Learning Recursive Functions: A Survey

Thomas Zeugmann® and Sandra Zilles !

a Division of Computer Science, Hokkaido University, Sapporo 060-0814, Japan,
thomas@ist.hokudai.ac. jp

b Department of Computing Science, University of Alberta, Edmonton, Alberta,
Canada T6G 2E8,
zilles@cs.ualberta.ca

Abstract

Studying the learnability of classes of recursive functions has attracted considerable
interest for at least four decades. Starting with Gold’s (1967) model of learning in
the limit, many variations, modifications and extensions have been proposed. These
models differ in some of the following: the mode of convergence, the requirements
intermediate hypotheses have to fulfill, the set of allowed learning strategies, the
source of information available to the learner during the learning process, the set of
admissible hypothesis spaces, and the learning goals.

A considerable amount of work done in this field has been devoted to the char-
acterization of function classes that can be learned in a given model, the influence
of natural, intuitive postulates on the resulting learning power, the incorporation of
randomness into the learning process, the complexity of learning, among others.

On the occasion of Rolf Wiehagen’s 60th birthday, the last four decades of research
in that area are surveyed, with a special focus on Rolf Wiehagen’s work, which has
made him one of the most influential scientists in the theory of learning recursive
functions.

1 Introduction

Emerging from the pioneering work of Gold [52,53], Solomonoff [103,104],
Barzdin? [17], Thiele [106], Blum and Blum [21], and the work done in

! Sandra Zilles was supported by the Alberta Ingenuity Fund.

2 The names “Barzdin,” “Barzdins” and “Barzdins,” as used in this article, refer
to the same researcher. But in our understanding the author of a paper is given on
the title page of the article in question. Since Barzdins used different spellings of
his name, we cite the papers here as they are in print.

Preprint submitted to Theoretical Computer Science 23 March 2008

Riga [13-15], inductive inference of recursive functions has fascinated many
researchers.

By definition, inductive inference is the process of generating hypotheses for
describing an unknown object from finitely many data points about the un-
known object. For example, when exploring a physical phenomenon by per-
forming experiments, a physicist obtains a finite sequence of pairs (xg, f(z0)),
(21, f(x1)), ..., (zn, f(z,)). From these examples the physicist tries to infer
the law f describing the connection between x and f(x). Usually f is a math-
ematical expression, a formula, i.e., in a very general scenario an algorithm
computing the function f. Using more and more examples, the hypothesis on
hand may be confirmed or falsified. If it is falsified, usually a new hypothesis
is generated.

Many philosophers have studied inductive inference during the last 2000 years,
too, and several of their findings and principles have served as philosophical ba-
sis of the mathematical theory of inductive inference which in turn shed more
light on these findings and principles or has suggested alternatives and refine-
ments (cf., e.g., William of Ockham [89], Freivalds [40], Board and Pitt [23],
Popper [95], Case and Smith [30] as well as Klette and Wiehagen [71]).

The mathematical basis for the work presented in this survey goes back to
Solomonoff [103,104] who proposed criteria for selecting a hypothesis explain-
ing given data best, Putnam [96] who anticipated several of the earlier results
(though on an informal basis) and Gold [52,53] who has provided a thorough
recursion theoretic basis of inductive inference.

Gold [53] considers inductive inference to be an infinite process. The objects
to be inferred are recursive functions. In every step n = 0, 1, 2, ... of the
inference process the inference algorithm has access to successively growing
initial segments (xo, f(xo)), (x1, f(z1)),..., (zn, f(x,)) of the graph of the
target function. Using these initial segments, the inference algorithm com-
putes hypotheses h,, which are interpreted as numbers of programs in a given
computable numbering of (all) partial recursive functions. We refer to such
a given numbering as a hypothesis space. Usually it is required that the hy-
pothesis space contains a program that is correct for the target function. If
hyn # hyy1, then we say that a mind change occurred. The sequence of all
hypotheses is required to converge to a correct program for the target func-
tion. That is, beyond some point, no further mind change occurs, and the
hypothesis repeated from that point on is a program that computes the target
function without errors.

3 The names “Freivalds” and “Freivald,” as used in this article, refer to the same
researcher. But in our understanding the author of a paper is given on the title page
of the article in question. Since Freivalds used different spellings of his name, we
cite the papers here as they are in print.

The model just described is Gold’s [53] identification in the limit (cf. Defini-
tion 8). Based on identification in the limit, a huge variety of inference models
has been proposed and studied. Possible modifications comprise the specifica-
tion of correctness, the mode of convergence, requirements on the intermediate
hypotheses output, the set of allowed inference algorithms, the set of admissi-
ble hypothesis spaces, and the source of information available, among others.

Nowadays there is a largely developed mathematical theory and many re-
sults have found their way into monographs [13-15,78], books [90,62], and
surveys [6,7,35,71]. On the one hand, the results obtained have considerably
enlarged our understanding of inference processes and learning and their con-
nections to philosophy, cognitive science, psychology, and artificial intelligence.
On the other hand, younger counterparts of learning theory and machine learn-
ing share with inductive inference several methods, approaches, ideas, tech-
niques and even algorithms and throughout this survey we shall occasionally
point to them.

Whenever one tries to survey such a large field, one has to make a certain
selection. In the present survey we focused to a larger part on the earlier
work done in the field and on research performed by Rolf Wiehagen and re-
searchers who worked on similar problems. An obvious reason for this choice
is of course Rolf Wiehagen’s 60th birthday which inspired this project. An-
other aspect was the availability of the relevant literature and presence and
non-existence, respectively, of surveys covering already part of the research un-
dertaken in inductive inference of recursive functions. For example, there are
beautiful surveys concerning the learnability of recursive functions via queries
(cf. Gasarch and Smith [50]), by teams of inductive inference machines (cf.
Smith [100]), or probabilistic inductive inference (cf., e.g., Pitt [92], Ambai-
nis [4]). So, these parts of the theory are only touched in the present paper
as is the material presented in Angluin and Smith [6,7]. Likewise, we had no
intention to rewrite the comprehensive paper by Case and Smith [30] which
covers many earlier theoretical results of the inductive inference of recursive
functions. But of course, some overlapping occasionally occurs.

After introducing some basic notions and notations in Section 2, we start with
a list of desiderata seemingly arising naturally when one wishes to define a
learning model. In Section 3, we study the resulting learning model, provide
different characterizations of it and point to its strengths and weaknesses. We
continue with possible alternatives to enlarge the learning power of the first
model. This directly leads us to the notion of consistent learning. Consistency,
which here means that inference algorithms always return hypotheses agreeing
with the information they have seen so far, is often presupposed in applica-
tions. The question to which extent this affects learning — and the resulting

(in)consistency phenomenon — are studied in this survey in more detail (cf.
Section 4 and 7).

This study performed in Section 4 as well as the results obtained earlier suggest
to introduce further learning models, among them Gold’s [53] original model
of learning in the limit (cf. Section 5). Here we also look at different variations
of learning in the limit by changing the mode of convergence, by varying the
set of admissible strategies and the information supply.

For gaining a better understanding of the similarities and differences of the
various learning types presented so far, we then continue with characterizations
in terms of complexity and of computable numberings (cf. Sections 6 and 8,
respectively).

While having provided a rather comprehensive treatment of the material men-
tioned so far, in Section 9 we briefly survey some additional research such as
learning from good examples, intrinsic complexity and uniformity. The reason
we only sketch these areas is the same mentioned above, i.e., there are already
comprehensive articles in print that cover these areas. Finally, we provide a
summary and discuss open problems.

2 Preliminaries

Unspecified notations follow Rogers [97]. In addition to or in contrast with
Rogers [97] we use the following. By N = {0,1,2,...} we denote the set of
all natural numbers. We set Nt = N\ {0}. The set of all finite sequences of
natural numbers is denoted by N*.

The cardinality of a set S is denoted by |S|. We write p(S) for the power set
of set S. Let 0, €, C, C, D, D, and # denote the empty set, element of,
proper subset, subset, proper superset, superset, and incomparability of sets,
respectively.

By B and ¥ we denote the set of all partial and total functions of one vari-
able over N. The set of all partial recursive and recursive functions of one
respectively two variables over N is denoted by P, R, P?, R?, respectively.
Let f € P, then we use dom(f) to denote the domain of the function f, i.e.,
dom(f) = {z | x € N, f(z) is defined}. Additionally, by Val(f) we denote
the range of f, ie., Val(f) = {f(z) | x € dom(f)}. We use Ry} to denote
the set of all f € R satisfying Val(f) C {0,1}. We refer to Ry 1y as to the
set of recursive predicates. A function f € P is said to be monotone provided
for all z,y € N with z < y we have, if both f(x) and f(y) are defined then
f(z) < f(y). By Ryuon we denote the set of all monotone recursive functions.

Any function ¢ € P? is called a numbering. Moreover, let ¢ € P?, then
we write ¢; instead of Az.i(i,z) and set Py, = {¢; | i € N} as well as

Ry = Py N'R. Consequently, if f € Py, then there is a number ¢ such that
f=14;. If f € Pand € N are such that ¢, = f, then ¢ is called a ¥»—program
for f. Let ¢ be any numbering, and ¢, x € N; if ¢;(z) is defined (abbr. ¢;(x) |)
then we also say that ¢;(x) converges. Otherwise, 1;(x) is said to diverge (abbr.

ei(x) 7).

For functions f,g € P and m € N we write f =, ¢ iff {(z, f(z)) | z <
mand f(z)] } = {(z,g9(z)) | * < m and g(x) | }; otherwise we write f #,, g.

A numbering ¢ € P? is called a Gddel numbering (cf. Rogers [97]) iff P, = P,
and for any numbering ¢ € P?, there is a compiler ¢ € R such that 1; = .
for all i € N. God denotes the set of all Godel numberings. Let ¢ € God and
let f € P; then we use min,, f to denote the least number ¢ such that ¢; = f.

Furthermore, let NUM = {U | (F € R?) [U C Py|} denote the family of all

subsets of all recursively enumerable classes of recursive functions.

Following [75] we call any pair (¢, ®) a measure of computational complexity
provided ¢ is a Godel numbering of P and ® € P? satisfies Blum’s [22] axioms.
That is, (1) dom(y;) = dom(®;) for all i € N and (2) the predicate “®;(z) = y”
is uniformly recursive for all ¢, z,y € N.

Sometimes it will be suitable to identify a recursive function with the sequence
of its values, e.g., let & = (ao,...,ar) € N*, j € N, and p € Ry 1}; then we
write ajp to denote the function f for which f(x) = a,, if ¢ <k, f(k+1) = j,
and f(x) =p(r —k—2),if x > k+2. Let g € P and a = (ayp, ..., a;) € N*;
we write @ C ¢ iff « is a prefix of the sequence of values associated with g,
i.e., for any x < k, g(z) is defined and g(x) = a,. If Y C R, then we denote
by [U] the set of all prefixes of functions in U. Also, it is convenient to have
a notation for the set of all finite variants of functions in U. We use [[U]] for
this set, i.e., [U]] ={f | f e R, 3f e U ANV®z[f(x) = f'(z)]}. The quantifier

V>, as used here, means “for all but finitely many.”

Furthermore, using a fixed encoding (...) of N* onto N we write f" instead of
((f(0),..., f(n))), for any n € N, f € R. Furthermore, the set of all permu-
tations of N is denoted by II(N). Any element X € II(N) can be represented
by a unique sequence (x,)neny that contains each natural number precisely
once. Let X € TI(N),f € P and n € N. Then we write f*" instead of
((wo, f(x0), ..., Tn, f(x,))) provided f(xy) is defined for all k < n.

Finally, a sequence (j,)nen of natural numbers is said to converge to the num-
ber j iff all but finitely many numbers of it are equal to j. A sequence (j,)nen
of natural numbers is said to finitely converge to the number j iff it converges
in the limit to j and for all n € N, j,, = 7,1 implies j, = 7 for all £k > n.

In the following section, we introduce the subject of this survey, i.e., learning

of recursive functions. For making this survey self-contained, first we briefly
outline what we have to specify in order to arrive at a learning model for
recursive functions. Then we provide an important example.

3 Defining a Learning Model

In the following, the learner will be an algorithm. We refer to it as a strategy S.
That is, we shall require S € P. The objects to be learned are recursive
functions. Thus, the next question we have to address is from what information
recursive functions should be learned. The information fed to the strategy are
finite lists of pairs “argument-value,” i.e., lists (xq, f(x0)), ..., (Tn, f(xn)). So,
for technical convenience we describe this information by using the notation
X" defined above. If the order in which examples are presented does not
matter, then we restrict ourselves to present examples in natural order, i.e.,
we consider lists (0, f(0)), (1, f(1)),...,(n, f(n)). If examples are presented in
natural order, the argument X is redundant. Thus, we can use the notation
f™ defined above to describe the information fed to the strategy.

Additionally, we require that the entirety of the local information completely
describes the function f to be learned. That means, for every n € N there
must be a finite list containing (n, f(n)).

Using the local information f*", the strategy computes a number ¢ which is
referred to as a hypothesis. Thus, when successively fed the sequence (f*"),cn,
the strategy computes a sequence of hypotheses which is interpreted with re-
spect to a suitably chosen hypothesis space. Hypothesis spaces are numberings
) € P? which are required to contain at least one program for every function
to be learned.

Finally, we require the sequence of hypotheses formed in the way described
above to converge to a program that correctly computes the target function.

Usually, we consider sets U of recursive functions. Given a class Y C R we
then have to ask whether or not the resulting learning problem is solvable.
For obtaining an affirmative answer we have to provide a strategy S learning
every function in U. Otherwise, we have to show that there is no strategy S
which can learn every function in U.

In order to have some examples, it is useful to define some function classes
which we shall use quite often throughout this survey. First, let

Up={f | f € R and V*n[f(n) = 0]}

be the class of all functions that are almost everywhere zero. This class is

also known as the class of functions of finite support. It is easy to see that

Uy € NUM.
Next, let (¢, @) be any fixed complexity measure. We set
Upp) = {Pi | pi € R}
and refer to U,) as to the class of all recursive complexity functions.

Another quite popular class is the class of self-describing functions defined as
follows. Let ¢ € P? be any fixed Godel numbering; we set

U ={f|feRand ¢s0) = f} .

Note that neither U/, o) nor U,y belong to NUM as we shall prove next.
Lemma 1. Z/[(%@), Z/{sd §é NZ/{M

Proof. For showing that U, e) ¢ NUM we first observe that for every class
U € NUM there is a function b € R such that V>°z[f(z) < b(x)] for every
function f € Y. This can be seen as follows. Let ¢ € R? be such that U C R,
Then it suffices to set b(z) = max{¢;(z) | ¢ < z}. Supposing U, e) € NUM
there would be such a function b for the class U/,). The desired contradiction
is obtained by the following claim.

Claim 1. Let f € R be arbitrarily fized. Then there is a @-program i such that
0, = f and ®;(x) > b(x) for all x € N.

Let s € R be chosen such that

(), if =[®;(

_ —[®;(z) < b(z)]
Yo () = |
pi(x) +1, if &;(x) < b(z) .

b(x)

By the fixed point theorem (cf., e.g., Smith [99]) there is a number i such that
©si) = @i Suppose there is an x such that ®;(x) < b(x). By construction
©i(r) = @s@)(x) = pi(x) + 1, a contradiction. So, this case cannot happen and
we get p; = o) = f. This proves the claim.

Consequently, U, o) ¢ NUM.

In order to show that Usy & NUM we first prove that R ¢ NUM. Suppose
the converse, i.e., there is a numbering ¢ € R? such that R C Ry. We define
a function f by setting f(x) = ¥,(x)+1 for all x € N. Since 1 € R? we obtain
f € R. Hence, there should be a v-program for f, say j, i.e., ¥; = f. But
¥;i(j) = f(7) = ¢;(j) + 1, a contradiction. So we have R ¢ NUM.

Now the proof of Uy ¢ NUM is obtained by the following claim.

Claim 2. For every f € R there is ani € N such that ¢;(0) =i and p;(x+1) =
f(x) for all z € N.

Let f € R be any function and let s € R be chosen such that for all j € N

7, ifex=0

(,05(]')($) = .
flz—1), ifx>0.

Again, by the fixed point theorem there is a number ¢ such that ¢,;) = ¢;.
By construction, ¢;(0) = i and ¢;(x + 1) = f(z) for all x € N. This proves
Claim 2.

Now, if Uyy € NUM, then, by erasing the first argument, one can directly
obtain a numbering ¢ such that R = Ry, a contradiction to R ¢ NUM. O

The following classes are due to Blum and Blum [21]. Let (¢, ®) be any com-
plexity measure, and let 7 € R be such that for all i € N

)

: if ®;(x)| and ®,.(z) < Py(x),
S (I),'({B)],

1
pr@) (@) =90, if Dy(z) | and [, (z)
T

) otherwise.

Now we set
z/{mahp = {()OT(Z) | ¢ € N and (I)z € Rmon}

(the class of monotone approzimations to the halting problem) and
Z/[ahp = {QOT(Z) | 1€ Nand &, € R}
(the class of approzimations to the halting problem).

Note that Upanp, Uanpy € NUM. For a proof, we refer the reader to Stephan
and Zeugmann [105].

Whenever appropriate, we shall use these function classes for illustration of the
learning models defined below, by analyzing whether or not the corresponding
learning problem is solvable.

Next, we exemplify the definition of a learning model and characterize the
collection of all function classes U for which the learning problem is solvable.

3.1 The Learning Types R-TOTAL™ and R-TOTAL

Let us start with a list of desiderata. First, we do not make any assumption
concerning the order in which examples are presented. Second, our strategy
should be defined on all inputs, i.e., we require S € R. This may seem con-
venient, since it may be hard to know which inputs to the strategy may oc-
cur. Third, every hypothesis should describe a recursive function. Again, this
looks natural, since any hypothesis not describing a recursive function can-
not be correct. Thus allowing a strategy to output hypotheses not describing
recursive functions may be a source of potential errors which we avoid by
our requirement. Moreover, this requirement is also nicely in line with Pop-
per’s [95] refutability principle requiring that we should be able to refute every
incorrect hypothesis.

Definition 1 (Wiehagen [111]). Let U C R and let ¢ € P?. The class U
1s said to be R—totally arb-learnable with respect to 1 if there is a strategy
S € R such that

(1) sm) € R for alln € N,
(2) for all f € U and every X € II(N), there is a j € N such that ¢; = f,
and (S(fX™))nen converges to j.

If U is R—totally arb-learnable with respect to ¢ by a strategy S, we write U €
R-T(’)TAEZ,N’(S). Moreover, let R- TOTAEZ“’ = {U | U is R-totally arb-

learnable w.r.t. 1}, and let R-TOTALY = Uyepe R- T@TAE;”’.

Some remarks are mandatory here. Let us start with the semantics of the
hypotheses produced by a strategy S. As described above, we always inter-
pret the number S(f*") as a 1»-number. This convention is adopted to all
the definitions below. The “arb” in arb-learnable points to the fact that we
require learnability with respect to any arbitrary order of the input. Moreover,
according to the definition of convergence, only finitely many data points of
the graph of a function f were available to the strategy S up to the unknown
point of convergence. Therefore, some form of learning must have taken place.
Thus, the use of the term “learn” in the above definition is indeed justified.

Note that R- TOTALY is sometimes also called PEX, where the EX stands
for explain and P refers to Popperian strategies, i.e., strategies that can di-
rectly use Popper’s [95] refutability principle (cf. [30]). But we think this inter-
pretation of Popper’s [95] refutability principle is too narrow. A more detailed
discussion is provided throughout this survey.

In order to study the impact of the requirement to learn with respect to any
order of the input, next we relax Definition 1 by demanding only learnability
from input presented in natural order.

Definition 2 (Wiehagen [111]). Let i/ C R and let v € P?. The class U is
satd to be R-totally learnable with respect to ¢ if there is a strategy S € R
such that

(1) sm) € R for alln € N,
(2) for each f € U there is a j € N such that ; = f, and (S(f"))nen

converges to j.

R-TOTALY(S), R-TOTALy, and R-TOTAL are defined analogously to
the above.

It is technically advantageous to start with the following result showing that,
as far as R-total learning is concerned, the order in which the graph of the
function is fed to the learning strategy does not matter.

Theorem 1. R-TOTAL = R-TOTALY

Proof. Obviously, if we can learn from arbitrary input then we can learn from
input presented in natural order, i.e., R-TOTAL™ C R-TOTAL.

For the opposite direction, let U € R-TOTAL. Hence there is a numbering

Y € P? and a strategy S € R such that U € R-TOTALy(S). The desired
strategy S’ is obtained from S by adding a preprocessing. If S’ receives an en-
coded list f%™ it looks for the largest number m such that (0, £(0)),. .., (m, f(m))
are all present in f*". If this number m exists, then S’ simulates S on input
f™ and outputs the hypothesis computed. Otherwise, i.e., if (0, f(0)) does not
occur in f%" then S’ simply returns a fixed program of the constant zero
function as an initial auxiliary hypothesis.

Now it is easy to see that & € R-TOTALY"(S'). We omit the details. O

The following lemma is both of technical and of epistemological importance. It
actually states that, if we can R-totally learn with respect to some numbering,
then we can also learn with respect to any Godel numbering. As we shall see
later, its proof directly transforms to almost every learning type considered in
this survey.

Lemma 2. Let U C R, let yp € P? be any numbering and let S € R be such
that U € R-TOTALy(S). Furthermore, let o € P? be any Godel numbering.
Then there is a strategy S € R such that U € R-TOTAL,(S).

Proof. By the definition of a Gdédel numbering there is a compiler function

¢ € R such that ¢); = @) for all i € N. Thus, we can define S(f™) = e(S(f))
and the lemma follows. O

Expressed differently, we have just shown that R-7TOTAL = R-TOTAL,

10

for every Godel numbering ¢. But it is often advantageous to use special
numberings having special properties facilitating learning. A first example is
provided by Theorem 2 below. Additionally, this theorem also characterizes
the classes in R-7TOTAL.

Theorem 2. R-TOTAL = NUM
Proof. The proof is done by showing two claims.
Claim 1. R-TOTAL C NUM

Let U € R-TOTAL. Then there is a strategy S € R and a numbering ¢ € P>
such that U € R-TOTAL,(S). We have to construct a numbering 7 € R?
such that Y C R,.

For all 4,2 € N we define 7(¢,2) = 1s(;)(x). By Condition (1) of Definition 2
we know that v¢g(;) € R. Thus, we directly obtain 7 € R2. It remains to show
that U C R,. Let f € U. By Condition (2) of Definition 2 there exists a j
such that ¢, = f and (S(f™))nen converges to j. Let k£ be minimal such that
S(f") = j for all n > k. Thus, for i = f* we obtain

T = PYs@) = Vs = ;= [
and consequently, Y C R,. This proves Claim 1.
Claim 2. NUM C R-TOTAL

Let U € NUM. Hence there is a numbering ¢ € R? such that U C Ry. Es-
sentially, Claim 2 is proved by using Gold’s [53] famous identification by enu-
meration strategy. The idea behind the identification by enumeration strategy
to learn a function f € U is to search for the least index j in the enumeration
Yo, Y1, Vo, ... such that 1; = f. So on input f" one looks for the least ¢ such
that ¢ = f".

The only difficulty we have to overcome is to ensure that S satisfies Condi-
tion (1) of Definition 2 for all f € R, that is, also in case f € R\ U. Then
there may be no program 7 at all such that 7" = f".

Therefore, using a fixed enumeration of N* (cf. Rogers [97]) we define a num-
bering x as follows. Let a be the ith tuple of N* enumerated. We set y; = a0>.
Thus, x € R?* and Uy = R,.

Next, we define a numbering 7 € R? by setting 7; = 1; and 741 = x; for all
i € N. Now, taking into account that [Uy] = [R] = N*, we can directly use the
identification by enumeration strategy by using the numbering 7 to R-totally
learn the class . This proves Claim 2.

11

Claim 1 and Claim 2 together yield the theorem. O

On the one hand, NUM is a rich collection of function classes. As a matter of
fact, the class of all primitive recursive functions is in NUM. Moreover, the
characterization obtained by Theorem 2 directly allows a very strong corollary,
which first requires the following simple definition.

Definition 3. Let LT be any learning type and let (S;)ien be a recursive
enumeration of strategies fulfilling the requirements of the learning type LT .
We call LT closed under recursively enumerable union if there is a strategy S
fulfilling the requirements of LT such that U;eny L7 (S;) C LT(S).

Corollary 3. R-TOTAL is closed under recursively enumerable union.

On the other hand, none of the classes U, ¢y, Usq, Umahp, and Uypy is in NUM

as pointed out above.

So, we have to explore some ways to enlarge the learning capabilities of
R-TOTAL. Before doing this, we also characterize R-7 OTAL in terms of
complexity, since it may help to gain a better understanding of the properties
making a function class learnable or non-learnable, respectively.

The idea behind the following characterization can be explained easily. Sup-
pose we want to learn a class U with respect to any fixed Godel numbering .
Then a strategy may try to find a program 7 such that ¢} = f". Though this
search will succeed, the strategy may face serious difficulties to converge. To
see this, suppose on input f™ a program ¢ as described has been found. Next,
the strategy sees also f(n + 1). Now it may try to compute ¢;(n + 1) and,
in parallel to find again an index, say j, such that gp’j”l = f"*1 Once j is
found and the computation of p;(n+1) has not stopped yet, the strategy must
make a decision. Either it tries to compute p;(n + 1) further or it switches its
hypothesis to j. The latter would be a bad idea if p; # f but ¢; = f. On the
other hand, it would be a good idea if p;(n + 1) 1. Since the halting prob-
lem is undecidable, without any additional information, the strategy cannot
decide which case actually occurs. Thus, it is intuitively clear that informa-
tion concerning the computational complexity of the functions to be learned
can only help. We illustrate this by reproving Barzdin’s and Freivalds’ [16]
Extrapolation Theorem here in our setting.

Let t € R, and let (p,®) be any fixed complexity measure. Following Mec-
Creight and Meyer [83], we define the complexity class

Co = {wi [V¥n[®i(n) <t()]} NR .

For further information concerning these complexity classes, we refer the in-
terested reader to e.g., [24,33,75,117].

12

Theorem 4 (Barzdin and Freivalds [16]). For every classUd C R we have:
U e R-TOTAL if and only if there is a function t € R such that U C C;.

Proof. Necessity. Let U € R-TOTAL. Then, by Theorem 2, we know that
there is a numbering ¢ € R? such that & C R,. Now let ¢ € R be any fixed
compiler such that ¥; = @) for all i € N. We set t(n) = max{®.;)(n) | i <
n}. Clearly, U C C;.

Sufficiency. Suppose U C C;. By Theorem 2, it suffices to show that C; €
NUM. For proving this, we use the observation that f € C, if and only if there
are j, n, k € N such that f = ¢;, ®;(z) < k for all z < n and ¢;(x) < t(x)
for all x > n. Now let c3 be the canonical enumeration of N x N x N. For
c3(i) = (4,n, k) and x € N we define

pi(z), ifz<nand ®;(z) <k
Y(i,z) = w;(z), if x >n and @;(x) < t(z)

0, otherwise.

By construction, we clearly have 1) € R?. Now let f € C;. Using the observation
made above, choose ¢ such that c3(i) = (j,n, k), where f = ¢;, ®;(x) < k for
all z < n and ®;(z) < t(x) for all + > n. Hence, ¢; = ¢; = f and thus
f € Ry. Consequently, C; € NUM. O

There is another nice characterization of R-7O7AL in terms of a different
learning model which we would like to include. First we define the learning
model which was introduced by Barzdin [17].

Definition 4 (Barzdin [17]). A class U C R of functions is said to be
predictable if there exists a strateqy S € R such that S(f™) = f(n+1) for all
f el and all but finitely many n € N.

The resulting learning type is denoted by N'V. Here, N'V stands for “next-
value.” So, in NV learning we have to correctly predict the next value of the
target function for almost all n.

Theorem 5 (Barzdin [17]). NV =R-TOTAL

We do not prove this theorem here but refer the interested reader to Case and
Smith [30] (cf. Theorem 2.19).

But we would like to discuss another interesting aspect. If the value predicted
by an NV learner is wrong, i.e., if S(f") # f(n + 1), then we say that a
prediction error occurs. Analogously, if an R-7 OTAL learner changes its
hypothesis, i.e., if S(f") # S(f"™), then S performs a mind change.

13

Now, when using the identification by enumeration strategy, in order to learn
the nth function enumerated in the numbering 1, one needs n mind changes in
the worst case and this approach also leads to n prediction errors in the worst
case. Therefore, it is only natural to ask whether or not we can do any better. In
fact, an exponential speed-up is possible. For the sake of simplicity, we present
the solution here only for classes of recursive predicates, i.e., Y C Ry} and
for prediction errors.

Theorem 6 (Barzdin and Freivalds [19]). Let v» € R? such that 1; €
Ry for all i € N. Then there exists an NV learner FP for U making at
most O(logn) prediction errors for every function f € U, where n is the least
number j such that ¢¥; = f.

Proof. Let f € U be the target function. The desired NV learner works in
stages. In each Stage i it considers the subset of the block of functions B; =
{p | 22 +1 < k <227} that coincide with all the data seen so far. Then
it makes its prediction in accordance with the majority of the functions still
in the block. After having read the true value, it eliminates the functions not
coinciding with the new value from block B;. If all functions are eventually
eliminated, Stage ¢ is left and Stage ¢ + 1 is started. Clearly, if the target
function f belongs to block B;, Stage i is never left. Before analyzing this
prediction algorithm we give a formal description of it. In order to make it
better readable, we also add the arguments to the data presentation.

Algorithm FP: “On successive input (0, f(0),1, f(1),2, f(2),...) do the fol-
lowing: Execute Stage 0:
Stage 0: Set Vo ={0,1,2,3,4}, o = 0.
While Vj # () execute (A) else goto Stage 1.
(A) Read zo. Compute V) = {k | k € Vi, ¥i(xo) =0}, and Vi = {k | k €
Vo, wi(zo) = 1}.
If |[VQ| > |Vi}| then predict 0; otherwise predict 1.
Read f(x¢), and increment . If f(xy) = 0 set Vy = V; otherwise set
Vo =13 |
Stage i, © > 1: Set x; = x;_1, and compute V; = {k e N| 22 +1<k<
22 h(x) = f(z) for all 0 < z < x;}.
(* V; is the set of those indices of functions in block ¢ that coincide with
all the data seen so far. *)
While V; # () execute (B) else goto Stage i + 1.
(B) Read z;. Compute V! = {k | k € V;, ¢y(x;) =0}, and V;! ={k | k €
Vi, dnlre) = 1.
If |[V;%| > |Vi!| then predict 0; otherwise predict 1.
Read f(z;), and increment z;. If f(z;) = 0 set V; = V¥; otherwise set
Vi=V5

We start our analysis by asking how many stages the algorithm FP has to

14

execute. Let n be the least number j such that ¢; = f. Furthermore, let ¢ be
the least number m such that n € V,. Thus, i = [loglogn] — 1. The total
number of prediction mistakes is the sum of all the prediction mistakes made
on each of the blocks Vg, V1, ... V;. The number of prediction mistakes made on
Vp is 3. For every 1 < z < i the number of prediction mistakes made on V, will
be at most [log(|V,|)]. To see this, remember that each prediction is made in
accordance with the majority of computed values for all the remaining indices
in V.. Thus, whenever a prediction error occurs, at least half of the indices in
V. is deleted. Since all indices are eventually deleted, we arrive at the stated
bound. Analogously, the number of prediction mistakes made on V; is at most
[log |Vi|] — 1. Obviously, |V;| = 2% (22" — 1), and thus [log |V|] < 2**1.

Therefore, the maximum number of prediction mistakes is upper bounded by

21+'”+2i+1:2i+2_1
<2[10g10gn]—1+2 -1
S 4. 210g10gn
=4logn
=0(logn) . O

The algorithm FP invented by Barzdin and Freivalds is nowadays usually
referred to as the halving algorithm. This algorithm as well as different gen-
eralizations of it have found many applications in machine learning (cf. e.g.,
[26,54,59,82,86]). The halving algorithm can be modified to R-totally learn
every class of recursive predicates from NUM with at most O(logn) mind
changes. However, in order to achieve this result, the resulting strategy must
use a Godel numbering as its hypothesis space and not the numbering).
Furthermore, all these results can be generalized to learn or to predict arbi-
trary classes from NUM, thereby still achieving the O(logn) bound. For a
detailed presentation and further information, we refer the reader to Freivalds,
Barzdins and Podnieks [41].

The results obtained so far provide some insight concerning the problem how
to extend the learning capabilities of R- 7 O7TAL. First, we could restrict our
demands to the strategy to hold only on initial segments from [U/] instead of
from [R]. Second we could modify our demands to the intermediate hypothe-
ses. The demand to output only programs computing recursive functions seems
rather strong.

Third, we could have a closer look at the identification by enumeration strat-
egy. The most obvious point here is that we do not need the requirement
Y; € R. For example, if the predicate “i;(z) = y” was uniformly recursive for
all 7, z,y € N it would still work. But as we shall see, there is more we can do.

15

Fourth, looking at the definition of the complexity class C;, we see that the
bound t does not depend on the functions f to be learned. So, some modifi-
cations are suggesting themselves.

We continue this section by trying the first approach. The other modifications
are discussed later. So, let us relax the definition of R-7 O7TAL as described
above.

Definition 5 (Freivalds and Barzdin [39]). Let U C R and let ¢p € P2.
The class U is said to be totally learnable with respect to v if there is a
strategy S € P such that for each function f € U,

(1) for allm € N, S(f") is defined and sy € R,
(2) there is a j € N such that ; = f, and (S(f"))nen converges to j.

TOTALY(S), TOTAL, and TOTAL are defined analogously as above.

Note that any strategy that learns in the sense of 7OTAL can directly use
Popper’s [95] refutability principle. But obviously, Us; € TOTAL and thus
total learning is more powerful than R-total inference.

Theorem 7. R-TOTAL C TOTAL

But the price paid is rather high, since, in contrast to Corollary 3, now we can
easily prove that 7TO7TAL is not closed under union.

Theorem 8. Uy Ul ¢ TOTAL

Proof. Suppose the converse. Then there must exist a strategy S such that
UyUUsq € TOTAL(S). Since [Uy] = [R], we can conclude S € R and ¢g;) € R
for all i € N. Hence, S would witness Uy U Usy € R-TOTAL(S). So, by
Theorem 2, we obtain Uy U U,y € NUM, a contradiction to Lemma 1. O

TOTAL has another interesting property. Modifying Definition 5 in the op-
posite way we have obtained R-7OTAL from R-TOTAL™, we get the
learning type 7OTALY®. Then, using the same ideas as in the proof of The-
orem 1, one can easily show the following theorem first announced in Jantke
and Beick [66].

Theorem 9. TOTAL = TOTAL™

As we have seen above, the characterizations of a learning type in terms
of complexity or in terms of computable numberings help to gain a better
understanding of the problem how to design learning algorithms. As far as
R-TOTAL was concerned, the answer obtained was very satisfying, since it
showed that every class U € R-7 OTAL can be identified by the identification
by enumeration strategy.

16

So, let us ask whether or not we can also characterize 7OTAL in terms
of complexity or in terms of computable numberings. Hopefully, we can ob-
tain a deeper insight into the question how learning algorithms may be de-
signed for classes that are totally learnable. Interestingly, while characterizing
TOTAL in terms of complexity remains an open problem, a characteriza-
tion of 7OTAL in terms of computable numberings was obtained by Wieha-
gen [111]. This characterization theorem shows that every totally learnable
class can be learned in a uniform manner, which, in addition, has a strong
resemblance to identification by enumeration. Therefore we continue with this
characterization.

Theorem 10 (Wiehagen [111]). Let Y C R. Then we have: U € TOTAL
if and only if there exists a numbering 1 € P? such that

(1) U S Py,
(2) There is a function g € R such that v¥; =4 f implies 1; € R for every
function f € U and every program i.

Proof. Necessity. Let U € TOTAL and let ¢ € God. By Lemma 2 we can
assume that there is a strategy S € P such that Y € TOTAL,(S). Let d € R
be chosen such that d enumerates dom(S) without repetitions. Furthermore,
for i € N let n be the length of the tuple enumerated by d(i). We set (i, x) =
@s(aey () and g(i7) = n. Definition 5 directly implies that Conditions (1) and
(2) are satisfied.

Sufficiency. First we describe the basic idea for a strategy. Suppose f € U and
we have already found a program 4 such that 1); =4 f. Then Condition (2)
allows to check whether or not f(x) = ¢;(z) for all provided the strategy
knows f(z). So, if f = 1);, the strategy will converge. Otherwise it will find a
witness proving f # 1; and it can restart its search. So, the main problem is
to verify v; =) f. For overcoming it, let ¢ € R be such that 1); = ¢ for all
i € N. Now the idea is to use the input length to provide a bound on ®.;) ().

The desired strategy S is formally defined as follows. Let z be any fixed number
such that ¢, € R.

S(f") = “Compute M = {i | i < n, g(i) < n, Pup(r) < nand Y(z) =

f(z) for all x < g(i)}. Execute Instruction (I).

(I) If M = () then output z.
If M # () then let ¢ = min M and compute v;(x) for all x such that
g(i) < < n. If one of these values is not defined, then S(f™) is not
defined, either.
Otherwise check whether or not ; =,, f. If this is the case, output :.
In case ¢; #, f execute (I) for M := M \ {i}.”

It remains to show that U € TOTAL(S). Let f € U. If M = () then we have

17

Yg(my =1, € R. If M # 0, then the definition of M ensures that we already
know v; =4;) f. Hence by Condition (2) we also have ¢); € R. Thus, S(f")
is defined and gy € R for all n € N. Finally, the definition of S directly
implies that (S(f™))nen converges to the least number 7 with ¢; = f. O

Having already shown that total learning is more powerful than R-total iden-
tification, it is only natural to ask whether or not we can also totally learn the
class U, ¢). Answering this question additionally sheds light to the strength of
the demand to exclusively output hypotheses describing recursive functions.
The negative answer provided below shows that this may be a too strong
demand. Therefore, we finish this section by showing that U, e) ¢ TOTAL
provided the complexity measure (¢, ®) fulfills a certain intuitive property.

A complexity measure (@, ®) is said to satisfy Property ext provided for all
i,n € N such that ®;(0)],...,®;(n)| thereis a &, € R such that ®; =, ..

Note that the following proof uses an idea from Case and Smith [30].

Theorem 11. U, o) ¢ TOTAL for all complexity measures (@, ®) fulfilling
Property ext.

Proof. Let » € R be chosen such that ®; = ¢,; for all i € N. Further-
more, by the padding lemma r can be chosen in a way such that r is strongly
monotonously increasing, i.e., 7(z) < r(i + 1) for all i € N (cf. Smith [99]).
Hence, Val(r) is recursive. Next, choose s € R such that

0, if there is an ¢ such that r(i) = j
s()(0) = .
T, otherwise .

In order to define ;) for all j and all z > 0, suppose there is a strategy
S € P such that U, ey € TOTAL,(S). For all x > 0 let

0, if pj(y)], forally <z and S(¢j)| and
sy +1) = Or, (+ 1)L < pj(x + 1), where k, = S(¢F)

T, otherwise .

By the fixed point theorem (cf. Smith [99]) there is a number i such that
©s(r(i)) = i- We continue to show inductively that ¢; € R and that S fails to
totally learn ®,.

For the induction base, by construction, ¢yq@))(0) = 0, since j = (). Hence,
©i(0) = 0 and thus ®;(0) = ¢, (0) | .

18

Next, consider the definition of ;(1).

0, if ®;(0)] and S(®Y)|
@i(1) = @seray (1) = and @, (1)] < ®;(1), where ko = S(®?)

T, otherwise .

Since ®;(0) | we know by Property ext that there is a ®, € R such that
®;(0) = ,(0). Consequently, S(®9)| and px, € R, where ky = S(®?). Thus,
by Property (2) of the definition of complexity measure, one can effectively
decide whether or not ¢, (1) < ®;(1). Clearly, if ¢, (1) < ®;(1), then ¢;(1) =
0 and hence defined. On the other hand, if ¢y, (1) > ®;(1) then ®;(1) |, too,
but, by construction, ¢;(1) 1, a contradiction to Property (1) of the definition
of complexity measure. Hence ¢;(1) is defined.

The induction step is done analogously. That is,

0, if ®;(y) |, for all y < and S(P?)| and
pi(z+1) = pseap(z+1) = o, (z+ 1) < ®(x + 1), where k, = S(®?)

T, otherwise .

By the induction hypothesis, ®;(y) | for all y < z and thus, by Property
ext, there is a ®, € R such that ®; =, ®, and therefore S(®¥) |. Let
k. = S(®7), then ¢, € R and one can effectively decide whether or not
op, (x+1) < ®(x+1). If it is, p;(x +1) = 0 and thus ®;(z + 1) | . If it is not,
we have g (r+ 1) > ®;(x + 1) but ¢;(x + 1) T, a contradiction to Property
(1) of the definition of complexity measure. Hence, ¢;(x 4 1) is defined.

Therefore, we obtain ¢; € R and hence ®; € R, too. Consequently, ®; € U,).
By supposition, S has to learn ®;, i.e., the sequence (k;),en has to converge,
say to k, and k must be a ¢-program for ®;. But by construction we have
or(z +1) < @;(z + 1) for all but finitely many = € N, a contradiction. O

Now we are ready to explore the other ways mentioned above to enlarge the
learning capabilities of R-7 OTAL. This brings us directly to another sub-
ject Rolf Wiehagen has been interested in for many years, i.e., learning and
consistency.

4 Learning and Consistency — Part 1

Looking back at the proof of Theorem 2, we see that an R-total strategy
is always completely and correctly reflecting the data seen so far. Such a

19

hypothesis is called consistent. Hypotheses not behaving thus are said to
be inconsistent. Consequently, if a strategy has already seen the examples
(xo, f(x0)), ..., (xn, f(z,)) and is hypothesizing the function g and if g is in-
consistent, then there must be a k& < n such that g(zx) # f(zx). Note that
there are two possible reasons for g to differ from f on argument xzj. Either
g(xk) T or g(xg) | but does not equal f(zx). In any way, an inconsistent hy-
pothesis is not only wrong but it is wrong on an argument for which the learn-
ing strategy does already know the correct value. Thus, one may be tempted
to completely exclude strategies producing inconsistent hypotheses. So, let us
follow this temptation and let us see what we get. We start with the strongest
version of consistent learning which was already considered in [21]. Note that
Blum and Blum [21] called this form of consistency the overkill property.

Definition 6 (Blum and Blum [21]). Let Y C R and let € P*. U €
T- CONSZ”’ if there is a strategy S € R such that

(1) for all f € U and every X € II(N), there is a j € N such that ¢; = f,
and (S(f*™))nen converges to j,

(2) Ygpxmy(m) = f(2m) for every permutation X € II(N), f € R, n € N,
and m <n.

T- CONSZH’(S) as well as T-CONS are defined in analogy to the above.

That means a 7- CON'S? strategy is required to return consistent hypotheses
even if the input does not belong to any function in the target class U.

Our next goal is to characterize 7-CONS™ in terms of complexity and in
terms of computable numberings. To achieve this goal, first we recall Mc-
Creight and Meyer’s [83] definition of an honesty complexity class. Let h € R?;
then

Ch = {@i | Vn[®i(n) < h(n, pi(n))]} NR
is called honesty complexity class. So, honesty means that every function f €
Cy, does possess a p-program ¢ computing it, i.e., ; = f and the complexity of

this ¢-program can be bounded by using the function h € R? and the function
values f(n).

Second, we need a new family of numberings.

Definition 7 (Blum [22]). A numbering 1 € P? is said to be measurable if
the predicate “ip;(x) = y” is uniformly recursive in i, z,y.

The next theorem completely characterizes 7- CONS®? in terms of complex-
ity and of computable numberings. The proof presented below is a combination
of results from Blum and Blum [21] (Assertion (1) and (2)) and from Mec-
Creight and Meyer [83] who showed the equivalence of Assertion (2) and (3).

20

Theorem 12 (Blum and Blum [21], McCreight and Meyer [83]).

Let (p,®) be any complexity measure and let U C R. Then the following
conditions are equivalent.

(1) U € T-CONS“™.
(2) There is a function h € R* such that U C C,.
(3) There is a measurable numbering 1 € P? such that U C P,.

Proof. The proof is done by showing three claims.
Claim 1. (1) implies (2).

Let U € T- CONSZ,TZ’(S) be witnessed by S € R and ¢ € Gdd. Furthermore,
let co: N x N — N be the standard Cantor coding of all pairs of natural
numbers. We define an order < on N x N. Let (z1,y1), (22,y2) € N x N. Then

(z1,91) = (72, 92) if and only if ca(z1, Y1) < ca(w2,y2) -
Clearly, < is computable.

Furthermore, for (z,y) we denote by SEQ(z,y) the set of all finite sequences

o= ((x0,%0), -+, (Tn,Yn), (x,y)) for which (zg,y0) < -+ < (Tn,yn) < (T,y).
Note that for every pair (z,y) the set SEQ(z,y) is finite and computable.
Since S is consistent in the sense of 7-CONS™® we additionally have

vs(oy(z) =y forall o € SEQ(z,y) . (1)

Now we are ready to define the desired function h. For all z,y € N let

h(z,y) = max{Pgy(z) | 0 € SEQ(z,y)} .

Since for every pair (z,y) the set SEQ(z, y) is finite and computable, by (1)
we directly get h € R

Now let f € U. We have to show f € Cj;. Note that < induces precisely one
enumeration (o, f(xg)), (z1, f(x1)), ... of the graph of f. By the definition of
T-CONS™ the strategy S has to converge to a number j with ¢; = f when
successively fed this enumeration. Thus, for all sufficiently large n we have
S({(xo, f(z0))s -, (zn, f(x,)))) = j. By the definition of h we can directly
conclude ®;(x,) < h(z,,¢;(x,)) for all sufficiently large n. Consequently,
f € Cp, and Claim 1 is shown.

Claim 2. (2) implies (3).
Let h € R?* and let f € Cj,. Then there exists a triple (j, n, k) such that p; = f,
Q;(x) < k for all z < n and @;(x) < h(z,p;(x)) for all x > n. Using ideas

21

similar to those applied in the proof of the sufficiency part of Theorem 4 we

can define the desired numbering 1. Again, let c3 be the canonical enumeration
of N x N x N. For ¢3(i) = (j,n, k) and x € N we define

Y, if [t <n— ®;(x) <kand p;(x) =y
(i z) = or [x >n — &;(z) < h(z,y) and ¢;(x) = y]

T, otherwise.

Obviously, we have ¢ € P? and by the observation made above it is easy to see
that U C Py. It remains to show that v is measurable. So, we have to provide
an algorithm uniformly deciding on input 4, z,y whether or not ¥ (i,z) = y.
The desired algorithm is displayed in Figure 1. Note that rounded rectangles
denote tests. This proves Claim 2.

es es yes
‘ z<n Y Q(z) <k Y pi(x)=y = output 1
no 1no
compute
output 0 output 0
h(x,y)
es es
@;(z) < h(z,y) }LV pi(z) =y Y output 1
no no
output 0 output 0

Fig. 1. An algorithm uniformly deciding on input i, z,y whether or not ¥ (i, x) = y;
here (j,n, k) = c3(7).

Claim 3. (3) implies (1).

Let Y C R and let) € P? be a measurable numbering such that U C R,.
Moreover, as in the proof of Theorem 2 we chose x € R? such that Uy = R,,.
Again, we set 7o; = v; and T = x; for all i € N. Obviously, 7 € P?, 7 is
measurable, and Y C R,. Now let X € II(N) and n € N. We define

S(fXm) = “Search the least i such that 7;(z,,) = f(z,,) for all 0 < m < n. If
such an 7 has been found, output ¢.”

Since 7 is measurable, it is easy to see that S € R. Moreover, if f € U,
then the sequence (S(f*")),en has to converge, since the search can never
go beyond the least 7-program j with 7; = f. When converging, say to j, the
strategy yields 7; = f. Thus, U € T-CONS¥(S).

22

This proves Claim 3, and hence the theorem is shown. O

Having Theorem 12, we can easily show that, in general, 7- CON'S®? extends
the learning capabilities of R- 7T O7TAL. However, when restricted to classes of
recursive predicates, both 7- CONS? and R- T OTAL are of the same learn-
ing power. Furthermore, we get closure under recursively enumerable union
for T-CONS®?, nicely contrasting Theorem 8. The following corollary sum-
marizes these results.

Corollary 13 (Blum and Blum [21]).

(1) R-TOTAL C T-CONS™ and
(2) R-TOTALN p(Ryo1y) = T-CONS™ N p(Ryo1y)-
(3) T-CONS™ is closed under recursively enumerable union.

Proof. For the first part, by Lemma 1 and Theorem 2 we have U, s) ¢
R-TOTAL. On the other hand, for every complexity measure (¢, ®), ® € P?
is measurable. Hence U, ey € T-CONS™ . Consequently, 7-CONS™" \
R-TOTAL # 0. Furthermore, R-TOTAL C T-CONS“® by Theorem 2
and Theorem 12.

For the second part, if i € T-CONS? then there is a function h € R? such
that & C C,. But since U C Ryo13, we can define t(x) = h(x,0) + h(z, 1)
for all x € N. Hence, we get U C C;, and thus by Theorem 2 we know U €
NUM =R-TOTAL.

Assertion (3) is proved by using Theorem 12. Let (.S;);en be a recursive enu-
meration of strategies fulfilling the requirements of 7- CONS®?. Without loss
of generality we can assume that all strategies S; learn with respect to some
fixed Godel numbering . As the proof of Claim 1 in the demonstration of
Theorem 12 shows, for every strategy S; we can effectively obtain a function
h; € R? such that T-CONSZ"(S;) C p(Ch,). We define

h(z,y) = max{h;(x,y) | i <z} for all x,y € N .

Clearly, h € R? and by construction U;enyCh, € Cp,. Applying again Theo-
rem 12 we get that there is a strategy S such that C, € 7- C(’)NS;’"I’(S).
Consequently, Uiey 7-CONSZ?(S;) C T-CONSZ'(S). O

Furthermore, TOTAL and 7-CONS“? both extend the learning capabilities
of R-TOTAL, but in different directions. Before showing this, we consider
the variant of 7-CONS™® where the strategy is only required to learn from

input presented in natural order. The resulting learning type is denoted by
T-CONS (see also Definition 15 in Subsection 5.1).

Corollary 14. TOTAL # T-CON S’

23

Proof. By Theorem 11 we have U, 4) € 7- CONS“\ TOTAL. On the other
hand, U,y € TOTAL. We claim that Uy ¢ T-CON'S, and thus we also have
Uy & T-CONS™.

Let ¢ be any fixed Godel numbering. Suppose there is a strategy S € R such
that Usy € T-CONS,(S). By an easy application of the fixed point theorem
we can construct a function f such that f = ¢;, f(0) =i and for alln € N

0, if S(f0) # S(f")
L if S(f70) = S(/") and S(f"1) # S(f").

fln+1) =

Note that one of the two cases in the definition of f must happen for all n > 1.
Thus, we clearly have f € Usg. On the other hand, S(f") # S(f*!) for all
n € N a contradiction to Usy € T-CONS,(S). Hence Usqg ¢ T-CONS. O

Note that the proof of this Corollary also showed that for every 7 -consistent
strategy S € R one can effectively construct a function f such that {f} ¢
T-CONS,(95).

We finish this section by mentioning that for 7-consistent learning identifi-
cation from arbitrarily ordered input and learning from input presented in
natural order makes a difference. Thus, the following theorem nicely contrasts
with Theorems 1 and 9. For a proof we refer the reader to Grieser [56].

Theorem 15. T-CONS™" c T-CONS

We continue by defining some more concepts of learning. This is done in the
next section.

5 Defining More Learning Models

So far, we have started from a learning model which, at first glance looked
quite natural, i.e., R-TOTAL™ and continued by looking for possibilities to
enlarge its learning power. Though, conceptually, we shall follow this line of
presentation, it is technically advantageous to introduce several new concepts
of learning at once in this section.

The following learning model is the one with which it all started, i.e., Gold’s
famous learning in the limit model. In this model, all requirements on the
intermediate hypotheses such as being -programs of recursive functions or
being consistent are dropped.

Definition 8 (Gold [52,53]). Let U C R and let ¢ € P?. The class U is

24

said to be learnable in the limit with respect to v if there is a strategy S € P
such that for each function f € U,

(1) for alln € N, S(f™) is defined,
(2) thereis a j € N such that 1; = f and the sequence (S(f"))nen converges
to j.

If U s learnable in the limit with respect to ¢ by a strategy S, we write U €
LIMy(S). Let LIMy = {U | U is learnable in the limit w.r.t. ¢}, and let
LIM = Uyep2 LIMy.

Again, some remarks are mandatory here. Note that LIM, = LIM for
any Godel numbering ¢. This can be shown by using exactly the same ideas
as above (cf. Lemma 2). In the above definition £ZM stands for “limit.”
There are also other notations around to denote the learning type LZM.
For example, in [13-15] the notation GN is used. Here GN stands for Godel
numbering. Case and Smith [30] coined the notation EX which stands for
“explain.”

As we have seen above when studying the learning types R-7O7AL and
TOTAL, it can make a difference with respect to the resulting learning power
whether or not we require the strategy to be in R or in P (cf. Theorem 7).
On the other hand, the learning type £LZM is invariant to the demand S € R
instead of S € P. This was already shown by Gold [52] and for the sake of
completeness we include this result here.

Theorem 16 (Gold [52]). Let (¢, ®) be a complexity measure. There is a
function s € R such that gy € R and LIM,(p;) C LIM(ps)) for all
1€ N.

Proof. For every (yo, . ..,yn) € N* we set

0, if ©;(((yo,---,9z))) >n

forall z <n

SOS(i)(((yo,---a?/n))) = . . .
©i({(yo, -, yw))), if 2’ is the biggest x < n such

that ©;(((yo,...,¥z))) <n.

Now let f € R be such that (;(f"))nen converges, say to j, and ¢; = f.
Then, by construction, the sequence (pyz)(f"))nen also converges to j, but
possibly with a certain delay. Thus, ¢4;) learns f in the limit, too. O

Hence, there exists a numbering 1 € R? such that for every U € LIM
there is a strategy S € Ry, satisfying U € LLIM(S). Clearly, it suffices to set
i = @(;)- This in turn implies that there is no effective procedure to construct

25

for every strategy ¢ a function f; € R such that {f;} ¢ LIM(psq)). In
order to see this, suppose the converse. Hence, the class {f; | ¢ € N} would be
in NUM \ LIM, a contradiction, since we obviously have NUM C LIM.

Furthermore, a straightforward modification of Definition 8 yields £ZM®?,
i.e., learning in the limit from arbitrary input. Using the same idea as in the
proof of Theorem 1 one can easily show that LIM = LTM,

In the following subsections we consider a variety of new learning models.
These models are obtained from identification in the limit by varying the
mode of convergence, the set of admissible strategies, and the information
supply. Occasionally, we also modify the learning goal.

5.1 Varying the Mode of Convergence

Note that in general it is not decidable whether or not a strategy has already
converged when successively fed some graph of a function. With the next
definition we consider a special case where it has to be decidable whether or
not a strategy has already learned its input function. That is, we replace the
requirement that the sequence of all created hypotheses “has to converge” by
“has to converge finitely.”

Definition 9 (Gold [53], Trakhtenbrot and Barzdin [107]). LetU/ C R
and let 1p € P?. The class U is said to be finitely learnable with respect to ¢
if there is a strategy S € P such that for any function f € U,

(1) for allmn € N, S(f™) is defined,
(2) there is a j € N such that v; = f and the sequence (S(f"))nen finitely
converges to j.

If the class U is finitely learnable with respect to v by a strategy S, we write
U € FIN(S). Let FIN, = {U | U is finitely learnable w.r.t. ¢}, and let
fIN - Ud)GPz FINw

Though the following result is not hard to prove, it provides some nice insight
into the limitations of finite learning. For stating it, we need the notion of
accumulation point. Let 4 C R; then a function f € R is said to be an
accumulation point of U if for every n € N there is a function f € U such that

f=nfbut f#f.

Theorem 17 (Lindner [79]). Let U C R be any class such that U € FIN .
Then U cannot contain any accumulation point.

Proof. Suppose the converse, i.e., there is a class Y € FZN containing an

26

accumulation point f. Let S € P such that Y € FZN(S). Then there must
exist an n € N such S(f™) = S(f"*!) = j. That is, the sequence (S(f™))nen
has finitely converged to j and ¢; = f must hold. On the other hand, since f is
an accumulation point, there must be an f € U such that f =, fbut f# f
Clearly, by the definition of finite convergence we have S(f") =5(f”“) =7,
too, but ¢; = f # f This is a contradiction to U € FZN(S). O

This theorem directly yields the following corollary.
Corollary 18. R-TOTAL # FIN

Proof. FIN \ R-TOTAL # () is witnessed by Usq. Moreover, 0° € U is
clearly an accumulation point of . Thus, by Theorems 17 and 2 we get
Uy e R-TOTAL\ FIN. O

Note that Theorem 53 provides a complete answer to the question under which
circumstances a class Y C R is finitely learnable.

Next, we look at another mode of convergence which goes back to Feldman [36]
who called it matching in the limit and considered it in the setting of learning
languages. The difference to the mode of convergence used in Definition 8,
which is actually syntactic convergence, is to relax the requirement that the
sequence of hypotheses has to converge to a correct program by semantic
convergence. Here by semantic convergence we mean that after some point all
hypotheses are correct but not necessarily identical. Nowadays, the resulting
learning model is usually referred to as behaviorally correct learning. This term
was coined by Case and Smith [30]. As far as learning of recursive functions
is concerned, behaviorally correct learning was formalized by Barzdin [11,18].

Definition 10 (Barzdin [11,18]). Let U C R and let v € P%. The class U
1s said to be behaviorally correctly learnable with respect to v if there is a
strategy S € P such that for each function f € U,

(1) for alln € N, S(f") is defined,
(2) gny = f for all but finitely many n € N.

If U is behaviorally correctly learnable with respect to 1 by a strategy S, we
write U € BCy(S). BCy and BC are defined analogously to the above above.

Clearly, we have LIM C BC. On the other hand, even BC learning is not
trivial, i.e., we have R ¢ BC. This is a direct consequence of the next theorem
which shows the even stronger result that BC is not closed under union. In
the proof below we use the convention that 0% denotes the empty string for
k = 0. When we identify a function with the sequence of its values then we
mean by 70°20% the function f expressed by 20, i.e., f(0) =4, f(1) = 2 and
f(z) =0 for all z > 2.

27

Theorem 19 (Barzdin [18]). BC is not closed under finite union.

Proof. For showing the theorem it suffices to prove that Usy Uy ¢ BC. The
proof is done indirectly. Suppose the converse, i.e., there is a strategy S € P
such that Usg UUy € BC(S). Then we can directly conclude S € R.

Now we have to fool the strategy S such that it would have to “change its mind
semantically” infinitely often in order to learn the function to be constructed.
For all 7 € N we define a function f; as follows. Set f;(0) = ¢ for all i € N. The
definition continues in stages.

Stage 1. Try to compute ©gi) (1), ©si0))(2), - - -, @suory (B +1), ..., until
the first value k; is found such that @gomy) (k1 + 1)1
Let y1 = @gor1)) (k1 + 1). Then we set fz()=0forall 1 <z <k and
filk1 +1) = y1 + 1.
Goto Stage 2.

If none of the values @guy) (1), @s(uory (k+1), k € N*, is defined, then Stage 1
is not left. But in this case we are already done, since then {i0>°} ¢ BC(S).

For making the proof easier to access, we also include Stage 2 here.

Stage 2. Try to compute ()05(<Zok1f(k1+1)>)(k1 +2), ©s(iors 1o (F1+3), -,
Ps((i0k1 fka+1)0ky) (k1 + K 42), ..., until the first value &, is found such that

DS((i0k1 F(ky+1)0k2)) (B + Fa + Q)l
Let yo = @g(iok1 f(k141)0k2)) (k1 + k2 + 2). Then we set fi(z) = 0 for all

k1—|—2§:13§k:1—|—k:2+1andfz(kl—l—k2+2):y2+1
Goto Stage 3.

Again, if none of the values ©gok1 pik,+1))) (F1+2)5 @s(tior 106 (b1 +E+2),
k € N*, is defined, then Stage 2 is not left. But in this case we are again done,
since then {i0% f(k; + 1)0>°} ¢ BC(S).

Now this construction is iterated. We assume that Stage n, n > 1 has been
left. Then numbers kq, ..., k, have been found such that

@S(fﬁl+"'+ke+l)(k1+"'+k€+€)l for ¢ = 1,...,7’L

So, fi(x) is already defined for all 0 < x < k; +--- + k,, + n.

Stage n+ 1, n > 2. Try to compute

28

SOS(@'O’Hfi(k1+1)...0knfi(k1+...+kn+n)>)(kl +-+k,+n+1)
PS04 fi (k1 +1)-0%n fi(ky +htm)o)) (K1 -+ i 10+ 2)

DS0F1 fu(kr+1)-0kn fi (ky -+ thon-4n)oky) (K1 -+ Ky 1+ kb + 1)

until the first value k,,. is found such that
SOS((iOklfi(k1+1)...Oknfi(kl+...+kn+n)0kn+1>)(kl +-+ ko +n+ ki + 1)l .

Let Yn+1 = SOS((iOklfi(kl+1)mOk”fi(k1+~"+kn+n)0kn+1))(kl+. ' +kn+n+kn+1+1)
Then we set f;(x) = 0forall ky+- - -+k,+n+1 <z < ky+- - +k,+n+kni1,
and set fi(k1+ -+ ky+kpr+n+1) =y,1 + 1.

As before, if Stage n + 1 is not left, we are already done. Thus, it remains to
consider the case that Stage n is left for all n > 1. Let s € R be chosen such
that) = f; for all i € N. By the fixed point theorem (cf., e.g., Smith [99])
there is a number j such that ¢;) = ;. Since f; = ¢y;) = ¢, and f;(0) = j
we get f; € Usq. But by construction we have gos(ffl)(kl + 1) # fi(ky + 1),
SOS(f]Ifﬁszrl)(kl + ko +2) # filks + k2 +2), ..., Sps(fjf_v1+~»kn+n—1)(k1 + e+
kn+mn) # fij(ki+ -+ ky,+n), Therefore, when successively fed f7 the
strategy S outputs infinitely many wrong hypotheses, and thus f; ¢ BC(S), a
contradiction to Uy UUyy € BC(S). O

This proof directly yields the following corollary.

Corollary 20.

(1) R ¢ BC.
(2) LIM is not closed under finite union.
(3) R ¢ LIM.

Proof. (1) is a direct consequence of Theorem 19. Clearly, Uy, Uy € LZM and
LIM C BC. Since Usg UUy ¢ BC, Assertion (2) follows. Finally, (3) is directly
implied by Assertion (2). O

Adleman and Blum [1] have shown that, under canonical formalization, the
degree of the algorithmic unsolvability of “R € LIM?” is strictly less than
the degree of the algorithmic unsolvability of the halting problem. Brand [25]
studied the related problem of identifying all partial recursive functions. Of

29

course, it is also algorithmically unsolvable but its degree and the degree of
the halting problem are equivalent.

In another direction, Apsitis et al. [9] found n’s, n > 2 such that: 1. whenever,
out of n-identifiable classes, the union of any n— 1 of them is identifiable, then
so is the union of all n, yet 2. there are n — 1 identifiable classes such that
every union of n — 2 of them is identifiable, but the union of all n — 1 of them
is not.

On the other hand, many more function classes are learnable behaviorally
correctly than are learnable in the limit. In order to state this result and for
pointing to another interesting property of behaviorally correct learning, we
modify Definition 8 by relaxing the learning goal. By R. and ¥, we denote
the class of all functions f € P and f € B, respectively, for which dom(f)
is cofinite. For f, g € T, and a € N we write f =* g and f =" g if |{x €
N| f(z) # g(x)} < aand |{z € N| f(z) # g(z)}| < oo, respectively. Note
that there are three possibilities for a number x to belong to the sets just
considered: both f(x)| and g(x) |, but f(x) # g(x), or f(x)| while g(x) 7,

or f(x)1 and g(x) .

Definition 11 (Case and Smith [30]). Let Y C R and let o € P?. Let
a € NU{*}. The class U is said to be learnable in the limit with a anomalies
(in case a = *: with finitely many anomalies) with respect to 1 if there is a
strateqy S € P such that for each function f € U,

(1) for alln € N, S(f™) is defined,
(2) thereis a j € N such that ; =* f and the sequence (S(f™))nen converges
to j.

This is denoted by U € LTM, for short. The notions LLM;, and LIM® are
defined in the usual way.

Note that for @ = 0, the inference type LIM? coincides with £ZM by defini-
tion. Furthermore, Theorem 16 can be straightforwardly generalized to LZ M
for all @ € NU{x}, i.e., LIM" is also invariant to the demand S € R instead
of S eP.

Of course, the first question to be asked is whether or not one can learn more if
anomalies in the final program are allowed. The affirmative answer is provided
by the following theorem which establishes an infinite hierarchy in dependence
on the number of anomalies allowed and relates this hierarchy to BC.

Theorem 21 (Barzdin [18], Case and Smith [30]).

LIM C LIM C LITM? C - C Upyeny LIM® C LIM* C BC

30

For a proof, we refer the reader to Case and Smith [30]. Note that the in-
clusion LZM* C BC appeared already in Barzdin [18]. Thus the option to
syntactically change hypotheses entails an error-correcting power.

Note that behaviorally correct learning with anomalies was also studied in-
tensively. Case and Smith [30] showed the following infinite hierarchy.

Theorem 22 (Case and Smith [30]).
BC c BC' ¢ BC* C -+ C U,en BC* C BC*

Furthermore, in a private communication to Case and Smith, Leo Harrington
pointed out the following surprising result (cf. Case and Smith [30] for a proof).

Theorem 23. R € BC*

We say that a strategy S is general purpose if it BC*-identifies R. An interest-
ing result concerning general purpose strategies was shown by Chen [31,32].
He proved that for every general purpose strategy S there are functions f € R
such that the finite set of anomalies made in each explanation S(f") grows
without bound as n tends to infinity. That is, the hypotheses become more
and more degenerate.

There is another peculiarity in behaviorally correct learning with anomalies.
For a € NT, Definition 11 requires the final program to be correct for all but at
most a arguments x € N. A natural modification is then to require correctness
for all but exactly a arguments x € N. The resulting learning types are denoted
by LIM™ and BC™". Case and Smith [30] have shown that LIM™" = LIM,
i.e., the knowledge that there are precisely a anomalies in the final program
allows one to patch the final program in the limit and to converge to a correct
one. In contrast, BC™* = BC* for all a € N as shown by Kinber [69]. Intuitively,
the difference between LZM® and BC® can be explained by noting that every
program output by a behaviorally correct learner after the semantic point of
convergence is incorrect on a different set of arguments.

Further results concerning learning with anomalies can be found e.g., in Frei-
valds et al. [46], Gasarch et al. [51], Kinber and Zeugmann [70,68], and Smith
and Velauthapillai [101].

Looking at behaviorally correct learning with and without anomalies, it is not
difficult to see that BC is also invariant to the demand to learn with recursive
strategies only. That is, using the same ideas as in the proof of Theorem 16
one can show the following result.

Theorem 24. Let (p,P) be a complexity measure. For every a € N U {x}
there is a function s € R such that psiy € R and BCZ(pi) € BC;(ws@)) for

31

all7 € N.

By definition, semantic convergence allows the learner to output infinitely
many different correct programs. Thus, it is natural to ask what happens if we
sharpen the definition of BC by adding the requirement that the set {S(f") |
n € N} of all produced hypotheses is of finite cardinality. Interestingly, then
we again get the learning type LZM. This result appeared first in Barzdin
and Podnieks [20] and was generalized by Case and Smith [30] (see Theorem
2.9).

A further interesting modification of behaviorally correct learning was intro-
duced by Podnieks [93]. Instead of requiring semantic convergence, he intro-
duced a certain type of uncertainty by demanding correct hypotheses to occur
with a certain frequency.

Definition 12 (Podnieks [93]). Let0 <p <1, letUd C R and let ¢ € God.
The class U is said to be behaviorally correctly learnable with frequency p if
there is a strategy S € P such that for each function f € U,

(1) for allm € N, S(f™) is defined,
ny = <n<

If U is behaviorally correctly learnable with frequency p by a strategy S, we
write U € BCreq(p)(S). BCreq(p) is defined analogously to the above.

Podnieks [93,94] proved that BC ., (#1) C BCreq (ﬁ) for all n € N. Intu-
itively, this theorem holds, since BC is not closed under union. For example,
taking Uy and U,y and trying half the time to learn any function in Uy Uy by
simulating any learner for 4, and for U,,, respectively, and then outputting
the hypotheses obtained alternatingly shows that BC C BC ., (%)

Additionally, he discovered that the BCj,, hierarchy is discrete. More formally,
he showed the following. Let p with 1/n > p > 1/(n + 1) be given. Then

BCreq(p) = BCpreg (1).

Pitt [92] then defined the £Z M-analogue to Podnieks’ behaviorally correct
frequency identification, i.e., LI M., and showed an analogous theorem.

Another way to attack the non-closure under finite union was proposed by
Smith [98] who introduced the notion of team learning (or pluralistic infer-
ence). For the sake of motivation imagine the task that a robot has to explore
a planet. There may be different models for the dynamics of the planet and
so the robot is required to learn. While it may be possible to learn the pa-
rameters of each single model, due to the non-closure under finite union, it
may be impossible to learn the parameters of all these models at once. So,

32

if the number of models is not too large, it may be possible to send a finite
number of robots instead of a single one. If one of them learns successfully,
the successful robot can perform the exploration.

So, in the basic model of team learning we allow m learning strategies instead
of a single one and request, for each f € U, one of them to be successful.
Of course, one can consider teams of BC learners or teams of LZM learners.
The resulting learning types are denoted by BCieum(m) and LZM eum(m),
respectively.

Last but not least, one can also consider probabilistic inference. In this model,
it is required that the sequence S(f™),en converges with a certain probability
p. This model was introduced by Freivalds [47] in the setting of finite learning
and was then adapted to BC and LZM learning. Let us denote the resulting
models by BC,.0b(p) and LIM 05(p), respectively.

Pitt [92] obtained the following beautiful unification results. First, he showed
that Bcfreq<p) = Bcprob(p) and 'CIMfreq(p) = EIMpmb(p) for every p with
0 < p < 1. Thus, probabilistic identification is also discrete. Additionally, he
succeeded to prove the following theorem.

Theorem 25 (Pitt [92]).

(1) BCrey (L) = BCprot (1) = BCieam(n) for every n € N*.
(2) LIM g (%) = LI M pop (%) = LI M eqm(n) for every n € N*.

Furthermore, Wichagen, Freivalds and Kinber [113] showed that, with prob-
ability close to 1, probabilistic strategies learning in the limit with n mind
changes are able to identify function classes which cannot be identified by any
deterministic strategy learning in the limit with n mind changes. Additionally,
Freivalds, Kinber and Wiehagen [44] studied finite probabilistic learning and
probabilistic learning in the limit in nonstandard numberings. In particular,
for I € {FIN, LIM}, they showed that there exist numberings v such that,
with respect to ¢, no infinite function class can be I-learned deterministically,
whereas every class in [is I-learnable with probability 1 — ¢ for every € > 0.

As we have mentioned, one reason for the additional learning power of team
inference is due to the fact that neither LZM nor BC is closed under union.
Another reason was found by Smith [98] for teams of LZM-type learners.
That is, one can trade machines for errors. In its easiest form this can be
expressed as LIM® C LT M yeqm(a + 1). In order to see this, recall that we
have LIM™ = LIM. Thus, the first team member assumes that the final
program has no errors, the second team member assumes that there is exactly
one error in the final program, ..., and the (a + 1)st team member supposes
that there are exactly a errors in the final program. Then every team member

33

tries to patch as many errors as it assumes. So one of the team members is
correct and succeeds.

Subsequently, Daley [34] discovered the error correcting power of pluralism in
BC-type inductive inference. Note that in contrast, it is generally impossible
to trade errors for machines. Again, in its easiest form this says that for any
n € Nt we have LZM eqm(n + 1)\ LIM® # () and BCeam(n + 1) \ BC* # 0
for all a € N, a > n.

Since there are some excellent papers treating probabilistic, pluralistic and
frequency identification we are not exploring this subject here in more de-
tail. Instead, the interested reader is encouraged to consult Ambainis [4] and
Pitt [92] for further information concerning probabilistic learning as well as
Apsitis et al. [10] and Smith [98,100] for additional material about team in-
ference.

Figure 2 summarizes the results concerning frequency identification, proba-
bilistic inference, team learning and learning with anomalies.

LIMcC LIM' c .- C LIM™ C LIMHL C - C LIM*

I N N N n
LIM C LIMpreg(3) C -+ C LIMpeg(737) C LIMpeg(745) € -+ € BC*
[[[[[
LIM C LIMprop(5) C -+ C LIMprop(57) € LIMprop(535) C -+ € BC*
[[[[[
LIM C LIMyegm(2) C --+ C LIMyeam(n+1) C LTMyegm(n +2) C --- C BC*
N N N N [
BC C BCiam(2) C -+ C BCiam(n+1) C BCiam(n+2) c --- C BC*
[[[[[

BC C BCpob(3) C -+ C BCpob(ag) C BCprob(is) C c Bc*
I I I I I
BC C BCpe(t) c - C Bcfreq(n%rl) C BCf,neq(n%ﬂ) C c Bc*
I U U U I
BC C Bc! C - C Bc C Bcrt c .- C BC*

Fig. 2. Hierarchies of frequency identification, probabilistic inference, team learning
and learning with anomalies

34

5.2 Varying the Set of Admissible Strategies

It should be noted that in Definition 8 no requirement is made concerning
the intermediate hypotheses output by strategy S. So, first, we again aim to
introduce the consistency requirement already considered in Section 4. How-
ever, there are several possibilities to do this. Since a more detailed study of
these different possibilities will shed some light on the question of how natural
are intuitive postulates, we shall provide a rather complete discussion here.
Additionally, in order to make it more interesting we consider the notion of
d—delay, too, which has recently been introduced by Akama and Zeugmann [2].

Definition 13 (Akama and Zeugmann [2]). Let U C R, let 1 € P? and
let § € N. The class U is called consistently learnable in the limit with d—delay
with respect to ¢ of there is a strategy S € P such that

(1) U € LIMy(S),
(2) Ygyny(x) = f(x) for all f €U, n € N and all x such that x + 6 < n.

CONSfp(S), CONSfp and CON'S® are defined analogously to the above.

Note that for § = 0 we get Barzdin’s [12] original definition of CON'S. We
therefore usually omit the upper index ¢ if 6 = 0. This is also done for all
other versions of consistent learning defined below. Moreover, we use the term
0—delay, since a consistent strategy with d—delay correctly reflects all but at
most the last § data seen so far. If a strategy does not always work consistently
with d—delay we call it d—delay inconsistent.

Next, we modify CON'S® in the same way Jantke and Beick [66] changed
CONS, i.e., we add the requirement that the strategy is defined on every
input.

Definition 14 (Akama and Zeugmann [2]). LetU C R, let) € P? and let
0 € N. The class U is called R—consistently learnable in the limit with J—delay
with respect to ¢ if there is a strateqy S € R such that U € CONS;Z(S).

R-CONS%(S), R-CO/\/’S% and R-CONS® are defined analogously to the
above.

Note that in Definition 14 consistency with d—delay is only demanded for
inputs that correspond to some function f in the target class. Therefore, in the
following definition we incorporate Wiehagen and Liepe’s [114] requirement on
a strategy to work consistently on all inputs into our scenario of consistency
with d—delay.

35

Definition 15 (Akama and Zeugmann [2]). Let U C R, let 1 € P? and
let 6 € N. The class U s called T—consistently learnable in the limit with
0—delay with respect to 1 if there is a strateqgy S € R such that

(1) U € CONS(S),
(2) Ysmy(x) = f(x) for all f € R, n € N and all x such that v +§ < n.

T—CO/\/'S;Z(S), T—CO/\/’Si and T-CONS® are defined in the same way as
above.

So, for 6 = 0 we again obtain the learning type 7- CONS already considered
at the end of Section 4.

Next, we introduce coherent learning (again with d-delay). While our consis-
tency with d-delay demand requires a strategy to correctly reflect all but at
most the last o data seen so far, the coherence requirement only demands to
correctly reflect the value f(n = ¢§) on input f™.

Definition 16 (Akama and Zeugmann [2]). Let Y C R, let 1 € P? and
let 6 € N. The class U is called coherently learnable in the limit with d—delay
with respect to ¢ if there is a strateqy S € P such that

(1) U € LIMy(S),
(2) Ygmy(n = 6) = f(n =) for all f €U and all n € N such that n > 6.

COH%(S), C(’)Hfb and COH® are defined analogously to the above.

Now, performing the same modifications to coherent learning with d—delay as
we did in Definitions 14 and 15 to consistent learning with d—delay results
in the learning types R-COH® and T-COH?®, respectively. We therefore omit
the formal definitions of these learning types here.

Using standard techniques one can show that for all 6 € N and all learning
types LT € {CONS®, R-CONS®, T-CONS®, COH’, R-COH®, T-COH’}
we have LT, = LT for every Goédel numbering ¢ (cf. Lemma 2).

Let us first answer the question whether or not the relaxation to learn co-
herently with d—delay instead of demanding consistency with d—delay does
enhance the learning power of the corresponding learning types introduced
above. The negative answer is provided by the following theorem.

Theorem 26 (Akama and Zeugmann [2]). Let 6 € N be arbitrarily fized.
Then we have

(1) CONS’ = COH®,
(2) R-CONS’ = R-COH’,

36

(3) T-CONS®° =T-COH’.

Therefore, in the following it suffices to deal with consistent learning with
d—delay. We postpone the study of the different versions of consistent learn-
ing with d—delay to Section 6, where we provide characterizations in terms of
complexity and Section 7, where we investigate their learning power in depen-
dence on the type of consistency and the delay parameter §. Furthermore, in
Section 8 characterizations in terms of computable numberings are given.

Note that 7 -consistent learning with or without é—delay has an interesting
property. Let f € R be any function. If a 7-consistent learner is successively
fed f* for n = 0, 1,... then it converges if and only if it learns f. In other
words, a 7-consistent learner signals its inability to learn a function by per-
forming infinitely many mind changes. This property is called reliability. More
precisely, a 7 -consistent learner is even reliable on the set ¥ of all total func-
tions. As a matter of fact, reliable inference has been studied intensively before
the notion of 7-consistent identification was around.

Therefore, it is advantageous to recall here the definition of reliable* learning
introduced by Blum and Blum [21] and Minicozzi [84]. When talking about
reliable learning it is natural to introduce the set M of functions on which
the learner is required to be reliably as a new parameter. That is, a learning
strategy S is reliable on a set M provided it converges, when fed the graph
of a function f in M, if and only if it learns f.

Definition 17 (Blum and Blum [21], Minicozzi [84]). Let U C R, let
M C B and let ¢ € God; then U is said to be reliably learnable on M if there
s a strategy S € R such that

(1) U € LIM,(S), and
(2) for all functions f € M, if the sequence (S(f™))nen converges, say to j,
then p; = f.

By M-REL we denote the family of all function classes that are reliably learn-
able on M.

In particular, we shall consider the cases where M = T and M = R, i.e.,
reliable learnability on the set of all total functions and all recursive functions,
respectively. For the sake of completeness, we also mention here that the family
of all function classes reliably identifiable on the set of all partial functions
equals the set of all function classes reliably learnable on the set of all partial
recursive functions. Furthermore, reliable learning on the set of all partial
functions allows the following characterization in terms of consistency.

4 Reliable learning is also called strong identification, e.g., by Minicozzi [84] and
Grabowski [55].

37

Theorem 27 (Blum and Blum [21]). B-REL = P-REL = T-CONS™.

Furthermore, reliable learning possesses some very nice closure properties as
shown by Minicozzi [84] (cf. Theorems 3 and 4 in [84]). For the sake of com-
pleteness, we recall these results here but refer the reader to [84] for a proof.

Theorem 28 (Minicozzi [84]). Let M C B; then we have:

(1) M-REL is closed under recursively enumerable union.
(2) For every classUU C R, if U € M-REL then also the class of all finite
variants of the functions in U is reliable learnable on M, i.e., [[U]] €

M-REL.

The following theorem provides a first insight into the learning capabilities
of reliable learning in dependence on the set M. The first rigorous proof of
T-REL C R-REL appeared in Grabowski [55]. A conceptually much easier
proof was provided by Stephan and Zeugmann [105]. Therefore we skip this
proof below.

Theorem 29. P-REL C T-REL C R-REL C LIM.
Proof. P-REL C T-REL is a direct consequence of Theorems 15 and 27.

R-REL C LIM is obvious. For showing that LIM \ R-REL # 0, we use
the class Usq which is clearly in LZM. Suppose Uyq € R-REL. Then applying
Theorem 28 directly yields [[Usq]] € R-REL, too. But [[Usg]] = R (cf. Claim 2
in the proof of Lemma 1). Since R-REL C LIM, we get R € LIM, a
contradiction to Corollary 20. O

Note that one can extend the notion of reliable learning to behaviorally cor-
rect reliable inference, too. Additionally, starting from the notion of reliability
one can define for BC— and LZ M-type identification the notion of one-sided
error probabilistic learning as well as of reliable frequency identification (see
Kinber and Zeugmann [68]). The flavor of the obtained results is similar to
Podnieks’ [93,94] and Pitt’s [92]. On the other hand, one can also look at
team learning as a way of introducing a bounded nondeterminism to learning.
But even introducing an unbounded nondeterminism to reliable learning does
not enlarge the learning capabilities of reliable £LZM inference (see Pitt [92],
Theorem 4.14). So, though we have Theorem 25, there are subtle differences
between probabilistic and frequency identification on the one hand and plu-
ralistic learning on the other.

We shall come back to reliable learning in Sections 6 and 7. For getting a
broader picture, we continue here with the main subject of this section, i.e.,
defining further learning models. So far, we have varied the mode of conver-
gence, the set of admissible strategies, and the learning goal. Thus, it remains

38

to consider possible modifications of the information supply.

5.8 Varying the Information Supply

Next, we consider two variations of the information fed to the learner. Looking
at all the learning models defined so far we see that a strategy has always access
to all examples presented so far. In the following definition, we consider the
variant where the strategy is only allowed to use its last guess and the new
datum coming in.

Definition 18 (Wiehagen [109]). Let U C R and let ip € P?. The class U
18 said to be iteratively learnable with respect to ¢ if there is a strateqy S € P
such that for each function f € U,

(1) for everyn € N, S, (f) is defined, where
So(f) = 5(0, f(0)), and
Snr1(f) = S(Su(f)n+1, f(n+1)).
(2) There is a j € N such that v; = f and the sequence (S(f™))nen converges
to j.

If the class U 1is iteratively learnable with respect to ¢ by a strategy S, we
write U € IT ,(S). Furthermore, TT ,, and IT are defined analogously to the
above.

Of course, an iterative strategy can try to memorize the pairs (n, f(n)) in
its current hypothesis. Then the strategy would have access to the whole
initial segment f™ presented so far. On the other hand, the strategy has to
converge. Therefore, an iterative strategy can only memorize finitely many
pairs (n, f(n)), i.e., a finite subfunction, in its hypothesis. Consequently, it is
only natural to ask whether or not this restriction does decrease the resulting
learning power. The affirmative answer is provided by the following theorem.

Theorem 30 (Wiehagen [109]). Z7 C LIM

Proof. Clearly, we have Z7 C LZM. It remains to show that LZM\ZT # 0.
The separating class U is defined as follows. We modify the class of self-
describing functions a bit by requiring all function values to be strictly positive,
ie., weset Usgy = {f | f €R, ¢p0) = f, Va[f(z) > 0]} and U = Uy U Usqp.

Claim 1. U € LIM

Intuitively, the desired strategy S outputs f(0) as long as all function values
seen so far are greater than 0. If S sees 0 as a function value for the first time,
it switches its learning mode. From this point onwards .S uses the identification

39

by enumeration strategy to learn the target function. We omit the details.
Claim 2. U ¢ TT

It suffices to show that for every S with Uy € Z7 ,(S5) there is a function
f € Usap such that f ¢ TT7 ,(5). Let s € R be chosen such that for all j € N

¢s(7(0) =7, and for all n € N :

L, if S(Sn(psiy),n+1,1) # Su(@si))
esiy(n+1) =12, if S(Su(psi)),n+1,1) = Su(ps(;)) and
S(Sn(@si)),n+1,2) # Sp(esi))

Note that one of these cases must happen. For seeing this, suppose the con-
verse. Let m be the least n such that

S(Sn—l(gps(j)%nv 1) = S(Sn—1<905(j))7n7 2) = Sn—l(cps(j)) .

Now consider the functions g and ¢’ defined as

©s(j) (x), ifz<m
g(x) =<1 . ifz=m

0 , ifxz>m,

and ¢'(z) = g(x) for all x # m and ¢'(m) = 2. Since g, ¢’ € Uy the strategy S
must iteratively learn both ¢ and ¢’. But by the choice of m we can directly
conclude that the sequences (S, (9))nen and (S,(¢'))nen converge to the same
number, a contradiction.

Consequently, ¢,y € R for every j. By the fixed point theorem (cf., e.g., [99])
there is an ¢ € N such that ¢; = ¢,;). By construction, ¢; € Uy, and S
changes its hypothesis in every learning step when successively fed ;. Thus,
for f = ¢; we have f ¢ T7 ,(S5). O

It should be mentioned that Wiehagen [109] proved a slightly stronger result
than our Theorem 30, since he showed the class I/ in the proof above to be even
learnable by a feed-back strategy. A feed-back strategy, when successively fed a
function f works like an iterative strategy but can additionally make a query
by computing an argument z and asking for f(x). While feed-back learning
is stronger than iterative learning, it is still weaker than learning in the limit.
It should be noted that a suitably modified version of feed-back learning has
recently attracted attention in the setting of language learning from positive
data (see [27,76]).

40

Finally, iterative learning is also quite sensitive to the order in which exam-
ples are presented. Jantke and Beick [66] considered Z7 " and showed the
following result.

Theorem 31 (Jantke and Beick [66]). R-TOTAL # T7"

In the next definition, we consider a variant of how to enrich the information
presented to a learner. This type of inference was introduced by Wiehagen [111]
and was intensively studied in Freivald and Wiehagen [37]. It was further
investigated by Freivalds, Botuscharov, and Wiehagen [42] and, in the context
of language identification, by Jain and Sharma [63]. We refer to it as learning
with additional information and indicate this by using + as upper index.

Definition 19 (Wiehagen [111]). Letid C R and let ¢ € Géd. U € LIM™
if there is a strateqy S € P? such that for every f € U and for every bound
s > miny, f the following conditions are satisfied.

(1) S(s, f™) is defined for alln € N, and
(2) the sequence (S(s, f"))nen converges to a number j such that ¢; = f.

Whenever appropriate, we shall also consider £7 1 for any of the learning
types defined in this paper.

Learning with additional information shows that consistent learning is full
of surprises. Note that Assertion (1) in the following theorem was shown by
Freivald and Wiehagen [37], while Assertion (2) goes back to Wiehagen [111].

Theorem 32 (Freivald and Wiehagen [37], Wiehagen [111]).

(1) T-CONS* = T-CON'S, and
(2) R € CON'S™.

Proof. Since we obviously have 7-CONS C T-CONS™, it suffices to show
T-CONS" C T-CONS. Let U € T-CONS*(S), where S € R% Then
for every f € U we can construct in the limit a number s such that the
sequence (S(s, f™))nen converges to a number j. Since S is 7 -consistent, we
can conclude that ¢; = f. Note that, in general, we do not have s > min,, f.
The formal proof is done as follows. We have to define a strategy S’ € R such
that U € T-CONS(S’). Let a € N* be any tuple of length 1. The desired
strategy S’ is defined as follows.

We set ig = 0 and S'(a) = S(ig,).

Now assume n € N such that i, and S’(«) for all tuples of length n + 1 are
already defined. Let y € N; we set

iny1 = i, and S'(ay) = S(in, ay) provided S(in,ay) = S(in, @). Otherwise,

41

we set i,11 =i, + 1 and S’ (ay) = S(ine1, ay).

By construction, we directly obtain S’ € R because of S € R?. Furthermore,
S is T-consistent, so is S’. Additionally, since for every f € U there is an
s € N such that the sequence (S(s, f™))nen converges (every s > min, f has
this property) the sequence (S’(f"))nen must converge, too. So, let j be the
number the sequence (S’(f"))nen converges to. Finally, by the 7 -consistency
of S we can conclude that ¢; = f. This proves Assertion (1).

For showing the remaining Part (2), we use the amalgamation technique (cf.
Wicehagen [111], Case and Smith [30]). Let amal be a recursive function map-
ping any finite set [of ¢-programs to a ¢-program such that for any x € N,
Pamal(r) () is defined by running ¢;(z) for every ¢ € I in parallel and taking
the first value obtained, if any.

The desired strategy S € P? is mainly defined by using the function amal
defined above. Let f € R and let s € N; we set I; 1 = {0,...,s}. Forn >0
we proceed inductively. Assume If,_; to be already defined. We set

t = “the minimal number such that for all 0 < z < n there is an
i€ Ipn_y with ®;(z) <tand ¢;(x) = f(z) .”

Furthermore, we define

I5, = {i i € Iy, 3o < nl®i(a) <1, pie) # f(2)]} .

Moreover, we set I, = I,—1\1 fn- Now we define the desired strategy S € P?
as follows. For all n € N and all s € N let

S(s, f*) = “Compute If,. If the computation of I¢,, stops then let
S(s, f") =amal(Iy,).
Otherwise, S(s, f*) =1.”

It remains to show that R € CONS™(S). Let s € N be any number such that
s > miny, f. Then, by construction, the computation of I, stops for all n € N
and we have Iy, C Iy, for all n € N. Furthermore, by construction S is
consistent, too. Since min,, f € Iy, for all n € N, we also have Iy, # 0 for all
n € N. Consequently, the sequence (I,)nen of sets converges to a finite and
non-empty set I containing at least one p-program for f. Thus, the sequence
(S(s, f™))nen converges to amal(l) and since S is consistent we can conclude
@amai(r) = f. This proves Assertion (2). O

Another interesting effect is observed when studying FZN ™. In contrast to
Theorem 17, FZN ™" comprises classes containing an accumulation point, e.g.,
U = {010 | i < min, 0°10°} U {0°°}. On the other hand, it is easy to show
that {0710® | i € N} U {0>°} ¢ FZN". Thus, we directly get:

42

Theorem 33. FZIN C FINT C p(R).

For further information concerning inductive inference with additional infor-
mation, we refer the interested reader to Jain et al. [62].

After having taken a look at possible variations of Gold’s [53] original model
of learning in the limit, next we aim to obtain a deeper insight in what some
of these learning models have in common and where the differences are. Char-
acterizations are useful tools for achieving this goal as we have already seen.
Therefore, we continue with them. We start with characterizations in terms
of complexity, since some of these characterizations are applied subsequently.

6 Characterizations in Terms of Complexity

In this section we characterize T-CONS’, CONS’, T-REL, R-REL, and
LIM in terms of complexity. The importance of such characterizations has
already been explained in Subsection 3.1. However, in order to achieve the
aforementioned characterizations, several modifications are necessary. In par-
ticular, so far we used functions to compute the relevant complexity bounds
in the definitions of the complexity classes C;, where t € R and in Cj, where
h € R% Now we need stronger tools, i.e., computable operators which are
introduced next.

First, we recall the definitions of recursive and general recursive operator. Let
(F})zen be the canonical enumeration of all finite functions.

Definition 20 (Rogers [97]). A mapping O : B — P from partial functions to
partial functions is called a partial recursive operator if there is a recursively
enumerable set W C N3 such that for any y,z € N it holds that O(f)(y) = z
iff there is an x € N such that (z,y,z) € W and [extends the finite function
F,.

Furthermore, a partial recursive operator O is called a general recursive oper-
ator iff T C dom(D), and f € T implies O(f) € T.

A mapping O: P — P is called an effective operator iff there is a function
g € R such that O(p;) = @4 for all i € N. An effective operator O is said to
be total effective provided that R C dom(9), and p; € R implies D(p;) € R.

For more information about general recursive operators and effective operators
the reader is referred to [58,88,119]. If O is an operator which maps functions
to functions, we write O(f, z) to denote the value of the function O(f) at
the argument z. Any computable operator can be realized by a 3-tape Turing

43

machine 7" which works as follows: If for an arbitrary function f € dom(9), all
pairs (z, f(x)), z € dom(f) are written down on the input tape of T' (repetitions
are allowed), then 7" will write exactly all pairs (x, O(f, x)) on the output tape
of T (under unlimited working time).

Let O be a general recursive or total effective operator. Then, for f € dom(9),
m € N, we set: AO(f, m) =“the least n such that, for all z < n, f(z) is defined
and, for the computation of O(f, m), the Turing machine 7" only uses the pairs
(x, f(z)) with x < n; if such an n does not exist, we set AO(f,m) = 00.”

For u € R we define €, to be the set of all partial recursive operators £
satisfying AO(f,m) < u(m) for all f € dom(D). For the sake of notation,
below we shall use id + 9, 6 € N, to denote the function u(z) = z + ¢ for all
z € N.

Now we are ready to provide the first group of characterizations.

6.1 Characterizing T-CONS® and CON'S°

We start by characterizing 7-CONS® and CONS?, since these characteri-
zations are conceptually easier. For achieving these characterizations we use
mainly ideas and techniques from Blum and Blum [21] and Wiehagen [111].
Furthermore, in the following we always assume that learning is done with
respect to any fixed p € God.

As in Blum and Blum [21] we define operator complexity classes as follows.
Let © be any computable operator; then we set

Co = {f | ilpi = fF AVZ2[®i(x) <O(f,2)]l} NR .

First, we characterize 7-CONS°.

Theorem 34. Let Y C R and let § € N; then we have: U € T-CONS®
if and only if there exists a general recursive operator O € Qg5 such that

O(R) CR and U C Co.

Proof. Necessity. Let U € T-CONS°(S), S € R. Then for all f € R and all
n € N we define O(f,n) = @g(nis)(n).

Since @g(fn+sy(n) is defined for all f € R and all n € N by Condition (2)
of Definition 15, we directly get from Condition (1) of the definition of a
complexity measure that ®gsn+s)(n) is defined for all f € R and all n € N,
too. Moreover, for every t € ¥ and n € N there is an f € R such that t" = f".

44

Hence, we have O(%) C R C Z. Moreover, in order to compute O(f,n) the
operator O reads only the values f(0),..., f(n+9). Thus, we have O € Q;4.5.

Now let f € U. Then the sequence (S(f"))nen converges to a correct ¢—
program i for f. Consequently, O(f,n) = ®;(n) for almost all n € N. There-
fore, we conclude U C Cop.

Sufficiency. Let O € Q445 such that O(R) € R and U C Co. We have to
define a strategy S € R such that U € T-CONS’(S). By the definition of
Co we know that for every f € U there exist ¢ and k such that ¢; = f and
O, (z) < max{k, O(f,z)} for all z. Thus, the desired strategy S searches for
the first current candidate for such a pair (4, k) in the canonical enumeration
co of N x N and converges to ¢ provided an appropriate pair has indeed been
found. Until this pair (i, k) is found, the strategy S outputs auxiliary consistent
hypotheses. For doing this, we choose g € R such that ¢g((ay)(z) = y, for every
tuple a« € N*, a = (yo,...,y,) and all z < n.

S(f") = “Compute O(f,x) for all z <n = 4. Search for the least z < n such
that for co(2) = (7, k) the conditions
(A) ®;(x) < max{k, O(f,z)} for all z <n = ¢, and
(B) pi(z) = f(x) forallz <n = ¢
are fulfilled. If such a z is found, set S(f") = i.
Otherwise, set S(f™) = g(f").”

Since D € 445, the strategy can compute O(f,z) for all z < n = § and
since co € R it also can perform the desired search effectively. By Condition
(2) of the definition of a complexity measure, the test in (A) can be performed
effectively, too. If this test has succeeded, then Test (B) can also be effectively
executed by Condition (1) of the definition of a complexity measure. Thus,
we get S € R. Finally, by construction S is always consistent with J/-delay,
and if f € U, then the sequence (S(f"))nen converges to a correct g—program
for f. O

The following characterization of CON'S? is easily obtained from the one given
above for T-CONS° by relaxing the requirement O(R) C R to O(U) C R.

Theorem 35. Let U C R and let § € N; then we have: U € CONS° if and
only if there exists a partial recursive operator O € Q;qvs such that O(U) C R
and U C Cyp.

Proof. The necessity is proved mutatis mutandis as in the proof of Theorem 34
with the only modification that O(f,z) is now defined for all f € U instead
of for all f € R. This directly yields O € Q;q15, O(U) C R and U C Co.

The only modification for the sufficiency part is to leave S(f™) undefined if
O(f,x) is not defined for f ¢ U. We omit the details. O

45

We continue this section by using Theorem 34 to show that T-CONS° is
closed under enumerable unions.

Theorem 36. Let § € N and let (S;)ien be a recursive enumeration of strate-
gies working T -consistently with d-delay. Then there exists a strateqy S € R
such that Uey T-CONS’(S;) € T-CONS’(S).

Proof. The proof of the necessity of Theorem 34 shows that the construction of
the operator O is effective provided a program for the strategy is given. Thus,

we effectively obtain a recursive enumeration (9;);en of operators ; € Q445
such that O;(R) € R and 7-CONS’(S;) C Cyp,.

Now we define an operator) as follows. Let f € R and =z € N. We set
O(f,z) = max{O,;(f,x) | i <z}

Thus, we directly get O € Qigrs, O(R) € R and U;ey T-CONS’(S;) C Co.
By Theorem 34 we can conclude U;ey 7-CONS(S;) € T-CONS’(S). O

On the other hand, CON'S? and R-CONS? are not even closed under finite
union. This is a direct consequence of Theorem 19. It is easy to verify that
U, Uy € R-CONS® and thus Uy, Uy € CONS® for every § € N. But
Usq Uy ¢ BC.

The reader may wonder why we did not provide a characterization for R- CON'S’.
The honest answer is that characterizing R-CONS? in terms of complexity
remains open. Currently, we do not have any idea how to attack this problem.

On the other hand, the techniques developed so far allow for suitable modifi-
cations to obtain the remaining announced characterizations. This is done in
the following subsection.

6.2 Characterizing T-REL, R-REL and LIM

We continue with the characterizations of T-REL, R-REL and LIM in terms
of complexity. As the following theorem shows, these characterizations express
the difference of these learning models by different sets of admissible operators,
i.e., general recursive, total effective and effective operators, respectively. As-
sertion (1) was shown by Grabowski [55], Assertion (2) by Blum and Blum [21]
and Assertion (3) is a variation of a corresponding characterization obtained
by Wiehagen [111].

In the proofs below, it is technically convenient to use limiting recursive func-

tionals instead of partial recursive functions as strategies. For a formal machine
independent definition of a limiting recursive functional see Rogers [97]. In-

46

tuitively, a limiting recursive functional is a mapping which maps functions
to numbers in a computable way. Using 3-tape Turing machines with input,
work and output tape and a read-only head for the input tape, a read-write
head for the work tape and a write-only head for the output tape, a limiting
recursive functional can be defined as follows.

A partial mapping S: P — N is called limiting recursive functional if there is
a 3-tape Turing machine T (as described above) working as follows:

If an arbitrary function f € B is written down on the input tape of T' (in
an arbitrary enumeration of input-output examples where repetitions are al-
lowed), then, if S(f) is defined, T" writes a finite nonempty sequence of natural
numbers on the output tape such that the last number is equal to S(f); (T
does not need to stop after doing so), or 7" writes an infinite sequence of nat-
ural numbers which converges on its output tape such that its limit is equal
to S(f). It is allowed that the sequence written on the output tape depends
on the enumeration in which the function f is written on the input tape, but
it is prohibited that its limit depends on it.

If S(f) is not defined, then two cases are possible. First, S does not uniformly
converge on some enumeration in which the function f is written on the input
tape. Second, S never converges — independent of the enumeration in which
the function f is written on the input tape. These cases are not equivalent (cf.
Freivald [38]). Therefore, we require that for all f € P we have: f ¢ dom(S5)
iff S on f never converges.

Theorem 37. Let U C R, then we have:

(1) U € T-REL if and only if there exists a general recursive operator O
such that U C Co.

(2) U € R-REL if and only if there exists a total effective operator O such
that U - Cg.

(3) U € LIM if and only if there exists an effective operator O such that
OU) CR andU C Co.

Proof. Necessity. The first part of the proof is almost the same for all three
assertions. Let LT € {T-REL, R-REL, LIM} and let U C LT (S) for some
strategy S € R. The desired operator £ is defined as follows. Let f € M and
let z € N.

O(f,z) = “Compute S(f*). Use half of the time for executing (A) and (B)
until (C) or (D) happens.
(A) Compute S(f=), S(f*?),...
(B) Check if ®g(pey(z) =y fory =0, 1, 2, ...
(C) In (A) a k € N is found such that S(f®) # S(f**). Set
O(f,z) =0.

47

(D) In (B) a y € N is found such that ®g(s+)(x) = y. Set
O(f,x) = g(y=)(z).”

First, we show the necessity part of Assertion (1). Clearly, the operator O is
recursive, since by Definition 17, for all f € T and all x € N we have that
S(f*) is defined. Test (B) can be effectively executed by Property (2) of a
complexity measure. It remains to show that O is general recursive.

Claim 1. O(%) C F.

Suppose that for some f € T and some x € N the value O(f, z) is not defined.
Then, in particular, (C) cannot happen. But this means that S(f*) = S(f**")
for all n € N. Therefore, the sequence (S(f™)men converges to S(f*). Since S
is reliable on T, we know that ¢gs»y = f. Consequently, @g(s+)(x) is defined
and thus, by Property (1) of a complexity measure, ®g(s+)(x) is defined, too.
Thus, in (D) a y must be found such that @S(fz)(a;) =y, a contradiction to
O(f, x) undefined. This proves Claim 1.

Clatm 2. U C Cop.

Let f € U be arbitrarily fixed. Since Y € LIM(S), the sequence (S(f™))men
converges, say to j and ¢; = f. Thus, in the definition of O(f,z), Test (C)
can succeed only finitely often. That is, for all but finitely many x we have
O(f,z) = ®g(s=)(x). Consequently, f € Cp. Thus Claim 2 is shown and the
necessity part of Assertion (1) follows.

For showing the necessity part of Assertion (2) note that the operator O is
effective, too. We have to show O(R) C R instead of Claim 1, while Claim 2
and its proof remain unchanged. This can be done mutatis mutandis as above.

For the necessity part of Assertion (3) we again note that the operator O is
effective, since by Definition 8 we know that S(f?*) is defined for all f € U
and all z € N. Now we have to show that O(U) C R, while Claim 2 and its
proof again remain unchanged.

Claim 3. O(U) C R.

Suppose that for some f € U and some = € N the value O(f, x) is not defined.
Then, in particular, (C) cannot happen. But this means that S(f*) = S(f**")
for all n € N. Therefore, the sequence (S(f™))men converges to S(f*). Since
felUand U € LIM(S), we know that @gs+) = f. Consequently, pg(s=)(z)
is defined and thus, by Property (1) of a complexity measure, ®g(s= ()
defined, too. Thus, in (D) a y must be found such that ®g(s=(x) =y,
contradiction to O(f, z) undefined. This proves Claim 3.

Thus, we have shown the necessity parts of Assertions (1) through (3).

48

Sufficiency. Again, the first part of the proof is identical for Assertions (1)
through (3). Let © be an operator satisfying the relevant conditions. We define
the desired strategy as a limiting recursive functional.

S(f) = “Execute Stage 0:
Stage n: Compute cz(n) = (i, k). Output 7.
Check for all z € N whether or not ®;(z) < max{k,O(f,x)} and
@i(x) = f(z). If this test fails for some z, stop executing Stage n and
goto Stage n + 1.7

Now for showing Assertions (1) through (3) it suffices to distinguish the cases
M e {%, R, U} and to show that S is reliable on M. Note that these three

cases are completely reflected by the domain of the operator O.
Claim 1. S is reliable on M.

Let f € M. Then we can conclude that O(f,z) is defined for all x € N. Now
suppose that f € dom(S), i.e., S(f) converges, say to i. Since S performs a
mind change every time it enters a new stage, it follows that S enters some
Stage n, where c3(n) = (i, k) and never leaves it. Thus, it verifies that ®;(x) <
max{k, O(f,x)} and p;(z) = f(z) for all x € N. This proves Claim 1.

The following claim is identical for Assertions (1) through (3).
Claim 2. f € Co implies S learns f.

By the definition of Co we know that for every f € Cgo there exist ¢ and k
such that ¢; = f and ®;(z) < max{k, O(f,z)} for all . Then S can never
go past Stage n, where co(n) = (i, k). It follows that S converges, and since S
is reliable, it learns f. Hence, Claim 2 is shown.

By Claims 1 and 2 the theorem follows. O

Further characterizations in the same style as above are possible. Wieha-
gen [111] showed a characterization of LZM*, Kinber and Zeugmann [70]
characterized T-REL® for every a € NU {*}. On the other hand, characteriz-
ing BC and its relaxations BC?, a € N as well as LI M eqm(n) and BCeam(n),
n € N*, also remains open.

Note that sometimes also a different and stronger characterization of learning
types in terms of complexity is possible. The first results along this line can
be found in Blum and Blum [21], who also coined the term a-posteriori char-
acterization. For stating such a characterization, the notion of compression
index is needed.

Definition 21 (Blum and Blum [21]). Let (¢, ®) be a complexity measure,

49

let f € R, and let O be a general recursive operator. Then i € N is said to be
an O-compression index of f if

(2) Vilg; = f — Va[®i(r) < O(®;, max{i, j, z})]] .
In this case we also say that the function f is everywhere -compressed.
Then Blum and Blum [21] proved the following characterization.

Theorem 38 (Blum and Blum [21]). Let U C R, then we have: U €
R-REL if and only if there is a general recursive operator O such that every
function in U is everywhere O-compressed.

Consequently, function classes that are reliably identifiable on the set R have
the property that every function of the class does possess a fastest program
modulo a general recursive operator, where “fastest program modulo a general
recursive operator ” is formalized by the notion of 9D-compression index.

We finish this section with the remark that further a posteriori characteriza-
tions were achieved. The reader is encouraged to consult Zeugmann [118,121]
for further details.

In the following section we continue with the consistency phenomenon. As we
shall see, some of the characterizations obtained above turn out to be helpful
to resolve the remaining open problems.

7 Learning and Consistency — Part 11

The main goal of this section is a thorough study of the learning power of the
different models of consistent learning with and without d-delay. As we have
seen above, certain additional information can help to learn the whole class
of recursive functions consistently without d-delay, i.e., CONS' = o(R) (cf.
Theorem 32) — whereas we have not yet studied the exact effect of