable in the limit with a anomalies
(in case a = ∗: with finitely many anomalies) with respect to ψ if there is a
strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,
(2) there is a j ∈ N such that ψj =a f and the sequence (S(fn))n∈N converges

to j.

This is denoted by U ∈ LIMa
ψ for short. The notions LIMa

ψ and LIMa are
defined in the usual way.

Note that for a = 0, the inference type LIM0 coincides with LIM by defini-
tion. Furthermore, Theorem 16 can be straightforwardly generalized to LIMa

for all a ∈ N∪{∗}, i.e., LIMa is also invariant to the demand S ∈ R instead
of S ∈ P .

Of course, the first question to be asked is whether or not one can learn more if
anomalies in the final program are allowed. The affirmative answer is provided
by the following theorem which establishes an infinite hierarchy in dependence
on the number of anomalies allowed and relates this hierarchy to BC.

Theorem 21 (Barzdin [18], Case and Smith [30]).

LIM ⊂ LIM1 ⊂ LIM2 ⊂ · · · ⊂ ⋃a∈N LIMa ⊂ LIM∗ ⊂ BC
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For a proof, we refer the reader to Case and Smith [30]. Note that the in-
clusion LIM∗ ⊂ BC appeared already in Barzdin [18]. Thus the option to
syntactically change hypotheses entails an error-correcting power.

Note that behaviorally correct learning with anomalies was also studied in-
tensively. Case and Smith [30] showed the following infinite hierarchy.

Theorem 22 (Case and Smith [30]).

BC ⊂ BC1 ⊂ BC2 ⊂ · · · ⊂ ⋃a∈N BCa ⊂ BC∗

Furthermore, in a private communication to Case and Smith, Leo Harrington
pointed out the following surprising result (cf. Case and Smith [30] for a proof).

Theorem 23. R ∈ BC∗

We say that a strategy S is general purpose if it BC∗-identifies R. An interest-
ing result concerning general purpose strategies was shown by Chen [31,32].
He proved that for every general purpose strategy S there are functions f ∈ R
such that the finite set of anomalies made in each explanation S(fn) grows
without bound as n tends to infinity. That is, the hypotheses become more
and more degenerate.

There is another peculiarity in behaviorally correct learning with anomalies.
For a ∈ N+, Definition 11 requires the final program to be correct for all but at
most a arguments x ∈ N. A natural modification is then to require correctness
for all but exactly a arguments x ∈ N. The resulting learning types are denoted
by LIM=a and BC=a. Case and Smith [30] have shown that LIM=a = LIM,
i.e., the knowledge that there are precisely a anomalies in the final program
allows one to patch the final program in the limit and to converge to a correct
one. In contrast, BC=a = BCa for all a ∈ N as shown by Kinber [69]. Intuitively,
the difference between LIMa and BCa can be explained by noting that every
program output by a behaviorally correct learner after the semantic point of
convergence is incorrect on a different set of arguments.

Further results concerning learning with anomalies can be found e.g., in Frei-
valds et al. [46], Gasarch et al. [51], Kinber and Zeugmann [70,68], and Smith
and Velauthapillai [101].

Looking at behaviorally correct learning with and without anomalies, it is not
difficult to see that BCa is also invariant to the demand to learn with recursive
strategies only. That is, using the same ideas as in the proof of Theorem 16
one can show the following result.

Theorem 24. Let (ϕ,Φ) be a complexity measure. For every a ∈ N ∪ {∗}
there is a function s ∈ R such that ϕs(i) ∈ R and BCaϕ(ϕi) ⊆ BCaϕ(ϕs(i)) for
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all i ∈ N.

By definition, semantic convergence allows the learner to output infinitely
many different correct programs. Thus, it is natural to ask what happens if we
sharpen the definition of BC by adding the requirement that the set {S(fn) |
n ∈ N} of all produced hypotheses is of finite cardinality. Interestingly, then
we again get the learning type LIM. This result appeared first in Barzdin
and Podnieks [20] and was generalized by Case and Smith [30] (see Theorem
2.9).

A further interesting modification of behaviorally correct learning was intro-
duced by Podnieks [93]. Instead of requiring semantic convergence, he intro-
duced a certain type of uncertainty by demanding correct hypotheses to occur
with a certain frequency.

Definition 12 (Podnieks [93]). Let 0 < p ≤ 1, let U ⊆ R and let ϕ ∈ Göd.
The class U is said to be behaviorally correctly learnable with frequency p if
there is a strategy S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,

(2) lim inf
k→∞

|{n | ϕM(fn) = f, 0 ≤ n ≤ k}|
k

≥ p

If U is behaviorally correctly learnable with frequency p by a strategy S, we
write U ∈ BCfreq(p)(S). BCfreq(p) is defined analogously to the above.

Podnieks [93,94] proved that BCfreq

(
1

n+1

)
⊂ BCfreq

(
1

n+2

)
for all n ∈ N. Intu-

itively, this theorem holds, since BC is not closed under union. For example,
taking U0 and Usd and trying half the time to learn any function in U0∪Usd by
simulating any learner for U0 and for Usd , respectively, and then outputting
the hypotheses obtained alternatingly shows that BC ⊂ BCfreq

(
1
2

)
.

Additionally, he discovered that the BCfreq hierarchy is discrete. More formally,
he showed the following. Let p with 1/n ≥ p > 1/(n + 1) be given. Then

BCfreq(p) = BCfreq

(
1
n

)
.

Pitt [92] then defined the LIM–analogue to Podnieks’ behaviorally correct
frequency identification, i.e., LIMfreq and showed an analogous theorem.

Another way to attack the non-closure under finite union was proposed by
Smith [98] who introduced the notion of team learning (or pluralistic infer-
ence). For the sake of motivation imagine the task that a robot has to explore
a planet. There may be different models for the dynamics of the planet and
so the robot is required to learn. While it may be possible to learn the pa-
rameters of each single model, due to the non-closure under finite union, it
may be impossible to learn the parameters of all these models at once. So,
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if the number of models is not too large, it may be possible to send a finite
number of robots instead of a single one. If one of them learns successfully,
the successful robot can perform the exploration.

So, in the basic model of team learning we allow m learning strategies instead
of a single one and request, for each f ∈ U , one of them to be successful.
Of course, one can consider teams of BC learners or teams of LIM learners.
The resulting learning types are denoted by BCteam(m) and LIMteam(m),
respectively.

Last but not least, one can also consider probabilistic inference. In this model,
it is required that the sequence S(fn)n∈N converges with a certain probability
p. This model was introduced by Freivalds [47] in the setting of finite learning
and was then adapted to BC and LIM learning. Let us denote the resulting
models by BCprob(p) and LIMprob(p), respectively.

Pitt [92] obtained the following beautiful unification results. First, he showed
that BCfreq(p) = BCprob(p) and LIMfreq(p) = LIMprob(p) for every p with
0 < p ≤ 1. Thus, probabilistic identification is also discrete. Additionally, he
succeeded to prove the following theorem.

Theorem 25 (Pitt [92]).

(1) BCfreq

(
1
n

)
= BCprob

(
1
n

)
= BCteam(n) for every n ∈ N+.

(2) LIMfreq

(
1
n

)
= LIMprob

(
1
n

)
= LIMteam(n) for every n ∈ N+.

Furthermore, Wiehagen, Freivalds and Kinber [113] showed that, with prob-
ability close to 1, probabilistic strategies learning in the limit with n mind
changes are able to identify function classes which cannot be identified by any
deterministic strategy learning in the limit with n mind changes. Additionally,
Freivalds, Kinber and Wiehagen [44] studied finite probabilistic learning and
probabilistic learning in the limit in nonstandard numberings. In particular,
for I ∈ {FIN , LIM}, they showed that there exist numberings ψ such that,
with respect to ψ, no infinite function class can be I–learned deterministically,
whereas every class in I is I-learnable with probability 1− ε for every ε > 0.

As we have mentioned, one reason for the additional learning power of team
inference is due to the fact that neither LIM nor BC is closed under union.
Another reason was found by Smith [98] for teams of LIM-type learners.
That is, one can trade machines for errors. In its easiest form this can be
expressed as LIMa ⊆ LIMteam(a + 1). In order to see this, recall that we
have LIM=a = LIM. Thus, the first team member assumes that the final
program has no errors, the second team member assumes that there is exactly
one error in the final program, . . . , and the (a + 1)st team member supposes
that there are exactly a errors in the final program. Then every team member
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tries to patch as many errors as it assumes. So one of the team members is
correct and succeeds.

Subsequently, Daley [34] discovered the error correcting power of pluralism in
BC-type inductive inference. Note that in contrast, it is generally impossible
to trade errors for machines. Again, in its easiest form this says that for any
n ∈ N+ we have LIMteam(n + 1) \ LIMa 6= ∅ and BCteam(n + 1) \ BCa 6= ∅
for all a ∈ N, a > n.

Since there are some excellent papers treating probabilistic, pluralistic and
frequency identification we are not exploring this subject here in more de-
tail. Instead, the interested reader is encouraged to consult Ambainis [4] and
Pitt [92] for further information concerning probabilistic learning as well as
Aps̄ıtis et al. [10] and Smith [98,100] for additional material about team in-
ference.

Figure 2 summarizes the results concerning frequency identification, proba-
bilistic inference, team learning and learning with anomalies.

LIM ⊂ LIM1 ⊂ · · · ⊂ LIMn ⊂ LIMn+1 ⊂ · · · ⊂ LIM∗

∩ ∩ ∩ ∩

LIM ⊂ LIMfreq(1
2) ⊂ · · · ⊂ LIMfreq( 1

n+1) ⊂ LIMfreq( 1
n+2) ⊂ · · · ⊂ BC∗

LIM ⊂ LIMprob(1
2) ⊂ · · · ⊂ LIMprob( 1

n+1) ⊂ LIMprob( 1
n+2) ⊂ · · · ⊂ BC∗

LIM ⊂ LIMteam(2) ⊂ · · · ⊂ LIMteam(n+ 1) ⊂ LIMteam(n+ 2) ⊂ · · · ⊂ BC∗

∩ ∩ ∩ ∩

BC ⊂ BCteam(2) ⊂ · · · ⊂ BCteam(n+ 1) ⊂ BCteam(n+ 2) ⊂ · · · ⊂ BC∗

BC ⊂ BCprob(1
2) ⊂ · · · ⊂ BCprob( 1

n+1) ⊂ BCprob( 1
n+2) ⊂ · · · ⊂ BC∗

BC ⊂ BCfreq(1
2) ⊂ · · · ⊂ BCfreq( 1

n+1) ⊂ BCfreq( 1
n+2) ⊂ · · · ⊂ BC∗

∪ ∪ ∪

BC ⊂ BC1 ⊂ · · · ⊂ BCn ⊂ BCn+1 ⊂ · · · ⊂ BC∗

Fig. 2. Hierarchies of frequency identification, probabilistic inference, team learning
and learning with anomalies
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5.2 Varying the Set of Admissible Strategies

It should be noted that in Definition 8 no requirement is made concerning
the intermediate hypotheses output by strategy S. So, first, we again aim to
introduce the consistency requirement already considered in Section 4. How-
ever, there are several possibilities to do this. Since a more detailed study of
these different possibilities will shed some light on the question of how natural
are intuitive postulates, we shall provide a rather complete discussion here.
Additionally, in order to make it more interesting we consider the notion of
δ–delay, too, which has recently been introduced by Akama and Zeugmann [2].

Definition 13 (Akama and Zeugmann [2]). Let U ⊆ R, let ψ ∈ P2 and
let δ ∈ N. The class U is called consistently learnable in the limit with δ–delay
with respect to ψ if there is a strategy S ∈ P such that

(1) U ∈ LIMψ(S),
(2) ψS(fn)(x) = f(x) for all f ∈ U , n ∈ N and all x such that x+ δ ≤ n.

CONSδψ(S), CONSδψ and CONSδ are defined analogously to the above.

Note that for δ = 0 we get Barzdin’s [12] original definition of CONS. We
therefore usually omit the upper index δ if δ = 0. This is also done for all
other versions of consistent learning defined below. Moreover, we use the term
δ–delay, since a consistent strategy with δ–delay correctly reflects all but at
most the last δ data seen so far. If a strategy does not always work consistently
with δ–delay we call it δ–delay inconsistent.

Next, we modify CONSδ in the same way Jantke and Beick [66] changed
CONS, i.e., we add the requirement that the strategy is defined on every
input.

Definition 14 (Akama and Zeugmann [2]). Let U ⊆ R, let ψ ∈ P2 and let
δ ∈ N. The class U is called R–consistently learnable in the limit with δ–delay
with respect to ψ if there is a strategy S ∈ R such that U ∈ CONSδψ(S).

R- CONSδψ(S), R- CONSδψ and R- CONSδ are defined analogously to the
above.

Note that in Definition 14 consistency with δ–delay is only demanded for
inputs that correspond to some function f in the target class. Therefore, in the
following definition we incorporate Wiehagen and Liepe’s [114] requirement on
a strategy to work consistently on all inputs into our scenario of consistency
with δ–delay.
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Definition 15 (Akama and Zeugmann [2]). Let U ⊆ R, let ψ ∈ P2 and
let δ ∈ N. The class U is called T –consistently learnable in the limit with
δ–delay with respect to ψ if there is a strategy S ∈ R such that

(1) U ∈ CONSδψ(S),
(2) ψS(fn)(x) = f(x) for all f ∈ R, n ∈ N and all x such that x+ δ ≤ n.

T - CONSδψ(S), T - CONSδψ and T - CONSδ are defined in the same way as
above.

So, for δ = 0 we again obtain the learning type T - CONS already considered
at the end of Section 4.

Next, we introduce coherent learning (again with δ-delay). While our consis-
tency with δ-delay demand requires a strategy to correctly reflect all but at
most the last δ data seen so far, the coherence requirement only demands to
correctly reflect the value f(n −· δ) on input fn.

Definition 16 (Akama and Zeugmann [2]). Let U ⊆ R, let ψ ∈ P2 and
let δ ∈ N. The class U is called coherently learnable in the limit with δ–delay
with respect to ψ if there is a strategy S ∈ P such that

(1) U ∈ LIMψ(S),
(2) ψS(fn)(n −· δ) = f(n −· δ) for all f ∈ U and all n ∈ N such that n ≥ δ.

COHδ
ψ(S), COHδ

ψ and COHδ are defined analogously to the above.

Now, performing the same modifications to coherent learning with δ–delay as
we did in Definitions 14 and 15 to consistent learning with δ–delay results
in the learning types R- COHδ and T - COHδ, respectively. We therefore omit
the formal definitions of these learning types here.

Using standard techniques one can show that for all δ ∈ N and all learning
types LT ∈ {CONSδ, R- CONSδ, T - CONSδ, COHδ, R- COHδ, T - COHδ}
we have LT ϕ = LT for every Gödel numbering ϕ (cf. Lemma 2).

Let us first answer the question whether or not the relaxation to learn co-
herently with δ–delay instead of demanding consistency with δ–delay does
enhance the learning power of the corresponding learning types introduced
above. The negative answer is provided by the following theorem.

Theorem 26 (Akama and Zeugmann [2]). Let δ ∈ N be arbitrarily fixed.
Then we have

(1) CONSδ = COHδ,
(2) R- CONSδ = R- COHδ,
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(3) T - CONSδ = T - COHδ.

Therefore, in the following it suffices to deal with consistent learning with
δ–delay. We postpone the study of the different versions of consistent learn-
ing with δ–delay to Section 6, where we provide characterizations in terms of
complexity and Section 7, where we investigate their learning power in depen-
dence on the type of consistency and the delay parameter δ. Furthermore, in
Section 8 characterizations in terms of computable numberings are given.

Note that T -consistent learning with or without δ–delay has an interesting
property. Let f ∈ R be any function. If a T -consistent learner is successively
fed fn for n = 0, 1, . . . then it converges if and only if it learns f . In other
words, a T -consistent learner signals its inability to learn a function by per-
forming infinitely many mind changes. This property is called reliability. More
precisely, a T -consistent learner is even reliable on the set T of all total func-
tions. As a matter of fact, reliable inference has been studied intensively before
the notion of T -consistent identification was around.

Therefore, it is advantageous to recall here the definition of reliable 4 learning
introduced by Blum and Blum [21] and Minicozzi [84]. When talking about
reliable learning it is natural to introduce the set M of functions on which
the learner is required to be reliably as a new parameter. That is, a learning
strategy S is reliable on a set M provided it converges, when fed the graph
of a function f in M, if and only if it learns f .

Definition 17 (Blum and Blum [21], Minicozzi [84]). Let U ⊆ R, let
M⊆ P and let ϕ ∈ Göd; then U is said to be reliably learnable onM if there
is a strategy S ∈ R such that

(1) U ∈ LIMϕ(S), and
(2) for all functions f ∈ M, if the sequence (S(fn))n∈N converges, say to j,

then ϕj = f .

ByM-REL we denote the family of all function classes that are reliably learn-
able on M.

In particular, we shall consider the cases where M = T and M = R, i.e.,
reliable learnability on the set of all total functions and all recursive functions,
respectively. For the sake of completeness, we also mention here that the family
of all function classes reliably identifiable on the set of all partial functions
equals the set of all function classes reliably learnable on the set of all partial
recursive functions. Furthermore, reliable learning on the set of all partial
functions allows the following characterization in terms of consistency.

4 Reliable learning is also called strong identification, e.g., by Minicozzi [84] and
Grabowski [55].
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Theorem 27 (Blum and Blum [21]). P-REL = P-REL = T - CONSarb .

Furthermore, reliable learning possesses some very nice closure properties as
shown by Minicozzi [84] (cf. Theorems 3 and 4 in [84]). For the sake of com-
pleteness, we recall these results here but refer the reader to [84] for a proof.

Theorem 28 (Minicozzi [84]). Let M⊆ P; then we have:

(1) M-REL is closed under recursively enumerable union.
(2) For every class U ⊆ R, if U ∈ M-REL then also the class of all finite

variants of the functions in U is reliable learnable on M, i.e., [[U ]] ∈
M-REL.

The following theorem provides a first insight into the learning capabilities
of reliable learning in dependence on the set M. The first rigorous proof of
T-REL ⊂ R-REL appeared in Grabowski [55]. A conceptually much easier
proof was provided by Stephan and Zeugmann [105]. Therefore we skip this
proof below.

Theorem 29. P-REL ⊂ T-REL ⊂ R-REL ⊂ LIM.

Proof. P-REL ⊂ T-REL is a direct consequence of Theorems 15 and 27.

R-REL ⊆ LIM is obvious. For showing that LIM \ R-REL 6= ∅, we use
the class Usd which is clearly in LIM. Suppose Usd ∈ R-REL. Then applying
Theorem 28 directly yields [[Usd ]] ∈ R-REL, too. But [[Usd ]] = R (cf. Claim 2
in the proof of Lemma 1). Since R-REL ⊆ LIM, we get R ∈ LIM, a
contradiction to Corollary 20. 2

Note that one can extend the notion of reliable learning to behaviorally cor-
rect reliable inference, too. Additionally, starting from the notion of reliability
one can define for BC– and LIM–type identification the notion of one-sided
error probabilistic learning as well as of reliable frequency identification (see
Kinber and Zeugmann [68]). The flavor of the obtained results is similar to
Podnieks’ [93,94] and Pitt’s [92]. On the other hand, one can also look at
team learning as a way of introducing a bounded nondeterminism to learning.
But even introducing an unbounded nondeterminism to reliable learning does
not enlarge the learning capabilities of reliable LIM inference (see Pitt [92],
Theorem 4.14). So, though we have Theorem 25, there are subtle differences
between probabilistic and frequency identification on the one hand and plu-
ralistic learning on the other.

We shall come back to reliable learning in Sections 6 and 7. For getting a
broader picture, we continue here with the main subject of this section, i.e.,
defining further learning models. So far, we have varied the mode of conver-
gence, the set of admissible strategies, and the learning goal. Thus, it remains
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to consider possible modifications of the information supply.

5.3 Varying the Information Supply

Next, we consider two variations of the information fed to the learner. Looking
at all the learning models defined so far we see that a strategy has always access
to all examples presented so far. In the following definition, we consider the
variant where the strategy is only allowed to use its last guess and the new
datum coming in.

Definition 18 (Wiehagen [109]). Let U ⊆ R and let ψ ∈ P2. The class U
is said to be iteratively learnable with respect to ψ if there is a strategy S ∈ P
such that for each function f ∈ U ,

(1) for every n ∈ N, Sn(f) is defined, where
S0(f) = S(0, f(0)), and
Sn+1(f) = S(Sn(f), n+ 1, f(n+ 1)).

(2) There is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N converges
to j.

If the class U is iteratively learnable with respect to ψ by a strategy S, we
write U ∈ IT ψ(S). Furthermore, IT ψ and IT are defined analogously to the
above.

Of course, an iterative strategy can try to memorize the pairs (n, f(n)) in
its current hypothesis. Then the strategy would have access to the whole
initial segment fn presented so far. On the other hand, the strategy has to
converge. Therefore, an iterative strategy can only memorize finitely many
pairs (n, f(n)), i.e., a finite subfunction, in its hypothesis. Consequently, it is
only natural to ask whether or not this restriction does decrease the resulting
learning power. The affirmative answer is provided by the following theorem.

Theorem 30 (Wiehagen [109]). IT ⊂ LIM

Proof. Clearly, we have IT ⊆ LIM. It remains to show that LIM\IT 6= ∅.
The separating class U is defined as follows. We modify the class of self-
describing functions a bit by requiring all function values to be strictly positive,
i.e., we set Usdp = {f | f ∈ R, ϕf(0) = f, ∀x[f(x) > 0]} and U = U0 ∪ Usdp .

Claim 1. U ∈ LIM

Intuitively, the desired strategy S outputs f(0) as long as all function values
seen so far are greater than 0. If S sees 0 as a function value for the first time,
it switches its learning mode. From this point onwards S uses the identification
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by enumeration strategy to learn the target function. We omit the details.

Claim 2. U /∈ IT

It suffices to show that for every S with U0 ∈ IT ϕ(S) there is a function
f ∈ Usdp such that f /∈ IT ϕ(S). Let s ∈ R be chosen such that for all j ∈ N

ϕs(j)(0) = j, and for all n ∈ N :

ϕs(j)(n+ 1) =


1, if S(Sn(ϕs(j)), n+ 1, 1) 6= Sn(ϕs(j))

2, if S(Sn(ϕs(j)), n+ 1, 1) = Sn(ϕs(j)) and

S(Sn(ϕs(j)), n+ 1, 2) 6= Sn(ϕs(j))

Note that one of these cases must happen. For seeing this, suppose the con-
verse. Let m be the least n such that

S(Sn−1(ϕs(j)), n, 1) = S(Sn−1(ϕs(j)), n, 2) = Sn−1(ϕs(j)) .

Now consider the functions g and g′ defined as

g(x) =


ϕs(j)(x), if x < m

1 , if x = m

0 , if x > m ,

and g′(x) = g(x) for all x 6= m and g′(m) = 2. Since g, g′ ∈ U0 the strategy S
must iteratively learn both g and g′. But by the choice of m we can directly
conclude that the sequences (Sn(g))n∈N and (Sn(g′))n∈N converge to the same
number, a contradiction.

Consequently, ϕs(j) ∈ R for every j. By the fixed point theorem (cf., e.g., [99])
there is an i ∈ N such that ϕi = ϕs(i). By construction, ϕi ∈ Usdp and S
changes its hypothesis in every learning step when successively fed ϕi. Thus,
for f = ϕi we have f /∈ IT ϕ(S). 2

It should be mentioned that Wiehagen [109] proved a slightly stronger result
than our Theorem 30, since he showed the class U in the proof above to be even
learnable by a feed-back strategy. A feed-back strategy, when successively fed a
function f works like an iterative strategy but can additionally make a query
by computing an argument x and asking for f(x). While feed-back learning
is stronger than iterative learning, it is still weaker than learning in the limit.
It should be noted that a suitably modified version of feed-back learning has
recently attracted attention in the setting of language learning from positive
data (see [27,76]).
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Finally, iterative learning is also quite sensitive to the order in which exam-
ples are presented. Jantke and Beick [66] considered IT arb and showed the
following result.

Theorem 31 (Jantke and Beick [66]). R- T OTAL # IT arb

In the next definition, we consider a variant of how to enrich the information
presented to a learner. This type of inference was introduced by Wiehagen [111]
and was intensively studied in Freivald and Wiehagen [37]. It was further
investigated by Freivalds, Botuscharov, and Wiehagen [42] and, in the context
of language identification, by Jain and Sharma [63]. We refer to it as learning
with additional information and indicate this by using + as upper index.

Definition 19 (Wiehagen [111]). Let U ⊆ R and let ϕ ∈ Göd. U ∈ LIM+

if there is a strategy S ∈ P2 such that for every f ∈ U and for every bound
s ≥ minϕ f the following conditions are satisfied.

(1) S(s, fn) is defined for all n ∈ N, and
(2) the sequence (S(s, fn))n∈N converges to a number j such that ϕj = f .

Whenever appropriate, we shall also consider LT + for any of the learning
types defined in this paper.

Learning with additional information shows that consistent learning is full
of surprises. Note that Assertion (1) in the following theorem was shown by
Freivald and Wiehagen [37], while Assertion (2) goes back to Wiehagen [111].

Theorem 32 (Freivald and Wiehagen [37], Wiehagen [111]).

(1) T - CONS+ = T - CONS, and
(2) R ∈ CONS+.

Proof. Since we obviously have T - CONS ⊆ T - CONS+, it suffices to show
T - CONS+ ⊆ T - CONS. Let U ∈ T - CONS+(S), where S ∈ R2. Then
for every f ∈ U we can construct in the limit a number s such that the
sequence (S(s, fn))n∈N converges to a number j. Since S is T -consistent, we
can conclude that ϕj = f . Note that, in general, we do not have s ≥ minϕ f .
The formal proof is done as follows. We have to define a strategy S ′ ∈ R such
that U ∈ T - CONS(S ′). Let α ∈ N∗ be any tuple of length 1. The desired
strategy S ′ is defined as follows.

We set i0 = 0 and S ′(α) = S(i0, α).

Now assume n ∈ N such that in and S ′(α) for all tuples of length n + 1 are
already defined. Let y ∈ N; we set

in+1 = in and S ′(αy) = S(in, αy) provided S(in, αy) = S(in, α). Otherwise,
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we set in+1 = in + 1 and S ′(αy) = S(in+1, αy).

By construction, we directly obtain S ′ ∈ R because of S ∈ R2. Furthermore,
S is T -consistent, so is S ′. Additionally, since for every f ∈ U there is an
s ∈ N such that the sequence (S(s, fn))n∈N converges (every s ≥ minϕ f has
this property) the sequence (S ′(fn))n∈N must converge, too. So, let j be the
number the sequence (S ′(fn))n∈N converges to. Finally, by the T -consistency
of S ′ we can conclude that ϕj = f . This proves Assertion (1).

For showing the remaining Part (2), we use the amalgamation technique (cf.
Wiehagen [111], Case and Smith [30]). Let amal be a recursive function map-
ping any finite set I of ϕ-programs to a ϕ-program such that for any x ∈ N,
ϕamal(I)(x) is defined by running ϕi(x) for every i ∈ I in parallel and taking
the first value obtained, if any.

The desired strategy S ∈ P2 is mainly defined by using the function amal
defined above. Let f ∈ R and let s ∈ N; we set If,−1 = {0, . . . , s}. For n ≥ 0
we proceed inductively. Assume If,n−1 to be already defined. We set

t= “the minimal number such that for all 0 ≤ x ≤ n there is an

i ∈ If,n−1 with Φi(x) ≤ t and ϕi(x) = f(x) .”

Furthermore, we define

I−f,n = {i | i ∈ If,n−1, ∃x ≤ n[Φi(x) ≤ t, ϕi(x) 6= f(x)]} .

Moreover, we set If,n = If,n−1\I−f,n. Now we define the desired strategy S ∈ P2

as follows. For all n ∈ N and all s ∈ N let

S(s, fn) = “Compute If,n. If the computation of If,n stops then let
S(s, fn) = amal(If,n).
Otherwise, S(s, fn) =↑ .”

It remains to show that R ∈ CONS+(S). Let s ∈ N be any number such that
s ≥ minϕ f . Then, by construction, the computation of If,n stops for all n ∈ N
and we have If,n ⊆ If,n−1 for all n ∈ N. Furthermore, by construction S is
consistent, too. Since minϕ f ∈ If,n for all n ∈ N, we also have If,n 6= ∅ for all
n ∈ N. Consequently, the sequence (If,n)n∈N of sets converges to a finite and
non-empty set I containing at least one ϕ-program for f . Thus, the sequence
(S(s, fn))n∈N converges to amal(I) and since S is consistent we can conclude
ϕamal(I) = f . This proves Assertion (2). 2

Another interesting effect is observed when studying FIN+. In contrast to
Theorem 17, FIN+ comprises classes containing an accumulation point, e.g.,
U = {0i10∞ | i ≤ minϕ 0i10∞} ∪ {0∞}. On the other hand, it is easy to show
that {0i10∞ | i ∈ N} ∪ {0∞} /∈ FIN+. Thus, we directly get:
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Theorem 33. FIN ⊂ FIN+ ⊂ ℘(R).

For further information concerning inductive inference with additional infor-
mation, we refer the interested reader to Jain et al. [62].

After having taken a look at possible variations of Gold’s [53] original model
of learning in the limit, next we aim to obtain a deeper insight in what some
of these learning models have in common and where the differences are. Char-
acterizations are useful tools for achieving this goal as we have already seen.
Therefore, we continue with them. We start with characterizations in terms
of complexity, since some of these characterizations are applied subsequently.

6 Characterizations in Terms of Complexity

In this section we characterize T - CONSδ, CONSδ, T-REL, R-REL, and
LIM in terms of complexity. The importance of such characterizations has
already been explained in Subsection 3.1. However, in order to achieve the
aforementioned characterizations, several modifications are necessary. In par-
ticular, so far we used functions to compute the relevant complexity bounds
in the definitions of the complexity classes Ct, where t ∈ R and in Ch, where
h ∈ R2. Now we need stronger tools, i.e., computable operators which are
introduced next.

First, we recall the definitions of recursive and general recursive operator. Let
(Fx)x∈N be the canonical enumeration of all finite functions.

Definition 20 (Rogers [97]). A mapping O : P→ P from partial functions to
partial functions is called a partial recursive operator if there is a recursively
enumerable set W ⊆ N3 such that for any y, z ∈ N it holds that O(f)(y) = z
iff there is an x ∈ N such that (x, y, z) ∈ W and f extends the finite function
Fx.

Furthermore, a partial recursive operator O is called a general recursive oper-
ator iff T ⊆ dom(O), and f ∈ T implies O(f) ∈ T.

A mapping O : P → P is called an effective operator iff there is a function
g ∈ R such that O(ϕi) = ϕg(i) for all i ∈ N. An effective operator O is said to
be total effective provided that R ⊆ dom(O), and ϕi ∈ R implies O(ϕi) ∈ R.

For more information about general recursive operators and effective operators
the reader is referred to [58,88,119]. If O is an operator which maps functions
to functions, we write O(f, x) to denote the value of the function O(f) at
the argument x. Any computable operator can be realized by a 3-tape Turing
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machine T which works as follows: If for an arbitrary function f ∈ dom(O), all
pairs (x, f(x)), x ∈ dom(f) are written down on the input tape of T (repetitions
are allowed), then T will write exactly all pairs (x,O(f, x)) on the output tape
of T (under unlimited working time).

Let O be a general recursive or total effective operator. Then, for f ∈ dom(O),
m ∈ N, we set: ∆O(f,m) =“the least n such that, for all x ≤ n, f(x) is defined
and, for the computation of O(f,m), the Turing machine T only uses the pairs
(x, f(x)) with x ≤ n; if such an n does not exist, we set ∆O(f,m) =∞.”

For u ∈ R we define Ωu to be the set of all partial recursive operators O

satisfying ∆O(f,m) ≤ u(m) for all f ∈ dom(O). For the sake of notation,
below we shall use id + δ, δ ∈ N, to denote the function u(x) = x + δ for all
x ∈ N.

Now we are ready to provide the first group of characterizations.

6.1 Characterizing T - CONSδ and CONSδ

We start by characterizing T - CONSδ and CONSδ, since these characteri-
zations are conceptually easier. For achieving these characterizations we use
mainly ideas and techniques from Blum and Blum [21] and Wiehagen [111].
Furthermore, in the following we always assume that learning is done with
respect to any fixed ϕ ∈ Göd.

As in Blum and Blum [21] we define operator complexity classes as follows.
Let O be any computable operator; then we set

CO = {f | ∃i[ϕi = f ∧ ∀∞x[Φi(x) ≤ O(f, x)]]} ∩ R .

First, we characterize T - CONSδ.

Theorem 34. Let U ⊆ R and let δ ∈ N; then we have: U ∈ T - CONSδ
if and only if there exists a general recursive operator O ∈ Ωid+δ such that
O(R) ⊆ R and U ⊆ CO.

Proof. Necessity. Let U ∈ T - CONSδ(S), S ∈ R. Then for all f ∈ R and all
n ∈ N we define O(f, n) = ΦS(fn+δ)(n).

Since ϕS(fn+δ)(n) is defined for all f ∈ R and all n ∈ N by Condition (2)
of Definition 15, we directly get from Condition (1) of the definition of a
complexity measure that ΦS(fn+δ)(n) is defined for all f ∈ R and all n ∈ N,
too. Moreover, for every t ∈ T and n ∈ N there is an f ∈ R such that tn = fn.
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Hence, we have O(T) ⊆ R ⊆ T. Moreover, in order to compute O(f, n) the
operator O reads only the values f(0), . . . , f(n+δ). Thus, we have O ∈ Ωid+δ.

Now let f ∈ U . Then the sequence (S(fn))n∈N converges to a correct ϕ–
program i for f . Consequently, O(f, n) = Φi(n) for almost all n ∈ N. There-
fore, we conclude U ⊆ CO.

Sufficiency. Let O ∈ Ωid+δ such that O(R) ⊆ R and U ⊆ CO. We have to
define a strategy S ∈ R such that U ∈ T - CONSδ(S). By the definition of
CO we know that for every f ∈ U there exist i and k such that ϕi = f and
Φi(x) ≤ max{k, O(f, x)} for all x. Thus, the desired strategy S searches for
the first current candidate for such a pair (i, k) in the canonical enumeration
c2 of N× N and converges to i provided an appropriate pair has indeed been
found. Until this pair (i, k) is found, the strategy S outputs auxiliary consistent
hypotheses. For doing this, we choose g ∈ R such that ϕg(〈α〉)(x) = yx for every
tuple α ∈ N∗, α = (y0, . . . , yn) and all x ≤ n.

S(fn) = “Compute O(f, x) for all x ≤ n −· δ. Search for the least z ≤ n such
that for c2(z) = (i, k) the conditions
(A) Φi(x) ≤ max{k, O(f, x)} for all x ≤ n −· δ, and
(B) ϕi(x) = f(x) for all x ≤ n −· δ
are fulfilled. If such a z is found, set S(fn) = i.

Otherwise, set S(fn) = g(fn).”

Since O ∈ Ωid+δ, the strategy can compute O(f, x) for all x ≤ n −· δ and
since c2 ∈ R it also can perform the desired search effectively. By Condition
(2) of the definition of a complexity measure, the test in (A) can be performed
effectively, too. If this test has succeeded, then Test (B) can also be effectively
executed by Condition (1) of the definition of a complexity measure. Thus,
we get S ∈ R. Finally, by construction S is always consistent with δ-delay,
and if f ∈ U , then the sequence (S(fn))n∈N converges to a correct ϕ–program
for f . 2

The following characterization of CONSδ is easily obtained from the one given
above for T - CONSδ by relaxing the requirement O(R) ⊆ R to O(U) ⊆ R.

Theorem 35. Let U ⊆ R and let δ ∈ N; then we have: U ∈ CONSδ if and
only if there exists a partial recursive operator O ∈ Ωid+δ such that O(U) ⊆ R
and U ⊆ CO.

Proof. The necessity is proved mutatis mutandis as in the proof of Theorem 34
with the only modification that O(f, x) is now defined for all f ∈ U instead
of for all f ∈ R. This directly yields O ∈ Ωid+δ, O(U) ⊆ R and U ⊆ CO.

The only modification for the sufficiency part is to leave S(fn) undefined if
O(f, x) is not defined for f /∈ U . We omit the details. 2
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We continue this section by using Theorem 34 to show that T - CONSδ is
closed under enumerable unions.

Theorem 36. Let δ ∈ N and let (Si)i∈N be a recursive enumeration of strate-
gies working T -consistently with δ-delay. Then there exists a strategy S ∈ R
such that

⋃
i∈N T - CONSδ(Si) ⊆ T - CONSδ(S).

Proof. The proof of the necessity of Theorem 34 shows that the construction of
the operator O is effective provided a program for the strategy is given. Thus,
we effectively obtain a recursive enumeration (Oi)i∈N of operators Oi ∈ Ωid+δ

such that Oi(R) ⊆ R and T - CONSδ(Si) ⊆ COi
.

Now we define an operator O as follows. Let f ∈ R and x ∈ N. We set
O(f, x) = max{Oi(f, x) | i ≤ x}.

Thus, we directly get O ∈ Ωid+δ, O(R) ⊆ R and
⋃
i∈N T - CONSδ(Si) ⊆ CO.

By Theorem 34 we can conclude
⋃
i∈N T - CONSδ(Si) ⊆ T - CONSδ(S). 2

On the other hand, CONSδ and R- CONSδ are not even closed under finite
union. This is a direct consequence of Theorem 19. It is easy to verify that
Usd , U0 ∈ R- CONSδ and thus Usd, U0 ∈ CONSδ for every δ ∈ N. But
Usd ∪ U0 /∈ BC.

The reader may wonder why we did not provide a characterization forR- CONSδ.
The honest answer is that characterizing R- CONSδ in terms of complexity
remains open. Currently, we do not have any idea how to attack this problem.

On the other hand, the techniques developed so far allow for suitable modifi-
cations to obtain the remaining announced characterizations. This is done in
the following subsection.

6.2 Characterizing T-REL, R-REL and LIM

We continue with the characterizations of T-REL,R-REL and LIM in terms
of complexity. As the following theorem shows, these characterizations express
the difference of these learning models by different sets of admissible operators,
i.e., general recursive, total effective and effective operators, respectively. As-
sertion (1) was shown by Grabowski [55], Assertion (2) by Blum and Blum [21]
and Assertion (3) is a variation of a corresponding characterization obtained
by Wiehagen [111].

In the proofs below, it is technically convenient to use limiting recursive func-
tionals instead of partial recursive functions as strategies. For a formal machine
independent definition of a limiting recursive functional see Rogers [97]. In-
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tuitively, a limiting recursive functional is a mapping which maps functions
to numbers in a computable way. Using 3-tape Turing machines with input,
work and output tape and a read-only head for the input tape, a read-write
head for the work tape and a write-only head for the output tape, a limiting
recursive functional can be defined as follows.

A partial mapping S : P→ N is called limiting recursive functional if there is
a 3-tape Turing machine T (as described above) working as follows:

If an arbitrary function f ∈ P is written down on the input tape of T (in
an arbitrary enumeration of input-output examples where repetitions are al-
lowed), then, if S(f) is defined, T writes a finite nonempty sequence of natural
numbers on the output tape such that the last number is equal to S(f); (T
does not need to stop after doing so), or T writes an infinite sequence of nat-
ural numbers which converges on its output tape such that its limit is equal
to S(f). It is allowed that the sequence written on the output tape depends
on the enumeration in which the function f is written on the input tape, but
it is prohibited that its limit depends on it.

If S(f) is not defined, then two cases are possible. First, S does not uniformly
converge on some enumeration in which the function f is written on the input
tape. Second, S never converges – independent of the enumeration in which
the function f is written on the input tape. These cases are not equivalent (cf.
Freivald [38]). Therefore, we require that for all f ∈ P we have: f /∈ dom(S)
iff S on f never converges.

Theorem 37. Let U ⊆ R, then we have:

(1) U ∈ T-REL if and only if there exists a general recursive operator O

such that U ⊆ CO.
(2) U ∈ R-REL if and only if there exists a total effective operator O such

that U ⊆ CO.
(3) U ∈ LIM if and only if there exists an effective operator O such that

O(U) ⊆ R and U ⊆ CO.

Proof. Necessity. The first part of the proof is almost the same for all three
assertions. Let LT ∈ {T-REL, R-REL, LIM} and let U ⊆ LT (S) for some
strategy S ∈ R. The desired operator O is defined as follows. Let f ∈M and
let x ∈ N.

O(f, x) = “Compute S(fx). Use half of the time for executing (A) and (B)
until (C) or (D) happens.
(A) Compute S(fx+1), S(fx+2), . . .
(B) Check if ΦS(fx)(x) = y for y = 0, 1, 2, . . .
(C) In (A) a k ∈ N is found such that S(fx) 6= S(fx+k). Set

O(f, x) = 0.

47



(D) In (B) a y ∈ N is found such that ΦS(fx)(x) = y. Set
O(f, x) = ΦS(fx)(x).”

First, we show the necessity part of Assertion (1). Clearly, the operator O is
recursive, since by Definition 17, for all f ∈ T and all x ∈ N we have that
S(fx) is defined. Test (B) can be effectively executed by Property (2) of a
complexity measure. It remains to show that O is general recursive.

Claim 1. O(T) ⊆ T.

Suppose that for some f ∈ T and some x ∈ N the value O(f, x) is not defined.
Then, in particular, (C) cannot happen. But this means that S(fx) = S(fx+n)
for all n ∈ N. Therefore, the sequence (S(fm)m∈N converges to S(fx). Since S
is reliable on T, we know that ϕS(fx) = f . Consequently, ϕS(fx)(x) is defined
and thus, by Property (1) of a complexity measure, ΦS(fx)(x) is defined, too.
Thus, in (D) a y must be found such that ΦS(fx)(x) = y, a contradiction to
O(f, x) undefined. This proves Claim 1.

Claim 2. U ⊆ CO.

Let f ∈ U be arbitrarily fixed. Since U ∈ LIM(S), the sequence (S(fm))m∈N
converges, say to j and ϕj = f . Thus, in the definition of O(f, x), Test (C)
can succeed only finitely often. That is, for all but finitely many x we have
O(f, x) = ΦS(fx)(x). Consequently, f ∈ CO. Thus Claim 2 is shown and the
necessity part of Assertion (1) follows.

For showing the necessity part of Assertion (2) note that the operator O is
effective, too. We have to show O(R) ⊆ R instead of Claim 1, while Claim 2
and its proof remain unchanged. This can be done mutatis mutandis as above.

For the necessity part of Assertion (3) we again note that the operator O is
effective, since by Definition 8 we know that S(fx) is defined for all f ∈ U
and all x ∈ N. Now we have to show that O(U) ⊆ R, while Claim 2 and its
proof again remain unchanged.

Claim 3. O(U) ⊆ R.

Suppose that for some f ∈ U and some x ∈ N the value O(f, x) is not defined.
Then, in particular, (C) cannot happen. But this means that S(fx) = S(fx+n)
for all n ∈ N. Therefore, the sequence (S(fm))m∈N converges to S(fx). Since
f ∈ U and U ∈ LIM(S), we know that ϕS(fx) = f . Consequently, ϕS(fx)(x)
is defined and thus, by Property (1) of a complexity measure, ΦS(fx)(x) is
defined, too. Thus, in (D) a y must be found such that ΦS(fx)(x) = y, a
contradiction to O(f, x) undefined. This proves Claim 3.

Thus, we have shown the necessity parts of Assertions (1) through (3).

48



Sufficiency. Again, the first part of the proof is identical for Assertions (1)
through (3). Let O be an operator satisfying the relevant conditions. We define
the desired strategy as a limiting recursive functional.

S(f) = “Execute Stage 0:
Stage n: Compute c2(n) = (i, k). Output i.
Check for all x ∈ N whether or not Φi(x) ≤ max{k,O(f, x)} and
ϕi(x) = f(x). If this test fails for some x, stop executing Stage n and
goto Stage n+ 1.”

Now for showing Assertions (1) through (3) it suffices to distinguish the cases
M ∈ {T, R, U} and to show that S is reliable on M. Note that these three
cases are completely reflected by the domain of the operator O.

Claim 1. S is reliable on M.

Let f ∈ M. Then we can conclude that O(f, x) is defined for all x ∈ N. Now
suppose that f ∈ dom(S), i.e., S(f) converges, say to i. Since S performs a
mind change every time it enters a new stage, it follows that S enters some
Stage n, where c2(n) = (i, k) and never leaves it. Thus, it verifies that Φi(x) ≤
max{k,O(f, x)} and ϕi(x) = f(x) for all x ∈ N. This proves Claim 1.

The following claim is identical for Assertions (1) through (3).

Claim 2. f ∈ CO implies S learns f .

By the definition of CO we know that for every f ∈ CO there exist i and k
such that ϕi = f and Φi(x) ≤ max{k, O(f, x)} for all x. Then S can never
go past Stage n, where c2(n) = (i, k). It follows that S converges, and since S
is reliable, it learns f . Hence, Claim 2 is shown.

By Claims 1 and 2 the theorem follows. 2

Further characterizations in the same style as above are possible. Wieha-
gen [111] showed a characterization of LIM∗, Kinber and Zeugmann [70]
characterized T-RELa for every a ∈ N∪ {∗}. On the other hand, characteriz-
ing BC and its relaxations BCa, a ∈ N as well as LIMteam(n) and BCteam(n),
n ∈ N+, also remains open.

Note that sometimes also a different and stronger characterization of learning
types in terms of complexity is possible. The first results along this line can
be found in Blum and Blum [21], who also coined the term a-posteriori char-
acterization. For stating such a characterization, the notion of compression
index is needed.

Definition 21 (Blum and Blum [21]). Let (ϕ,Φ) be a complexity measure,
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let f ∈ R, and let O be a general recursive operator. Then i ∈ N is said to be
an O-compression index of f if

(1) ϕi = f ,
(2) ∀j[ϕj = f → ∀x[Φi(x) ≤ O(Φj,max{i, j, x})]] .

In this case we also say that the function f is everywhere O-compressed.

Then Blum and Blum [21] proved the following characterization.

Theorem 38 (Blum and Blum [21]). Let U ⊆ R, then we have: U ∈
R-REL if and only if there is a general recursive operator O such that every
function in U is everywhere O-compressed.

Consequently, function classes that are reliably identifiable on the set R have
the property that every function of the class does possess a fastest program
modulo a general recursive operator, where “fastest program modulo a general
recursive operator O” is formalized by the notion of O-compression index.

We finish this section with the remark that further a posteriori characteriza-
tions were achieved. The reader is encouraged to consult Zeugmann [118,121]
for further details.

In the following section we continue with the consistency phenomenon. As we
shall see, some of the characterizations obtained above turn out to be helpful
to resolve the remaining open problems.

7 Learning and Consistency – Part II

The main goal of this section is a thorough study of the learning power of the
different models of consistent learning with and without δ-delay. As we have
seen above, certain additional information can help to learn the whole class
of recursive functions consistently without δ-delay, i.e., CONS+ = ℘(R) (cf.
Theorem 32) – whereas we have not yet studied the exact effect of omitting
additional information in CONSδ-learning. So it is only natural to analyze
the learning power of the different CONSδ-models more thoroughly. We start
with δ = 0. In connection with Theorem 30 the following result actually states
that the demand to learn consistently is a severe restriction to the learning
power.

Theorem 39 (Barzdin [12], Wiehagen [109]). CONS ⊂ IT

Proof. CONS ⊆ IT follows from the fact that an iterative strategy can re-
compute all values seen so far from the hypothesis it receives as input and
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then take the previous values and the new value to simulate the consistent
strategy. We omit the details.

For showing that IT \ CONS 6= ∅, we use the following class U = {f ∈ R |
f = αjp, α ∈ N∗, j ≥ 2, p ∈ R{0,1}, ϕj = f}, where ϕ ∈ Göd.

We set S0(f) = S(0, f(0)) = f(0) and for n ≥ 1 we define

S(k, n,m) =


m, if m ≥ 2

k , if k ≥ 2 and m < 2

0 , otherwise.

By construction, Sn(f) is equal to the last value f(x) ≥ 2 in (f(0), . . . , f(n))
and 0, if no such value exists. Thus, the definition of the class U directly
implies U ∈ IT ϕ(S).

It remains to show U /∈ CONS. We need the observation that for every
α ∈ N∗, there is an f ∈ U such that α v f . Indeed an implicit use of the fixed
point theorem (cf., e.g., Smith [99]) yields that for every α ∈ N∗ and every
p ∈ R{0,1}, there is a j ≥ 2 such that ϕj = αjp.

Now suppose that there is a strategy S ∈ P such that U ∈ CONSϕ(S). The
observation made directly implies S ∈ R and for every α ∈ N∗, α v ϕS(α).
Thus, on every α ∈ N∗, S always computes a consistent hypothesis. Then,
again by an implicit use of the fixed point theorem, let j ≥ 2 be any ϕ-
program of the function f defined as follows: f(0) = j, and for any n ∈ N,

f(n+ 1) =

 0, if S(fn0) 6= S(fn)

1, if S(fn0) = S(fn) and S(fn1) 6= S(fn) .

In accordance with the observation made above and the assumption that S is
consistent, one immediately verifies that S(fn0) 6= S(fn) or S(fn1) 6= S(fn)
for any n ∈ N. Therefore the function f is everywhere defined and we have
f ∈ U . On the other hand, the strategy S changes its mind infinitely often
when successively fed f , a contradiction to U ∈ CONSϕ(S). 2

As we have seen, learning in the limit is insensitive with respect to the require-
ment to learn exclusively with recursive strategies (cf. Theorem 16). On the
other hand, consistency is a common requirement in PAC learning, machine
learning and statistical learning (cf., e.g., [8,85,108]). Therefore, it is natural
to ask whether or not the power of consistent learning algorithms further de-
creases if one restricts the notion of learning algorithms to the set of recursive
strategies. The answer to this question is provided by our next theorem.
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Theorem 40 (Wiehagen and Zeugmann [116]).
T - CONS ⊂ R- CONS ⊂ CONS .

Proof. By definition T - CONS ⊆ R- CONS ⊆ CONS. Next we show that
Usd ∈ R- CONS \T - CONS. Obviously, Usd ∈ R- CONSϕ(S) by the strategy
S(fn) = f(0) for all n ∈ N .

Now suppose that Usd ∈ T - CONS. Since U0 ∈ T - CONS and T - CONS is
closed under union (cf. Theorem 36), this would directly imply that U0∪Usd ∈
T - CONS, a contradiction to Theorem 19. Thus T - CONS ⊂ R- CONS.

For the proof of CONS \ R- CONS 6= ∅ we use a class similar to the class
above, namely U = {f | f ∈ R, either ϕf(0) = f or ϕf(1) = f}. First we show
that U ∈ CONS. The desired strategy is defined as follows. Let f ∈ R and
n ∈ N.

S(fn) = “Compute in parallel ϕf(0)(x) and ϕf(1)(x) for all x ≤ n until (A) or
(B) happens.
(A) ϕf(0)(x) = f(x) for all x ≤ n.
(B) ϕf(1)(x) = f(x) for all x ≤ n.
If (A) happens first, then output f(0). If (B) happens first, then output
f(1). If neither (A) nor (B) happens, then S(fn) is not defined.”

By the definition of U , it is obvious that S(fn) is defined for all f ∈ U and
all n ∈ N. Moreover, S is clearly consistent. Hence, it suffices to prove that
(S(fn))n∈N converges for all f ∈ U . But this is also an immediate consequence
of the definition of U , since either ϕf(0) 6= f or ϕf(1) 6= f . Hence S cannot os-
cillate infinitely often between f(0) and f(1). Consequently, U ∈ CONSϕ(S).

Next we show that U /∈ R- CONS. Suppose there is a strategy S ∈ R such
that U ∈ R- CONSϕ(S). Applying Smullyan’s Recursion Theorem [102], we
construct a function f ∈ U such that either S(fn) 6= S(fn+1) for all n ∈ N
or ϕS(fx)(y) 6= f(y) for some x, y ∈ N with y ≤ x. Since both cases yield a
contradiction to the definition ofR- CONS, we are done. The desired function
f is defined as follows. Let h and s be two recursive functions such that for
all i, j ∈ N, ϕh(i,j)(0) = ϕs(i,j)(0) = i and ϕh(i,j)(1) = ϕs(i,j)(1) = j. For any
i, j ∈ N, x ≥ 2 we proceed inductively.

Suspend the definition of ϕs(i,j). Try to define ϕh(i,j) for more and more argu-
ments via the following procedure.

(T) Test whether or not (A) or (B) happens (this can be effectively checked,
since S ∈ R):
(A) S(ϕxh(i,j)0) 6= S(ϕxh(i,j)),
(B) S(ϕxh(i,j)1) 6= S(ϕxh(i,j)).
If (A) happens, then let ϕh(i,j)(x+ 1) = 0, let x := x+ 1, and goto (T).
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In case (B) happens, set ϕh(i,j)(x+ 1) = 1, let x := x+ 1, and goto (T).
If neither (A) nor (B) happens, then define ϕh(i,j)(x

′) = 0 for all x′ > x, and
goto (∗).

(∗) Set ϕs(i,j)(n) = ϕh(i,j)(n) for all n ≤ x, and ϕs(i,j)(x
′) = 1 for all x′ > x.

By Smullyan’s Recursion Theorem, there are numbers i and j such that ϕi =
ϕh(i,j) and ϕj = ϕs(i,j). Now we distinguish the following cases.

Case 1. The loop in (T) is never left.

Then we directly obtain that ϕi ∈ U , since ϕj = ij is just a finite function
while ϕi ∈ R. Moreover, in accordance with the definition of the loop (T), on
input ϕni the strategy S changes its mind for all n > 0.

Case 2. The loop in (T) is left.

Then there exists an x such that S(ϕxh(i,j)0) = S(ϕxh(i,j)1). Hence S(ϕx+1
i ) =

S(ϕx+1
j ), since ϕh(i,j) = ϕi, ϕs(i,j) = ϕj, ϕi(n) = ϕj(n) for all n ≤ x by

(∗), as well as ϕi(x + 1) = 0 and ϕj(x + 1) = 1. Furthermore, ϕi, ϕj ∈ R.
Since ϕi(x+ 1) 6= ϕj(x+ 1), we get ϕi 6= ϕj. On the other hand, ϕi(0) = i and
ϕj(1) = j. Consequently, both functions ϕi and ϕj belong to U . But S(ϕx+1

i ) =
S(ϕx+1

j ) and ϕi(x + 1) 6= ϕj(x + 1), hence S does not work consistently on
input ϕx+1

i or ϕx+1
j . This contradiction completes the proof. 2

Using similar ideas as above this theorem can be generalized as follows.

Theorem 41 (Akama and Zeugmann [3]).

T - CONSδ ⊂ R- CONSδ ⊂ CONSδ for all δ ∈ N.

The next result provides a more subtle insight into the difference in power
between T - CONS and R- CONS. Assertion (1) was shown by Wiehagen and
Liepe [114] and Assertion (2) was proved in Wiehagen and Zeugmann [116].

Theorem 42.

(1) FIN # T - CONS
(2) FIN ⊂ R- CONS.

Proof. For proving Assertion (1) note that we obviously have Usd ∈ FIN . But
Usd /∈ T - CONS (see the proof of Theorem 40), and thus FIN \T - CONS 6=
∅. Furthermore, by Theorem 12 we have U(ϕ,Φ) ∈ T - CONS for every com-
plexity measure (ϕ,Φ). It remains to argue that U(ϕ,Φ) /∈ FIN . But this is
obvious at least for complexity measures satisfying Property ext via Theo-
rem 17. Thus, T - CONS \ FIN 6= ∅ and Assertion (1) follows.

53



Next, we prove Assertion (2). Since T - CONS ⊆ R- CONS, R- CONS \
FIN 6= ∅ is an immediate consequence of (1). The proof of FIN ⊆ R- CONS
mainly relies on the decidability of the convergence of any finite learning al-
gorithm. Let U ∈ FIN , and let S be any strategy witnessing U ∈ FIN ϕ(S).
Furthermore, let s ∈ R be any function such that ϕs(α) = α0∞ for all α ∈ N∗.
The desired strategy Ŝ is defined as follows. Let f ∈ R and n ∈ N. Then

Ŝ(fn) = “In parallel, try to compute S(f 0), . . . , S(fn) for precisely n steps.
Let k ≥ 1 be the least number such that all values S(f 0), . . . , S(fk) turn
out to be defined, and S(fk−1) = S(fk).
In case this k is found, output S(fk). Otherwise, output s(fn).”

It remains to show that U ∈ R- CONS(Ŝ). Obviously, Ŝ ∈ R. Now let f ∈ U .
We have to show that Ŝ consistently learns f .

Claim 1. Ŝ learns f .

Since f ∈ U , the strategy S is defined for all inputs fn, n ∈ N. Moreover, since
S finitely learns f , the sequence (S(fn))n∈N finitely converges to a ϕ–program
of f . Hence, Ŝ eventually has to find the least k such that S(fk−1) = S(fk), and
all values S(f 0), . . . , S(fk) are defined. By the definition of FIN , ϕS(fk) = f .

Hence, Ŝ learns f .

Claim 2. For all f ∈ U and n ∈ N, Ŝ(fn) is a consistent hypothesis.

Clearly, as long as Ŝ outputs s(fn), it is consistent. Suppose, Ŝ outputs S(fk)
for the first time. Then it has verified that S(fk−1) = S(fk). Since f ∈ U , and
U ∈ FIN ϕ(S), this directly implies ϕS(fk) = f . Therefore, Ŝ again outputs
a consistent hypothesis. Since this hypothesis is repeated in any subsequent
learning step, the claim is proved. 2

A natural question arising is whether or not the introduction of δ–delay to
consistent learning yields an advantage with respect to the learning power of
the defined learning types in dependence on δ.

Theorem 43. The following statements hold for all δ ∈ N:

(1) T - CONSδ ⊂ T - CONSδ+1 ⊂ T-REL,
(2) NUM∩℘(R{0,1}) = T - CONSδ∩℘(R{0,1}) = T - CONSδ+1∩℘(R{0,1}) =

T-REL ∩ ℘(R{0,1}),
(3) T - CONSδ ∩ ℘(R{0,1}) ⊂ R-REL ∩ ℘(R{0,1}).

Proof. We first prove Assertion (1). Let δ ∈ N be arbitrarily fixed. Then
by Definition 15 we obviously have T - CONSδ ⊆ T - CONSδ+1. For showing
T - CONSδ+1 \ T - CONSδ 6= ∅ we use the following class. Let (ϕ,Φ) be any
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complexity measure; we set

U (ϕ,Φ)
δ+1 = {f | f ∈ R, ϕf(0) = f, ∀x[Φf(0)(x) ≤ f(x+ δ + 1)]} .

Claim 1. U (ϕ,Φ)
δ+1 ∈ T - CONSδ+1.

The desired strategy S is defined as follows. Let g ∈ R be the function defined
in the sufficiency proof of Theorem 34. For all f ∈ R and all n ∈ N we set

S(fn) =


f(0), if n ≤ δ or n > δ and Φf(0)(y) ≤ f(y + δ + 1)

and ϕf(0)(y) = f(y) for all y ≤ n −· δ −· 1

g(fn), otherwise.

Now, by construction, one easily verifies U (ϕ,Φ)
δ+1 ∈ T - CONSδ+1(S). This proves

Claim 1.

Claim 2. U (ϕ,Φ)
δ+1 /∈ T - CONSδ.

Suppose the converse. Then there must be a strategy S ∈ R such that U (ϕ,Φ)
δ+1 ∈

T - CONSδ(S). We continue by constructing a function ϕi∗ ∈ U (ϕ,Φ)
δ+1 on which

S fails.

Furthermore, let r ∈ R be such that Φi = ϕr(i) for all i ∈ N and r is strongly
monotonously increasing, i.e., r(i) < r(i + 1) for all i ∈ N. Then Val(r) is
recursive (cf. Rogers [97]). Choose s ∈ R such that for all j ∈ N and for all
x ≤ δ we have

ϕs(j)(x) =

 i, if there is an i with r(i) = j

0, otherwise.

For the further definition of ϕs(j) we also use δ + 1 arguments in every step.
For x = 0, δ + 1, 2δ + 2, 3δ + 3, . . . we set

ϕs(j)(x+ δ + 1) =ϕj(x) + 1

·
·
·

ϕs(j)(x+ 2δ + 1) =ϕj(x+ δ) + 1

provided ϕj(x), ϕj(x+ 1), . . . , ϕj(x+ δ) are all defined, ϕx+δ
s(j) is defined and

S
(
ϕx+δ
s(j)

)
= S

(
〈(ϕs(j)(0), . . . , ϕs(j)(x+ δ), ϕj(x), . . . , ϕj(x+ δ))〉

)
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and

ϕs(j)(x+ δ + 1) =ϕj(x)

·
·
·

ϕs(j)(x+ 2δ + 1) =ϕj(x+ δ)

provided ϕj(x), ϕj(x+ 1), . . . , ϕj(x+ δ) are all defined, ϕx+δ
s(j) is defined and

S
(
ϕx+δ
s(j)

)
6= S

(
〈(ϕs(j)(0), . . . , ϕs(j)(x+ δ), ϕj(x), . . . , ϕj(x+ δ))〉

)
.

Otherwise, ϕs(j)(x+ δ + 1), . . . , ϕs(j)(x+ 2δ + 1) remain undefined.

By the fixed point theorem (cf. Rogers [97]) there exists a number i∗ such that
ϕs(r(i∗)) = ϕi∗ .

Next, we show that ϕi∗ ∈ U (ϕ,Φ)
δ+1 . This is done inductively. For the induc-

tion base, by construction we have ϕi∗(0) = · · · = ϕi∗(δ) = i∗. Hence,
Φi∗(0), . . . ,Φi∗(δ) are all defined, too. Therefore, we know that ϕδs(r(i∗)) is de-
fined and so either ϕs(r(i∗))(δ+1) = Φi∗(0)+1, . . . , ϕs(r(i∗))(2δ+1) = Φi∗(δ)+1
provided

S
(
ϕδs(r(i∗))

)
= S

(
〈(ϕs((r(i∗))(0), . . . , ϕs((r(i∗))(δ),Φi∗(0), . . . ,Φi∗(δ))〉

)
or ϕs(r(i∗))(δ + 1) = Φi∗(0), . . . , ϕs(r(i∗))(2δ + 1) = Φi∗(δ) if

S
(
ϕδs(r(i∗))

)
6= S

(
〈(ϕs((r(i∗))(0), . . . , ϕs((r(i∗))(δ),Φi∗(0), . . . ,Φi∗(δ))〉

)
.

Note that one of these cases must happen, since otherwise S would not be
T -consistent with δ–delay.

Hence, Φi∗(0) ≤ ϕi∗(δ + 1), . . . ,Φi∗(δ) ≤ ϕi∗(2δ + 1), since ϕs(r(i∗)) = ϕi∗ . So
we know that ϕi∗(δ + 1), . . . , ϕi∗(2δ + 1) as well as Φi∗(δ + 1), . . . ,Φi∗(2δ + 1)
are all defined. This completes the induction base.

Consequently, we have the induction hypothesis that for some x = 0, δ+1, 2δ+
2, 3δ + 3, . . . the values ϕi∗(z) are defined and Φi∗(z) ≤ ϕi∗(z + δ + 1) for all
z ≤ x+ δ. This of course implies ϕx+δ

s(r(i∗)) is defined, too. The induction step is
done from x to x+ δ+ 1. First, we either have ϕs(r(i∗))(x+ δ+ 1) = Φi∗(x) + 1,
. . . , ϕs(r(i∗))(x+ 2δ + 1) = Φi∗(x+ δ) + 1 provided

S
(
ϕx+δ
s(r(i∗))

)
= S

(
〈(ϕs(r(i∗))(0), . . . , ϕs(r(i∗))(x+ δ),Φi∗(x), . . . ,Φi∗(x+ δ))〉

)
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or ϕs(r(i∗))(x+ δ + 1) = Φi∗(x), . . . , ϕs(r(i∗))(x+ 2δ + 1) = Φi∗(x+ δ) if

S
(
ϕx+δ
s(r(i∗))

)
6= S

(
〈(ϕs(r(i∗))(0), . . . , ϕs(r(i∗))(x+ δ),Φi∗(x), . . . ,Φi∗(x+ δ))〉

)
.

Note that one of these cases must happen, since otherwise S would not be
T -consistent with δ–delay.

Therefore, ϕi∗(x + δ + 1), . . . , ϕi∗(x + 2δ + 1) are all defined and Φi∗(x) ≤
ϕi∗(x+ δ + 1), . . . ,Φi∗(x+ δ) ≤ ϕi∗(x+ 2δ + 1).

Now we also know that Φi∗(x + δ + 1), . . . , Φi∗(x + 2δ + 1) are all defined.

Thus, we have shown that ϕi∗ ∈ U (ϕ,Φ)
δ+1 . Finally, by construction we directly

obtain that S performs infinitely many mind changes when successively fed
ϕi∗ , a contradiction to U (ϕ,Φ)

δ+1 ∈ T - CONSδ(S). This proves Claim 2.

Taking into account that, for any f ∈ R, a strategy working T -consistently
with δ–delay converges when successively fed f iff it learns f , we directly get
T - CONSδ ⊆ T-REL for every δ ∈ N. Now T - CONSδ ⊂ T - CONSδ+1 ⊆
T-REL for all δ ∈ N implies T - CONSδ ⊂ T-REL for all δ ∈ N. This proves
Assertion (1).

For Assertion (2) we only have to show T-REL ∩ ℘(R{0,1}) ⊆ NUM ∩
℘(R{0,1}). This result was proved by Grabowski [55], so we only sketch the
proof here. For that purpose let U ∈ T-REL∩℘(R{0,1}). By Theorem 37 there
is a general recursive operator O such that U ⊆ CO, that means

U ⊆ {ϕi | ∀∞x[Φi(x) ≤ O(ϕi, x)]} ∩ R{0,1} .

Like every general recursive operator, O can be bounded by a monotone gen-
eral recursive operator Ô, i.e., O(f, x) ≤ Ô(f, x) for all f ∈ R and all x ∈ N,
where monotonicity of Ô means that ∀∞x[Ô(f, x) ≤ Ô(g, x)] for all f, g ∈ R
satisfying ∀∞x[f(x) ≤ g(x)].

In particular, for any ϕi ∈ U ⊆ R{0,1} we have ∀x[ϕi(x) ≤ 1] and thus

∀∞x[O(ϕi, x) ≤ Ô(1∞, x)]. Therefore

U ⊆ {ϕi | ∀∞x[Φi(x) ≤ Ô(1∞, x)]} ∩ R{0,1} .

Since Ô is general recursive, the function t defined by t(x) = Ô(1∞, x) for all
x is recursive. Applying Theorem 4 we can conclude U ∈ NUM. This proves
Assertion (2).

Finally, Assertion (3) is an immediate consequence of Assertion (2) and The-
orems 2 and 3 from Stephan and Zeugmann [105] which together show that
Umahp ∈ R-REL\NUM. Consequently, since Umahp ⊆ R{0,1} we haveNUM∩
℘(R{0,1}) ⊂ R-REL ∩ ℘(R{0,1}). This completes the proof. 2
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In particular, we have seen that Umahp ∈ R-REL and thus located the ap-
propriate learning model for inferring all functions in Umahp. Does this result
also extend to the class Uahp? Interestingly, now the answer depends on the
underlying complexity measure. As shown in Stephan and Zeugmann [105],
there are “natural” complexity measures such that Uahp /∈ BC. On the other
hand, there are also complexity measures such that Uahp ∈ LIM.

Together with Theorem 36 the proof of Theorem 43 allows for a nice corollary.

Corollary 44. For all δ ∈ N we have:

(1) CONSδ ⊂ CONSδ+1,
(2) R- CONSδ ⊂ R- CONSδ+1.

Proof. We use U (ϕ,Φ)
δ+1 from the proof of Theorem 43 and the class U0. Clearly,

U (ϕ,Φ)
δ+1 , U0 ∈ T - CONSδ+1 and therefore, by Theorem 36 we also have U (ϕ,Φ)

δ+1 ∪
U0 ∈ T - CONSδ+1. Consequently, U (ϕ,Φ)

δ+1 ∪U0 ∈ R- CONSδ+1 and U (ϕ,Φ)
δ+1 ∪U0 ∈

CONSδ+1. It remains to argue that U (ϕ,Φ)
δ+1 ∪ U0 /∈ CONSδ. This will suffice,

since R- CONSδ ⊆ CONSδ.

Suppose the converse, i.e., there is a strategy S ∈ P such that U (ϕ,Φ)
δ+1 ∪ U0 ∈

CONSδ(S). By the choice of U0 we can then directly conclude that S ∈ R
and that S has to work consistently with δ–delay on every fn, where f ∈ R
and n ∈ N. But this would imply U (ϕ,Φ)

δ+1 ∪U0 ∈ T - CONSδ(S), a contradiction

to U (ϕ,Φ)
δ+1 /∈ T - CONSδ. 2

A closer look at the proof above shows that we have even proved the following
corollary shedding some light on the power of our notion of δ–delay.

Corollary 45. T - CONSδ+1 \ CONSδ 6= ∅ for all δ ∈ N.

The situation is comparable to Lange and Zeugmann’s [76] bounded example
memory learnability BEM k of languages from positive data, where BEM k

yields an infinite hierarchy such that
⋃
k∈N BEM k is a proper subclass of the

class of all indexed families of recursive languages that can be conservatively
learned.

On the one hand, Corollary 44 shows the strength of δ–delay. On the other
hand, the δ–delay cannot compensate all the learning power that is provided
by the different consistency demands on the domain of the strategies.

Theorem 46. R- CONS \ T - CONSδ 6= ∅ for all δ ∈ N.

Proof. The proof can be done by using the class Usd of self-describing functions.
Obviously, Usd ∈ R- CONS(S) as witnessed by the strategy S(fn) = f(0) for
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all f ∈ R and all n ∈ N. Now assuming Usd ∈ T - CONSδ for some δ ∈ N
would directly imply that Usd∪U0 ∈ T - CONSδ for the same δ by Theorem 36.
But this is a contradiction to Usd ∪ U0 /∈ BC (see Theorem 19). 2

Finally, combining Corollary 45 and Theorem 46, we get the following incom-
parabilities.

Corollary 47. T - CONSδ # CONSµ and T - CONSδ # R- CONSµ for all
δ, µ ∈ N provided δ > µ.

Figure 3 below summarizes the achieved separations and equivalences of the
various coherent and consistent learning models investigated in this paper.

T - COH ⊂ T - COH1 ⊂ · · · ⊂ T - COHδ ⊂ T - COHδ+1 ⊂ · · · ⊂ T-REL

T - CONS ⊂ T - CONS1 ⊂ · · · ⊂ T - CONSδ ⊂ T - CONSδ+1 ⊂ · · · ⊂ T-REL

∩ ∩ ∩ ∩ ∩

R- COH ⊂ R- COH1 ⊂ · · · ⊂ R- COHδ ⊂ R- COHδ+1 ⊂ · · · # R-REL

R- CONS ⊂ R- CONS1 ⊂ · · · ⊂ R- CONSδ ⊂ R- CONSδ+1 ⊂ · · · # R-REL

∩ ∩ ∩ ∩ ∩

COH ⊂ COH1 ⊂ · · · ⊂ COHδ ⊂ COHδ+1 ⊂ · · · ⊂ LIM

CONS ⊂ CONS1 ⊂ · · · ⊂ CONSδ ⊂ CONSδ+1 ⊂ · · · ⊂ LIM

Fig. 3. Hierarchies of consistent learning with δ-delay

Another interesting relaxation of the consistency demand was proposed by
Wiehagen [111] – he called it conformity.

Definition 22 (Wiehagen [111]). Let U ⊆ R, and let ψ ∈ P2. The class
U is called conformly learnable in the limit with respect to ψ if there is a
strategy S ∈ P such that

(1) U ∈ LIMψ(S),
(2) [either ψS(fn)(x) ↑ or ψS(fn)(x) = f(x)] for all f ∈ U , all n ∈ N and all

x ≤ n.

CONFψ(S), CONFψ and CONF are defined analogously to the above.

Now one can prove the following theorem in which the second proper inclusion
intuitively seems to be the more surprising one.
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Theorem 48 (Wiehagen [111]). CONS ⊂ CONF ⊂ LIM

Proof. Clearly, we have CONS ⊆ CONF ⊆ LIM. For showing LIM \
CONF 6= ∅ only one new idea is needed. We use the class from the proof of
Theorem 39, i.e., U = {f ∈ R | f = αjp, α ∈ N∗, j ≥ 2, p ∈ R{0,1}, ϕj =
f}. Suppose U ∈ CONFϕ(S). Then we directly get S ∈ R. Using the fixed
point theorem we obtain a number j which is a ϕ-program of the following
function f .

f(0) = j ,

f(n+ 1) =


0, if S(fn) 6= S(fn0)

1, if S(fn) = S(fn0) and S(fn) 6= S(fn1) ,

1, if S(fn) = S(fn0) = S(fn1) .

By construction we obtain f ∈ U . Since S is supposed to be conform, if the
case S(fn) = S(fn0) = S(fn1) occurs, we see that ϕS(fn1)(n+1) must diverge.
Consequently, ϕS(fn1)(n + 1) 6= f . Hence, the sequence (S(fn))n∈N contains
infinitely many mind changes or infinitely many wrong hypotheses. Since f ∈
U we get a contradiction to U ∈ CONFϕ(S), and thus CONF ⊂ LIM must
hold.

For the remaining part CONF \ CONS 6= ∅ we refer the reader to [111]. 2

The second inclusion in the theorem above seems to be of great interest for the
philosophy of science: it says that, when learning in the limit, strategies using
conjectures which convergently contradict known data may have a strictly
greater inference power than strategies whose conjectures never contradict
known data convergently.

The same insight is obtained in another variation of the theme. Fulk [48] also
studied conform learning by varying the set of admissible strategies in the
same way as we did for consistent learning; thus obtaining in particular the
learning type T - CONF . Then the following theorem was shown.

Theorem 49 (Fulk [48]) T - CONF = T - CONS

Comparing this result with T - CONSδ ⊂ T - CONSδ+1 for all δ ∈ N points
to the same phenomenon, i.e., allowing a strategy to use conjectures which
convergently contradict known data may enlarge its learning power while de-
manding to output hypotheses never contradicting known data convergently
may not.

Further insight into the problem of what makes some learning types more pow-
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erful than others is obtained by characterizing them in terms of computable
numberings. This is done in the next section.

8 Characterizations in Terms of Computable Numberings

In this survey, we have already seen several characterizations of learning types
in terms of computable numberings. We started with the characterization of
R- T OTAL (see Theorem 2), then presented a characterization for T OTAL
(see Theorem 10), and provided also a characterization of T - CONSarb in
terms of measurable numberings (see Theorem 12). So far all these charac-
terizations showed that for each learning type LT considered and each class
U ∈ LT there is a non-Gödel numbering ψ such that U is learnable in the
sense of LT with respect to ψ by an enumerative inference strategy.

The technical difficulty we have to overcome is provided by Lemma 3 below.
For every class U /∈ NUM there are only hypothesis spaces ψ such that
U ⊆ Pψ implies the undecidability of the halting problem with respect to ψ.

Lemma 3 (Wiehagen and Zeugmann [115]). Let U ⊆ R and let U /∈
NUM. Then, for any numbering ψ ∈ P2 satisfying U ⊆ Pψ, the halting
problem with respect to ψ is undecidable.

Proof. Let U ⊆ R and U /∈ NUM. Furthermore, let ψ ∈ P2 be any numbering
such that U ⊆ Pψ. Suppose the halting problem with respect to ψ is decidable.
So there exists a function h ∈ R2 such that for all i, x ∈ N, h(i, x) = 1 iff ψi(x)
is defined. Then define a numbering ψ̃ by effectively filling out the “gaps” in
ψ as follows:

ψ̃i(x) =

ψi(x) , if h(i, x) = 1

0 , otherwise

Obviously, for any i ∈ N, if ψi ∈ R then ψ̃i = ψi. Hence U ⊆ Pψ̃. However,

ψ̃ ∈ R2 and consequently, U ⊆ Pψ̃ implies U ∈ NUM, a contradiction. 2

So, it is only natural to ask whether or not we can show an analogous re-
sult for every learning type. What we would like to present in this chapter
is substantial evidence for an affirmative answer. Besides its epistemological
importance, these characterizations will also provide a deeper insight into the
problem what kind of properties “inference-friendly” non-Gödel numberings
ψ should have in order to make Rψ learnable.

One idea may be derived from the proof of R ∈ CONS+ (cf. Theorem 32,
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Assertion (2)). Here the additional information allowed for restricting the hy-
pothesis search to a finite subspace of ϕ. If we can limiting recursively compute
such additional information, then we can use essentially the same proof tech-
nique. Note that this idea goes back to Barzdin and Podnieks [20].

Theorem 50 (Wiehagen [111]). Let U ⊆ R, then we have:

(1) U ∈ LIM if and only if there exists a limiting recursive functional B
such that U ⊆ dom(B) and B(f) ≥ minϕ f for all f ∈ U .

(2) U ∈ CONS if and only if there exists a function B ∈ P such that for
every f ∈ U the following conditions are satisfied:
(A) There is a j ≥ minϕ f with B(fn) = j for all but finitely many n ∈ N.
(B) B(fn) is defined for every n ∈ N and there is an i ≤ B(fn) such that

ϕi =n f .

In the second version we cannot restrict the hypothesis search to a finite
subspace of ϕ. Instead, the classes to learn can be embedded into a computable
numbering ψ such that for computing the actual hypothesis quite often only
finitely many elements of the computable numbering ψ have to be considered.
Note that we have already provided a theorem that uses precisely this idea,
i.e., the characterization of T OTAL (cf. Theorem 10). Using similar ideas
Wiehagen [111] showed the following theorem.

Theorem 51 (Wiehagen [111]). Let U ⊆ R, then we have:

(1) U ∈ LIM if and only if there exists a numbering ψ ∈ P2 such that the
following conditions are satisfied:
(A) U ⊆ Pψ
(B) There is a function g ∈ R such that for every function f ∈ U the set

of all numbers i with ψi =g(i) f is finite.
(2) U ∈ BC if and only if there exists a numbering ψ ∈ P2 such that the

following conditions are satisfied:
(A) U ⊆ Pψ
(B) There is a function r ∈ R such that for every function f ∈ U and

almost all i, ψi =r(i) f implies ψi = f .

Proof. We only prove Assertion (2) here, since Assertion (1) can be shown
mutatis mutandis as Theorem 10.

In order to show the necessity part of (2) let U ∈ BCϕ(S), where, without loss
of generality, S ∈ R (cf. Theorem 24). We define M to be the set of all pairs
(z, n) such that

• for all x ≤ n, ϕz(x) is defined, and
• S(ϕnz ) = z.
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Let M be enumerated without repetitions by d ∈ R. For i, x ∈ N, d(i) = (z, n),
we define ψ(i, x) = ϕz(x) and r(i) = n.

U ⊆ Pψ is obvious. Let f ∈ U and let n̂ be such that ϕS(fn) = f for all n ≥ n̂.
Then ψi =r(i) f and r(i) ≥ n̂ implies ψi = f . Since there are only finitely
many numbers i such that ψi =r(i) f and r(i) < n̂, Condition (B) follows.

For showing the sufficiency part of (2) we have to define a strategy S such
that U ∈ BCϕ(S). Let amal be the amalgamation function defined in the
proof of Theorem 32. Furthermore, let c ∈ R be a compiler function such that
ψi = ϕc(i) for all i ∈ N. For any input fn we define the set

M(fn) = {i | i ∈ N, i ≤ n, r(i) ≤ n

∧ ∀x[x ≤ r(i)→ Φc(i)(x) ≤ n ∧ ψi =r(i) f ]

∧ ∀x[n ≥ x > r(i) ∧ Φc(i)(x) ≤ n→ ψi(x) = f(x)]} ,

where r ∈ R is the function from Condition (B). Clearly, M(fn) is finite and
computable for every fn. Again, we choose g ∈ R such that ϕg(〈α〉)(x) = yx
for every tuple α ∈ N∗, α = (y0, . . . , yn) and all x ≤ n.

We define the strategy S as follows. If M(fn) = ∅ then we set S(fn) = g(fn).
If M(fn) 6= ∅, we set S(fn) = amal({c(i) | i ∈M(fn)}).

It remains to show that S learns every function f ∈ U behaviorally correctly.
By construction and Condition (B) we know that for almost all n the set
M(fn) contains only ψ-programs i such that ψi ⊆ f . For sufficiently large n,
we also know by Condition (A) that M(fn) contains at least one ψ-program
i such that ψi = f . Consequently, for all sufficiently large n, S(fn) is a ϕ-
program for f , and thus U ∈ BCϕ(S). Note that S outputs infinitely many
different ϕ-programs for f if there are infinitely many ψ-programs for f . 2

The third version of characterizations in terms of computable numberings
shows that learnable functions classes are embeddable into numberings ψ pos-
sessing some effective distinguishability property. Informally, ψ has an effective
distinguishability property if there is an effective method to distinguish ψi and
ψj for every i, j provided ψi 6= ψj.

The following characterization is due to Wiehagen [112].

Theorem 52 (Wiehagen [111,112]). Let U ⊆ R, then we have: U ∈ LIM
if and only if there exists a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ, and
(2) there is a function d ∈ R2 such that ψi 6=d(i,j) ψj for all i, j ∈ N with

i 6= j.
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Proof. Necessity. Let U ∈ LIM; then there exists a numbering ϕ ∈ P2 and a
strategy S ∈ P such that U ∈ LIMϕ(S).

Let M denote the set of all pairs (z, n) such that

• for all x ≤ n, ϕz(x) is defined, and
• S(ϕn−1

z ) 6= S(ϕnz ) = z.

Intuitively, M corresponds to the set of all initial segments ϕnz on which after a
(perhaps last) mind change (namely S(ϕn−1

z ) 6= S(ϕnz )) the strategy S outputs
a reasonable hypothesis.

Clearly, M is recursively enumerable. Let M be enumerated by e ∈ R without
repetition. Now we are ready to define the desired numbering ψ. For any i
such that e(i) = (z, n), we set:

ψi(x) =



ϕz(x), if x ≤ n

ϕz(x), if x > n and for every y with n < y ≤ x,

ϕz(y) is defined and S(ϕyz) = z

undefined, otherwise.

Next, let g ∈ R be chosen such that g(i) = n for every i with e(i) = (z, n).
We define d(i, j) = max{g(i), g(j)}.

It remains to show that Conditions (1) and (2) are satisfied.

Claim 1. U ⊆ Pψ.

Let f ∈ U ; we have to show that there is an i such that ψi = f . Since f ∈ U ,
there exists a least n such that S(fn) = S(fn+m) = z for all m ∈ N. Then
(z, n) ∈M and since S has converged and since U ∈ LIMϕ(S), we also have
ψi = f . Thus, Claim 1 is shown.

Claim 2. ψi 6=d(i,j) ψj for all i, j ∈ N with i 6= j.

Let i 6= j and suppose that ψi =d(i,j) ψj. Without loss of generality we can
assume g(i) < g(j). By the definition of M it follows that ψj(x) is defined for
all x ≤ g(j) and thus ψi(x) is defined for all x ≤ g(j), too. By the definition of

ψ we obtain that S(ψ
g(j)−1
i ) = S(ψ

g(j)
i ). On the other hand, by the definition of

M we get that S(ψ
g(j)−1
j ) 6= S(ψ

g(j)
j ). But this is a contradiction to ψi =d(i,j) ψj.

Thus, Claim 2 is proved and the necessity part of the theorem follows.

Sufficiency. We define the desired strategy as follows.

S(f 0) = 0
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S(fn) = “Compute i = S(fn−1). Check within at most n steps of computation
whether or not there is a j > i such that d(i, j) ≤ n and ψi =d(i,j) f . If such
a j is found, output i+ 1.
Otherwise output i.”

We have to show that U ∈ LIMψ(S). Let f ∈ U , let n ∈ N+ and let i =
S(fn−1). Suppose there is a j > i such that d(i, j) ≤ n and ψi =d(i,j) f . Then,
by Condition (2), we know that ψj 6=d(i,j) ψi. Consequently, ψi 6= f . Thus,
choosing a new hypothesis is justified. Moreover, this observation also shows
that the strategy S will never abandon a correct hypothesis i.

So, it remains to show that i is abandoned if ψi 6= f . Fix any i with ψi 6= f .
Then, by Condition (1), there is a j > i (namely ψj = f) such that d(i, j) ≤ n,
for n large enough, and ψj =d(i,j) f . Thus, j will be eventually found and the
strategy is forced to change the provably wrong hypothesis i to i+ 1.

Putting it all together, we get that for every f ∈ U the strategy S converges
to the minimal (and only!) ψ–number of f . This shows U ∈ LIMψ(S). 2

This theorem nicely shows that requiring a learning strategy to exclusively
output programs for recursive functions is by no means the only way to realize
Popper’s [95] refutability principle. Instead, Theorem 52 leads to the crucial
notion of semantic finiteness. Intuitively, a semantically finite strategy is never
allowed to reject a hypothesis that is correct for the target function. Hence,
when learning semantically finitely, a strategy should have a serious reason to
reject its current hypothesis. As the proof of Theorem 52 shows, this reason
might be quite different from just detecting an inconsistency.

Next, we turn our attention to finite learning. As we have already seen, no
class U ∈ FIN can contain an accumulation point (cf. Theorem 17). A closer
look at this observation leads to the following characterization of FIN .

Theorem 53 (Wiehagen [110,112]). Let U ⊆ R, then we have: U ∈ FIN
if and only if there exists a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ, and
(2) there is a function d ∈ R such that ψi 6=d(i) ψj for all i, j ∈ N with i 6= j.

Proof. Necessity. Let U ∈ FIN ; then there exists a numbering ϕ ∈ P2 and a
strategy S ∈ P such that U ∈ FIN ϕ(S).

Let M denote the set of all pairs (z, n) such that

• for all x ≤ n, ϕz(x) is defined,
• for all 0 < x < n, S(ϕx−1

z ) 6= S(ϕxz), and
• S(ϕn−1

z ) = S(ϕnz ) = z.
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Let M be enumerated by e ∈ R without repetition. For any i such that
e(i) = (z, n) we define:

ψi = ϕz and d(i) = n .

Clearly, ψ ∈ P2 and d ∈ R. It remains to show that Conditions (1) and (2)
are satisfied.

Claim 1. U ⊆ Pψ.

Let f ∈ U ; we know that {f} ∈ FIN ϕ(S). Thus, there exists an n ∈ N
such that S(fx−1) 6= S(fx) for all 0 < x < n and S(fn−1) = S(fn) = z.
By the definition of finite convergence, we can conclude that (S(fn))n∈N has
converged and since {f} ∈ FIN ϕ(S), we know that ϕz = f . Thus, (z, n) ∈M
and by construction there is an i such that e(i) = (z, n). Hence, ψi = ϕz = f .
This proves Claim 1.

Claim 2. ψi 6=d(i) ψj for all i, j ∈ N with i 6= j.

Let i 6= j and suppose ψi =d(i) ψj. Let e(i) = (z, n); by the definition of d
we can conclude ψi(x) ↓ for all x = 0, . . . , n. Additionally, by the definition
of the relation =m we also have that ψj(x) ↓ for all x = 0, . . . , n. Now let
e(j) = (ẑ, n̂). Since i 6= j and since e enumerates M without repetition, it
must hold z 6= ẑ or n 6= n̂.

By construction, S(ψni ) = z and since ψi =d(i) ψj, we also have S(ψnj ) = z.
Thus, z 6= ẑ cannot happen. But n 6= n̂ cannot happen either, since n is the
least number such that S(ψn−1

i ) = S(ψni ). Thus i = j, a contradiction.

Claim 1 and 2 together yield the necessity part.

Sufficiency. The desired strategy S is defined as follows. Let f ∈ U and let
n ∈ N. We set:

S(fn) = “Check whether there is an i ∈ N such that
• i ≤ n,
• d(i) ≤ n,
• ψi =d(i) f can be verified within n steps of computation.
If such an i is found, let S(fn) = i.
Otherwise, let S(fn) = n.”

Let f ∈ U ; then Condition (1) ensures that there is at least one ψ-program i
such that ψi =d(i) f . Furthermore, Condition (2) guarantees that there is at
most one such ψ-program. Since n increases, this ψ-program i will be found
eventually. Consequently, U ∈ FIN ψ(S) and thus U ∈ FIN . 2

Next, we characterize the different versions of consistent learning in terms of
computable numberings. As we shall see, the difference between the different

66



versions of consistent learning can be completely expressed by different ver-
sions of consistency-related decision problems. Therefore, following Wiehagen
and Zeugmann [116], next we define these consistency-related decision prob-
lems.

Definition 23. Let ψ ∈ P2 be any numbering and let U ⊆ R. We say that

(1) consistency with respect to ψ is decidable if there exists a predicate cons ∈
R2 such that for each α ∈ N∗ and all i ∈ N, cons(〈α〉, i) = 1 if and only
if α v ψi.

(2) U–consistency with respect to ψ is decidable if there exists a predicate
cons ∈ P2 such that for each α ∈ [U ] and all i ∈ N, cons(〈α〉, i) is defined,
and cons(〈α〉, i) = 1 if and only if α v ψi.

(3) U–consistency with respect to ψ is R–decidable if there exists a predicate
cons ∈ R2 such that for each α ∈ [U ] and all i ∈ N, cons(〈α〉, i) = 1 if
and only if α v ψi.

Note that the following proof uses ideas from Wiehagen [110] as well as
from [116].

Theorem 54. U ∈ T - CONS iff there is a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ,
(2) consistency with respect to ψ is decidable.

Proof. Necessity. Let U ∈ T - CONSϕ(S) where ϕ ∈ P2 is any Gödel number-
ing and S is a T –consistent strategy. Let

M = {(z, n) | z, n ∈ N, ϕz(x) is defined for every x ≤ n, S(ϕnz ) = z}

be recursively enumerated by a function e. Then define a numbering ψ as
follows. Let i, x ∈ N, e(i) = (z, n).

ψi(x) =



ϕz(x), if x ≤ n

ϕz(x), if x > n and, for any y ∈ N such that n < y ≤ x,

ϕz(y) is defined and S(ϕyz) = z

↑ , otherwise.

For showing (1) let f ∈ U and n, z ∈ N be such that S(fm) = z for any
m ≥ n. Clearly, ϕz = f . Furthermore, (z, n) ∈ M . Let i ∈ N be such that
e(i) = (z, n). Then, by definition of ψ, ψi = ϕz = f . Hence U ⊆ Pψ.

In order to prove (2) we define cons ∈ R2 such that for any α ∈ N∗, i ∈ N,
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cons(〈α〉, i) = 1 iff α v ψi. Let α = (α0, . . . , αx) ∈ N∗ and i ∈ N. Let
e(i) = (z, n). Then define

cons(〈α〉, i) =



1, if x ≤ n and, for every y ≤ x, αy = ψi(y)

1, if x > n and S(〈α0, . . . , αy〉) = z for every y ∈ N

such that n < y ≤ x

0, otherwise.

Since e(i) = (z, n) ∈M , by construction we know that ϕz(m)↓ for all m ≤ n
and S(ϕnz ) = z. Thus, we have ψi(m) = ϕz(m) for all m ≤ n. Consequently, if
x ≤ n, then for all y ≤ x it can be effectively tested whether or not αy = ψi(y).
Furthermore, S ∈ R implies that S(〈α0, . . . , αy〉) can be computed for every
y ∈ N such that n < y ≤ x. Thus, if x > n, the condition S(〈α0, . . . , αy〉) = z
can be effectively checked for every y ∈ N such that n < y ≤ x. Consequently,
cons ∈ R2.

Furthermore, it is not hard to see that for every α ∈ N∗, i ∈ N, we have
cons(〈α〉, i) = 1 iff α v ψi. This proves the necessity part.

Sufficiency. Let ψ ∈ P2 be any numbering. Let cons ∈ R2 be such that for
all α ∈ N∗ and i ∈ N we have cons(α, i) = 1 iff α v ψi. Let U ⊆ Pψ. In
order to consistently learn any function f ∈ U it suffices to define S(fn) =
min{i | cons(fn, i)}. However, S is undefined if, for f /∈ U , n ∈ N, there is
no i ∈ N such that fn v ψi. The following more careful definition of S will
circumvent this difficulty. Let ϕ ∈ Göd. Let aux ∈ R be such that for any
α ∈ N∗, ϕaux(α) = α0∞. Finally, let c ∈ R be such that for all i ∈ N, ψi = ϕc(i).
Then, for any f ∈ R, n ∈ N, define a strategy S as follows.

S(fn) =

 c(j), if I = {i | i ≤ n, cons(fn, i) = 1} 6= ∅ and j = min I

aux (f n), if I = ∅.

Clearly, S ∈ R and S outputs only consistent hypotheses. Now let f ∈ U .
Then, obviously, (S(fn))n∈N converges to c(min{i | ψi = f}). Hence, S wit-
nesses U ∈ T - CONSϕ. 2

Next, we present our characterization for CONS.

Theorem 55. U ∈ CONS iff there is a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ,
(2) U–consistency with respect to ψ is decidable.

Finally, we characterize R- CONS.
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Theorem 56. U ∈ R- CONS iff there is a numbering ψ ∈ P2 such that

(1) U ⊆ Pψ,
(2) U–consistency with respect to ψ is R–decidable.

The proofs of Theorems 55 and 56 are similar to that of Theorem 54.

The above characterizations of T - CONS, CONS andR- CONS as well as the
characterization of T - CONSarb provided in Theorem 12 point out a relation
between the problem of deciding consistency and the halting problem. On the
one hand, for any of the learning types LT ∈ {T - CONS, CONS, R- CONS,
T - CONSarb} we have NUM ⊆ LT (via Theorem 2 and Corollary 13). On
the other hand, as shown in Lemma 3, for any class U ⊆ R outside NUM
and any numbering ψ ∈ P2, if U ⊆ Pψ, then the halting problem with respect
to ψ is undecidable.

In contrast, for any U ∈ LT \NUM the corresponding version of consistency
with respect to ψ is decidable. Hence this version of consistency cannot be
decided by first deciding the halting problem and second, if possible, comput-
ing the desired values of the function under consideration in order to compare
these values with the given ones. So, though consistency is decidable in the
“characteristic” numberings of Theorems 54, 55, 56 and 12 it is not decidable
in a “straightforward way.”

9 Further Topics

In this section we briefly summarize further research pursued by Rolf Wieha-
gen and researchers who worked on similar problems. We start with robust
inference.

9.1 Robust Learning

For the sake of motivation, let us look at any class U in R- T OTAL. Recalling
thatR- T OTAL = NUM we can think of U as (a subset of) a family (ϕs(i))i∈N
for some s ∈ R (cf. Theorem 2). Furthermore, let O be any effective operator
realized by a function g ∈ R such that O(U) ⊆ R (cf. Definition 20). Then we
have O(ϕs(i)) = ϕg(s(i)) for every i ∈ N and thus the family (ϕg(s(i)))i∈N also
belongs to NUM and is consequently in R- T OTAL, again by Theorem 2.

Thus, every class U in R- T OTAL has the remarkable property that not only
the class U itself is learnable but all classes obtained from U by effective
transformations are R- T OTAL-learnable, too. This property may serve as
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a first informal definition of what is meant by saying that a class is robustly
learnable.

For discussing the importance of robust learnability, it is helpful to recall that
we have separated several learning types by using some class of self-describing
functions, for example Usd . On the one hand, this is an elegant proof method
and, as pointed out by Jain, Smith and Wiehagen [64], self-description is
quite a natural phenomenon in that every cell of every organism contains a
description of itself. On the other hand, such separating classes may seem
a bit artificial, since they use coding tricks. So for the positive part of the
separation, a learner only needs to fetch some code from the input. For the
non-learnability result one usually shows that at least one function in the
separating class is too complex to gain the information necessary to learn it
in the more restricted model. If such self-describing function classes were the
only separating examples, then we would have to draw major consequences for
our overall understanding of learning and for the value of the theory developed
so far.

Around thirty years ago, Bārzdiņš suggested to prove or to disprove the fol-
lowing conjecture.

Let U ⊆ R; then O(U) ∈ LIM for all effective operators O with O(U) ⊆ R
implies that there is a ψ ∈ R2 such that U ⊆ Rψ.

An affirmative answer to Bārzdiņš’ Conjecture could be interpreted as follows.
Every function class U in LIM \ NUM contains only functions having en-
coded a certain information in their graphs which is helpful in the learning
process. Intuitively, this information is then erased by some operator O and
thus O(U) /∈ LIM.

However, it took many years before any progress concerning Bārzdiņš’ Conjec-
ture was made. Zeugmann [120] proposed to generalize Bārzdiņš’ conjecture
by replacing LIM by any learning type LT and showed it to be true for FIN
and T-REL. Then Kurtz and Smith [72,73] disproved Bārzdiņš’ conjecture for
classes U ∈ NUM. The major breakthrough was made by Fulk [49] who also
coined the term of robust learnability. Let LT be any learning type. Then we
call a class U robustly LT -learnable, iff, for every operator O, the class O(U)
is LT -learnable.

There were many discussions about which operators O are admissible in this
context. Fulk [49] considered the class of all general recursive operators and for
this version he disproved Bārzdiņš’ Conjecture for LIM. Subsequently, many
interesting results were obtained in this context (cf., e.g., [5,28,60,64,91,105]).

We would like to mention here only some of the results obtained. For this
purpose we use LT -robust to denote the family of all classes U ⊆ R such that
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O(U) ∈ LT for every general recursive operator O.

As we have seen in Theorem 21, there is an infinite anomaly hierarchy for
LIM-type learning and also for BC-type identification (cf. Case and Smith [30]).
These hierarchies do not stand robustly.

Theorem 57 (Fulk [49]).

(1) LIMa-robust = LIM-robust for all a ∈ N ∪ {∗}.
(2) BCa-robust = BC-robust for all a ∈ N ∪ {∗}.

Let us denote by LIMn the family of all classes U ⊆ R which can be learned
in the limit with at most n mind changes. Then it is not hard to prove that
LIMn ⊂ LIMn+1 for every n ∈ N (cf. [30]).

Interestingly, this mind change hierarchy does stand robustly as the following
theorem shows. Note that the proof uses a complicated priority argument.

Theorem 58 (Jain, Smith and Wiehagen [64]).
LIMn-robust ⊂ LIMn+1-robust for all n ∈ N.

In [64] it was also shown that the LIMteam(n) and BCteam(n) hierarchies stand
robustly.

Theorem 59 (Jain, Smith and Wiehagen [64]).

(1) LIMteam(n)-robust ⊂ LIMteam(n+ 1)-robust for all n ∈ N+,
(2) BCteam(n)-robust ⊂ BCteam(n+ 1)-robust for all n ∈ N+.

Following Case et al. [29], we call a learning type LT robustly rich if LT con-
tains a robustly learnable class U such that U /∈ NUM. Otherwise, LT is
said to be robustly poor. Using this terminology, Bārzdiņš’ Conjecture meant
that LIM is robustly poor. But Fulk [49] showed LIM to be robustly rich.
Furthermore, by Theorem 59 we know that LIMteam(n) and BCteam(n) are ro-
bustly rich. On the other hand, FIN and T-REL are robustly poor (cf.[120]).
By Theorem 43, Assertion (1), we know that T - CONSδ ⊂ T-REL for all
δ ∈ N, thus we can conclude that T - CONSδ is robustly poor, too, for all
δ ∈ N. In contrast, R- CONS is robustly rich (cf. Theorem 45 in Case et
al. [29]).

A more detailed study on which learning types are robustly rich and robustly
poor, respectively, was carried out by Case et al. [29] and the reader is encour-
aged to consult this paper for many deep and interesting results. As a final
example, we mention the following. Adding a uniformity condition (see also
Subsection 9.4) in [29] it was proved that LIM-uniform-robust ⊆ CONS.
This for sure sheds additional light on the importance of consistent learning.
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Before closing this subsection, let us again take a look at our five classes from
Section 3. Since U0 ∈ NUM, it is robustly learnable. Usd is not robustly learn-
able, since for O(f) = g, where g(x) = f(x+1) we have O(Usd) = R. Likewise,
in general the class U(ϕ,Φ) is not in LIM-robust. This can be seen by using
Theorem 2.4 and Corollary 2.6 in [91]. As far as Umahp and Uahp are concerned,
now the answer depends for both classes on the underlying complexity mea-
sure. There are complexity measures such that Umahp, Uahp ∈ LIM-robust
(cf. Theorem 16 and Corollary 17 in [105]). Furthermore, there are “natu-
ral” complexity measures such that Umahp /∈ LIM-robust (cf. Theorem 19 in
[105]).

Next, we turn our attention to learning from good examples, motivated partly
by the intuitive thought that humans can learn more efficiently from well-
chosen (good) examples than they can from arbitrary input.

9.2 Assisting the Learner

The most natural way to help a learner – at least when thinking of the way
humans learn – would be to emphasize particularly representative or helpful
examples during the learning process and maybe not to present unhelpful
examples at all. In particular, thus one could think of learning from only
finitely many examples instead of learning from a whole infinite sequence of
examples representing a target function. On a formal level, this requires a
notion of what helpful examples, called good examples, are, and how they
should be utilized in learning.

In this context, Freivalds, Kinber, and Wiehagen [45] have introduced two
models of learning from good examples, one in the context of finite learning,
one in the context of learning in the limit.

Definition 24 (Freivalds et. al. [45]). Let U ⊆ R and let ψ ∈ P2. The
class U is said to be

• finitely learnable from good examples with respect to ψ if there is a num-
bering ex ∈ P2, a strategy S ∈ P, and a function z ∈ P such that U ⊆ Pψ
and, for any i ∈ N with ψi ∈ U ,

(1) exi is a finite subfunction of ψi and z(i) = |{x | ψi(x)↓ }|,
(2) ψS(ex∪ε) = ψi for any finite subfunction ε of ψi.
• learnable in the limit from good examples with respect to ψ if there is a

numbering ex ∈ P2, a strategy S ∈ P2, and a function z ∈ P such that
U ⊆ Pψ and, for any i ∈ N with ψi ∈ U ,

(1) exi is a finite subfunction of ψi and z(i) = |{x | ψi(x)↓ }|,
(2) for any finite subfunction ε of ψi, there is some j with ψj = ψi and

S(ex ∪ ε, n) = j for all but finitely many n ∈ N.
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The resulting learning types are defined in the usual way and denoted by
GEX -FIN and GEX -LIM, respectively.

Interestingly, GEX -FIN coincides with the standard inference type of behav-
iorally correct learning, i.e., the classes learnable finitely from good examples
can be characterized as exactly those which are learnable behaviorally cor-
rectly.

Theorem 60 (Freivalds et. al. [45]). GEX -FIN = BC

So, accessing good examples, learning strategies can, even within finite learn-
ing processes, achieve more than ordinary strategies can in the limit. This
theorem naturally raises the question whether or not GEX -LIM is richer
than GEX -FIN . The affirmative answer is provided by the following theo-
rem. When learning from good examples in the limit, the whole class of all
recursive functions can be identified.

Theorem 61 (Freivalds et. al. [45]). R ∈ GEX -LIM

For the proofs of Theorems 60 and 61 as well as for further results, we refer
the reader to [45].

The paradigm of learning from good examples has received further interest in
research meanwhile; the reader is referred to Nessel [87] for further results on
learning recursive functions. Additionally, this framework was discussed for
learning recursive languages as well; here the reader is directed to the survey
by Lange et al. [77]. It has also attracted interest in other branches of learning
theory, see e.g., Ling [80].

9.3 Complexity of Learning Problems

Up to now we have discussed many different learning models derived from
Gold’s [53] initial one, compared these to one another, and illustrated their
strengths and limitations with several examples of learnable or non-learnable
classes, respectively. However, we still do not have a deeper insight into what
makes some classes harder to learn than others. Characterization theorems
provide necessary and sufficient conditions for learnability, but in case two
classes are learnable, can we say anything about which of the two is the more
challenging learning problem?

To deal with this question, Freivalds et al. [43] have introduced a notion of
intrinsic complexity of learning. The idea was to define an appropriate notion
of reducibility, inspired by results from recursion theory and complexity theory
where similar approaches have been successfully applied.
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The notion of reducibility defined is based on the usage of recursive operators,
i.e., partial recursive operators that are defined on every partial function.

Definition 25 (Rogers [97]). A partial recursive operator O : P→ P is called
a recursive operator if dom(O) = P.

We continue with the reduction principle. Given two classes U1 and U2 of
recursive functions a reduction from U1 to U2 involves two recursive operators.
The first one translates any function in U1 into a function in U2. The second
operator converts any successful hypothesis sequence for the obtained function
in U2 into a successful hypothesis sequence for the original function in U1.
Here the term successful hypothesis sequence is used to refer to the notion of
admissible sequences defined as follows.

Definition 26 (Freivalds et al. [43]). Let f ∈ R. An infinite sequence σ is
called LIM-admissible for f if σ converges to a ϕ-program for f .

This finally allows us to define the desired reducibility relation.

Definition 27 (Freivalds et al. [43], Kinber et al. [67], Jain et al. [61]).
Let U1,U2 ∈ LIM. U1 is called LIM-reducible to U2 if there exist recursive
operators Θ and Ξ such that each function f ∈ U1 satisfies the following two
conditions:

(1) Θ(f) ∈ U2,
(2) if σ is a LIM-admissible sequence for Θ(f), then Ξ(σ) is a LIM-

admissible sequence for f .

In the sequel we omit the prefix LIM, since we consider the notion of re-
ducibility here only in the context of learning in the limit; however, this defi-
nition has also been adapted and analyzed for other inference types.

Now the idea for reductions is as follows: if U1 is reducible to U2, then a
strategy identifying all functions in U1 can be computed from any strategy
which is successful for U2. For instance, each class in LIM is reducible to the
class U0 of functions of finite support (cf. Theorem 62). Thus U0 is a class in
LIM of highest complexity respecting the notion of reducibility. Such classes
are said to be LIM-complete.

Definition 28 (Freivalds et al. [43], Kinber et al. [67], Jain et al. [61]).
Let U ⊆ R. U is LIM-complete if U ∈ LIM and every class U ′ ∈ LIM is
LIM-reducible to U .

Theorem 62 (Freivalds et. al. [43]). U0 is LIM-complete.

Note that U0 is an r.e. class and every initial segment of any function f ∈ U0
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is an initial segment of infinitely many other functions f ′ ∈ U0. This property
has turned out to be crucial when trying to characterize the hardest problem
sets in learning in the limit (with respect to the proposed complexity notion).
This is reflected in the following characterization theorem for complete classes.

Theorem 63 (Kinber et al. [67], Jain et al. [61]). Let U ∈ LIM. U is
LIM-complete, iff there is some ψ ∈ R2 such that

(1) Pψ ⊆ U ,
(2) for all i, n ∈ N there are infinitely many j ∈ N satisfying ψi =n ψj and

ψi 6= ψj.

That means that complete classes are characterized by being topologically
complicated (in terms of the second condition demanding density with respect
to the so-called Baire metric, see Rogers [97] for details) and containing an
algorithmically rather “simple” – since uniformly r.e. – set (in terms of the
first condition).

9.4 Uniformity of Learning Problems

Throughout this survey, we have very often – sometimes implicitly – encoun-
tered cases in which different classes of recursive functions can be learned
with very similar strategies, or – more specifically – in which different learn-
ing problems are solved with a uniform method.

For instance, all classes in NUM can be learned with Gold’s identification by
enumeration strategy [53] (cf. the proof of Theorem 2). This strategy is uniform
in the sense that it only needs access to the numbering ψ ∈ R2 comprising the
class of target functions to be learned. Numerous other impressive examples
of strategies working uniformly for a huge collection of learning problems have
been obtained in the characterization theorems discussed above. Note that in
each of these theorems, the sufficiency part of the proof deploys a uniform
strategy specific for the inference type that is being characterized.

In contrast to that, most of the learning types studied so far have the property
that their corresponding collections of learnable function classes are not closed
under union. For instance, the proof of Theorem 19 shows that, although both
Usd and U0 are learnable in the limit, their union is not even BC-learnable. In
particular, both classes can be learned in the limit with two different instances
of the same uniform method (different special strategies derived from a kind
of meta-strategy), but there is no way of designing an instance of that uniform
method, which can cope with all functions contained in any of the two classes.

Intuitively, each special strategy for a special class of functions is designed

75



using some prior knowledge about the target class (e.g., the identification
by enumeration strategy for a class in NUM knows a numbering ψ ∈ R2

comprising the target class) which can be seen as a restriction of the space
of possible hypotheses and thus a restriction of the search space. Now, if the
union of two such learnable classes is no longer learnable, this means that there
is no means of successfully exploiting the prior knowledge that a function is
contained in one of these classes.

Hence there may be ways of describing prior knowledge about certain learnable
classes such that this prior knowledge can be exploited by a meta-strategy in
order to instantiate strategies tailored for the corresponding target classes.
The circumstances under which such meta-strategies exist were the focus of a
branch of research concerning so-called uniform learning.

Any formalization of this approach requires a notion of how to describe target
classes of recursive functions (i.e., means of describing prior knowledge about
a target class) as well as a notion of the desired learning behavior of meta-
strategies.

A straightforward scheme for describing classes of recursive functions is the
following: Consider a fixed three-place Gödel numbering τ . For any d ∈ N,
the numbering τ d is just the two-place function resulting from τ , if the first
input is fixed by d 5 . Thus d corresponds to the set Pτd = {τ di | i ∈ N}
of partial recursive functions enumerated by τ d and may simply serve as a
description of the class Rτd = {τ di | i ∈ N} ∩ R of recursive functions, which
is also called the recursive core of the numbering τ d. In particular, each set
D = {d0, d1, d2, . . .} ⊆ N can be regarded as a set of descriptions and thus as
a collection of the “learning problems” Rτd0 , Rτd1 , Rτd2 , . . . In this context,
such a set D is simply called a description set.

Now a meta-strategy is a strategy expecting two inputs: first, a parameter
d ∈ N interpreted as a description of some recursive core, and second, a coding
fn of an initial segment of some recursive function f . If S is a meta-strategy
and d any description, then Sd denotes the strategy resulting from S, when
the first input is fixed by d. Given a learning type LT as studied above, a
meta-strategy S is a successful uniform strategy for D, in case Sd learns Rτd

for all d ∈ D according to the constraints of LT . More formally:

Definition 29 (Zilles [122], Jantke [65]). Let LT be a learning type and
D ⊆ N a description set. Let ϕ be a Gödel numbering. D is uniformly LT -
learnable (with respect to ϕ) if there is a meta-strategy S, such that, for any

5 Note that throughout this subsection, for any d, i ∈ N, we actually denote the
function λx.τ(d, i, x) by τdi . Here the superscript d does not mean we consider a
coding of an initial segment of any function. However, the intended meaning will
always be clear from context.
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d ∈ D, the strategy Sd is an LT -learner for the class Rτd with respect to ϕ.
UNI-LT denotes the class of all uniformly LT -learnable description sets. 6

Lemma 2 justifies the choice of a fixed Gödel numbering ϕ as a hypothesis
space beforehand; the reader may easily verify that this definition of learnabil-
ity is independent of the choice of ϕ. However, this is not the only suggestive
notion of hypothesis spaces in uniform learning. Note that each numbering
τ d enumerates at least all functions in Rτd , so a meta-strategy might also be
designed for using τ d as a hypothesis space when learning Rτd . This results in
a special case of Definition 29, because τ d-programs can be uniformly trans-
lated into programs in a fixed Gödel numbering ϕ. We refer to this model as
description-uniform learning.

Definition 30 (Zilles [122], Jantke [65]). Let LT be a learning type and
D ⊆ N a description set. D is description-uniformly LT -learnable if there
is a meta-strategy S, such that, for any d ∈ D, the strategy Sd is an LT -
learner for the class Rτd with respect to τ d. UNIdes-LT denotes the class of
all description sets which are description-uniformly LT -learnable.

Uniform learning was studied for numerous learning types, especially in com-
parison of different learning types to one another, cf. Zilles [124,123]; however,
for the sake of brevity, we restrict the following survey to the inference types
LIM and BC. Note that most of the results hold analogously for many other
learning types. The following theorem states that description-uniform learning
is a proper restriction of uniform learning.

Theorem 64 (Zilles [124]).
UNIdes-LIM ⊂ UNI-LIM and UNIdes-BC ⊂ UNI-BC.

But what are the general limitations of uniform learning? It turns out that
there are “maximally powerful” meta-strategies: with a suitable choice of de-
scriptions all non-uniformly learnable classes of functions can be learned uni-
formly.

Theorem 65 (Zilles [124], Jantke [65]). Let LT ∈ {LIM,BC}. Then
there exists a description set D ⊆ N, such that

(1) for all U ∈ LT there is some d ∈ D satisfying U ⊆ Rτd;
(2) D ∈ UNI-LT .

In contrast to this, depending on the choice of the descriptions, even sets

6 Note that, by intuition, it seems adequate to refer to uniformly learnable collec-
tions of recursive cores represented by description sets, rather than to uniformly
learnable description sets themselves. Yet, for convenience, the latter notion is pre-
ferred.
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describing the most simple recursive cores can be non-learnable. This concerns
descriptions of recursive cores each consisting of just one function or even,
in the description-uniform model, descriptions for just a single recursive core
consisting of just one function. This is a significant difference compared to non-
uniform learning, because there arbitrary finite classes are trivially learnable.

Theorem 66 (Zilles [124]).

(1) Let D = {d ∈ N | |Rτd| = 1} be the set of all descriptions representing
singleton recursive cores. Then D /∈ UNI-BC.

(2) Fix any recursive function r and let D = {d ∈ N | Rτd = {r}} be
the set of all descriptions representing the recursive core {r}. Then D /∈
UNIdes-BC.

Theorems 65 and 66 show how much the choice of descriptions affects uniform
learnability. In a slightly more subtle way this is expressed in the following
two theorems, which moreover show that the hierarchy of learning types in
non-uniform learning is reflected in the uniform framework.

Theorem 67 (Zilles [124]). UNI-LIM ⊂ UNI-BC. In particular, there is
a D ⊆ N satisfying

(1) |Rτd | = 1 for all d ∈ D,
(2) D ∈ UNI-BC \ UNI-LIM.

Theorem 68 (Zilles [124]). UNIdes-LIM ⊂ UNIdes-BC. In particular,
for any r ∈ R, there is a D ⊆ N satisfying

(1) Rτd = {r} for all d ∈ D,
(2) D ∈ UNIdes-BC \ UNIdes-LIM.

Now many of the results obtained in the non-uniform framework of learning
can be lifted to the meta-level of uniform and description-uniform learning.
We will pick two aspects for illustration: (i) characterizations of learning types
as in Section 8 and (ii) intrinsic complexity as in Subsection 9.3. From now
on, however, we shall focus exclusively on the learning type LIM.

Most of the characterizations shown above have their immediate counterpart
in the context of uniform learning, such as the following characterizations
derived from Theorem 52. However, it should be noted that characterizations
for description-uniform learning always require some additional “embedding”
property (like Property (3) in Theorem 70 below). The proofs can be easily
lifted from the non-uniform case.

Theorem 69 (Zilles [123]). Let D ⊆ N. D ∈ UNI-LIM, if and only if
there is a three-place partial recursive numbering χ and a recursive function
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h, such that for all d ∈ D the following conditions are fulfilled.

(1) Rτd ⊆ Pχd,
(2) χdi 6=h(d,i,j) χ

d
j for all i, j ∈ N with i 6= j.

Theorem 70 (Zilles [123]). Let D ⊆ N. D ∈ UNIdes-LIM, if and only
if there is a three-place partial recursive numbering χ, a recursive function h,
as well as a recursive function e ∈ R2, such that for all d ∈ D the following
conditions are fulfilled.

(1) Rτd ⊆ Pχd,
(2) χdi 6=h(d,i,j) χ

d
j for all i, j ∈ N with i 6= j,

(3) τ de(d,i) = χdi for all i such that χdi ∈ R.

In order to lift the intrinsic complexity approach to uniform learning, first
appropriate notions of admissible sequences and of reducibility need to be
defined – again distinguishing between uniform learning (the UNI-LIM-
model) and description-uniform learning (the UNIdes-LIM-model). For that
purpose, from now on, let ϕ denote a fixed Gödel numbering.

Definition 31 (Zilles [125]). Let d ∈ N be any description and let f ∈ Rτd.
An infinite sequence σ of natural numbers is called

• UNI-LIM-admissible for d and f if σ converges to a ϕ-program for f ;
• UNIdes-LIM-admissible for d and f if σ converges to a τ d-program for f .

Since the recursive operators needed now have to take the descriptions d ∈ N
of the target classes into account, actually a new notion of recursive operators
is required.

Definition 32 (Zilles [125]). Let Θ be a total function mapping pairs of
functions to pairs of functions. Θ is called a recursive meta-operator if the
following properties are satisfied for all functions δ, δ′ and f, f ′ and all numbers
n, y ∈ N:

(1) if δ ⊆ δ′, f ⊆ f ′, as well as Θ(δ, f) = (γ, g) and Θ(δ′, f ′) = (γ′, g′), then
γ ⊆ γ′ and g ⊆ g′;

(2) if Θ(δ, f) = (γ, g) and γ(n) = y (or g(n) = y, respectively), then there
exist initial subfunctions δ0 ⊆ δ and f0 ⊆ f such that (γ0, g0) = Θ(δ0, f0)
fulfills γ0(n) = y (g0(n) = y, respectively);

(3) if δ and f are finite and Θ(δ, f) = (γ, g), then one can effectively (in
(δ, f)) enumerate γ and g.

This finally enables us to define the following formalization of reducibility in
uniform and description-uniform learning.
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Definition 33 (Zilles [125]). Let D1, D2 ∈ UNI-LIM. D1 is said to be
UNI-LIM-reducible to D2 if there is a recursive meta-operator Θ and a
recursive operator Ξ, such that the following holds. For any description d1 ∈
D1, any function f1 ∈ Rd1, and any δ1 ∈ N∗ there is a δ2 ∈ N∗ and a function
f2 satisfying:

(1) Θ(δ1d
∞
1 , f1) = (δ2, f2),

(2) δ2 converges to a description d2 ∈ D2 such that f2 ∈ Rd2,
(3) if σ is a UNI-LIM-admissible sequence for d2 and f2, then Ξ(σ) is
UNI-LIM-admissible for d1 and f1.

Moreover, if D1, D2 ∈ UNIdes-LIM, then the definition of UNIdes-LIM-
reducibility is obtained by replacing UNI-LIM by UNIdes-LIM above as
well as replacing Condition (3) by Condition (3′): if σ is a UNIdes-LIM-
admissible sequence for d2 and f2, then Ξ(d2σ) is UNIdes-LIM-admissible
for d1 and f1.

As in the non-uniform framework, these reducibility notions immediately yield
completeness notions, obtained in the straightforward way.

Definition 34 (Zilles [125]). Let D ⊆ N.

(1) D is UNI-LIM-complete if D ∈ UNI-LIM and every set D′ ∈
UNI-LIM is UNI-LIM-reducible to D.

(2) D is UNIdes-LIM-complete if D ∈ UNIdes-LIM and every set D′ ∈
UNIdes-LIM is UNIdes-LIM-reducible to D.

For illustration consider the following two examples taken from [125]:

Assume a recursive function g, given any i, x ∈ N, fulfills τ
g(i)
0 = ϕi and

τ g(i)x =↑, if x > 0. Then the description set {g(i) | i ∈ N} is UNI-LIM-
complete.

Let r, h ∈ R. Assume τ
h(i)
i = r for all i, as well as ϕh(i)

x =↑ for any i, x ∈ N
with x 6= i. Then the description set {h(i) | i ∈ N} is UNIdes-LIM-complete,
but not UNI-LIM-complete.

Finally, as in the non-uniform case, we obtain characterizations of UNI-LIM-
complete description sets as well as of UNIdes-LIM-complete description
sets.

Theorem 71 (Zilles [125]). Let D ∈ UNI-LIM. D is UNI-LIM-complete,
if and only if there is a ψ ∈ R2 and a limiting r.e. family (di)i∈N of descriptions
in D, such that the following conditions are fulfilled:

(1) ψi ∈ Rdi for all i ∈ N;
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(2) every function in Pψ is an accumulation point of Pψ.

Theorem 72 (Zilles [125]). Let D ∈ UNIdes-LIM. D is UNIdes-LIM-
complete, if and only if there is a ψ ∈ R2 and a limiting r.e. family (di)i∈N of
descriptions in D, such that the following conditions are fulfilled:

(1) ψi ∈ Rdi for all i ∈ N;
(2) for each i, n ∈ N there are infinitely many j ∈ N satisfying ψi =n ψj and

(di, ψi) 6= (dj, ψj).

How closely the results on intrinsic complexity of uniform learning are related
to the results in the non-uniform framework, as presented in the previous
section, is shown in an alternative formulation of Theorem 71, which holds
analogously if Property (2) is replaced by the following property: (2′) Pψ is
LIM-complete.

10 Summary and Conclusions

Inductive inference of recursive functions has attracted much attention during
the past four decades. As we have seen, the theory has been developed to a
large extent and many interesting results have been obtained. These results
in turn deepen our principal understanding of inference processes and have
many implications for the philosophy of science, for cognition, and of course
for learning in general (cf. [90,62]).

For example, the prediction model (see Definition 4) originating in inductive
inference of recursive functions was adapted in several branches of learning
theory. A prominent example is Littlestone’s [81] on-line prediction model
which is also known as the mistake-bound learning model and which in turn
has nice relations to PAC learning (cf. Haussler et al. [57]). In this context we
mention here again the Algorithm FP from the proof of Theorem 6.

Furthermore, we have investigated consistent learning versus inconsistent learn-
ing, observing a general inconsistency phenomenon: In spite of the remarkable
power of consistent learning it turns out that this power is not universal. There
are learning problems which can exclusively be solved by inconsistent strate-
gies, i.e., by strategies that do temporarily incorrectly reflect the behavior of
the unknown object on data for which the correct behavior of the object is
already known. Moreover, the necessity of inconsistent strategies, working in
a somewhat unintuitive way, has been traced back to the undecidability of
consistency.

If consistent learning is possible, then the corresponding consistency problem
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must be decidable with respect to some suitably chosen numbering. Further
results show that the inconsistency phenomenon is also valid in more realistic
situations. Wiehagen and Zeugmann [116] considered a domain where con-
sistency is decidable and the learning strategies have to work in polynomial
time, observing that certain learning problems can be solved efficiently, but
not efficiently by any consistent strategy (unless P = NP). The reason is
quite analogous to that in the setting of learning recursive functions. Now
the NP-hardness of problems can prevent learning strategies from producing
consistent hypotheses in polynomial time.

The characterizations of learning types in terms of computable numberings
also provide deeper insight concerning the way in which learning strategies
can actually perform the inference process in a uniform manner. The first and
very powerful method in this regard is Gold’s [53] “identification by enumera-
tion.” Though the methods provided in the sufficiency proofs of the character-
izations theorems in terms of computable numberings have their peculiarities,
they all have a rather strong resemblance to “identification by enumeration.”
This was further investigated by Kurtz et al. [74], where the authors con-
cluded with the thesis that enumeration techniques are even universal in that
each solvable learning problem in inductive inference can be solved by an ad-
equate enumeration technique. This insight is of fundamental epistemological
importance.

On the other hand, these methods do not yield efficient practical algorithms.
In general the size of the space that must be searched is typically exponential
in the length of the description of the first correct hypothesis.

Looking at the characterizations in terms of complexity, we see that the results
obtained also have nice implications for the theory of computational complex-
ity. For illustration, let us recall that there is no function h ∈ R2 such that
Φi(x) ≤ h(x, ϕi(x)) for all i ∈ N with ϕi ∈ R and almost all x ∈ N (cf., e.g.,
[99]). Using Theorem 37 we can directly generalize this to the statement that
there is no effective Operator O such that Φi(x) ≤ O(ϕi, x) for all i ∈ N with
ϕi ∈ R and almost all x ∈ N.

Furthermore, Theorems 37 and 38 together solve the problem of characterizing
the operator honest functions. Similar results can be obtained by combining
further characterizations (cf. [118]).

Additionally, the characterizations in terms of complexity also show that every
function to be learned possesses a recursively computable upper bound for its
complexity. In turn, the additional knowledge of such an upper bound does
not only guarantee the learnability of the considered functions but also the
synthesis of a program with a complexity not greater than the given upper
bound almost everywhere.

82



Let us finish this survey with the remark that the field of learning recursive
functions is large but the discourse here is brief. Although several topics could
not be touched at all, the material selected for this survey hopefully provides
a good overview and guides the reader to other, more specialized sources of
information.
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[41] R. Freivalds, J. Bārzdiņš, and K. Podnieks. Inductive inference of recursive
functions: Complexity bounds. In Baltic Computer Science, volume 502 of
Lecture Notes in Computer Science, pages 111–155. Springer-Verlag, Berlin,
1991.

[42] R. Freivalds, O. Botuscharov, and R. Wiehagen. Identifying nearly minimal
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