
Identification Criteria in
Uniform Inductive Inference

Sandra Zilles

Fachbereich Informatik

Universität Kaiserslautern

Postfach 3049

D - 67653 Kaiserslautern

zilles@informatik.uni-kl.de

Abstract

Uniform Inductive Inference is concerned with the existence and the
learning behaviour of strategies identifying infinitely many classes of recur-
sive functions. The success of such strategies depends on the hypothesis
spaces they use, as well as on the chosen identification criteria resulting
from additional demands in the basic learning model. These identification
criteria correspond to different hierarchies of learning power – depending
on the choice of hypothesis spaces. In most cases finite classes of recursive
functions are sufficient to expose an increase in the learning power given
by the uniform learning models corresponding to a pair of identification
criteria.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Notation . 6
2.2 Inductive Inference Criteria . 7

3 Uniform Learning 17
3.1 Definitions . 17
3.2 Basic Results . 19

4 Separation of Inference Criteria: Special Hypothesis Spaces 26
4.1 The Hierarchy in Lemma 1.1 . 27
4.2 The Hierarchy in Lemma 1.2 . 36
4.3 The Hierarchy in Lemma 1.3 . 41
4.4 The Hierarchies in Lemma 1.4, 1.5, 1.6 63
4.5 Incomparable Classes . 63
4.6 Summary . 64

5 Separation of Inference Criteria: General Hypothesis Spaces 69
5.1 The Hierarchies in Lemma 2.1, 2.2, 2.3 70
5.2 The Hierarchy in Lemma 2.4 . 71
5.3 The Hierarchy in Lemma 2.5 . 72
5.4 Incomparable Classes . 73
5.5 Summary . 73

References 76

1 Introduction

The scope of Inductive Inference is concerned with theoretical models simulating
learning processes. Such models do not only include a learner and a set of objects
to be identified, but also a “hypothesis space” which allows us to associate an
object with the output of the learner, i.e. the answers (hypotheses) of the learner
are interpreted as “names” of certain objects. A model of quite simple mathe-
matical description is for example identification of classes of recursive functions.
This concept in general includes three main components:

• a partial-recursive function S – also called strategy – simulating the learner,

• a class U of total recursive functions which have to be identified by S,

• a partial-recursive numbering ψ – called hypothesis space – which enumer-
ates at least all functions in U .

In each step of the identification process S is presented a finite subgraph of
some unknown arbitrary function f contained in U ; the strategy S returns a
hypothesis which is interpreted as an index of a function in the given numbering
ψ. It is the learner’s job to eventually return a single correct hypothesis, i.e. the
sequence of outputs ought to converge to a ψ-number of f . This model – called
identification in the limit – has first been analysed by Gold in [Go67] and gave rise
to the investigation and comparison of several new learning models (“inference
criteria”) basing on that principle. The common idea was to restrict the definition
of identifiability by means of additional – and in some way natural – demands
concerning the properties of the hypotheses. The corresponding models have
been compared with respect to the resulting identification power; for some more
background the reader is referred to [Ba74a], [CS83], [FKW95], [Fu88], [JB81]
and [Wie78]. Some definitions and results in this context will be summarized in
Section 2.

This paper studies Inductive Inference models on a meta-level. Considering
collections of infinitely many classes U of recursive functions we are looking for
meta-learners synthesizing an appropriate strategy for each class U to be learned.
For that purpose we agree on a method to describe a class U , because for the
synthesis of a learner our meta-strategy should be given some description of
U . That means we do not only try to solve a learning problem by an expert
learner but to design a higher-level learner which constructs a method for solving
a learning problem from a given description. Thus the meta-learner is able to
simulate all the expert learners.

Uniform identification of classes of total recursive functions has already been
studied by Jantke in [Ja79]. Unfortunately, his results are rather negative; he
proves that there is no strategy which – given any description of an arbitrary
class U consisting of just a single recursive function – synthesizes a learner which

3

identifies U with respect to a fixed hypothesis space. Even if we allow different
hypothesis spaces for the different classes of recursive functions, no meta-learner
is successful for all descriptions of finite classes (cf. [Zi00]). Since in the non-
uniform case finite classes can be identified easily with respect to any common
inference criterion, these results might suggest that the model of uniform learn-
ing yields a concept the investigation of which is not worthwile. As we will see,
the results in this paper allow a more optimistic point of view. Of course it is
quite natural to consider the same inference criteria known from the non-uniform
model also in our meta-level. The aim of this paper is to investigate whether the
comparison of these criteria concerning the resulting identification power yields
hierarchies analogous to those approved in the classical context. In most cases
we will see, that the classical separation results can be transferred to uniform
learning. And we can prove even more. If we consider uniform learning with
respect to fixed hypothesis spaces, all separations of inference criteria can be
achieved by collections of finite classes of recursive functions; interestingly some
results seem to indicate that even classes consisting of just one function are of-
ten sufficient for these separations in the context of uniform learning with fixed
hypothesis spaces. The resulting hierarchies correspond to the non-uniform case.
If we drop the restrictions concerning the hypothesis spaces, we obtain slightly
different results, although many of the criteria can still be separated by finite
classes. Here classes consisting of just one recursive function are not suitable for
the corresponding proofs, but many separations are witnessed by classes of no
more than two functions. So whereas finite classes are very simple regarding their
identifiability in the classical model of Inductive Inference, they are in most cases
sufficient for the separation of inference criteria in uniform learning. Further-
more we conclude that the hierarchies obtained are very much influenced by the
choice of the hypothesis spaces. Now, since the hierarchies of inference criteria
do not collapse in our meta-level – even by restricting ourselves to the choice of
very simple identification problems – we conclude that the concept of uniform
learning is neither trivial nor fruitless. Furthermore this paper corroborates the
interpretation that our different inference criteria possess some really substantial
specific properties, which yield separations of such a strong nature that they still
hold for uniform learning of finite classes.

In [Zi00] the reader may also find positive results encouraging further research.
It is shown that the choice of descriptions for the classes U has more influence on
the uniform identifiability than the classes themselves, i.e. many meta-strategies
fail because of a bad description of the learning problem rather than because of
the complexity of the problem. So it might be interesting to find out what kinds
of descriptions are suitable for uniform learnability and whether they can be
characterized by any specific properties. This question also arises in the context
of separating identification criteria in uniform learning. Perhaps there are certain
characteristic features of the description sets witnessing our separation results.
Though this paper does not provide a solution to that problem, it gives many

4

examples of appropriate description sets, which may be helpful on the way to an
answer.

Further research on uniform identification has also been made in the context
of language learning, see for example [KB92], [OSW88] and [BCJ96]. Because
of its numerous positive results, in particular the work of Baliga, Case and Jain
[BCJ96] motivates the investigation of meta-strategies. In [OSW88] Osherson,
Stob and Weinstein especially consider several techniques of describing classes of
objects to be learned and thus also prove that the way the learning problems are
described influences their uniform identifiability.

My special thanks are due to Jochen Nessel and Martin Memmel for fruitful
discussions during my work on this paper, as well as to Prof. Rolf Wiehagen for
his advice and motivating support.

5

2 Preliminaries

We will first agree on some notations used in this paper. The second subsection
is then concerned with a short introduction into Inductive Inference. Several
inference criteria are introduced and compared with respect to their learning
power.

2.1 Notation

Recursion theoretic terms used here without explicit definition can be found in
[Ro87].

By N we denote the set of all nonnegative integers, N∗ is the set of all finite
tuples over N; the variable n always ranges over N. For fixed n, the notion
Nn is used for the set of all n-tuples of integers. By implicit use of a bijective
computable function cod : N∗ 7→ N we will identify any α ∈ N∗ with its coding
cod(α) ∈ N. If α ∈ N∗ is any finite tuple, we use |α| to refer to its length,
i.e. |α| = n for each α ∈ Nn, n ∈ N. For each n ∈ N we define the value n by

n :=

{
0 if n > 0

1 if n = 0

A statement is quantified with ∀∞n in order to indicate that the statement is
fulfilled for all but finitely many n; quantifiers ∀ and ∃ are used in the common
way.

For any set X the expression card X denotes the cardinality of X, where
card X =∞ indicates that X is an infinite set; ℘X denotes the set of all subsets
of X. The notion X∗ is used by analogy with N∗. X+ denotes the set of all
non-empty finite tuples over X. As a symbol for set inclusion we use ⊆, proper
inclusion is indicated by ⊂. Incomparability of sets is expressed by #.

The set of all partial-recursive functions is denoted by P , the set of total
recursive functions by R. If we want to refer to functions of a fixed number n
of input variables, we sometimes add the superscript n to these symbols. R01

denotes the set of all recursive functions, the range of which is contained in
{0, 1}. For any f ∈ P and any x ∈ N we write f(x)↓, if f is defined on input
x; f(x)↑ otherwise. If f ∈ P and n are given such that f(0)↓, . . . , f(n)↓ we set
f [n] := cod(f(0), . . . , f(n)), i.e. f [n] corresponds to the initial segment of length
n+ 1 of f . We often compare f, g ∈ P and write f =n g, if

{(x, f(x)) | x ≤ n, f(x)↓} = {(x, g(x)) | x ≤ n, g(x)↓} ;

otherwise f 6=n g. If the functions f and g differ only for finitely many arguments,
that means if

∀∞n [[f(n)↑ ∧g(n)↑] or [f(n)↓ ∧g(n)↓ ∧f(n) = g(n)]] ,

6

we write f =∗ g. By the notion f ⊆ g we indicate that

{(x, f(x)) | x ∈ N, f(x)↓} ⊆ {(x, g(x)) | x ∈ N, g(x)↓}

and use proper inclusion by analogy. But f ∈ P may also be identified with the
sequence (f(n))n∈N, so we sometimes write f = 0n1↑∞ for the function defined
for x ∈ N by

f(x) =

0 if x < n

1 if x = n

↑ if x > n

and the like. We often identify a tuple α ∈ N∗ with the function α↑∞ implicitly.
Thus we may for example write α ⊆ f for some function f ∈ P , if α↑∞⊆ f ,
that means if α = (f(0), . . . , f(|α| − 1)); furthermore we may denote the i-th
component (i ∈ N, i < |α|) of α by α(i). So α = (α(0), . . . , α(|α|−1)). By rng(f)
we refer to the range {f(x) | x ∈ N, f(x)↓} of a function f ∈ P . Analogously –
for every α ∈ N∗ – we use rng(α) to refer to rng(α↑∞) = {α(0), . . . , α(|α| − 1)}.

A function ψ ∈ Pn+1 is used as a numbering for the set Pψ := {ψi | i ∈ N},
where ψi(x) := ψ(i, x) for all i ∈ N, x ∈ Nn as usual. i is called ψ-number of
the function ψi. In order to refer to the set of all total functions in Pψ, we use
the notion Rψ, i.e. Rψ := Pψ ∩ R. Rψ is called the recursive core or “R-core”
of Pψ. If ψ ∈ Pn+2, every b ∈ N corresponds to a numbering ψb ∈ Pn+1, if we
define ψb(i, x) := ψ(b, i, x) for all i ∈ N, x ∈ Nn. Again i is a ψb-number for the
function ψbi defined in the common way.

Any acceptable numbering ϕ corresponds to a Blum complexity measure Φ,
as can be found in [Bl67]. Intuitively, Φi(x) returns the number of steps needed
for the computation of ϕi(x) whenever ϕi(x)↓; if ϕi(x)↑, then also Φi(x)↑. If
i, x, n ∈ N, we use the notation ϕi(x)↓≤n instead of Φi(x) ≤ n and ϕi(x)↑≤n
instead of [Φi(x)↑ or Φi(x) > n].

2.2 Inductive Inference Criteria

Now we introduce our basic Inductive Inference criterion called identification in
the limit, which was first defined in [Go67]. It may be regarded as a fundamental
learning model from which we define further restrictive inference criteria.

Definition 1 Let U ⊆ R, ψ ∈ P2. The class U is called identifiable in the limit
with respect to the hypothesis space ψ if and only if there is a function S ∈ P
(called strategy) such that for any f ∈ U the following conditions are fulfilled:

1. S(f [n]) is defined for all n ∈ N (S(f [n]) is called hypothesis on f [n]),

2. there is some j ∈ N such that ψj = f and S(f [n]) = j for all but finitely
many n ∈ N.

7

We also write: U ∈ EXψ(S).

EXψ := {U | U is identifiable in the limit with respect to ψ}.
EX :=

⋃
ψ∈P2 EXψ.

On any function f ∈ U the strategy S must generate a sequence of hypotheses
converging to a ψ-number of f . But a user reading the hypotheses generated by
S up to a certain time will never know whether the actual hypothesis is correct or
not, because he cannot decide whether the time of convergence is already reached.
If there was a bound on the number of mind changes, he could at least rely on
the actual hypothesis whenever the bound is reached. Learning with such bounds
has first been studied in [CS83].

Definition 2 Assume U ⊆ R, ψ ∈ P2 and m ∈ N. U is called identifiable (in
the limit) with no more than m mind changes with respect to ψ, if and only if
there exists a function S ∈ P satisfying

1. U ∈ EXψ(S) (where S is additionally permitted to return the sign “?”),

2. for all f ∈ U there is an nf ∈ N satisfying

• ∀x < nf [S(f [x]) =?],

• ∀x ≥ nf [S(f [x]) ∈ N],

3. card {n ∈ N | ? 6= S(f [n]) 6= S(f [n+ 1])} ≤ m for all f ∈ U .

We also write: U ∈ (EXm)ψ(S).

(EXm)ψ := {U | U is identifiable in the limit with no more than
m mind changes with respect to ψ}.

EXm :=
⋃
ψ∈P2(EXm)ψ.

A class U ⊆ R is identifiable with a bounded number of mind changes if and only
if there exists a number m ∈ N such that U ∈ EXm.

The output “?” allows our strategy to indicate that its hypothesis is left
open for the actual time being, in order not to waste a mind change in the
beginning of the learning process. In [CS83] the reader may find a proof of
EXm ⊂ EXm+1 ⊂ EX for all m ∈ N.

Instead of restricting our learning model by bounding the number of mind
changes we might also try to mitigate the constraints in the definition of iden-
tification in the limit – for example by foregoing the demand for convergence of
the sequence of hypotheses. Behaviourally correct identification – as defined in
[Ba74a] – allows the learner to switch several correct hypotheses infinitely often.

8

Definition 3 Let U ⊆ R, ψ ∈ P2. U is called behaviourally correctly identifiable
(BC-identifiable) with respect to ψ if and only if there exists an S ∈ P, such that
for all f ∈ U the following conditions are fulfilled:

1. S(f [n]) is defined for all n ∈ N,

2. ψS(f [n]) = f for all but finitely many n ∈ N.

We also write U ∈ BCψ(S) and define BCψ and BC as usual.

Although BC contains some classes of functions not learnable under the EX-
criterion (see [Ba74a]), a further increase of learning power can be achieved by
allowing “slightly incorrect” hypotheses. BC-identification with anomalies has
been studied in [CS83].

Definition 4 Let U ⊆ R, ψ ∈ P2. U is called BC-identifiable with respect to ψ
with finitely many anomalies if and only if there exists an S ∈ P, such that for
all f ∈ U the following conditions are fulfilled:

1. S(f [n]) is defined for all n ∈ N,

2. ψS(f [n]) =∗ f for all but finitely many n ∈ N.

We also write U ∈ BC ∗ψ(S) and use the notations BC ∗ψ and BC ∗ by analogy with
the previous definitions.

In [CS83] Case and Smith verify BC ⊂ BC∗ = ℘R, where the proof of BC∗ =
℘R is based on a private communication to Leo Harrington (1978).

In Definition 2 the criterion EX has been changed by strengthening the de-
mands concerning the convergence of the sequence of hypotheses. It is also a
quite natural thought to strengthen the demands concerning the intermediate
hypotheses themselves. A successful learning behaviour might be to generate
intermediate hypotheses agreeing with the information received up to the actual
time of the learning process (“consistent” hypotheses, cf. [Go67] and [Ba74b]).

Definition 5 Assume U ⊆ R, ψ ∈ P2. U is called identifiable consistently with
respect to ψ if and only if there exists an S ∈ P satisfying

1. U ∈ EXψ(S),

2. ψS(f [n]) =n f for all f ∈ U and n ∈ N (we say that S(f [n]) is a consistent
hypothesis for f [n] with respect to ψ).

We also write: U ∈ CONSψ(S).

CONSψ := {U | U is identifiable consistently with respect to ψ}.
CONS :=

⋃
ψ∈P2 CONSψ.

9

A very natural example of learning with consistent intermediate hypotheses is
“identification by enumeration” – a method introduced by Gold in [Go67]. The
idea is to search within the hypothesis space for the first hypothesis agreeing with
the information received so far – that means, the learner looks for the minimal
consistent index in the given numbering. In general consistency is not decidable,
so this method does not work for arbitrary hypothesis spaces. It is typically used,
if the given numbering ψ is recursive itself, because in this case consistency with
respect to ψ can be checked and the sequence of hypotheses will converge to the
minimal ψ-number of the function to be learned (if this function has got any
ψ-number).

Definition 6 Let ψ ∈ P2. A class U ⊆ R of recursive functions is identifiable
by enumeration, if and only if U ∈ CONSψ(Enumψ), where the partial-recursive
function Enumψ is defined by

Enumψ(f [n]) :=

minX if X := {i ∈ N | ψi =n f} 6= ∅ and

∀j < minX [ψj(0)↓ ∧ . . . ∧ ψj(n)↓]
↑ otherwise

for all f ∈ R and n ∈ N.

Note that Rψ ∈ CONSψ(Enumψ), if ψ ∈ R2.
In order to be less demanding than in Definition 5, one could also ask for

hypotheses which do not disagree convergently (i.e. in their defined values) with
the actual information (“conform” hypotheses, see [Wie78] and [Fu88]).

Definition 7 Assume U ⊆ R, ψ ∈ P2. U is called conformly identifiable with
respect to ψ if and only if there exists an S ∈ P satisfying

1. U ∈ EXψ(S),

2. ∀f ∈ U ∀n ∈ N ∀x ≤ n [ψS(f [n])(x) = f(x) or ψS(f [n])(x)↑] (we say that
S(f [n]) is a conform hypothesis for f [n] with respect to ψ).

We also write U ∈ CONFψ(S) and use the notions CONFψ and CONF by analogy
with our former definitions.

Obviously consistent identification is a special case of conform identification.
The proper inclusions CONS ⊂ CONF ⊂ EX are verified in [Wie78].

Since any hypothesis representing a function not contained in R must be
wrong, another natural demand would be to allow only ψ-numbers of total re-
cursive functions (“total” hypotheses, cf. [JB81]) as outputs of S.

Definition 8 Assume U ⊆ R, ψ ∈ P2. U is called identifiable with respect to ψ
with total intermediate hypotheses if and only if there exists an S ∈ P satisfying

10

1. U ∈ EXψ(S),

2. ψS(f [n]) ∈ R for all f ∈ U and n ∈ N.

We also write: U ∈ TOTALψ(S).
TOTALψ and TOTAL are defined by analogy with Definition 5.

A tightening of this idea is to forbid all hypotheses corresponding to a function
not contained in the class to be learned. Such hypotheses must also be wrong for
the relevant target functions, so we might wish to exclude them. The remaining
hypotheses are called “class-preserving” hypotheses, because they all correspond
to functions in the class to be learned.

Definition 9 Assume U ⊆ R, ψ ∈ P2. U is called identifiable with class-
preserving intermediate hypotheses with respect to ψ if and only if there exists an
S ∈ P satisfying

1. U ∈ EXψ(S),

2. ψS(f [n]) ∈ U for all f ∈ U and n ∈ N.

We also write U ∈ CPψ(S) and define CPψ and CP as usual.

For a proof of CP ⊂ TOTAL ⊂ CONS see [JB81]. Now let m ≥ 1 be an
arbitrary positive integer. In [Zi99] the reader may find a proof for EXm # CONF
and EXm # CONS. Thus EXm 6⊆ TOTAL and EXm 6⊆ CP. A class in CP \EXm

can also be found easily: the set of all recursive functions of finite support can be
identified by enumeration with class-preserving intermediate hypotheses. This set
is not an element of EXm, as can be verified easily (see for example [CS83]). This
implies EXm # TOTAL and EXm # CP. EX0 ⊂ CP then follows by definition
(the output “?” may be replaced by any fixed class-preserving hypothesis).

Since in general the halting problem in ψ is not decidable, it might be hard
for our strategy to detect the incorrectness of a hypothesis, if the corresponding
function differs from the function to be learned only by being undefined for some
arguments. For learning with “convergently incorrect” hypotheses (cf. [FKW95])
such outputs are forbidden.

Definition 10 Assume U ⊆ R, ψ ∈ P2. U is called identifiable with respect to
ψ with convergently incorrect intermediate hypotheses if and only if there exists
an S ∈ P satisfying

1. U ∈ EXψ(S),

2. ψS(f [n]) 6⊂ f for all f ∈ U and n ∈ N.

We also write: U ∈ CEXψ(S).
CEXψ and CEX are defined by analogy with Definition 5.

11

Note that for every recursive numbering ψ ∈ R2 the class Rψ is identifiable
according to the inference criteria CP, TOTAL and CEX, for example by the
strategy Enumψ.

Freivalds, Kinber and Wiehagen have proved EX1 6⊆ CEX ⊂ EX as well
as CEX # CONS in [FKW95]. Since CP 6⊆ EXm 6⊆ CEX (for m ≥ 1) and
CP ⊆ CEX, we know CEX # EXm for all m ≥ 1. By definition TOTAL is a
subset of CEX. That this inclusion is proper, follows from TOTAL ⊂ CONS
and CEX # CONS. With similar methods as in [FKW95] we can also verify
CEX # CONF.

Theorem 1 CEX # CONF.

Proof. As CONS # CEX and CONS is a subclass of CONF, we already know
that CONF is not contained in CEX. It remains to prove CEX \CONF 6= ∅. For
that purpose we use the class U of recursive functions defined in [FKW95] in the
proof of CEX\CONS 6= ∅. Let τ ∈ P2 be a fixed acceptable numbering. U0 ⊆ R
and U1 ⊆ R are defined as follows:

U0 := {jp | j ∈ N and p ∈ R01 and τj = jp} ,
U1 := {jα120∞ | j ∈ N and α ∈ {0, 1}+ and τj(|α|+ 1) = 0 (6= 1)} .

If jα120∞ ∈ U1, then τj 6⊆ jα120∞, so j is a convergently incorrect hypothesis
for jα120∞ with respect to τ .

Now let U := U0 ∪ U1. Similar ideas as in [FKW95] are used to verify
U ∈ CEX \ CONF.

Proof of “U ∈ CEX”. On any function f our strategy first returns the value
f(0). This hypothesis is maintained, until the value 2 is found in the following
input. Thus all functions in U0 are identified with respect to τ . As soon as the
value 2 is found, the strategy returns a τ -number of the function α0∞, where
α ∈ N∗ is the initial segment of f read so far (ending with the value 2). This
strategy also CEX-identifies the functions f in U1 with respect to τ , because f(0)
is convergently incorrect for f in this case. So U ∈ CEXτ .

Proof of “U /∈ CONF”. Suppose by way of contradiction that U ∈ CONF. With-
out loss of generality this yields the existence of a strategy S ∈ P such that
U ∈ CONFτ (S). We will now deduce a contradiction by proving that there is a
function f ∈ U which is not learned conformly by S. For that purpose we define
a function g = τj by implicit use of the recursion theorem in the following way:

Construction of g = τj.
The function g is defined in stages k, k ∈ N. Let n0 := 0, g(0) := j and go

to stage 0.

12

Stage 0. We set g(2) := 0. The value g(1) is defined as follows:

g(1) :=

0 if S(j)↓ ∧ S(j0)↓ ∧ S(j1)↓ ∧ S(j0) 6= S(j)

1 if S(j)↓ ∧ S(j0)↓ ∧ S(j1)↓ ∧ S(j0) = S(j) ∧ S(j1) 6= S(j)

1 if S(j)↓ ∧ S(j0)↓ ∧ S(j1)↓ ∧ S(j0) = S(j1) = S(j)

↑ otherwise

If g(1) is undefined, all further values of g (except g(2)) shall also be undefined.
If g(1) is defined and [S(j0) 6= S(j) or S(j1) 6= S(j)], then let n1 := 2 (the

maximal argument for which g has been defined up to now) and go to stage 1.
If g(1) is defined and S(j0) = S(j1) = S(j), then test by parallel computa-

tion, whether one of the following two properties are fulfilled, and – if yes – which
one is fulfilled first:

(i). τS(j)(1) is defined.
(ii). There is an integer y ∈ N such that S(g[2]0y) is defined and

S(g[2]0y) 6= S(j).

With each testing step y define g(y + 2) := 0.
If property (i) is fulfilled first, then let g(x+ 2) be undefined for all x greater

than the actual testing step number y.
If property (ii) is fulfilled first (for some fixed y ∈ N), then we have already

defined g(x) = 0 for all x ∈ {3, . . . , y + 2}. Furthermore, let n1 := y + 2 (the
maximal argument for which g has been defined up to now) and go to stage 1.

If neither property (i) nor property (ii) is fulfilled, we obtain g = g[2]0∞.
End stage 0.

Stage k for k ∈ N. We set g(nk + 2) := 0. The value g(nk + 1) is defined as
follows:

g(nk + 1) :=

0 if S(g[nk])↓ ∧ S(g[nk]0)↓ ∧ S(g[nk]1)↓
∧ S(g[nk]0) 6= S(g[nk])

1 if S(g[nk])↓ ∧ S(g[nk]0)↓ ∧ S(g[nk]1)↓
∧ S(g[nk]0) = S(g[nk]) ∧ S(g[nk]1) 6= S(g[nk])

1 if S(g[nk])↓ ∧ S(g[nk]0)↓ ∧ S(g[nk]1)↓
∧ S(g[nk]0) = S(g[nk]1) = S(g[nk])

↑ otherwise

If g(nk + 1) is undefined, all further values of g (except g(nk + 2)) shall also
be undefined.

If g(nk + 1) is defined and [S(g[nk]0) 6= S(g[nk]) or S(g[nk]1) 6= S(g[nk])],
then let nk+1 := nk + 2 (the maximal argument for which g has been defined up
to now) and go to stage k + 1.

13

If g(nk + 1) is defined and S(g[nk]0) = S(g[nk]1) = S(g[nk]), then test by
parallel computation, whether one of the following two properties are fulfilled,
and – if yes – which one is fulfilled first:

(i). τS(g[nk])(nk + 1) is defined.
(ii). There is an integer y ∈ N such that S(g[nk + 2]0y) is defined and

S(g[nk + 2]0y) 6= S(g[nk]).

With each testing step y define g(nk + y + 2) := 0.
If property (i) is fulfilled first, then let g(nk + 2 + x) be undefined for all x

greater than the actual testing step number y.
If property (ii) is fulfilled first (for some fixed y ∈ N), then we have already

defined g(x) = 0 for all x ∈ {nk + 3, . . . , nk + y + 2}. Furthermore, let nk+1 :=
nk + y + 2 (the maximal argument for which g has been defined up to now) and
go to stage k + 1.

If neither property (i) nor property (ii) is fulfilled, we have g = g[nk + 2]0∞.
End stage k.

End construction g.

Now consider two cases.

Case (i). All stages k (k ∈ N) are reached in the definition of g.
Then g = jp for some p ∈ R01, so g ∈ U0. But by construction S changes

its mind on g infinitely often, so S cannot identify g in the limit. Hence U /∈
CONFτ (S); a contradiction to our assumption.

Case (ii). Stage k (for some fixed k ∈ N) is the last stage reached in the con-
struction of g.

Then we will either show that {g} /∈ CONFτ (S), where g ∈ U , or we can
prove the existence of some y ∈ {0, 1} such that the function f ∈ R, defined by

f(x) =

g(x) if x ≤ nk

y if x = nk + 1

1 if x = nk + 2

2 if x = nk + 3

0 if x > nk + 3

cannot be identified conformly with respect to τ by our strategy S. Note that
f ∈ U1 for any y ∈ {0, 1}, because then f = jα120∞ for some α ∈ {0, 1}+ and
τj(|α| + 1) = g(|α| + 1) = g(nk + 2) = 0. For the choice of y we regard two
possibilities.

Case (ii)a. S(g[nk])↑ or S(g[nk]0)↑ or S(g[nk]1)↑.

14

As f [nk] = g[nk], we obtain S(f [nk])↑ or S(f [nk]y
′)↑ for some y′ ∈ {0, 1}.

In the first case let y := 0, in the latter case y := y′. Thus our strategy S is
undefined on some initial segment of the function f ∈ U1 as defined above. We
obtain U /∈ CONFτ (S), which is again a contradiction.

Case (ii)b. S(g[nk])↓ and τS(g[nk])(nk + 1)↓ and S(g[nk]) = S(g[nk]0) = S(g[nk]1).
With f [nk] = g[nk] we obtain S(f [nk])↓ and τS(f [nk])(nk + 1)↓ and S(f [nk]) =

S(f [nk]0) = S(f [nk]1). As τS(f [nk])(nk + 1) ↓, the hypothesis S(f [nk]) cannot
be conform for both f [nk]0 and f [nk]1. Then choose y ∈ {0, 1}, such that
S(f [nk]y) (= S(f [nk])) is not conform for f [nk]y and define f as described above.
Since f ∈ U1, this yields the contradiction U /∈ CONFτ (S).

Case (ii)c. S(g[nk])↓ and S(g[nk]) = S(g[nk]0) = S(g[nk]1), but none of the
properties tested by parallel computation in the construction of g is fulfilled.

Then g = g[nk + 2]0∞ ∈ U0 and τS(g[nk])(nk + 1)↑ and S(g[n]) = S(g[nk])
for all n ≥ nk. τS(g[nk])(nk + 1)↑ implies τS(g[nk]) 6= g; therefore the sequence of
hypotheses produced by S on g converges to an index incorrect for g with respect
to τ . Again we obtain U /∈ CONFτ (S).

By construction of g further cases cannot occur, so U /∈ CONF. Now we have
verified CEX \ CONF 6= ∅, which implies CEX # CONF. �

As we have already mentioned above, for the inference criteria introduced in
this section the following comparison results have been proved:

Theorem 2 [Ba74a, CS83, FKW95, JB81, Wie78, Zi99]

1. EX ⊂ BC ⊂ BC∗ = ℘R,

2. ∀m ∈ N [EXm ⊂ EXm+1 ⊂ EX],

3. EX0 ⊂ CP ⊂ TOTAL ⊂ CONS ⊂ CONF ⊂ EX,

4. TOTAL ⊂ CEX ⊂ EX,

5. CEX # CONF and CEX # CONS,

6. if I ∈ {CP,TOTAL,CONS,CONF,CEX} and m ≥ 1, then EXm # I.

These results are also summarized in Figure 1. The aim of this paper is to
compare these hierarchies of inference criteria to the corresponding hierarchies
resulting in uniform learning according to the same inference criteria. The defi-
nition of uniform learning is given in Section 3; Sections 4 and 5 are concerned
with the comparison of inference criteria in uniform learning.

15

From now on let I denote the set of all previously declared inference criteria,
i.e.

I = {EX,BC,BC∗,CP,TOTAL,CEX,CONS,CONF} ∪ {EXm | m ∈ N} .

BC∗

BC

EX

...

EX2

EX1

EX0

CP

TOTAL

CONS

CONF
CEX

!!
!!
!

b
b
b
b
bb

%
%
%
%
%
%
%
%

PPPPPPPPPPPPP

Figure 1: The hierarchy of inference criteria according to Theorem 2. Any line
drawn upwards indicates a proper inclusion. If two classes I ∈ I are not connected
by a line or a sequence of lines drawn upwards, they are incomparable.

16

3 Uniform Learning

The scope of this section is to give a formal introduction into uniform learning
of classes of recursive functions. We will start with the basic definitions and
afterwards collect some simple but useful results.

3.1 Definitions

From now on let ϕ ∈ P3 be a fixed acceptable numbering of P2 and τ ∈ P2

an acceptable numbering of P1. As ϕ is acceptable, it might be regarded as a
numbering of all numberings ψ ∈ P2: every b ∈ N corresponds to the function ϕb

which is defined by ϕb(i, x) := ϕ(b, i, x) for any i, x ∈ N. Thus b also describes
a class Rb of recursive functions, where Rb := Rϕb = Pϕb ∩ R; i.e. Rb is the
recursive core of Pϕb . Therefore any set B ⊆ N will be called description set
for the collection {Rb | b ∈ B} of recursive cores corresponding to the indices
in B. Considering each recursive core as a set of functions to be identified, any
description set B ⊆ N may be associated to a collection of learning problems.
Now we are looking for a meta-learner which – given any description b ∈ B –
develops a special learner coping with the learning problem described by b, i.e. the
special learner must identify each function in Rb.

Definition 11 Let J ⊆ ℘R, I ∈ I, J ⊆ I, B ⊆ N. The set B is called suit-
able for uniform learning with respect to J and I iff the following conditions are
fulfilled:

1. Rb ∈ J for all b ∈ B,

2. there is a function S ∈ P2 such that for all b ∈ B there is a numbering
ψ ∈ P2 satisfying Rb ∈ Iψ(λx.S(b, x)).

We abbreviate this formulation by B ∈ suit(J, I) and write B ∈ suit(J, I)(S), if
S is given.

So B ∈ suit(J, I) if and only if every recursive core described by some index
b ∈ B belongs to the class J and additionally there is a strategy S ∈ P2 which,
given b ∈ B, synthesizes an I-learner successful for Rb with respect to some
appropriate hypothesis space ψ. Note that the synthesis of these appropriate
hypothesis spaces is not required. This means in particular, that in general the
output of a meta-learner cannot be interpreted practically, because we might not
know which numbering is actually used as a hypothesis space. Of course we
might restrict our definition of suitable description sets by demanding uniform
learnability with respect to the acceptable numbering τ for all classesRb. Another
possibility is to use the numberings ϕb, b ∈ B, already given by the description
set B as hypothesis spaces for I-identification of the classes Rb.

17

Definition 12 Let J ⊆ ℘R, I ∈ I, J ⊆ I, B ⊆ N, S ∈ P2. Assume
B ∈ suit(J, I)(S). We write B ∈ suitτ (J, I)(S) if Rb ∈ Iτ (λx.S(b, x)) for
all b ∈ B. Furthermore the notation B ∈ suitϕ(J, I)(S) shall indicate that
Rb ∈ Iϕb(λx.S(b, x)) for all b ∈ B. We also use the notations suitτ (J, I) and
suitϕ(J, I) in the usual way.

Note that the definition of suitϕ corresponds to a special case of the definition
of suitτ , because ϕb-numbers can be translated into τ -numbers uniformly in b, as
Proposition 1 states.

Proposition 1 There exists a recursive function c ∈ R, such that ϕbi = τc(b,i) for
all b, i ∈ N.

Proof. Let p : N2 → N be a bijective recursive function and choose π1, π2 ∈ R,
such that π1(p(x, y)) = x and π2(p(x, y)) = y for all x, y ∈ N. Then define a
function ψ ∈ P2 by

ψj(x) := ϕ(π1(j), π2(j), x) for all j, x ∈ N .

As ψ ∈ P2 and τ is acceptable, there exists some d ∈ R satisfying

ψj = τd(j) for all j ∈ N .

By defining c(b, i) := d(p(b, i)) for all b, i ∈ N we obtain

τc(b,i) = τd(p(b,i)) = ψp(b,i) = ϕ
π1(p(b,i))
π2(p(b,i)) = ϕbi

for all b, i ∈ N. �

As many results in this paper are concerned with the uniform learnability of
finite or singleton sets, we introduce the following notions:

Definition 13

• J∗ := {U ⊆ R | card U <∞},

• J1 := {U ⊆ R | card U = 1} = {{f} | f ∈ R}.

Thus J∗ denotes the set of all finite subsets of R; J1 is the set of all singleton
sets of recursive functions.

18

3.2 Basic Results

Of course it would be nice to find characterizations of the sets suitable for uniform
learning with respect to J, I, where I ∈ I and J ⊆ I are given. This paper com-
pares the uniform identification power of several criteria I ∈ I and concentrates
on the case J = J∗, i.e. all recursive cores to be identified with respect to I are
finite. Our first result follows obviously from our definitions and Proposition 1.

Proposition 2 Let I ∈ I, J ⊆ I. Then suitϕ(J, I) ⊆ suitτ (J, I) ⊆ suit(J, I).

Whether these inclusions are proper inclusions or not depends on the choice
of J and I. If they turned out to be equalities for all J and I, then Definition
12 would be superfluous. But in fact, as Theorem 6 will show, we have proper
inclusions in the general case.

Any strategy identifying a class U ⊆ R with respect to some criterion I ∈
I \ {CONS,CONF} can be replaced by a total recursive strategy without loss of
learning power – a result from folklore. This new strategy is defined by computing
the values of the former strategy for a bounded number of steps and a bounded
number of input examples with increasing bounds. As long as no hypothesis is
found, some temporary hypothesis agreeing with the restrictions in the definition
of I is produced. Afterwards the hypotheses of the former strategy are put out
“with delay”. This does not work for CONS and CONF, since in general after the
delay the hypotheses are no longer consistent or conform with the information in
the actual time of the learning process. An example of a class in CONS which
is not consistently identifiable by any total recursive strategy can be found in
[WZ95]. Now we transfer these observations to the level of uniform learning and
get the following result, which we will use in several proofs:

Proposition 3 Let I ∈ I \ {CONS,CONF,CP}, J ⊆ I, B ⊆ N. Assume B ∈
suit(J, I) (suitτ (J, I)). Then there is a total recursive function S such that B ∈
suit(J, I)(S) (suitτ (J, I)(S), respectively). Furthermore, if I /∈ {TOTAL,CEX}
and B ∈ suitϕ(J, I), then also B ∈ suitϕ(J, I)(S) for some S ∈ R2.

We also have to exclude the criterion CP here, because in general a class-
preserving hypothesis for Rb cannot be computed uniformly in b. A counterclaim
to Proposition 3 in the case of learning with respect to suitϕ for the criteria
CONS, CONF, CEX, TOTAL and CP is verified by the example given below:

Example 1 The description set B ⊆ N given by

B := {b ∈ N | ∀f ∈ Rb ∀g ∈ Pϕb \ {f} [g(0)↓ ⇒ g(0) 6= f(0)]}

is an element of suitϕ(I, I) for all I ∈ {CONS,CONF,CEX,TOTAL,CP}, but

B /∈ suitϕ(I, I)(S)

19

for all I ∈ {CONS,CONF,CEX,TOTAL,CP} and any total recursive strategy
S ∈ R2.

Proof. If we set T (b, f [0]) := “Return some i ∈ N with ϕbi(0) = f(0)” and
T (b, f [n + 1]) := T (b, f [0]) for arbitrary f ∈ R and b, n ∈ N, we observe that
B ∈ suitϕ(I, I)(T) for all I ∈ {CONS,CONF,CEX,TOTAL,CP}. Otherwise
there was an integer b ∈ B and two functions f ∈ Rb, g ∈ Pϕb \ {f} with
g(0) = f(0), which contradicts the definition of B.

Now assume that there exists some strategy S ∈ R2 satisfying

B ∈ suitϕ(I, I)(S)

for some I ∈ {CONS,CONF,CEX,TOTAL,CP}. We will deduce a contradiction
by constructing an integer b0 ∈ N satisfying

1. b0 ∈ B,

2. Rb0 /∈ Iϕb0 (λx.S(b0, x)).

Construction of b0.
Define a function ψ ∈ P3 for arbitrary b ∈ N as follows:

ψb0 :=

0∞ if S(b, 0) 6= 0

↑∞ if S(b, 0) = 0 and I 6= CONF

1↑∞ if S(b, 0) = 0 and I = CONF

ψb1 :=

0∞ if S(b, 0) = 0

↑∞ if S(b, 0) 6= 0 and I 6= CONF

1↑∞ if S(b, 0) 6= 0 and I = CONF

ψbx :=

{
↑∞ if I 6= CONF

1↑∞ if I = CONF
for all x ≥ 2.

Since S ∈ R2, we know that S(b, 0) is defined for all b ∈ N, so ψ is a partial-
recursive function. Now let g ∈ R be a compiler function such that ϕg(b) = ψb

for all b ∈ N. Such a function g exists, since ψb was defined uniformly in b. The
recursion theorem then yields an integer b0 ∈ N satisfying ϕb0 = ϕg(b0). Thus we
have ϕb0 = ψb0 .

End Construction b0.

It remains to prove the following properties:

1. b0 ∈ B,

2. Rb0 /∈ Iϕb0 (λx.S(b0, x)).

20

ad 1. By definition of the function ψ we know that Pϕb0 = {0∞, ↑∞} (or {0∞, 1↑∞}
if I = CONF). Thus for any f ∈ Rb0 and g ∈ Pϕb0 \ {f} we obtain f = 0∞ as
well as g =↑∞ (or {g = 1↑∞} if I = CONF); in particular g(0) 6= f(0). Thus
b0 ∈ B. qed 1.

ad 2. Since S ∈ R2, it suffices to consider the following two cases.

Case (i). S(b0, 0) = 0.
Then ϕb01 = 0∞ ∈ Rb0 and ϕb00 =↑∞ (or ϕb00 = 1↑∞ if I = CONF). This implies
S(b0, ϕ

b0
1 [0]) = S(b0, 0) = 0. But ϕb00 is not an element of the recursive core Rb0

and ϕb00 (0)↑ (or ϕb00 (0) = 1 if I = CONF). So on ϕb01 the strategy λx.S(b0, x)
returns a hypothesis which is neither consistent nor class-preserving, nor total,
nor convergently incorrect (or which is non-conform, if I = CONF). This implies
Rb0 /∈ Iϕb0 (λx.S(b0, x)).

Case (ii). S(b0, 0) 6= 0.
Then ϕb00 = 0∞ ∈ Rb0 and ϕb0x =↑∞ (or ϕb0x = 1↑∞ if I = CONF) for all x ≥ 1.
By analogy with our first case we verify Rb0 /∈ Iϕb0 (λx.S(b0, x)).

Further cases do not occur, so Rb0 /∈ Iϕb0 (λx.S(b0, x)). qed 2.

These two properties of b0 now contradict our assumption. This implies
that there is no recursive strategy S ∈ R2 satisfying B ∈ suitϕ(I, I)(S), where
I ∈ {CONS,CONF,CEX,TOTAL,CP} was chosen arbitrarily. �

A further example will prove the counterclaim to Proposition 3 concerning
suit or suitτ in combination with any of the criteria CONS and CONF.

Example 2 The description set B ⊆ N given by

B := {b ∈ N | ϕb ∈ R2}

is an element of suitϕ(CONS,CONS), but B /∈ suit(CONS,CONF)(S) for any
recursive strategy S ∈ R2.

Proof. Obviously Rb ∈ CONSϕb(Enumϕb) for all b ∈ N. Since a program for
the strategy Enumϕb can be found uniformly in the description b, we obtain
B ∈ suitϕ(CONS,CONS).

It remains to prove that B /∈ suit(CONS,CONF)(S) for all S ∈ R2. Assume
to the contrary that there exists some strategy S ∈ R2 satisfying

B ∈ suit(CONS,CONF)(S) .

We will deduce a contradiction by constructing an integer b0 ∈ N satisfying

21

1. b0 ∈ B,

2. Rb0 /∈ CONFη(λx.S(b0, x)) for all η ∈ P2.

Construction of b0.
Define a function ψ ∈ P3 for arbitrary b ∈ N as follows:

ψbi (0) := 0 for all i ∈ N ,

ψb0(x+ 1) :=

0 if S(b, ψb0[x]) 6= S(b, ψb0[x]0) (A)

1 if S(b, ψb0[x]) = S(b, ψb0[x]0) and

S(b, ψb0[x]) 6= S(b, ψb0[x]1) (B)

0 if S(b, ψb0[x]) = S(b, ψb0[x]0) = S(b, ψb0[x]1) (C)

for x ∈ N ,

ψbi+1(x+ 1) :=

ψb0(x+ 1) if case (C) occurs at most i times

in the definition of ψb0[x+ 1]

1 otherwise

for i, x ∈ N .

Whenever case (A) or case (B) occurs, λx.S(b, x) changes its mind on ψb0. As
S ∈ R2, we have ψ ∈ R3. Note that for all x ∈ N such that S(b, ψb0[x]) =
S(b, ψb0[x]0) = S(b, ψb0[x]1) there is some i ∈ N which fulfils

ψbi+1 =x ψ
b
0 and ψbi+1(x+ 1) = 1 6= 0 = ψb0(x+ 1) (1)

Now let g ∈ R be a compiler function such that ϕg(b) = ψb for all b ∈ N. Such
a function g exists, since ψb was defined uniformly in b. The recursion theorem
then yields an integer b0 ∈ N satisfying ϕb0 = ϕg(b0). Thus we have ϕb0 = ψb0 .

End Construction b0.

It remains to prove the following properties:

1. b0 ∈ B,

2. Rb0 /∈ CONFη(λx.S(b0, x)) for all η ∈ P2.

ad 1. We know ψ ∈ R3. Since ϕb0 = ψb0 , this implies ϕb0 ∈ R2. Hence we obtain
b0 ∈ B. qed 1.

ad 2. Assume that Rb0 ∈ CONFη(λx.S(b0, x)) for some fixed η ∈ P2. As
ϕb00 ∈ R, one of the cases (A), (B), (C) must occur infinitely often in the defini-
tion of ψb00 = ϕb00 . We consider two possible cases.

Case (i). Cases (A) or (B) occur infinitely often.
Then – according to the remark in the definition of ψ – the strategy λx.S(b0, x)
changes its mind on ϕb00 infinitely often. Therefore Rb0 /∈ CONFη(λx.S(b0, x)),

22

which contradicts our assumption.

Case (ii). Case (C) occurs infinitely often.
Then there are infinitely many integers x ∈ N such that

S(b0, ϕ
b0
0 [x]) = S(b0, ϕ

b0
0 [x]0) = S(b0, ϕ

b0
0 [x]1) . (2)

Let z be one of these integers. According to (1) there must be an i ∈ N such that

ϕb0i+1 =z ϕ
b0
0 and ϕb0i+1(z + 1) = 1 6= 0 = ϕb00 (z + 1)

and S(b0, ϕ
b0
i+1[z + 1]) = S(b0, ϕ

b0
0 [z + 1]) .

Since ϕb0i+1, ϕ
b0
0 ∈ Rb0 and Rb0 ∈ CONFη(λx.S(b0, x)), the hypothesis j :=

S(b0, ϕ
b0
0 [z + 1]) must be conform with respect to η for both ϕb00 [z + 1] and

ϕb0i+1[z + 1], therefore ηj(z + 1)↑. In particular j is incorrect for ϕb00 with respect
to η. That means for every x ∈ N satisfying condition (2), that the hypothesis
S(b0, ϕ

b0
0 [x + 1]) is incorrect for ϕb00 with respect to η. Now λx.S(b0, x) returns

incorrect hypotheses for ϕb00 infinitely often, because there are infinitely many
integers x satisfying condition (2). We conclude Rb0 /∈ CONFη(λx.S(b0, x)) in
contradiction to our assumption.

As at least one of these two cases must occur, we have verified that Rb0 /∈
CONFη(λx.S(b0, x)), where the hypothesis space η ∈ P2 was chosen arbitrarily.
This proves 2. qed 2.

These two properties of b0 now contradict our assumption. This implies that
there is no recursive strategy S ∈ R2 satisfying B ∈ suit(CONS,CONF)(S). �

Let us now collect some simple examples of description sets suitable or not
suitable for uniform learning. First we consider the identification of classes con-
sisting of just one recursive function. Any set describing such classes turns out
to be suitable for identification under any of our criteria:

Theorem 3 Let I ∈ I. Then suit(J1, I) = {B ⊆ N | Rb ∈ J1 for all b ∈ B}.

Proof. Let B ⊆ N fulfil Rb ∈ J1 for all b ∈ B. Since for all f ∈ R there
exists a numbering ψ ∈ P2 with ψ0 = f , the strategy constantly zero yields
B ∈ suit(J1, I). Thus {B ⊆ N | Rb ∈ J1 for all b ∈ B} ⊆ suit(J1, I). The other
inclusion is obvious. �

Unfortunately, we would rather not regard the strategy defined in this proof
as an “intelligent” learner, because its output does not depend on the input at
all. Its success lies just in the choice of appropriate hypothesis spaces. If such a
choice of hypothesis spaces is forbidden, we obtain an absolutely negative result:

23

Theorem 4

1. {b ∈ N | Rb ∈ J1} /∈ suitτ (J
1,BC);

in particular even {b ∈ N | card {i ∈ N | ϕbi ∈ R} = 1} /∈ suitτ (J
1,BC),

2. {b ∈ N | Rb ∈ J1} /∈ suitϕ(J1,BC∗);
in particular even {b ∈ N | card {i ∈ N | ϕbi ∈ R} = 1} /∈ suitϕ(J1,BC∗).

For a proof see [Zi00]. So, if we fix our hypothesis spaces in advance, not
even the classes consisting of just one element can be BC-identified uniformly.
Regarding the identification of arbitrary finite classes (the learnability of which
is trivial in the non-uniform case), the situation does not improve. Even by free
choice of the hypothesis spaces we cannot achieve uniform EX-identifiability.

Theorem 5 {b ∈ N | Rb ∈ J∗} /∈ suit(J∗,EX).

A proof can be found in [Zi00]. How can we interpret these results? Is the
concept of uniform learning fruitless and further research on this area not worth-
wile? Fortunately, many results in [BCJ96] and [Zi00] allow a more optimistic
point of view. For example, [Zi00] shows that some constraints on the descrip-
tions b ∈ B – especially concerning the topological structure of the numberings
ϕb – yield uniform learnability of huge classes of recursive functions, even with
consistent and total intermediate hypotheses and also with respect to our accept-
able numbering τ . The sticking point seems to be that uniform identifiability is
not so much influenced by the classes to be learned, but by the numberings ϕb

chosen as representations for these classes. So the many negative results should
be interpreted carefully. For example the reason that there is no uniform EX-
learner for {b ∈ N | Rb ∈ J∗} is not so much the complexity of finite classes but
rather the need to cope with any numbering possessing a finite R-core. Based
on these aspects we do not tend to a pessimistic view concerning the fruitfulness
of the concept of uniform learning. Our results in the following sections will
substantiate this opinion.

Theorems 3 and 4 now enable the proof of the following example of a strict
version of Proposition 2.

Theorem 6

1. suitϕ(J1, I) ⊂ suitτ (J
1, I) ⊂ suit(J1, I) for all I ∈ I \ {BC∗},

2. suitϕ(J1,BC∗) ⊂ suitτ (J
1,BC∗) = suit(J1,BC∗).

Proof. ad 1. Let I ∈ I \ {BC∗}. suitτ (J
1, I) ⊂ suit(J1, I) is obtained as

follows: by Theorem 4 we know that B1 := {b ∈ N | Rb ∈ J1} /∈ suitτ (J
1, I)

(otherwise B1 was also an element of suitτ (J
1,BC)). Thus by Theorem 3 we

obtain B1 ∈ suit(J1, I) \ suitτ (J
1, I).

24

It remains to prove suitϕ(J1, I) ⊂ suitτ (J
1, I). Again by Theorem 4 we know

that there exists a set B ⊆ N such that card {i ∈ N | ϕbi ∈ R} = 1 for all b ∈ B
and B /∈ suitϕ(J1,EX). Now let g ∈ R be a computable function satisfying

ϕ
g(b)
i (x) =

{
0 if ϕbi(y)↓ for all y ≤ x

↑ otherwise

for any b, i, x ∈ N. Let B′ := {g(b) | b ∈ B}. Since Rg(b) = {0∞} for all b ∈ B,
we get B′ ∈ suitτ (J

1, I) (via a strategy which constantly returns a τ -index of the
function 0∞).

Obviously {i ∈ N | ϕg(b)i ∈ R} = {i ∈ N | ϕbi ∈ R} for all b ∈ N. If
there was a strategy S ∈ P2 satisfying B′ ∈ suitϕ(J1, I)(S), we would achieve
B ∈ suitϕ(J1,EX)(T) by defining T (b, f [n]) := S(g(b), 0n) for f ∈ R, b, n ∈ N.
This contradicts the choice of B, so B′ ∈ suitτ (J

1, I) \ suitϕ(J1, I)(S). Hence
suitϕ(J1, I) ⊂ suitτ (J

1, I). qed 1.

ad 2. By Theorem 2 we know R ∈ BC∗. Therefore there exists some strategy
T ∈ R such that R ∈ BC∗τ (T). Defining a uniform learner S by

S(b, f [n]) := T (f [n])

for all f ∈ R and b, n ∈ N, we obtain ℘N ∈ suitτ (BC∗,BC∗)(S). So

suitτ (BC∗,BC∗) = suit(BC∗,BC∗) = ℘N

and in particular suitτ (J
1,BC∗) = suit(J1,BC∗) is verified. The proper inclusion

suitϕ(J1,BC∗) ⊂ suitτ (J
1,BC∗) is a consequence of Theorem 4.2, because the

description set {b ∈ N | Rb ∈ J1} is an element of suitτ (J
1,BC∗), but does not

belong to suitϕ(J1,BC∗). qed 2.
�

25

4 Separation of Inference Criteria: Special Hy-

pothesis Spaces

From now on we will compare the learning power of our inference criteria for
uniform learning of finite classes of recursive functions, i.e. we try to find results
in the style of Theorem 2, where the criteria I ∈ I are replaced by the sets
suit(J∗, I), suitτ (J

∗, I) or suitϕ(J∗, I). Please note that a separation like for
example suitτ (CONS,CONS) ⊂ suitτ (CONS,EX) is not a very astonishing result.
The remarkable point is that even collections of finite classes of recursive functions
suffice for a separation (note that in the non-uniform case finite classes can be
identified under any criterion I ∈ I easily).

In this section we concentrate on uniform learning with respect to fixed hy-
pothesis spaces, i.e. according to Definition 12. Our aim is to show that all
comparison results in Theorem 2 hold analogously for these concepts, even if all
classes to be learned are finite. Lemma 1 summarizes some very simple observa-
tions.

Lemma 1

1. suitϕ(J∗,EX) ⊆ suitϕ(J∗,BC) ⊆ suitϕ(J∗,BC∗),

2. suitϕ(J∗,EXm) ⊆ suitϕ(J∗,EXm+1) ⊆ suitϕ(J∗,EX) for all m ∈ N,

3. suitϕ(J∗,CP) ⊆ suitϕ(J∗,TOTAL) ⊆ suitϕ(J∗,CONS) ⊆
suitϕ(J∗,CONF) ⊆ suitϕ(J∗,EX),

4. suitϕ(J∗,TOTAL) ⊆ suitϕ(J∗,CEX) ⊆ suitϕ(J∗,EX),

5. suitϕ(J∗,EX0) ⊆ suitϕ(J∗,CONS) and
suitϕ(J∗,EX0) ⊆ suitϕ(J∗,CEX) [Ne01],

6. suitτ (J
∗,EX0) ⊆ suitτ (J

∗,TOTAL).

These results hold analogously if we substitute suitϕ by suitτ .

Proof. All inclusions except for suitϕ(J∗,TOTAL) ⊆ suitϕ(J∗,CONS) (or anal-
ogously with suitτ instead of suitϕ) and suitϕ(J∗,EX0) ⊆ suitϕ(J∗,CEX) follow
immediately from the definitions.

Proof of “suitϕ(J∗,TOTAL) ⊆ suitϕ(J∗,CONS)” and the corresponding τ -case.
If some set B ⊆ N fulfils B ∈ suitϕ(J∗,TOTAL)(S) for a strategy S ∈ P2, we
can easily define T ∈ P2 such that B ∈ suitϕ(J∗,CONS)(T). On input (b, f [n])
the strategy T just has to check the hypothesis S(b, f [n]) for consistency with
respect to ϕb. For b ∈ B, f ∈ Rb this check is possible, because ϕbS(b,f [n]) must be
a total function. If consistency is verified, T returns the same hypothesis as S,

26

otherwise T returns some consistent hypothesis (which can be found, if f ∈ Rb).
Convergence to a correct hypothesis follows from the choice of S. The τ -case is
proved by analogy.

Proof of “suitϕ(J∗,EX0) ⊆ suitϕ(J∗,CEX)”.
This proof is based on a personal communication to Jochen Nessel. Let B ∈
suitϕ(J∗,EX0). Then there exists a strategy T ∈ R2, such that

Rb ∈ (EX0)ϕb(λx.T (b, x))

for all b ∈ B. A strategy S ∈ P2 successful for B according to the definition of
suitϕ(J∗,CEX) can be described in the following way:

On input (b, f [n]) ∈ N2 first compute T (b, f [n]). If T (b, f [n]) 6=?,
then return T (b, f [n]). Otherwise look for some (i,m) ∈ N2, such that
f [n] ⊂ ϕbi [m] and T (b, ϕbi [m]) = i. As soon as such a pair (i,m) is
found, return i.

Now assume b ∈ B and f ∈ Rb. Since Rb ∈ (EX0)ϕb(λx.T (b, x)), there must
be some j, n0 ∈ N, such that ϕbj = f and T (b, f [n]) = j for all n ≥ n0. Then
also S(b, f [n]) = j for all n ≥ n0, so in the limit our hypotheses are correct with
respect to ϕb.

It remains to prove that S(b, f [n]) is defined for all n ∈ N and that none of
the intermediate hypotheses produced by λx.S(b, x) on f correspond to proper
subfunctions of f . For that purpose choose some n ∈ N such that T (b, f [n]) =?
(if such an n exists). Since f ∈ Rb and Rb ∈ (EX0)ϕb(λx.T (b, x)), our strategy
S must find some pair (i,m) ∈ N2, such that f [n] ⊆ ϕbi [m] and T (b, ϕbi [m]) = i.
So S(b, f [n]) = i; in particular, S(b, f [n]) is defined.

If ϕbi [m] ⊆ f , then also T (b, f [m]) = i. As T learns Rb from b without a mind
change, this implies ϕbi = f . Thus S(b, f [n]) = i does not correspond to a proper
subfunction of f .

If ϕbi [m] 6⊆ f , then ϕbi 6⊆ f , i.e. again S(b, f [n]) = i does not correspond to a
proper subfunction of f .

Hence we obtain Rb ∈ CEXϕb(λx.S(b, x)) for all b ∈ B and therefore B ∈
suitϕ(J∗,CEX). As B ∈ suitϕ(J∗,EX0) was chosen arbitrarily, we conclude
suitϕ(J∗,EX0) ⊆ suitϕ(J∗,CEX). �

Now we want to prove that nearly all these inclusions are in fact proper
inclusions.

4.1 The Hierarchy in Lemma 1.1

In this subsection we will show that the hierarchy in Lemma 1.1 is given by strict
separations. For that purpose we have to verify suitϕ(J∗,EX) ⊂ suitϕ(J∗,BC)

27

and suitϕ(J∗,BC) ⊂ suitϕ(J∗,BC∗) as well as the corresponding results for the τ -
case. The separation of suitϕ(J∗,BC) and suitϕ(J∗,BC∗) (and analogously with
suitτ instead of suitϕ) is achieved by Theorem 7.

Theorem 7 suitϕ(J1,BC∗) \ suitτ (J
1,BC) 6= ∅.

Proof. We use a strategy T ∈ R to define a description set B ⊆ N suitable for
uniform BC∗-identification by T . The set B shall describe only singleton sets
of recursive functions and will not be suitable for uniform behaviourally correct
identification. The choice of the strategy T may seem rather arbitrary, but it will
enable an indirect proof.

Definition of B ∈ suitϕ(J1,BC∗) \ suitτ (J
1,BC).

Define a strategy T ∈ R by

T (f [n]) := card {i ≤ n | f(i) = 1}+ 1

for all f ∈ R and n ∈ N. Then set

B := {b ∈ N | card Rb = 1 and Rb ∈ BC∗ϕb(T)} .

Claim. B ∈ suitϕ(J1,BC∗) \ suitτ (J
1,BC).

Proof of “B ∈ suitϕ(J1,BC∗)”.
Defining T ′ ∈ R2 by T ′(b, f [n]) := T (f [n]) for all f ∈ R and b, n ∈ N we obviously
have

• ∀b ∈ B [Rb ∈ J1],

• ∀b ∈ B [Rb ∈ BC∗ϕb(λx.T ′(b, x))].

By Definition 12 this implies B ∈ suitϕ(J1,BC∗).

Proof of “B /∈ suitτ (J
1,BC)”.

We will verify this claim by way of contradiction.

Assumption. B ∈ suitτ (J
1,BC).

Then there exists a strategy S ∈ R2 such that

∀b ∈ B [Rb ∈ BCτ (λx.S(b, x))] . (3)

Aim. Construction of an integer b0, such that

1. b0 ∈ B,

2. Rb0 /∈ BCτ (λx.S(b0, x)),

28

in contradiction to statement (3). The strategy λx.S(b0, x) will fail for the only
function f ∈ Rb0 by returning hypotheses incorrect for f with respect to τ in-
finitely often.

Construction of b0.
Define a function ψ ∈ P3 by the following instructions: let b ∈ N, αb0 := 0. Go to
stage 0.

Stage 0. ψb0(0) := 0, i.e. ψb0[0] = αb0. For x ∈ N set

ψb1(x) :=

0 if x = 0

0 if x > 0 and for all m ∈ {1, . . . , x}
[τS(b,0m)(m)↓≤x ⇒ τS(b,0m)(m) 6= 0]

↑ if x > 0 and x is minimal such that

τS(b,0m)(m)↓≤x and τS(b,0m)(m) = 0 for some m ∈ {1, . . . , x}
ψb0(x) otherwise

If there is some x ∈ N and some m ∈ {1, . . . , x} such that

τS(b,0m)(m)↓≤x and τS(b,0m)(m) = 0 ,

let mb
0 be the minimal integer such that

τ
S(b,0mb

0)
(mb

0)↓≤x and τ
S(b,0mb

0)
(mb

0) = 0 .

Then define αb1 := 0m
b
01 and go to stage 1. End stage 0.

Stage k (k ∈ N, k > 0). ψb0[|αbk| − 1] := αbk. For x ∈ N set

ψbk+1(x) :=

αbk(x) if x < |αbk|
0 if x ≥ |αbk| and for all m ∈ {1, . . . , x}

[τS(b,αb
k0m)(|αbk|+m)↓≤x ⇒ τS(b,αb

k0m)(|αbk|+m) 6= 0]

↑ if x ≥ |αbk| and x is minimal such that

τS(b,αb
k0m)(|αbk|+m)↓≤x and τS(b,αb

k0m)(|αbk|+m) = 0

for some m ∈ {1, . . . , x}
ψb0(x) otherwise

If there is some x ∈ N with x ≥ |αbk| and some m ∈ {1, . . . , x} such that

τS(b,αb
k0m)(|αbk|+m)↓≤x and τS(b,αb

k0m)(|αbk|+m) = 0 ,

let mb
k be the minimal integer such that

τ
S(b,αb

k0
mb

k)
(|αbk|+mb

k)↓≤x and τ
S(b,αb

k0
mb

k)
(|αbk|+mb

k) = 0 .

29

Then define αbk+1 := αbk0
mb

k1 and go to stage k + 1. End stage k.

Now let g ∈ R be a compiler function such that ϕg(b) = ψb for all b ∈ N. Such
a function g exists, since ψb was defined uniformly in b. The recursion theorem
then yields an integer b0 ∈ N satisfying ϕb0 = ϕg(b0). Thus we have ϕb0 = ψb0 .

End Construction b0.

The following Fact is verified easily.

Fact 1

1. If ϕb00 ∈ R then

(a) αb0k ⊂ ϕb00 for all k ∈ N,

(b) ϕb0k /∈ R and ϕb0k =∗ ϕb00 for all k ≥ 1;

2. if ϕb00 /∈ R then there exists some k ∈ N such that Rb0 = {ϕb0k+1} = {αb0k 0∞},

3. if αb0k is defined for some k ∈ N, then card {i ∈ N | αb0k (i) = 1} = k.

In order to contradict phrase 3 we will prove the following statements.

1. b0 ∈ B,

2. Rb0 /∈ BCτ (λx.S(b0, x)).

ad 1. From Fact 1.1(b) and 1.2 we conclude that there is exactly one integer k
such that Rb0 = {ϕb0k }. Thus Rb0 ∈ J1. For the proof of Rb0 ∈ BC∗ϕb0 (T) consider
the following two cases.

Case (i). Rb0 = {ϕb00 }.
Since ϕb0k =∗ ϕb00 for all k ≥ 1 by Fact 1.1(b), we obviously have ϕb0

T (ϕ
b0
0 [n])

=∗ ϕb00

for all n ∈ N. Hence Rb0 ∈ BC∗ϕb0 (T).

Case (ii). Rb0 = {ϕb0k+1} for some k ∈ N.
By Fact 1.2 and 1.3 we know that

card {i ∈ N | ϕb0k+1(i) = 1} = card {i ∈ N | αb0k (i) = 1} = k .

Now let n0 := max{i ∈ N | ϕb0k+1(i) = 1} be the maximal argument for which

ϕb0k+1 returns 1. Then the definition of our strategy T implies T (ϕb0k+1[n]) = k+ 1
for all n ≥ n0. Therefore Rb0 ∈ EXϕb0 (T) and in particular Rb0 ∈ BC∗ϕb0 (T).

So we have verified Rb0 ∈ J1 as well as Rb0 ∈ BC∗ϕb0 (T). By definition this
yields b0 ∈ B. qed 1.

30

ad 2. Again we consider two cases.

Case (i). Rb0 = {ϕb00 }.
From Fact 1.1(a) we know αb0k ⊂ ϕb00 for all k ∈ N. By construction in stage
k, k ∈ N, we obtain αb0k+1 = αb0k 0m1 for some m ∈ N such that

τ
S(b0,α

b0
k 0m)

(|αb0k |+m)↓≤x and τ
S(b0,α

b0
k 0m)

(|αb0k |+m) = 0 .

So ϕb00 (|αb0k | + m) = 1 6= 0 = τ
S(b0,ϕ

b0
0 [|αb0

k |+m−1])
(|αb0k | + m), i.e. the hypothesis

returned by λx.S(b0, x) on ϕb00 [|αb0k |+m− 1] is incorrect with respect to τ for all
k ∈ N. So our strategy infinitely often returns incorrect hypotheses on the only
function in Rb0 . Therefore Rb0 /∈ BCτ (λx.S(b0, x)).

Case (ii). Rb0 = {ϕb0k+1} for some k ∈ N.

By construction in stage k we observe that ϕb0k+1 is a total function if and only

if τ
S(b0,α

b0
k 0m)

(|αb0k | + m)↑ or τ
S(b0,α

b0
k 0m)

(|αb0k | + m) 6= 0 = ϕb0k+1(|α
b0
k | + m) for all

m ∈ N. Since ϕb0k+1 = αb0k 0∞, this implies that all but finitely many hypothe-

ses returned by the strategy λx.S(b0, x) on ϕb0k+1 are incorrect with respect to τ .
Hence Rb0 /∈ BCτ (λx.S(b0, x)).

In both cases we have verified 2. qed 2.

The claims 1 and 2 now imply the existence of some integer b0 ∈ B such
that Rb0 /∈ BCτ (λx.S(b0, x)). This contradicts our assumption and we conclude
B /∈ suitτ (J

1,BC). Therefore suitϕ(J1,BC∗) \ suitτ (J
1,BC) 6= ∅. �

With similar methods we can also separate explanatory identification from
behaviourally correct identification.

Theorem 8 suitϕ(J∗,BC) \ suit(J∗,EX) 6= ∅.

Proof. We use a strategy T ∈ R to define a description set B ⊆ N suitable for
uniform behaviourally correct identification by T . The set B shall describe only
finite recursive cores and will not be suitable for uniform identification in the limit.

31

Definition of B ∈ suitϕ(J∗,BC) \ suit(J∗,EX).
Define a strategy T ∈ P by

T (f [n]) :=

0 if n = 0

2j + 1 if n > 0 ∧ f(n) 6= 2 ∧ card {i ≤ n | f(i) = 2} = j

∧ ∀x ∈ {max{i ≤ n | f(i) = 2}, . . . , n} [f(x) = 0]

2j + 2 if n > 0 ∧ f(n) 6= 2 ∧ card {i ≤ n | f(i) = 2} = j

∧ ∃x ∈ {max{i ≤ n | f(i) = 2}, . . . , n} [f(x) 6= 0]

T (f [n− 1]) if n > 0 ∧ f(n) = 2

for arbitrary f ∈ R and n ∈ N. Then set

B := {b ∈ N | Rb is finite and Rb ∈ BCϕb(T)} .

Claim. B ∈ suitϕ(J∗,BC) \ suit(J∗,EX).

Proof of “B ∈ suitϕ(J∗,BC)”.
Defining T ′ ∈ P2 by T ′(b, f [n]) := T (f [n]) for all f ∈ R and b, n ∈ N we obviously
have

• ∀b ∈ B [Rb ∈ J∗],

• ∀b ∈ B [Rb ∈ BCϕb(λx.T ′(b, x))].

By Definition 12 this implies B ∈ suitϕ(J∗,BC).

Proof of “B /∈ suit(J∗,EX)”.
We will verify this claim by way of contradiction.

Assumption. B ∈ suit(J∗,EX).
Then there exists a strategy S ∈ R2 such that

∀b ∈ B [Rb ∈ EX(λx.S(b, x))] . (4)

Aim. Construction of an integer b0, such that

1. b0 ∈ B,

2. Rb0 /∈ EX(λx.S(b0, x)),

in contradiction to statement (4). The strategy λx.S(b0, x) will fail for at least
one function f ∈ Rb0 by either

• changing its hypothesis for f infinitely often or

• converging to an index incorrect for the function f .

32

Construction of b0.
Define a function ψ ∈ P3 by the following instructions: let b ∈ N, αb0(0) := 0. Go
to stage 0.

Stage 0. By dove-tailed computation look for the minimal integer mb
0 satisfying

S(b, 000m
b
0) 6= S(b, 0) or S(b, 010m

b
0) 6= S(b, 0) .

Then let

αb1 :=

000m

b
02 if mb

0 is defined and S(b, 000m
b
0) 6= S(b, 0)

010m
b
02 if mb

0 is defined and S(b, 000m
b
0) = S(b, 0)

↑ if mb
0 is not defined

Furthermore set

ψb0[m
b
0 + 2] := αb1 (i.e. ψb0 =↑∞ if mb

0 is undefined)

ψb1 :=

000∞ if mb

0 is not defined

ψb0 if mb
0 is defined and S(b, 000m

b
0) 6= S(b, 0)

000m
b
0↑∞ if mb

0 is defined and S(b, 000m
b
0) = S(b, 0)

ψb2 :=

010∞ if mb

0 is not defined

ψb0 if mb
0 is defined and S(b, 000m

b
0) = S(b, 0)

010m
b
0↑∞ if mb

0 is defined and S(b, 000m
b
0) 6= S(b, 0)

If mb
0 is defined, then go to stage 1. End stage 0.

Stage k (k ∈ N, k > 0). By dove-tailed computation look for the minimal integer
mb
k satisfying

S(b, αbk00m
b
k) 6= S(b, αbk) or S(b, αbk10m

b
k) 6= S(b, αbk) .

Then let

αbk+1 :=

αbk00m

b
k2 if mb

k is defined and S(b, αbk00m
b
k) 6= S(b, αbk)

αbk10m
b
k2 if mb

k is defined and S(b, αbk00m
b
k) = S(b, αbk)

↑ if mb
k is not defined

Furthermore set

ψb0[|αbk+1| − 1] := αbk+1 if mb
k is defined (ψb0 = αbk ↑∞ if mb

k is undefined)

ψb2k+1 :=

αbk00∞ if mb

k is not defined

ψb0 if mb
k is defined and S(b, αbk00m

b
k) 6= S(b, αbk)

αbk00m
b
k↑∞ if mb

k is defined and S(b, αbk00m
b
k) = S(b, αbk)

ψb2k+2 :=

αbk10∞ if mb

k is not defined

ψb0 if mb
k is defined and S(b, αbk00m

b
0) = S(b, αbk)

αbk10m
b
k↑∞ if mb

k is defined and S(b, αbk00m
b
k) 6= S(b, αbk)

33

If mb
k is defined, then go to stage k + 1. End stage k + 1.

Now let g ∈ R be a compiler function such that ϕg(b) = ψb for all b ∈ N. Such
a function g exists, since ψb was defined uniformly in b. The recursion theorem
then yields an integer b0 ∈ N satisfying ϕb0 = ϕg(b0). Thus we have ϕb0 = ψb0 .

End Construction b0.

The following Fact is verified easily.

Fact 2

1. Rb0 = {ϕb00 } iff mb0
k is defined for all k ∈ N

iff {ϕb02k+1, ϕ
b0
2k+2} = {ϕb00 , αb0k ϕ

b0
0 (|αb0k |)0m

b0
k ↑∞} for all k ∈ N;

2. Rb0 = {ϕb02k+1, ϕ
b0
2k+2} = {αb0k 00∞, αb0k 10∞} iff k is the minimal integer such

that mb0
k is undefined;

3. if αb0k is defined for some k ∈ N, then card {i ∈ N | αb0k (i) = 2} = k.

In order to contradict phrase (4) we will prove the following statements.

1. b0 ∈ B,

2. Rb0 /∈ EX(λx.S(b0, x)).

ad 1. By Fact 2.1 and Fact 2.2 Rb0 is finite. Thus it remains to prove Rb0 ∈
BCϕb0 (T). It suffices to consider the following two cases.

Case (i). Rb0 = {ϕb00 }.
We know T (ϕb00 [0]) = 0.
If n ≥ 1 and ϕb00 (n) 6= 2, there is some k ∈ N maximal with the property
αb0k ⊆ ϕb00 [n− 1]. Then t := ϕb00 (|αk|) ∈ {0, 1}. Since card {i ≤ n | ϕb00 (i) = 2} =
card {i ∈ N | αb0k (i) = 2} = k by Fact 2.3, we obtain T (ϕb00 [n]) = 2k + t + 1.

Since αb0k t ⊆ ϕb02k+t+1 and αb0k t ⊆ ϕb00 and {ϕb02k+1, ϕ
b0
2k+2} = {ϕb00 , αb0k t0m

b0
k ↑∞} by

Fact 2.1, we have ϕb02k+t+1 = ϕb00 . So for any n ≥ 1 with ϕb00 (n) 6= 2 we obtain

ϕb0
T (ϕ

b0
0 [n])

= ϕb00 . (5)

Now if n ≥ 2 and ϕb00 (n) = 2, the definition of T implies

ϕb0
T (ϕ

b0
0 [n])

= ϕb0
T (ϕ

b0
0 [n−1])

(5)
= ϕb00 .

To verify this, please note that ϕb00 (n− 1) 6= 2 by construction. Thus ϕb0
T (ϕ

b0
0 [n])

=

ϕb00 for all but finitely many n ∈ N and therefore Rb0 ∈ BCϕb0 (T).

34

Case (ii). Rb0 = {ϕb02k+1, ϕ
b0
2k+2} = {αb0k 00∞, αb0k 10∞} for some k ∈ N.

Assume n > |αb0k |. Then ϕb02k+1(n) 6= 2 and ϕb02k+2(n) 6= 2 by construction. Fur-
thermore

card {i ≤ n | ϕb02k+1(i) = 2} = card {i ≤ n | ϕb02k+2(i) = 2}
= card {i ∈ N | αb0k (i) = 2}
= k

because of Fact 2.3. Since ϕb02k+1(|α
b0
k |) = 0 and ϕb02k+2(|α

b0
k |) = 1, this yields

T (ϕb02k+1[n]) = 2k + 1 and T (ϕb02k+2[n]) = 2k + 2. Therefore ϕb0
T (ϕ

b0
2k+1[n])

= ϕb02k+1

and ϕb0
T (ϕ

b0
2k+2[n])

= ϕb02k+2 for all but finitely many n ∈ N. Hence Rb0 ∈ BCϕb0 (T).

Altogether we obtain b0 ∈ B. qed 1.

ad 2. Again we consider two cases.

Case (i). Rb0 = {ϕb00 }.
Then mb0

k is defined for all k ∈ N by Fact 2.1. By construction this implies
αb0k ⊆ ϕb00 as well as S(b0, α

b0
k) 6= S(b0, ϕ

b0
0 [|αb0k+1| − 2]) for all k ∈ N. Thus the

sequence of hypotheses produced by the strategy λx.S(b0, x) on ϕb00 does not con-
verge. This implies Rb0 /∈ EX(λx.S(b0, x)).

Case (ii). Rb0 = {ϕb02k+1, ϕ
b0
2k+2} = {αb0k 00∞, αb0k 10∞} for some k ∈ N.

Then by Fact 2.2 we know that mb0
k is not defined. This implies

S(b0, α
b0
k 00m) = S(b0, α

b0
k) = S(b0, α

b0
k 10m) for all k ∈ N .

Thus S(b0, ϕ
b0
2k+1[n]) = S(b0, ϕ

b0
2k+2[n]) for all but finitely many n ∈ N, although

ϕb02k+1 6= ϕb02k+2. Therefore – no matter what hypothesis space is regarded –
the sequence of hypotheses generated by λx.S(b0, x) must converge to an in-
correct hypothesis for at least one of the two functions in Rb0 . Hence Rb0 /∈
EX(λx.S(b0, x)).

qed 2.

Claims 1 and 2 together now contradict statement 4. Therefore our as-
sumption must have been wrong, i.e. B /∈ suit(J∗,EX). Altogether we have
B ∈ suitϕ(J∗,BC) \ suit(J∗,EX). This completes the proof. �

Note that this result is even much stronger than required. We just needed
to prove suitϕ(J∗,BC) \ suitϕ(J∗,EX) 6= ∅ and the corresponding statement for
learning with respect to τ . Besides we have not only verified

suit(J∗,BC) \ suit(J∗,EX) 6= ∅ ,

35

but we observe a further fact: though we know uniform learning with respect
to the hypothesis spaces given by ϕ to be much more restrictive than uniform
learning without special demands concerning the hypothesis spaces, we still can
find collections of class-descriptions which are

• restrictive enough to describe finite classes of recursive functions only,

• suitable for uniform BC-identification with respect to the hypothesis spaces
corresponding to their descriptions,

• but not suitable for uniform EX-identification even if the hypothesis spaces
can be chosen without restrictions.

Similar strict separations are obtained by the theorems below.
In the following corollary we summarize parts of the results obtained by The-

orem 7 and Theorem 8.

Corollary 1 suitϕ(J∗,EX) ⊂ suitϕ(J∗,BC) ⊂ suitϕ(J∗,BC∗). This result holds
also for suitτ instead of suitϕ.

So we have verified that all inclusions in Lemma 1.1 are in fact proper inclu-
sions.

4.2 The Hierarchy in Lemma 1.2

With the help of the techniques used in the proofs of Theorem 7 and Theorem 8
we will now also show that Lemma 1.2 can be written with strict inclusions. For
that purpose the following theorem is sufficient.

Theorem 9 suitϕ(J∗,EXm+1) \ suit(J∗,EXm) 6= ∅ for any m ∈ N.

Proof. Fix m ∈ N. Define a description set B ⊆ N by

B := {b ∈ N | Rb is finite and ϕb ∈ R2 and Rb ∈ (EXm+1)ϕb(Enumϕb)}.

We want to prove: B ∈ suitϕ(J∗,EXm+1) \ suit(J∗,EXm).

Proof of “B ∈ suitϕ(J∗,EXm+1)”.

For f ∈ R and b, n ∈ N define

T (b, f [n]) :=

min{i | ϕbi =n f} if the necessary consistency tests are

decidable and such a minimum exists

↑ otherwise

Thus T ∈ P2. Since ϕb ∈ R2 for all b ∈ B we obtain with the definition of B:

36

• ∀b ∈ B [Rb ∈ J∗],

• ∀b ∈ B [Rb ∈ (EXm+1)ϕb(λx.T (b, x))].

By definition of uniform identifiability this implies B ∈ suitϕ(J∗,EXm+1).

Proof of “B /∈ suit(J∗,EXm)”.

We will verify this claim by way of contradiction.

Assumption. B ∈ suit(J∗,EXm).
Then by Proposition 3 there exists a strategy S ∈ R2 such that for any b ∈ B

there is a numbering η ∈ P2 satisfying Rb ∈ (EXm)η(λx.S(b, x)); abbreviated

∀b ∈ B [Rb ∈ EXm(λx.S(b, x))] . (6)

Aim. Construction of an integer b0, such that

1. b0 ∈ B,

2. Rb0 /∈ EXm(λx.S(b0, x)),

in contradiction to statement (6). The strategy λx.S(b0, x) will fail for at least
one function f ∈ Rb0 by either

• returning “?” for all initial segments of f or

• generating a hypothesis incorrect for f for infinitely many initial segments
of f or

• changing its hypothesis on f at least m+ 1 times.

In order to deduce a contradiction it suffices to prove that one of these three cases
must occur. Which of these cases actually occurs for the constructed integer b0,
does not have to be decidable.

Construction of b0.

Generate a finite list of recursive functions according to the following instruc-
tions. Begin in stage 0 with an empty list.

Stage 0. Add the function 0∞ to the list. Go to stage 1.

Stage 1. Add the function

x 7→

{
0 if x = 0 or S(b, 0x−1) =?

1 otherwise
for x ∈ N

37

(i.e. either the function 0∞ or a function 0k1∞ for some k ∈ N) to the list. Go to
stage 2.

Stage j + 1 (1 ≤ j ≤ m). For every function f in the list add the function

x 7→

f(x) if x = 0 or

card {n < x− 1 | ? 6= S(b, f [n]) 6= S(b, f [n+ 1])} < j

j + 1 otherwise

for x ∈ N (i.e. either the function f or a function f [k](j + 1)∞ for some k ∈ N)
to the list. Go to stage j+2.

Stage m+ 2. Stop.

Let ψb be the effective numbering which first enumerates all functions in the
list generated above and afterwards continues by listing the function 0∞ forever.
That means, ψb0 = 0∞; ψb1 is the function listed in stage 1; ψb2, ψ

b
3 are the func-

tions listed in stage 2; . . .; ψb2m , ψb2m+1, . . . , ψ
b
2m+1−1 are the functions listed in

stage m+ 1; furthermore ψbi = 0∞ for all i ≥ 2m+1.

Now let g ∈ R be a compiler function such that ϕg(b) = ψb for all b ∈ N. Such
a function g exists, since ψb was defined uniformly in b. The recursion theorem
then yields an integer b0 ∈ N satisfying ϕb0 = ϕg(b0). Thus we have ϕb0 = ψb0 .

End Construction b0.

In order to contradict phrase (6) we will prove the following statements.

1. b0 ∈ B,

2. Rb0 /∈ EXm(λx.S(b0, x)).

ad 1. By construction Rb0 is finite and ϕb0 ∈ R2. It remains to prove that
Rb0 ∈ (EXm+1)ϕb0 (Enumϕb0). For that purpose choose f ∈ Rb0 arbitrarily. We
prove the following claim:

If f is listed in stage t (0 ≤ t ≤ m+ 1), then {f} ∈ (EXt)ϕb0 (Enumϕb0). (7)

We use induction on t.

t = 0. If f is listed in stage 0, then f = 0∞ = ϕb00 . Obviously Enumϕb0 (f [n]) = 0
for all n ∈ N. Thus {f} ∈ (EX0)ϕb0 (Enumϕb0).

t t+ 1. If f is listed in stage t+ 1, we consider two possible cases:

38

Case (i). f has already been listed in stage t′ for some t′ < t+ 1.
Then by induction hypothesis {f} ∈ (EXt′)ϕb0 (Enumϕb0) and in particular {f} ∈
(EXt+1)ϕb0 (Enumϕb0).

Case (ii). f = f ′[k](t + 1)∞ for some f ′ listed in or before stage t and some
k ∈ N.
By induction hypothesis

card {n < k | ? 6= Enumϕb0 (f ′[n]) 6= Enumϕb0 (f ′[n+ 1])} ≤ t .

Let i := Enumϕb0 (f ′[k]). As f ′ is listed before Stage t + 1, we have i < 2t.

Since f(k + 1) = t + 1, this implies ϕb0i 6=k+1 f . Therefore Enumϕb0 (f [k + 1]) ∈
{2t, . . . , 2t+1 − 1} and

card {n < k + 1 | ? 6= Enumϕb0 (f [n]) 6= Enumϕb0 (f [n+ 1])} ≤ t+ 1 . (8)

If j ∈ {2t, . . . , 2t+1− 1} and f ′[k](t+ 1) ⊂ ϕb0j , we obtain ϕb0j = f ′[k](t+ 1)∞ = f
by construction. Thus Enumϕb0 (f [n]) = Enumϕb0 (f [k + 1]) for all n ≥ k + 1
and Enumϕb0 (f [k + 1]) is a ϕb0-number for f . With (8) we conclude {f} ∈
(EXt+1)ϕb0 (Enumϕb0).
This proves (7).

As our construction stops after m+ 1 stages, we obtain with (7):

Rb0 ∈ (EXm+1)ϕb0 (Enumϕb0)

and therefore b0 ∈ B. qed 1.

ad 2. Let stage t (t ≤ m+ 1) be the last stage in which at least one new function
is listed. We consider three cases.

Case (i). t = 0.
Then Rb0 = {0∞}. By construction in stage 1 we know that S(b0, 0

k) =? for all
k ∈ N. Thus Rb0 /∈ EXm(λx.S(b0, x)).

Case (ii). 1 ≤ t ≤ m.
Then there exists an f ′ ∈ Rb0 listed in or before stage t−1 and an f ∈ Rb0 listed
in stage t such that

f = f ′[k]t∞ 6= f ′

for some k ∈ N. Since f 6= f ′, we have ϕb0S(b0,f ′[k]) 6= f ′ or ϕb0S(b0,f [k]) 6= f . But as
there is no new function listed in stage t+ 1, we obtain

S(b0, f
′[n]) = S(b0, f

′[k]) = S(b0, f [k]) = S(b0, f [n])

39

for all n ≥ k. Therefore on f or on f ′ the strategy λx.S(b0, x) must pro-
duce a sequence of hypotheses converging to an incorrect index. This implies
Rb0 /∈ EXm(λx.S(b0, x)).

Case (iii). t = m+ 1.
Then there exists an f ′ ∈ Rb0 listed in stage m and an f ∈ Rb0 listed in stage
m+ 1 such that

f = f ′[k](m+ 1)∞ 6= f ′

for some k ∈ N with card {n < k | ? 6= S(b0, f
′[n]) 6= S(b0, f

′[n + 1])} = m.
Since f 6= f ′, we have ϕb0S(b0,f ′[k]) 6= f ′ or ϕb0S(b0,f [k]) 6= f . Therefore on f or on

f ′ the strategy λx.S(b0, x) must produce a sequence of hypotheses converging to
an incorrect index or change its hypothesis at least m + 1 times. This implies
Rb0 /∈ EXm(λx.S(b0, x)).

Thus we have verified 2. qed 2.

Properties 1 and 2 together now imply that there is some b ∈ B satisfying
Rb /∈ EXm(λx.S(b, x)) in contradiction to (6). Therefore our assumption must
have been wrong and we conclude B /∈ suit(J∗,EXm).

Altogether we obtain B ∈ suitϕ(J∗,EXm+1) \ suit(J∗,EXm). Since m was
chosen arbitrarily, this proves Theorem 9. �

As the set

B := {b ∈ N | Rb is finite and ϕb ∈ R2 and Rb ∈ (EXm+1)ϕb(Enumϕb)}

defined in the previous proof (for some m ∈ N) is suitable for uniform class-
preserving identification with respect to the numberings ϕb (b ∈ B), we obtain

B ∈ suitϕ(J∗,CP) \ suit(J∗,EXm) .

This leads us to the following corollary.

Corollary 2 suitϕ(J∗,CP) \ suit(J∗,EXm) 6= ∅ for all m ∈ N.

In order to complete a strict version of the hierarchy in Lemma 1.2, note
that suitϕ(J∗,EXm) ⊂ suitϕ(J∗,EX) for all m ∈ N, because suitϕ(J∗,EXm) ⊂
suitϕ(J∗,EXm+1) ⊆ suitϕ(J∗,EX). Of course a similar argumentation implies
strict inclusions in the τ -case.

Corollary 3 suitϕ(J∗,EXm) ⊂ suitϕ(J∗,EXm+1) ⊂ suitϕ(J∗,EX) for all m ∈ N
(analogously with suitτ instead of suitϕ).

40

4.3 The Hierarchy in Lemma 1.3

This subsection is concerned with the investigation of the uniform learning hier-
archy given by the criteria CP, TOTAL, CONS, CONF and EX. First we want
to prove, that suitϕ(J∗,CONF) is indeed a proper subset of suitϕ(J∗,EX). This
will be achieved by proving a much stronger result stated in Theorem 10.

Theorem 10

1. suitϕ(J∗,EX1) \ suit(J∗,CONF) 6= ∅,

2. suitϕ(J∗,CEX) \ suit(J∗,CONF) 6= ∅.

Proof. We use a strategy T ∈ R to define a description set B ⊆ N suitable for
uniform identification in the limit by T . T will change its mind on the relevant
functions at most once and all intermediate hypotheses produced will be correct
or convergently incorrect with respect to the given numberings ϕb, b ∈ B. The
set B shall describe only finite recursive cores and will not be suitable for uniform
conform identification.

Definition of B ∈ (suitϕ(J∗,EX1) ∩ suitϕ(J∗,CEX)) \ suit(J∗,CONF).
Define a strategy T ∈ R by

T (f [n]) :=

{
0 if f [n] ∈ {0, 1}∗

max{f(0), . . . , f(n)} − 1 otherwise

for arbitrary f ∈ R and n ∈ N. Then set

B := {b ∈ N | Rb is finite and Rb ∈ (EX1)ϕb(T) ∩ CEXϕb(T)} .

Claim. B ∈ (suitϕ(J∗,EX1) ∩ suitϕ(J∗,CEX)) \ suit(J∗,CONF).

Proof of “B ∈ suitϕ(J∗,EX) ∩ suitϕ(J∗,CEX)”.
Defining T ′ ∈ R2 by T ′(b, f [n]) := T (f [n]) for all f ∈ R and b, n ∈ N we obviously
have

• ∀b ∈ B [Rb ∈ J∗],

• ∀b ∈ B [Rb ∈ (EX1)ϕb(λx.T ′(b, x)) and Rb ∈ CEXϕb(λx.T ′(b, x))].

By Definition 12 this implies B ∈ suitϕ(J∗,EX1) ∩ suitϕ(J∗,CEX).

Proof of “B /∈ suit(J∗,CONF)”.
We will verify this claim by way of contradiction.

Assumption. B ∈ suit(J∗,CONF).

41

Then there exists a strategy S ∈ P2 such that for any b ∈ B there is a
hypothesis space ψ ∈ P2 satisfying Rb ∈ CONFψ(λx.S(b, x)); abbreviated

∀b ∈ B [Rb ∈ CONF(λx.S(b, x))] . (9)

Aim. Construction of an integer b0, such that

1. b0 ∈ B,

2. Rb0 /∈ CONF(λx.S(b0, x)),

in contradiction to statement (9). The strategy λx.S(b0, x) will fail for at least
one function f ∈ Rb0 by either

• changing its hypothesis for f infinitely often or

• not terminating its computation on input of some initial segment of f or

• violating the conformity demand on input of some initial segment of f .

Construction of b0.
Define a function η ∈ P3 by the following instructions: for b ∈ N set ηb0(0) := 0
and go to stage 0.

Stage 0.
For the definition of further values of ηb0 compute S(b, 0), S(b, 00), S(b, 01).

If these values are all equal, we append zeros until we observe that the strategy
λx.S(b, x) changes its mind on the initial segment constructed so far. Other-
wise we just append one value t ∈ {0, 1}, such that S(b, 0) 6= S(b, 0t). Anyway
we define ηb0(2) := 0, which will prevent the learner T from returning hypothe-
ses corresponding to proper subfunctions of the functions to be learned, that
means identification with convergently incorrect intermediate hypotheses is en-
abled. Formally:

ηb0(1) :=

0 if S(b, 0)↓ ∧ S(b, 00)↓ ∧ S(b, 01)↓ and

[S(b, 0) 6= S(b, 00) or S(b, 0) = S(b, 00) = S(b, 01)]

1 S(b, 0)↓ ∧ S(b, 00)↓ ∧ S(b, 01)↓ and

S(b, 0) = S(b, 00) and S(b, 0) 6= S(b, 01)

↑ otherwise

ηb0(2) := 0

42

For any x > 0 define

ηb0(x+ 2) :=

0 if S(b, 0)↓ ∧ S(b, 00)↓ ∧ S(b, 01)↓ and

S(b, 0) = S(b, 00) = S(b, 01) and

∀z ≤ x [S(b, ηb0[z])↑≤x ∨ S(b, ηb0[z]) = S(b, ηb0)]

↑ if S(b, 0)↑ ∨ S(b, 00)↑ ∨ S(b, 01)↑
temporarily otherwise

suspended

The functions ηb1 and ηb2 are defined as follows: ηb1[2] := 002, ηb2[2] := 013. Both
functions will be extended by zeros until the values S(b, 0), S(b, 00), S(b, 01) are
computed and the definition of ηb0 is temporarily suspended (if these conditions
are never satisfied, we obtain ηb1 = 0020∞ and ηb2 = 0130∞). Formally we define
for x > 0:

ηb1(x+ 2) := ηb2(x+ 2) :=

0 if [S(b, 0)↑≤x ∨ S(b, 00)↑≤x ∨ S(b, 01)↑≤x] or

[S(b, 0) = S(b, 00) = S(b, 01) and

∀z ≤ x [S(b, ηb0[z])↑≤x ∨ S(b, ηb0[z]) = S(b, ηb0)]]

↑ otherwise

Compute the number

y1 :=

min{n ∈ N | the definition of ηb0(n+ 1) if such a minimum exists

is temporarily suspended in stage 0}
↑ otherwise

If y1 is defined, then go to stage 1. End stage 0.

From the construction in stage 0 we observe the following Fact.

Fact 3

1. If stage 1 is reached, then

• y1 > 0 and S(b, ηb0[n]) 6= S(b, ηb0[0]) for some n ∈ {1, . . . , y1}
(i.e. λx.S(b, x) is forced into a mind change),

• ηb1 = 0020m↑∞ and ηb2 = 0130m↑∞ for some m ∈ N;

2. if stage 1 is not reached, then

• ηb1 = 0020∞ and ηb2 = 0130∞,

• ηb0 ∈ {0↑0↑∞, 0∞}; in particular

43

– ηb0 = 0↑0↑∞ iff S(b, 0)↑ ∨ S(b, 00)↑ ∨ S(b, 01)↑,
– ηb0 = 0∞ iff S(b, 0) = S(b, 00) = S(b, 01) = S(b, 0m) (∈ N) for any
m ∈ N;

3. ηb0(2) is defined and ηb0(2) 6= ηb1(2), ηb0(2) 6= ηb2(2).

Now we formulate the instructions for stages k, k ≥ 1.

Stage k for k ≥ 1.
For the definition of further values of ηb0 compute S(b, ηb0[yk]), S(b, ηb0[yk]0),

S(b, ηb0[yk]1). If these values are all equal, we append zeros until we observe that
the strategy λx.S(b, x) changes its mind on the initial segment constructed so
far. Otherwise we just append one value t ∈ {0, 1}, such that S(b, ηb0[yk]) 6=
S(b, ηb0[yk]t). Again we set ηb0(yk + 2) := 0 in order to enable identification with
convergently incorrect intermediate hypotheses for the learner T . Formally:

ηb0(yk + 1) :=

0 if S(b, ηb0[yk]0)↓ ∧ S(b, ηb0[yk]1)↓ and

[S(b, ηb0[yk]) 6= S(b, ηb0[yk]0) or

S(b, ηb0[yk]) = S(b, ηb0[yk]0) = S(b, ηb0[yk]1)]

1 if S(b, ηb0[yk]0)↓ ∧ S(b, ηb0[yk]1)↓ and

S(b, ηb0[yk]) = S(b, ηb0[yk]0) and S(b, ηb0[yk]) 6= S(b, ηb0[yk]1)

↑ otherwise

ηb0(yk + 2) := 0

For any x > yk define

ηb0(x+ 2) :=

0 if S(b, ηb0[yk]0)↓ ∧ S(b, ηb0[yk]1)↓ and

S(b, ηb0[yk]) = S(b, ηb0[yk]0) = S(b, ηb0[yk]1) and

for all z ∈ {yk, . . . , x}
[S(b, ηb0[z])↑≤x ∨ S(b, ηb0[z]) = S(b, ηb0[yk])]

↑ if S(b, ηb0[yk]0)↑ ∨ S(b, ηb0[yk]1)↑
temporarily otherwise

suspended

The functions ηb2k+1 and ηb2k+2 are defined as follows:
ηb2k+1[yk+2] := ηb0[yk]0(2k+2), ηb2k+2[yk+2] := ηb0[yk]1(2k+3). Both functions will
be extended by zeros until the values S(b, ηb0[yk]0) and S(b, ηb0[yk]1) are computed
and the definition of ηb0 is temporarily suspended (if these conditions are never
satisfied, we obtain ηb2k+1 = ηb0[yk]0(2k + 2)0∞ and ηb2k+2 = ηb0[yk]1(2k + 3)0∞).

44

Formally we define for x > yk:

ηb2k+1(x+ 2) = ηb2k+2(x+ 2) :=

0 if [S(b, ηb0[yk]0)↑≤x ∨ S(b, ηb0[yk]1)↑≤x] or

[S(b, ηb0[yk]) = S(b, ηb0[yk]0) = S(b, ηb0[yk]1)

and ∀z ∈ {yk, . . . , x}
[S(b, ηb0[z])↑≤x ∨ S(b, ηb0[z])=S(b, ηb0[yk])]]

↑ otherwise

Compute

yk+1 :=

min{n ∈ N | the definition of ηb0(n+ 1) if such a minimum exists

is temporarily suspended in stage k}
↑ otherwise

If yk+1 is defined, go to stage k + 1. End stage k.

By analogy with Fact 3 we obtain:

Fact 4 Fix k ≥ 1.

1. If stage k + 1 is reached, then

• yk+1 > yk and S(b, ηb0[n]) 6= S(b, ηb0[yk]) for some n ∈ {yk+1, . . . , yk+1}
(λx.S(b, x) is forced into a mind change),

• ηb2k+1 = ηb0[yk]0(2k + 2)0m ↑∞ and ηb2k+2 = ηb0[yk]1(2k + 3)0m ↑∞ for
some m ∈ N;

2. if stage k is reached and stage k + 1 is not reached, then

• ηb2k+1 = ηb0[yk]0(2k + 2)0∞ and ηb2k+2 = ηb0[yk]1(2k + 3)0∞,

• ηb0 ∈ {ηb0[yk]↑0↑∞, ηb0[yk]0∞}; in particular

– ηb0 = ηb0[yk]↑0↑∞ iff S(b, ηb0[yk]0)↑ ∨ S(b, ηb0[yk]1)↑,
– ηb0 = ηb0[yk]0

∞ iff
S(b, ηb0[yk]) = S(b, ηb0[yk]0) = S(b, ηb0[yk]1) = S(b, ηb0[yk]0

m) (∈ N)
for any m ∈ N;

3. ηb0(yk+2) is defined and ηb0(yk+2) 6= ηb2k+1(yk+2), ηb0(yk+2) 6= ηb2k+2(yk+2).

Fact 5 Our construction obviously yields

1. rng(ηb0) ⊆ {0, 1},

2. if x ∈ N, then max(rng(ηbx+1)) = x + 2 with rng(ηbx+1) ⊆ {0, 1, x + 2} or
rng(ηbx+1) = ∅,

45

3. ηb0 6⊂ ηbx+1 for all x ∈ N.

Fact 6 Fact 4 implies

1. if in the construction of ηb all stages k (k ∈ N) are reached, then we have
Rηb = {ηb0},

2. if stage k (for some k ∈ N) is the last stage to be reached, we obtain
Rηb = {ηb0, ηb2k+1, η

b
2k+2} or Rηb = {ηb2k+1, η

b
2k+2}.

Now let g ∈ R be a compiler function such that ϕg(b) = ηb for all b ∈ N. Such
a function g exists, since ηb was defined uniformly in b. The recursion theorem
then yields an integer b0 ∈ N satisfying ϕb0 = ϕg(b0). Thus we have ϕb0 = ηb0 .

End Construction b0.

In order to contradict phrase (9) we will prove the following statements.

1. b0 ∈ B,

2. Rb0 /∈ CONF(λx.S(b0, x)).

ad 1.
Rb0 is finite. This is a consequence of Fact 6, because either all stages in the

construction of ηb00 are reached or there must be some number k ∈ N, such that
stage k is the last stage to be reached.
Rb0 ∈ (EX1)ϕb0 (T)∩CEXϕb0 (T): Assume f ∈ Rb0 . It suffices to consider the

following two cases.

Case (i). f = ϕb00 .
By Fact 5 we have rng(f) ⊆ {0, 1} and thus T (f [n]) = 0 for any n ∈ N by
definition of T . Therefore {f} ∈ (EX1)ϕb0 (T) ∩ CEXϕb0 (T).

Case (ii). f = ϕb0x+1 for some x ∈ N.
By Fact 5 we know that max(rng(f)) = x + 2. The definition of T then im-
plies T (f [n]) = x + 1 for all but finitely many n ∈ N. Thus {f} ∈ EXϕb0 (T).
Since rng(f) ⊆ {0, 1, x + 2} by Fact 5.2, the strategy T changes its mind on f
at most once. Furthermore T (f [n]) ∈ {0, x + 1} for all n ∈ N. As ϕb00 6⊂ ϕb0x+1,
all incorrect hypotheses produced by T on f are convergently incorrect. Hence
{f} ∈ (EX1)ϕb0 (T) ∩ CEXϕb0 (T).

This yields Rb0 ∈ (EX1)ϕb0 (T) ∩ CEXϕb0 (T) and hence b0 ∈ B. qed 1.

ad 2. Assume by way of contradiction that Rb0 ∈ CONF(λx.S(b0, x)). Then
there must be a numbering ψ ∈ P2, such that Rb0 ∈ CONFψ(λx.S(b0, x)). By

46

Fact 6 it suffices to consider the following three cases.

Case (i). Rb0 = {ϕb00 }.
Then by Fact 4 all stages are reached in the definition of ηb0 . With Fact 4.1 we
observe that in the identification process for ϕb00 the strategy λx.S(b0, x) changes
its hypothesis infinitely often. This contradicts Rb0 ∈ CONF(λx.S(b0, x)).

Case (ii). Rb0 = {ϕb02k+1, ϕ
b0
2k+2} for some k ∈ N.

In this case we obtain S(b0, ϕ
b0
2k+1[yk + 1])↑ or S(b0, ϕ

b0
2k+2[yk + 1])↑ from Fact 4.2,

although λx.S(b0, x) ought to be defined on input of any initial segment of ϕb02k+1

and ϕb02k+2. Again this yields a contradiction to Rb0 ∈ CONF(λx.S(b0, x)).

Case (iii). Rb0 = {ϕb00 , ϕb02k+1, ϕ
b0
2k+2} for some k ∈ N.

Then stage k is reached and stage k + 1 is not reached. Furthermore we have

i := S(b0, ϕ
b0
2k+1[yk + 1]) = S(b0, η

b0
0 [yk]0) = S(b0, η

b0
0 [yk]1)

= S(b0, ϕ
b0
2k+2[yk + 1]) ,

although ϕb02k+1[yk + 1] 6= ϕb02k+2[yk + 1]. Therefore i cannot be a ψ-number for

both ϕb02k+1 and ϕb02k+2. We distinguish between two possibilities.

Case (iii)a. ψi(yk + 1)↑.
Then ψi /∈ R and in particular ψi 6= ϕb00 . But S(b0, ϕ

b0
0 [yk]) = i and by Fact 4.2

we know S(b0, ϕ
b0
0 [n]) = i for all but finitely many n ∈ N. Hence the sequence

of hypotheses produced by λx.S(b0, x) on the function ϕb00 converges to an index
incorrect for ϕb00 with respect to ψ. This contradicts Rb0 ∈ CONFψ(λx.S(b0, x)).

Case (iii)b. ψi(yk + 1) ∈ N.
Then i cannot be conform for both ϕb02k+1[yk+1] and ϕb02k+2[yk+1] with respect to ψ,

although on input of initial segments of ϕb02k+1 and ϕb02k+2 the strategy λx.S(b0, x)
ought to return just hypotheses conform with respect to ψ. Again this yields a
contradiction to Rb0 ∈ CONFψ(λx.S(b0, x)).

In each of our cases we reached a contradiction. Since further cases cannot
occur, we conclude Rb0 /∈ CONF(λx.S(b0, x)). qed 2.

Claims 1 and 2 together now contradict statement (9). Therefore our as-
sumption must have been wrong, i.e. B /∈ suit(J∗,CONF). Altogether we have
B ∈ (suitϕ(J∗,EX1) ∩ suitϕ(J∗,CEX)) \ suit(J∗,CONF). This completes the
proof. �

Since suitϕ(J∗,EX1) ⊂ suitϕ(J∗,EX), this yields the following result:

47

Corollary 4 suitϕ(J∗,EX) \ suit(J∗,CONF) 6= ∅.

So we have also verified, that the set suitϕ(J∗,CONF) is a proper subset
of suitϕ(J∗,EX), as well as the corresponding result for uniform learning with
respect to τ . By analogy we want to separate the criteria CONS and CONF. For
that purpose we use the stronger result in Theorem 11.

Theorem 11 suitϕ(J∗,CONF) \ suit(J∗,CONS) 6= ∅.

Proof. Again we use a uniform strategy T ∈ P2 to define a description set
B ⊆ N suitable for uniform conform identification in the limit by T . The set
B shall describe only finite recursive cores and will not be suitable for uniform
consistent identification.

Definition of B ∈ suitϕ(J∗,CONF) \ suit(J∗,CONS).

Define a strategy T ∈ R by

T (f [n]) :=

{
0 if f [n] ∈ {0, 1}∗

max{f(0), . . . , f(n)} − 1 otherwise

for arbitrary f ∈ R and n ∈ N. Then set

B := {b ∈ N | Rb is finite and Rb ∈ CONFϕb(T)}.

Claim. B ∈ suitϕ(J∗,CONF) \ suit(J∗,CONS).

Proof of “B ∈ suitϕ(J∗,CONF)”.

Defining T ′ ∈ R2 by T ′(b, f [n]) := T (f [n]) for all f ∈ R and b, n ∈ N we obviously
have

• ∀b ∈ B [Rb ∈ J∗],

• ∀b ∈ B [Rb ∈ CONFϕb(λx.T ′(b, x))].

By definition of uniform identifiability this implies B ∈ suitϕ(J∗,CONF).

Proof of “B /∈ suit(J∗,CONS)”.

We will verify this claim by way of contradiction.

Assumption. B ∈ suit(J∗,CONS).
Then there exists a strategy S ∈ P2 such that for any b ∈ B there is a

hypothesis space ψ ∈ P2 satisfying Rb ∈ CONSψ(λx.S(b, x)); abbreviated

∀b ∈ B [Rb ∈ CONS(λx.S(b, x))] . (10)

Aim. Construction of an integer b0, such that

48

1. b0 ∈ B,

2. Rb0 /∈ CONS(λx.S(b0, x)),

in contradiction to statement (10). The strategy λx.S(b0, x) will fail for at least
one function f ∈ Rb0 by either

• changing its hypothesis for f infinitely often or

• not terminating its computation on input of some initial segment of f or

• violating the consistency demand on input of some initial segment of f .

In order to deduce a contradiction it suffices to prove that one of these three cases
must occur. Which of these cases actually occurs for the constructed integer b0,
does not have to be decidable.

Construction of b0.

For arbitrary b ∈ N set η(b, x, 0) := 0 (for any x ∈ N) and define η(b, 0, 1) by the
following instructions:

η(b, 0, 1) :=“Compute S(b, 0). Look for a t ∈ {0, 1} such that S(b, 0t)↓ and
S(b, 0t) 6= S(b, 0). Put out the first t you find.”

Fact 7 The definition of η(b, 0, 1) implies

1. If η(b, 0, 1)↓, then S(b, ηb0[1]) 6= S(b, ηb0[0]), i.e. λx.S(b, x) is forced to change
its mind.

2. η(b, 0, 1) is undefined if and only if S(b, 0)↑ or neither S(b, 00) nor S(b, 01)
is defined with a value differing from S(b, 0).

Furthermore define for any y ≥ 1:

η(b, 1, y) :=

0 if y = 1

2 if y = 2

0 if y > 2 and either S(b, 0)↑ or

[S(b, 00)↑≤y ∨ S(b, 00) = S(b, 0)]

∧ [S(b, 01)↑≤y ∨ S(b, 01) = S(b, 0)]

↑ otherwise

η(b, 2, y) :=

1 if y = 1

3 if y = 2

η(b, 1, y) otherwise

The values η(b, 1, 2) = 2 and η(b, 2, 2) = 3 will allow our strategy λx.T (b, x) to
identify ηb1 and ηb2 in the limit, if these functions are recursive.

49

Fact 8 The following statements are equivalent.

• ηb1 and ηb2 are recursive functions,

• ηb1 = 0020∞ and ηb2 = 0130∞,

• η(b, 0, 1) is undefined.

In general, we define for arbitrary x, y ∈ N:

η(b, 0, y + 1) :=“Compute S(b, ηb0[y]). Look for a t ∈ {0, 1} such that S(b, ηb0[y]t)↓
and S(b, ηb0[y]t) 6= S(b, ηb0[y]). Put out the first t you find.”

Fact 9 By analogy with Fact 7 the definition of η(b, 0, y + 1) implies

1. If η(b, 0, y + 1)↓, then S(b, ηb0[y + 1]) 6= S(b, ηb0[y]), i.e. λx.S(b, x) is forced
to change its mind.

2. η(b, 0, y + 1) is undefined if and only if S(b, ηb0[y])↑ or neither S(b, ηb0[y]0)
nor S(b, ηb0[y]1) is defined with a value differing from S(b, ηb0[y]).

Furthermore define:

η(b, 2x+ 1, y) :=

ηb0(y) if y ≤ x

0 if y = x+ 1

2x+ 2 if y = x+ 2

0 if y > x+ 2 and either S(b, ηb0[x])↑ or

[S(b, ηb0[x]0)↑≤y ∨ S(b, ηb0[x]0) = S(b, ηb0[x])]

∧ [S(b, ηb0[x]1)↑≤y ∨ S(b, ηb0[x]1) = S(b, ηb0[x])]

↑ otherwise

η(b, 2x+ 2, y) :=

1 if y = x+ 1

2x+ 3 if y = x+ 2

η(b, 2x+ 1, y) otherwise

The values η(b, 2x+ 1, x+ 2) = 2x+ 2 and η(b, 2x+ 2, x+ 2) = 2x+ 3 will allow
our strategy λx.T (b, x) to identify ηb2x+1 and ηb2x+2 in the limit, if these functions
are recursive.

Fact 10 By analogy with Fact 8 the following statements are equivalent.

• ηb2x+1 and ηb2x+2 are recursive functions,

• ηb2x+1 = ηb0[x]0(2x+ 2)0∞ and ηb2x+2 = ηb0[x]1(2x+ 3)0∞,

50

• ηb0(0), . . . ηb0(x) are defined and η(b, 0, x+ 1) is undefined; ηb0 ⊂ ηb2x+1, η
b
0 ⊂

ηb2x+2.

Fact 11 From Fact 9 and Fact 10 we can deduce that for any b ∈ N exactly one
of the following cases occurs.

1. ηb0 ∈ R or

2. ηb2x+1 ∈ R and ηb2x+2 ∈ R for exactly one integer x ∈ N.

Fact 12 Assume f ∈ Rηb. From Fact 11 and the Definition of η we conclude

1. if rng(f) ⊆ {0, 1}, then f = ηb0;

2. if rng(f) 6⊆ {0, 1}, then f = ηbmax(rng(f))−1 and ηb0 ⊂ f .

Now let g ∈ R be a compiler function such that ϕg(b) = ηb for all b ∈ N. Such
a function g exists, since ηb was defined uniformly in b. The recursion theorem
then yields an integer b0 ∈ N satisfying ϕb0 = ϕg(b0). Thus we have ϕb0 = ηb0 .

End Construction b0.

In order to contradict phrase (10) we will prove the following statements.

1. b0 ∈ B,

2. Rb0 /∈ CONS(λx.S(b0, x)).

ad 1. Fact 11 implies that Rb0(= Rηb0) is finite. From Fact 12 and ϕb0 = ηb0 we
can conclude that Rb0 ∈ CONFϕb0 (T). Thus b0 ∈ B. qed 1.

ad 2. We distinguish between two cases.

Case (i). ϕb00 ∈ R.
From Fact 9 we know that the strategy λx.S(b0, x) changes its hypothesis in-
finitely often on the input sequence (ϕb00 [n])n∈N. Thus we even conclude Rb0 /∈
EX(λx.S(b0, x)) and in particular Rb0 /∈ CONS(λx.S(b0, x)).

Case (ii). ϕb02x+1 ∈ R and ϕb02x+2 ∈ R for some x ∈ N.
Again we distinguish between two cases.

Case (ii)a. S(b0, η
b0
0 [x]t) is undefined for at least one t ∈ {0, 1}.

Then the definition of ηb02x+1 and ηb02x+2 implies S(b0, η
b0
2x+r[x+ 1])↑ for at least one

r ∈ {1, 2}. Since ηb02x+1 ∈ Rb0 and ηb02x+2 ∈ Rb0 , we know Rb0 /∈ EX(λx.S(b0, x))
and in particular Rb0 /∈ CONS(λx.S(b0, x)).

51

Case (ii)b. S(b0, η
b0
0 [x]0)↓ and S(b0, η

b0
0 [x]1)↓.

From Fact 10 and Fact 9.2 we conclude

S(b0, η
b0
0 [x]0) = S(b0, η

b0
0 [x]1) (= S(b0, η

b0
0 [x])) .

But the hypothesis S(b0, η
b0
0 [x]) (= S(b0, η

b0
2x+1[x+ 1]) = S(b0, η

b0
2x+2[x+ 1])) can-

not be consistent for both ηb02x+1[x + 1] (= ηb00 [x]0) and ηb02x+2[x + 1] (= ηb00 [x]1).
Therefore Rb0 /∈ CONS(λx.S(b0, x)).

Thus also in Case (ii) we have Rb0 /∈ CONS(λx.S(b0, x)).

Because of Fact 11 further cases cannot occur. This proves our second state-
ment, namely Rb0 /∈ CONS(λx.S(b0, x)). qed 2.

Claims 1 and 2 together now contradict statement (10). Therefore our as-
sumption must have been wrong, i.e. B /∈ suit(J∗,CONS). Altogether we have
B ∈ suitϕ(J∗,CONF) \ suit(J∗,CONS). This completes the proof. �

So, the results CONS ⊂ CONF ⊂ EX can also be transferred to uniform
learning with respect to τ and the numberings given a priori by ϕ. Again, finite
classes are sufficient for the separations.

In order to prove suitϕ(J∗,TOTAL) ⊂ suitϕ(J∗,CONS) (and the same result
for suitτ) we can use Theorem 12. We even obtain

suitϕ(J∗,CONS) \ suitτ (J
∗,TOTAL) 6= ∅ ,

because suitτ (J
∗,TOTAL) ⊆ suitτ (J

∗,CEX). A separation of the inference cri-
teria CP and TOTAL can not be achieved analogously. We will discuss this case
later.

Theorem 12

1. suitϕ(J1,EX1) \ suitτ (J
1,CEX) 6= ∅,

2. suitϕ(J1,CONS) \ suitτ (J
1,CEX) 6= ∅.

Proof. Again we use a uniform strategy T ∈ P2 to define a description set B ⊆ N.
The corresponding classes of functions will by definition be uniformly identifiable
by T with consistent intermediate hypotheses and no more than one mind change.
The set B shall describe only singleton recursive cores and will not be suitable
for uniform CEX-identification with respect to our acceptable numbering τ .

52

Definition of B ∈ (suitϕ(J1,EX1) ∩ suitϕ(J1,CONS)) \ suitτ (J
1,CEX).

Define a strategy T ∈ P2 by

T (b, f [n]) :=

0 if 0 /∈ {f(0), . . . , f(n)}
min{i ≥ 1 | ∃α ∈ (N \ {0})∗ if 0 ∈ {f(0), . . . , f(n)} and

[α0 ⊆ ϕbi and α0 ⊆ f]} such a minimum is found

↑ otherwise

for f ∈ R and b, n ∈ N. Then set

B := {b ∈ N | card Rb = 1 ∧ Rb ∈ (EX1)ϕb(λx.T (b, x))∩CONSϕb(λx.T (b, x))} .

Claim. B ∈ (suitϕ(J1,EX1) ∩ suitϕ(J1,CONS)) \ suitτ (J
1,CEX).

Proof of “B ∈ suitϕ(J1,EX1) ∩ suitϕ(J1,CONS)”.
We obviously have

• ∀b ∈ B [Rb ∈ J1],

• ∃T ∈ P2 ∀b ∈ B [Rb ∈ (EX1)ϕb(λx.T (b, x)) ∧ Rb ∈ CONSϕb(λx.T (b, x))].

By Definition 12 this implies B ∈ suitϕ(J1,EX1) ∩ suitϕ(J1,CONS).

Proof of “B /∈ suitτ (J
1,CEX)”.

We will verify this claim by way of contradiction.

Assumption. B ∈ suitτ (J
1,CEX).

Then by Proposition 3 there exists a strategy S ∈ R2 such that Rb ∈
CEXτ (λx.S(b, x)) for any b ∈ B; abbreviated

∀b ∈ B [Rb ∈ CEXτ (λx.S(b, x))] . (11)

Aim. Construction of an integer b0, such that

1. b0 ∈ B,

2. Rb0 /∈ CEXτ (λx.S(b0, x)),

in contradiction to (11). The strategy λx.S(b0, x) will fail for the only function
f ∈ Rb0 by either

• changing its hypothesis for f infinitely often or

• generating a hypothesis incorrect for f with respect to τ for infinitely many
initial segments of f or

• guessing a τ -number of a proper subfunction of f on input of some initial
segment of f .

53

Construction of b0.
Define a function ψ ∈ P3 with the help of initial segments αbk (b, k ∈ N) as fol-
lows: for arbitrary b ∈ N set αb0 := 1 and begin in stage 0.

Stage 0.
Let ψb0(0) := 1 and e := S(b, αb0). Start a parallel computation until (i) or (ii)

turns out to be true.

(i). τe(0) is defined and τe(0) 6= 1.
(ii). There is an integer y > 0 such that τe(y) is defined.

The function ψb1 shall have the initial segment αb00 which will be extended by
a sequence of 0’s, until (i) or (ii) turns out to be true:

ψb1(x) :=

1 if x = 0

0 if x = 1

0 if x > 1 and neither (i) nor (ii) is fulfilled

within x steps of computation

↑ otherwise

for x ∈ N.
If condition (i) turns out to be true first, then ψb0 shall have the initial segment

αb0 which will be extended by a sequence of 1’s, until λx.S(b, x) is forced to change
its mind on ψb0; then αb1 shall be the initial segment of ψb0 constructed so far. More
formally:

If condition (i) turns out to be true first, set for x ∈ N:

ψb0(x) :=

1 if x = 0

1 if x > 0 and S(b, ψb0[x− 1]) = e

see stage 1 otherwise

If stage 1 is reached in this definition, let jb0 ∈ N be the minimal integer such that
ψb0(j

b
0) has been defined in stage 0. Let

αb1 :=

{
ψb0[j

b
0] if jb0 is defined

↑ otherwise

If condition (ii) turns out to be true first – with τe(y0) ↓ – then αb1 :=
αb01 . . . 1(τe(y0) + 1), where the last argument in the domain of αb1 is y0. Go
to stage 1.

Note that ψb0 remains initial if neither (i) nor (ii) is fulfilled. End stage 0.

Fact 13 The construction in stage 0 implies

54

1. ψb1 ∈ R if and only if τS(b,ψb
1[0]) ⊆ 1↑∞ (⊂ ψb1),

2. if ψb1 /∈ R and αb1↑, then ψb0 = αb01
∞ ∈ R and the sequence of hypotheses

produced by λx.S(b, x) on ψb0 converges to an index incorrect for ψb0 with
respect to τ ,

3. if ψb1 /∈ R and αb1↓, then αb0 ⊆ αb1 ⊆ ψb0; furthermore

(a) S(b, αb1) 6= S(b, αb0) or

(b) S(b, f [0]) is incorrect with respect to τ for any f ∈ R satisfying αb1 ⊂ f ,

Proof of Fact 13.
ad 1. We have ψb1 ∈ R if and only if ψb1 = 10∞ if and only if neither (i) nor

(ii) is fulfilled. This is equivalent to

[τe(0)↑ ∨τe(0) = 1] ∧ [τe(y)↑ for all y > 0] .

Thus ψb1 ∈ R if and only if τS(b,ψb
1[0]) = τe ⊆ 1↑∞⊂ 10∞ = ψb1.

ad 2. If ψb1 /∈ R and αb1↑, then ψb0 = αb01
∞ ∈ R follows from the construction

for the case that condition (i) turns out to be true first. Then we also obtain
S(b, ψb0[x]) = e for all x ∈ N, although τe(0) 6= 1 = ψb0(0) by condition (i). So
the sequence of hypotheses returned by λx.S(b, x) on ψb0 converges to a wrong
τ -number.

ad 3. If ψb1 /∈ R and αb1 ↓, then αb0 ⊆ αb1 ⊆ ψb0 by definition. Further-
more, as ψb1 /∈ R, at least one of the conditions (i), (ii) must be fulfilled in
stage 0. If condition (i) is fulfilled first, then S(b, αb1) 6= S(b, αb0) by the con-
struction of ψb0. If condition (ii) is fulfilled first – with τS(b,1)(y0) ↓ – then
τS(b,αb

1[0])(y0) = τS(b,1)(y0) 6= τS(b,1)(y0)+1 = αb1(y0), therefore in this case S(b, f [0])

is incorrect with respect to τ for any f ∈ R satisfying αb1 ⊂ f . qed Fact 13.

Now we iterate the construction in stage 0. In general, for k ∈ N stage k is
used for the definition of ψbk+1. If stage k is never reached, then ψbk+1 will be the
empty function.

Stage k.
We know that ψb0(x) = αbk(x) for all x < |αbk|. Let e := S(b, αbk). Start a

parallel computation until (i) or (ii) turns out to be true.

(i). There is an integer y < |αbk| such that τe(y) is defined
and τe(y) 6= αbk(y).

(ii). There is an integer y ≥ |αbk| such that τe(y) is defined.

55

The function ψbk+1 shall have the initial segment αbk0 which will be extended
by a sequence of 0’s, until (i) or (ii) turns out to be true:

ψbk+1(x) :=

αbk(x) if x < |αbk|
0 if x = |αbk|
0 if x > |αbk| and neither (i) nor (ii) is fulfilled

within x steps of computation

↑ otherwise

for x ∈ N.
If condition (i) turns out to be true first, then ψb0 shall have the initial segment

αbk which will be extended by a sequence of 1’s, until λx.S(b, x) is forced to change
its mind on ψb0; then αbk+1 shall be the initial segment of ψb0 constructed so far.
More formally:

If condition (i) turns out to be true first, set for x ∈ N:

ψb0(x) :=

{
1 if x ≥ |αbk| and S(b, ψb0[x− 1]) = e

see stage k + 1 otherwise

If stage k+ 1 is reached in this definition, let jbk ∈ N be the minimal integer such
that ψb0(j

b
k) has been defined in stage k. Let

αbk+1 :=

{
ψb0[j

b
k] if jbk is defined

↑ otherwise

If condition (ii) turns out to be true first – with τe(yk) ↓ – then αbk+1 :=
αbk1 . . . 1(τe(yk) + 1), where the last argument in the domain of αbk+1 is yk. Go to
stage k + 1.

Note that ψb0 remains initial if neither (i) nor (ii) is fulfilled. End stage k.

Fact 14 The construction in stage k implies

1. ψbk+1 ∈ R if and only if αbk↓ and τS(b,αb
k) ⊆ αbk↑∞ (⊂ ψbk+1),

2. if ψbk+1 /∈ R and αbk+1↑, then ψb0 = αbk1
∞ ∈ R and the sequence of hypotheses

produced by λx.S(b, x) on ψb0 converges to an index incorrect for ψb0 with
respect to τ ,

3. if ψbk+1 /∈ R and αbk+1↓, then αbk ⊂ αbk+1 ⊆ ψb0; furthermore

(a) S(b, αbk+1) 6= S(b, αbk) or

(b) S(b, f [|αbk| − 1]) is incorrect with respect to τ for any f ∈ R satisfying
αbk+1 ⊂ f ,

56

This fact can be verified in a way similar to the proof of Fact 13.
Now let g ∈ R be a compiler function such that ϕg(b) = ψb for all b ∈ N. Such

a function g exists, since ψb was defined uniformly in b. The recursion theorem
then yields an integer b0 ∈ N satisfying ϕb0 = ϕg(b0). Thus we have ϕb0 = ψb0 .
Therefore all facts mentioned above hold analogously, if we substitute ψb by ϕb0

and b by b0 everywhere.
End Construction b0.

Fact 15

1. 0 /∈ rng(αb0k) for all k ∈ N,

2. 0 /∈ rng(ϕb00),

3. there is exactly one index i ∈ N such that ϕb0i ∈ R.

Proof of Fact 15. Properties 1 and 2 follow immediately from the construction.
For the third property argue by distinguishing two cases as follows:

Case (i). αb0k ↓ for all k ∈ N.
Then ϕb00 is a recursive function by construction. Assume ϕb0k+1 ∈ R for some

k ∈ N. Fact 14.1 then tells us that τ
S(b0,α

b0
k)
⊆ αb0k ↑∞ and so neither property (i)

nor property (ii) are fulfilled. As we have already mentioned in the description
of stage k, this implies that ϕb00 is an initial function. This contradicts ϕb00 ∈ R.
Therefore 0 is the only ϕb0-number of a total function.

Case (ii). There is some k ∈ N such that αb0k ↓ and αb0k+1↑.

Case (ii)a. ϕb00 ∈ R.
By the same argumentation as in Case (i) we obtain ϕb01 , . . . , ϕ

b0
k+1 /∈ R. Now,

since αb0k+1 ↑, stage k + 1 is not reached in the construction of ψb0 . Therefore
ϕb0x /∈ R for all x > k+1. Thus again 0 is the only ϕb0-number of a total function.

Case (ii)b. ϕb00 /∈ R.
If (i) or (ii) were fulfilled in the parallel computation in stage k, we would have
either αb0k+1↓ or ϕb00 ∈ R, which is a contradiction to our assumptions in this case.

So neither (i) nor (ii) is fulfilled. This yields ϕb0k+1 ∈ R. If for some x ∈ {1, . . . , k}
the function ϕb0x was recursive, then αb0k would be undefined. So ϕb01 , . . . , ϕ

b0
k /∈ R.

As αb0k+1↑, we obtain ϕb0x /∈ R for all x > k + 1 as in Case (ii)a. Hence k + 1 is
the only ϕb0-number of a total function.

57

Further cases cannot occur, so there is exactly one index i ∈ N, such that
ϕb0i ∈ R. This proves Fact 15. qed Fact 15.

In order to contradict phrase (11) we will prove the following statements.

1. b0 ∈ B,

2. Rb0 /∈ CEXτ (λx.S(b0, x)).

ad 1. Fact 15.3 implies Rb0 ∈ J1. Therefore it remains to prove that Rb0 ∈
(EX1)ϕb0 (λx.T (b0, x)) ∩ CONSϕb0 (λx.T (b0, x)). We consider two cases.

Case (i). Rb0 = {ϕb00 }.
Because of Fact 15.2 we have 0 /∈ rng(ϕb00), and hence T (b0, ϕ

b0
0 [n]) = 0 for all

n ∈ N. Thus Rb0 ∈ (EX1)ϕb0 (λx.T (b0, x)) ∩ CONSϕb0 (λx.T (b0, x)).

Case (ii). Rb0 = {ϕb0k+1} with k ∈ N.

Then ϕb0k+1 = αb0k 0∞ and 0 /∈ rng(αb0k) (see Fact 15.1).

For all n < |αb0k | we obtain T (b0, ϕ
b0
k+1[n]) = 0 by definition of T . Then

αb0k ⊆ ϕb00 according to stage k, which yields ϕb0
T (b0,ϕ

b0
k+1[n])

=n ϕb0k+1. So our

intermediate hypotheses are consistent in the first steps of the learning process.
Now for all n ≥ |αb0k | the segment αb0k is the only tuple in (N\{0})∗ satisfying

αb0k 0 ⊆ ϕb0k+1. So for all n ≥ |αb0k | the hypothesis T (b0, ϕ
b0
k+1[n]) will be the first

number i to be found such that αb0k 0 ⊆ ϕb0i .
As ϕb0k+2 /∈ R, we know that αb0k+1 is undefined, so ϕb0x =↑∞ and in particular

αb0k 6⊆ ϕb0x for all x > k + 1. Hence T (b0, ϕ
b0
k+1[n]) ≤ k + 1 for all n ∈ N.

By Fact 15.2 we know that 0 /∈ rng(ϕb00) and so αb0k 0 6⊆ ϕb00 . Therefore
T (b0, ϕ

b0
k+1[n]) 6= 0 for all n ≥ |αb0k |.

If k = 0, we have already verified T (b0, ϕ
b0
k+1[n]) = k + 1 for all n ≥ |αb0k |.

Now if k > 0 and x ∈ {1, . . . , k} we know that ϕb0x = αb0x−10
m↑∞ for some m ∈ N.

Since αb0x−1 ⊂ αb0k and 0 /∈ rng(αb0k), this yields αb0k 0 6⊆ ϕb0x for all x ∈ {1, . . . , k}.
The only hypothesis remaining is k + 1, i.e.

T (b0, ϕ
b0
k+1[n]) =

{
0 if n < |αb0k |
k + 1 if n ≥ |αb0k |

for arbitrary n ∈ N. As this results in just one mind change and the intermediate
hypothesis 0 is consistent in the first steps of the learning process, we conclude
Rb0 ∈ (EX1)ϕb0 (λx.T (b0, x)) ∩ CONSϕb0 (λx.T (b0, x)).

Since card {i ∈ N | ϕb0i ∈ R} = 1 by Fact 15.3, further cases cannot occur.
This implies Rb0 ∈ (EX1)ϕb0 (λx.T (b0, x)) ∩ CONSϕb0 (λx.T (b0, x)) and we con-
clude b0 ∈ B. qed 1.

58

ad 2. Because of Fact 15.3 it again suffices to regard two cases.

Case (i). Rb0 = {ϕb00 }.
Then on ϕb00 the strategy λx.S(b0, x) changes its hypothesis infinitely often or
returns a hypothesis incorrect with respect to τ infinitely often (see Fact 14.3).
We obtain Rb0 /∈ EXτ (λx.S(b0, x)) and in particular Rb0 /∈ CEXτ (λx.S(b0, x)).

Case (ii). Rb0 = {ϕb0k+1} with k ∈ N.
With Fact 14.1 we have

τ
S(b0,ϕ

b0
k+1[n])

⊆ αb0k ↑
∞⊂ αb0k 0∞ = ϕb0k+1

for some n ∈ N. Hence S(b0, ϕ
b0
k+1[n]) is a τ -number of a proper subfunction of

ϕb0k+1 for this integer n. We conclude Rb0 /∈ CEXτ (λx.S(b0, x)).

In both cases we have verified Claim 2. qed 2.

Altogether we see, that Rb /∈ CEXτ (λx.S(b, x)) for at least one b ∈ B, which
contradicts (11). Thus our assumption is wrong, i.e. B /∈ suitτ (J

1,CEX) and so
suitϕ(J1,EX1)\suitτ (J

1,CEX) 6= ∅ and suitϕ(J1,CONS)\suitτ (J
1,CEX) 6= ∅. �

As we have already mentioned above, Theorem 12 implies suitϕ(J∗,TOTAL) ⊂
suitϕ(J∗,CONS) (and the same result for suitτ). For the separation of the criteria
CP and TOTAL we have to be more careful, as Proposition 4 shows.

Proposition 4 suitϕ(CP,CP) = suitϕ(CP,TOTAL).

Proof. Assume B ∈ suitϕ(CP,TOTAL). Then there exists a strategy S ∈ P2

such that Rb ∈ TOTALϕb(λx.S(b, x)) for all b ∈ B. This implies for arbitrary
b ∈ B:

• Rb ∈ EXϕb(λx.S(b, x)),

• ∀f ∈ Rb ∀n ∈ N [ϕbS(b,f [n]) ∈ R].

Since ϕbS(b,f [n]) ∈ R implies ϕbS(b,f [n]) ∈ Rb (by definition of Rb), we obviously

have B ∈ suitϕ(CP,CP)(S) and thus suitϕ(CP,TOTAL) ⊆ suitϕ(CP,CP). The
opposite inclusion follows immediately. �

Still, if we consider uniform learning of finite classes with respect to our ac-
ceptable numbering τ , the separation of CP and TOTAL holds by analogy with
Theorem 2. For that purpose we first prove the stronger statement in Theorem
13.

59

Theorem 13 suitϕ(J1,EX0) \ suitτ (J
1,CP) 6= ∅.

Proof. We define a strategy T ∈ R and choose B ⊆ N such that T is suitable for
uniform EX0-identification of the R-cores described by B. These R-cores will all
consist of just one function and B will not allow uniform CP-identification with
respect to τ .

Let T ∈ R be defined by

T (f [n]) :=

? if n = 0

0 if n > 0 and f [n] = 0n+1

1 if n > 0 and f [n] = 010n−1

0 otherwise

for f ∈ R and n ∈ N .

Furthermore, let

B := {b ∈ N | card Rb = 1 and Rb ∈ (EX0)ϕb(T)} .

Claim. B ∈ suitϕ(J1,EX0) \ suitτ (J
1,CP).

Proof of “B ∈ suitϕ(J1,EX0)”.
Defining T ′ ∈ R2 by T ′(b, f [n]) := T (f [n]) for all f ∈ R and b, n ∈ N we obviously
have

• ∀b ∈ B [Rb ∈ J1],

• ∀b ∈ B [Rb ∈ (EX0)ϕb(λx.T ′(b, x))].

By definition of uniform identifiability this implies B ∈ suitϕ(J1,EX0).

Proof of “B /∈ suitτ (J
1,CP)”.

We will verify this claim by way of contradiction.

Assumption. B ∈ suitτ (J
1,CP).

Then there exists a strategy S ∈ P2 such that for any b ∈ B the recursive core
Rb is identified with class-preserving hypotheses with respect to τ by λx.S(b, x);
abbreviated

∀b ∈ B [Rb ∈ CPτ (λx.S(b, x))] . (12)

Aim. Construction of an integer b0, such that

1. b0 ∈ B,

2. Rb0 /∈ CPτ (λx.S(b0, x)),

in contradiction to statement (12). The strategy λx.S(b0, x) will fail for the only
function f ∈ Rb0 by

60

• being undefined on some initial segment of f or

• returning a τ -index of a function not inRb0 on input of some initial segment
of f (that means, our strategy makes a non-class-preserving guess on f).

Construction of b0.
We define a function ψ ∈ P3 as follows: Let b ∈ N. For i ≥ 2 let ψbi :=↑∞.
Furthermore, let ψb0 be defined by

ψb0(0) := 0

ψb0(x+ 1) :=

0 if S(b, 0)↑≤x or [S(b, 0)↓≤x and τS(b,0)(1)↑≤x] or

[S(b, 0)↓≤x and τS(b,0)(1)↓≤x and τS(b,0)(1) 6= 0]

↑ if S(b, 0)↓≤x and τS(b,0)(1)↓≤x and τS(b,0)(1) = 0

for all x ∈ N. Thus

ψb0 ∈ R ⇐⇒ ψb0 = 0∞

⇐⇒ S(b, ψb0[0])↑ or τS(b,ψb
0[0])(1)↑ or τS(b,0)(1) > 0 = ψb0(1) . (13)

Finally, the function ψb1 is defined by

ψb1(0) := 0

ψb1(x+ 2) := 0 for all x ∈ N

ψb1(1) :=

{
τS(b,0)(1) if S(b, 0)↓ and τS(b,0)(1)↓
↑ if S(b, 0)↑ or τS(b,0)(1)↑

Thus we obtain

ψb1 ∈ R ⇐⇒ ψb1 = 0(τS(b,ψb
1[0])(1))0∞

⇐⇒ [S(b, ψb0[0])↓ and τS(b,ψb
0[0])(1)↓] . (14)

Now let g ∈ R be a compiler function such that ϕg(b) = ψb for all b ∈ N. Such
a function g exists, since ψb was defined uniformly in b. The recursion theorem
then yields an integer b0 ∈ N satisfying ϕb0 = ϕg(b0). Thus we have ϕb0 = ψb0 .

End Construction b0.

In order to contradict phrase (12) we will prove the following statements.

1. b0 ∈ B,

2. Rb0 /∈ CPτ (λx.S(b0, x)).

61

ad 1. We observe Rb0 ⊆ {ϕb00 , ϕb01 } by construction. From (13) and (14) we
conclude that either Rb0 = {ϕb00 , ϕb01 } = {0∞} or Rb0 = {ϕb00 } = {0∞} 6= {ϕb01 }
or Rb0 = {ϕb01 } = {0(τS(b,ψb

1[0])(1))0∞} = {010∞}, so either Rb0 = {ϕb00 } = {0∞}
or Rb0 = {ϕb01 } = {010∞}. So we have Rb0 ∈ J1. By definition of T we know
for all n > 0 that T (0n) = 0 and T (010n) = 1. Furthermore T (0) =?. Therefore
Rb0 ∈ (EX0)ϕb0 (T) and so b0 ∈ B. qed 1.

ad 2. As we have seen in the proof of “b0 ∈ B”, it suffices to consider two cases.

Case (i). Rb0 = {ϕb00 } = {0∞}.
Then (13) implies S(b0, ϕ

b0
0 [0])↑ or τ

S(b0,ϕ
b0
0 [0])

(1)↑ or τ
S(b0,ϕ

b0
0 [0])

(1) 6= 0 = ϕb00 (1).

If S(b0, ϕ
b0
0 [0])↑, then of course Rb0 /∈ CPτ (λx.S(b0, x)).

If S(b0, ϕ
b0
0 [0]) ↓ and τ

S(b0,ϕ
b0
0 [0])

(1) ↑, then in particular S(b0, ϕ
b0
0 [0]) is a τ -

index of a non-total function. So λx.S(b0, x) makes a non-class-preserving guess
on ϕb00 [0]. This implies Rb0 /∈ CPτ (λx.S(b0, x)).

If S(b0, ϕ
b0
0 [0])↓, τ

S(b0,ϕ
b0
0 [0])

(1)↓ and τ
S(b0,ϕ

b0
0 [0])

(1) 6= 0, then τ
S(b0,ϕ

b0
0 [0])

6= ϕb00
and thus τ

S(b0,ϕ
b0
0 [0])

/∈ Rb0 . Again λx.S(b0, x) makes a non-class-preserving guess

on ϕb00 [0]. We obtain Rb0 /∈ CPτ (λx.S(b0, x)).

Case (ii). Rb0 = {ϕb01 } = {010∞}.
Then S(b0, ϕ

b0
1 [0])↓ and τ

S(b0,ϕ
b0
1 [0])

(1)↓, but ϕb01 (1) 6= τ
S(b0,ϕ

b0
1 [0])

(1) and therefore

τ
S(b0,ϕ

b0
1 [0])

/∈ Rb0 . So λx.S(b0, x) makes a non-class-preserving guess on ϕb01 [0].

This yields Rb0 /∈ CPτ (λx.S(b0, x)). qed 2.

Claims 1 and 2 together now contradict statement (12). Therefore our as-
sumption must have been wrong, i.e. B /∈ suitτ (J

1,CP). Altogether we have
B ∈ suitϕ(J1,EX0) \ suitτ (J

1,CP). �

As we have promised before, this yields the proper separation of CP and
TOTAL for uniform learning with respect to the hypothesis space τ .

Corollary 5 suitτ (J
1,CP) ⊂ suitτ (J

1,TOTAL).

Proof. Obviously suitτ (J
1,CP) ⊆ suitτ (J

1,TOTAL). It remains to prove the
existence of some description set B ⊆ N satisfying

B ∈ suitτ (J
1,TOTAL) \ suitτ (J

1,CP) .

From Theorem 13 we know that there is some description set B in suitϕ(J1,EX0)
which is not contained in suitτ (J

1,CP). Since we can prove that suitϕ(J1,EX0)
is contained in suitτ (J

1,TOTAL), we have already verified our corollary. For the
proof of suitϕ(J1,EX0) ⊆ suitτ (J

1,TOTAL) note that according to Proposition 1

62

all ϕb-numbers can be compiled to τ -numbers uniformly in b. The output “?”
just has to be replaced by some τ -number of any total function. �

4.4 The Hierarchies in Lemma 1.4, 1.5, 1.6

From Theorem 12 and suitϕ(J∗,CONS) ⊆ suitϕ(J∗,EX) (analogously for suitτ)
we obtain that the second inclusion suitϕ(J∗,CEX) ⊆ suitϕ(J∗,EX) in Lemma
1.4 and its τ -version are indeed proper.

Together with the fact suitτ (J
∗,TOTAL) ⊆ suitτ (J

∗,CONF) Theorem 10
yields suitϕ(J∗,CEX) \ suitτ (J

∗,TOTAL) 6= ∅ and in particular

suitϕ(J∗,TOTAL) ⊂ suitϕ(J∗,CEX) ,

where again suitϕ may be replaced by suitτ .

The three inclusions given in Lemma 1.5 and 1.6 are also proper inclusions.
We have verified this implicitly in Theorem 9. The set B used to separate EX1

from EX0 is suitable for uniform identification by enumeration with respect to
total numberings ϕb. Since identification by enumeration with respect to total
recursive numberings always implies identification with total and consistent inter-
mediate hypotheses, we know that the same set B belongs to suitϕ(J∗,CONS) and
suitϕ(J∗,TOTAL) (which is a subset of suitϕ(J∗,CEX) and suitτ (J

∗,TOTAL)),
but not to suit(J∗,EX0).

Corollary 6

1. suitϕ(J∗,TOTAL) ⊂ suitϕ(J∗,CEX) ⊂ suitϕ(J∗,EX) (analogously with τ
instead of ϕ),

2. suitϕ(J∗,EX0) ⊂ suitϕ(J∗,CONS) and suitϕ(J∗,EX0) ⊂ suitϕ(J∗,CEX)
(analogously with τ instead of ϕ),

3. suitτ (J
∗,EX0) ⊂ suitτ (J

∗,TOTAL).

4.5 Incomparable Classes

The scope of this subsection is to find pairs of inference criteria which do not
yield such inclusions as in Lemma 1. That means we want to collect examples of
incomparable classes.

In Theorems 10 and 12 we have verified suitϕ(J∗,EX1) \ suit(J∗,CONF) 6= ∅
and suitϕ(J∗,EX1) \ suitτ (J

∗,CEX) 6= ∅. From suitτ (J
∗,CP) ⊆ suitτ (J

∗,CEX)
and suitτ (J

∗,CP) ⊆ suitτ (J
∗,TOTAL) ⊆ suitτ (J

∗,CONS) ⊆ suitτ (J
∗,CONF)

we conclude
suitϕ(J∗,EXm) \ suitτ (J

∗, I) 6= ∅

63

for all m ≥ 1 and I ∈ {CP,TOTAL,CONS,CONF,CEX}. By the same reason-
ing we obtain

suitϕ(J∗, I) \ suit(J∗,EXm) 6= ∅
for all m ∈ N and I ∈ {CP,TOTAL,CONS,CONF,CEX} with Corollary 2. This
yields the following corollary.

Corollary 7 Let I ∈ {CP,TOTAL,CONS,CONF,CEX}. Then

suitϕ(J∗,EXm) # suitϕ(J∗, I)

for all m ≥ 1. The same result holds if we replace suitϕ by suitτ .

Furthermore we can use Theorem 13 to verify a stronger result for learning
with class-preserving or total intermediate hypotheses.

Corollary 8

1. suitϕ(J∗,EX0) # suitϕ(J∗,CP),

2. suitτ (J
∗,EX0) # suitτ (J

∗,CP),

3. suitϕ(J∗,EX0) # suitϕ(J∗,TOTAL).

Proof. Properties 1 and 2 are direct consequences of Theorem 13. By Proposition
4 we know that suitϕ(J∗,TOTAL) equals suitϕ(J∗,CP), so property 3 is verified
with property 1. �

With Theorem 10 and 12 we have also verified the following corollary.

Corollary 9

1. suitϕ(J∗,CEX) # suitϕ(J∗,CONS), suitτ (J
∗,CEX) # suitτ (J

∗,CONS).

2. suitϕ(J∗,CEX) # suitϕ(J∗,CONF), suitτ (J
∗,CEX) # suitτ (J

∗,CONF).

4.6 Summary

Now we can summarize our separation results for uniform learning of finite classes
with respect to fixed hypothesis spaces.

Summary 1

1. suitϕ(J∗,EX) ⊂ suitϕ(J∗,BC) ⊂ suitϕ(J∗,BC∗)
(holds analogously if we substitute suitϕ by suitτ),

2. suitϕ(J∗,EXm) ⊂ suitϕ(J∗,EXm+1) ⊂ suitϕ(J∗,EX) for all m ∈ N
(holds analogously if we substitute suitϕ by suitτ),

64

3. suitϕ(J∗,TOTAL) ⊂ suitϕ(J∗,CONS) ⊂ suitϕ(J∗,CONF) ⊂ suitϕ(J∗,EX)
(holds analogously if we substitute suitϕ by suitτ),

4. suitϕ(J∗,TOTAL) ⊂ suitϕ(J∗,CEX) ⊂ suitϕ(J∗,EX)
(holds analogously if we substitute suitϕ by suitτ),

5. suitϕ(J∗,CP) = suitϕ(J∗,TOTAL),

6. suitτ (J
∗,CP) ⊂ suitτ (J

∗,TOTAL),

7. suitϕ(J∗,EX0) ⊂ suitϕ(J∗,CONS), suitϕ(J∗,EX0) ⊂ suitϕ(J∗,CEX)
(holds analogously if we substitute suitϕ by suitτ),

8. suitϕ(J∗,CEX) # suitϕ(J∗,CONS), suitϕ(J∗,CEX) # suitϕ(J∗,CONF)
(holds analogously if we substitute suitϕ by suitτ),

9. if I ∈ {CP,TOTAL,CONS,CONF,CEX} and m ≥ 1, then
suitϕ(J∗,EXm) # suitϕ(J∗, I)
(holds analogously if we substitute suitϕ by suitτ),

10. suitϕ(J∗,EX0) # suitϕ(J∗,CP),
(holds analogously if we substitute suitϕ by suitτ),

11. suitϕ(J∗,EX0) # suitϕ(J∗,TOTAL), suitτ (J
∗,EX0) ⊂ suitτ (J

∗,TOTAL).

Thus we have transferred the comparison results of Theorem 2 to the concept
of meta-learning in fixed hypothesis spaces. Each separation is achieved already
by restricting ourselves to the synthesis of strategies for finite classes of recursive
functions. Note that none of the results in Summary 1 is formulated as strictly
as possible. We never really needed the whole class J∗ to prove these separations.
Often it was even enough to choose recursive cores from J1, for example

• in Summary 1.1: suitϕ(J1,BC) ⊂ suitϕ(J1,BC∗),
suitτ (J

1,BC) ⊂ suitτ (J
1,BC∗) (see Theorem 7);

• in Summary 1.3: suitϕ(J1,TOTAL) ⊂ suitϕ(J1,CONS),
suitτ (J

1,TOTAL) ⊂ suitτ (J
1,CONS) (see Theorem 12 and remarks above);

• in Summary 1.4: suitϕ(J1,CEX) ⊂ suitϕ(J1,EX),
suitτ (J

1,CEX) ⊂ suitτ (J
1,EX) (see Theorem 12);

• in Summary 1.6: suitτ (J
1,CP) ⊂ suitτ (J

1,TOTAL) (see Corollary 5);

• in Summary 1.8: suitϕ(J1,CONS) 6⊆ suitϕ(J1,CEX),
suitτ (J

1,CONS) 6⊆ suitτ (J
1,CEX) and the same results with CONF instead

of CONS (see Theorem 12);

65

• in Summary 1.10: suitϕ(J1,EX0) 6⊆ suitϕ(J1,CP),
suitτ (J

1,EX0) 6⊆ suitτ (J
1,CP) (see Theorem 13);

• in Summary 1.11: suitϕ(J1,EX0) 6⊆ suitϕ(J1,TOTAL) (see Theorem 13
and Proposition 4).

But still these results are not as strict as possible, because in the corresponding
proofs we did not use all descriptions of singleton recursive cores. A further goal of
research will be to find out more about the nature of the appropriate description
sets for the separation of inference criteria in uniform learning. Perhaps we can
characterize a kind of “smallest description set” witnessing the separation of two
identification criteria. Our observations above suggest, that for the inference cri-
teria CP, TOTAL, CEX, CONS, CONF and EX each pairwise separation concern-
ing suitϕ or suitτ can already be achieved by restricting ourselves to descriptions
of recursive cores in J1. That would imply that a “smallest description set” was
somewhere “below” the set of all descriptions of singleton sets of recursive func-
tions. For uniform learning with respect to general hypothesis spaces (i.e. learning
according to suit without subscript) in general singleton sets are not sufficient to
prove any separations, because suit(J1, I) = {B ⊆ N | Rb ∈ J1 for all b ∈ B} for
any criterion I ∈ I (cf. Theorem 3).

66

BC∗

BC

EX

...

EX2

EX1

EX0

CP

TOTAL

CONS

CONF
CEX

!!
!!
!

b
b
b
b
bb

%
%
%
%
%
%
%
%

PPPPPPPPPPPPP

suitϕ(J∗,BC∗)

suitϕ(J∗,BC)

suitϕ(J∗,EX)

...

suitϕ(J∗,EX2)

suitϕ(J∗,EX1)

suitϕ(J∗,EX0)

suitϕ(J∗,CP) = suitϕ(J∗,TOTAL)

suitϕ(J∗,CONS)

suitϕ(J∗,CONF)
suitϕ(J∗,CEX)

�
�
�
�
�
�
�
�

@
@
@
@

c
c
c
c
c
c
c
cc

�
�
�
�
�
�
��

aaaaaaaaaaaaaaaaaaaaa

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
""

Figure 2: The hierarchy of inference criteria according to Theorem 2 compared
with the corresponding hierarchy for uniform learning with respect to the num-
berings ϕb, b ∈ B. Any line drawn upwards indicates a proper inclusion. If two
classes are not connected by a line or a sequence of lines drawn upwards, they are
incomparable.

67

BC∗

BC

EX

...

EX2

EX1

EX0

CP

TOTAL

CONS

CONF
CEX

!!
!!
!

b
b
b
b
bb

%
%
%
%
%
%
%
%

PPPPPPPPPPPPP

suitτ (J
∗,BC∗)

suitτ (J
∗,BC)

suitτ (J
∗,EX)

...

suitτ (J
∗,EX2)

suitτ (J
∗,EX1)

suitτ (J
∗,EX0)

suitτ (J
∗,CP)

suitτ (J
∗,TOTAL)

suitτ (J
∗,CONS)

suitτ (J
∗,CONF)

suitτ (J
∗,CEX)

�
�
�
�
�
�
�
�
�
�

J
J
J
J

````````````````````̀

�
�
�
�
�
�
�
�
�
�
��

PPPPPPPPPP

Figure 3: The hierarchy of inference criteria according to Theorem 2 compared
with the corresponding hierarchy for uniform learning with respect to the accept-
able numbering τ . Any line drawn upwards indicates a proper inclusion. If two
classes are not connected by a line or a sequence of lines drawn upwards, they are
incomparable.

68



5 Separation of Inference Criteria: General Hy-

pothesis Spaces

In this section we investigate the hierarchies of inference criteria for uniform
learning without restrictions in the choice of the hypothesis spaces. Again we
will concentrate on description sets corresponding to collections of finite classes of
recursive functions. Some of the comparison results in Section 4 hold analogously
for this concept, but there are differences, too.

Lemma 2

1. suit(J∗,EX) ⊆ suit(J∗,BC) ⊆ suit(J∗,BC∗),

2. suit(J∗,EXm) ⊆ suit(J∗,EXm+1) ⊆ suit(J∗,EX) for all m ∈ N,

3. suit(J∗,CONS) ⊆ suit(J∗,CONF) ⊆ suit(J∗,EX),

4. suit(J∗,CP) ⊆ suit(J∗,TOTAL) ⊆ suit(J∗,CEX) ⊆ suit(J∗,EX),

5. suit(J∗,EX0) ⊆ suit(J∗,CP) and suit(J∗,EX0) ⊆ suit(J∗,CONS).

Proof. The results in Lemma 2.1, 2.2, 2.3 and 2.4 are direct consequences of the
definitions. In order to verify Lemma 2.5, fix B ∈ suit(J∗,EX0). Then there is
some strategy S ∈ R2, such that for every b ∈ B there exists a numbering ψ[b]

satisfying Rb ∈ (EX0)ψ[b](λx.S(b, x)).

For the proof of B ∈ suit(J∗,CP) we change the numberings ψ[b] by copying
some elements of the recursive cores into fixed numbers of the hypothesis spaces.
Formally, for each b ∈ B we define a new numbering η[b] as follows: let ib ∈ N
be a ψ[b]-number of any function in the recursive core Rb, i.e. ψ

[b]
ib
∈ Rb (we can

assume without loss of generality that Rb 6= ∅).

η
[b]
0 := ψ

[b]
ib
,

η
[b]
x+1 := ψ[b]

x for all x ∈ N .

Now the hypothesis 0 can be used to replace the “?” returned by the strategy,
because it is class-preserving with respect to the new hypothesis space. So we
define a strategy S ′ ∈ P2 for f ∈ R and b, n ∈ N by

S ′(b, f [n]) :=

{
0 if S(b, f [n]) =?

S(b, f [n]) + 1 otherwise

By construction of our numberings η[b] this implies Rb ∈ CPη[b](λx.S ′(b, x)) for
all b ∈ B. Therefore B is suitable for uniform class-preserving identification.

For the proof of B ∈ suit(J∗,CONS) we also have to change our hypothesis
spaces ψ[b]. We will enable consistent identification by mixing the old numbering

69



with a new numbering of all recursive functions of finite support. The numbers
of these functions will code their own initial segments representing their finite
support, so they can be used as consistent intermediate hypotheses while our old
strategy returns “?”. For each b ∈ B we define a numbering ζ [b] as follows: for
any x ∈ N let

ζ
[b]
2x := cod−1(x)0∞ ,

ζ
[b]
2x+1 := ψ[b]

x .

Now a consistent uniform learner S ′′ can be defined by

S ′′(b, f [n]) :=

{
2f [n] if S(b, f [n]) =?

2S(b, f [n]) + 1 otherwise

for f ∈ R and b, n ∈ N (note that f [n] = cod(f(0), . . . , f(n)), so ζ
[b]
2f [n] =

f(0)f(1) . . . f(n)0∞ =n f). We obtain Rb ∈ CONSζ[b](λx.S
′′(b, x)) for all b ∈ B.

Thus B ∈ suit(J∗,CONS). �

Note that we dropped the inclusion for TOTAL-identification in the third line.
As in general a uniform strategy S satisfying B ∈ suit(J∗,TOTAL)(S) for some
B ⊆ N can not synthesize an appropriate hypothesis space for Rb from b ∈ B,
the hypotheses returned by S cannot be checked for consistency. Therefore the
proof of Lemma 1 cannot be transferred. In the following subsections we will try
to find out, which of the results in Lemma 2 can be written with proper inclusion
symbols.

5.1 The Hierarchies in Lemma 2.1, 2.2, 2.3

In Section 4 we have seen that suitϕ(J∗,BC) is a proper subset of suitϕ(J∗,BC∗).
The same result is obtained for uniform learning with respect to the acceptable
numbering τ . Without these strict demands concerning the hypothesis spaces we
observe a difference in our hierarchies.

Theorem 14 suit(J∗,BC)=suit(J∗,BC∗)={B⊆N | Rb is finite for all b ∈ B}.

Proof. As the whole classR can be behaviourally correctly identified with anoma-
lies (cf. Theorem 2), we obtain N ∈ suit(BC∗,BC∗) and in particular

suit(J∗,BC∗) = {B ⊆ N | Rb is finite for all b ∈ B} .

Thus it remains to prove suit(J∗,BC) = {B ⊆ N | Rb is finite for all b ∈ B}. But
this fact follows directly from suit(BC,BC) = {B ⊆ N | Rb ∈ BC for all b ∈ B},
which is a result from [Zi00]. �

70



Although for uniform learning behaviourally correct identification is already
sufficient to cope with any description of a finite class (so anomalies cannot
increase the learning power), BC and BC∗ are not equal uniform learning criteria
in the general case. This follows trivially, since one might choose classes not in
BC for the recursive cores to be identified.

For explanatory and behaviourally correct identification the hierarchy remains
the same, as has already been verified in Theorem 8. Furthermore the hierarchy
in Lemma 2.2 – resulting in bounds on the number of mind changes – consists of
proper inclusions. This is verified with the strong result in Theorem 9. Because
of Corollary 4 and Theorem 11 the inclusions in Lemma 2.3 are also proper. So
we can summarize our results in the following corollary.

Corollary 10

1. suit(J∗,EX) ⊂ suit(J∗,BC) = suit(J∗,BC∗)
= {B ⊆ N | Rb is finite for all b ∈ B},

2. suit(J∗,EXm) ⊂ suit(J∗,EXm+1) ⊂ suit(J∗,EX) for all m ∈ N,

3. suit(J∗,CONS) ⊂ suit(J∗,CONF) ⊂ suit(J∗,EX).

5.2 The Hierarchy in Lemma 2.4

For uniform learning of finite classes of recursive functions we observe a change
in our hierarchy, if we do not fix the hypothesis spaces in advance. As Theorem
15 states, the hierarchy of the criteria CP, TOTAL, CEX and EX collapses in
this case.

Theorem 15 suit(J∗,CP) = suit(J∗,TOTAL) = suit(J∗,CEX) = suit(J∗,EX).

Proof. Since suit(J∗,CP) ⊆ suit(J∗,TOTAL) ⊆ suit(J∗,CEX) ⊆ suit(J∗,EX)
by definition, it remains to prove

suit(J∗,EX) ⊆ suit(J∗,CP) .

For that purpose fix a description set B ∈ suit(J∗,EX). Then we know

1. Rb is finite for all b ∈ B,

2. there is a strategy S ∈ P2 such that for any b ∈ B there is a hypothesis
space ψ[b] ∈ P2 satisfying Rb ∈ EXψ[b](λx.S(b, x)).

Note that the hypothesis spaces ψ[b] do not have to be computable uniformly in
b. Now we want to prove that B ∈ suit(J∗,CP). We even will see that our given
strategy S is already an appropriate strategy for uniform CP-identification from

71



B. This requires a change of the hypothesis spaces ψ[b] for b ∈ B.

Idea. Assume b ∈ B was fixed. Since λx.S(b, x) identifies the finite class Rb in
the limit, there are only finitely many initial segments of functions in Rb which
force the strategy λx.S(b, x) into a “non-class-preserving” guess. If we replace the
functions in ψ[b] associated with these non-class-preserving guesses by an element
of Rb, we obtain a hypothesis space appropriate for TOTAL-identification of Rb

by λx.S(b, x).

More formally: Fix b ∈ B. From statement 2 we obtain

card {n ∈ N | ψ[b]
S(b,f [n]) /∈ Rb} <∞

for all f ∈ Rb. Defining the set of “forbidden” hypotheses on “relevant” initial
segments by

H [b] := {i ∈ N | ψ[b]
i /∈ Rb ∧ ∃f ∈ Rb ∃n ∈ N [S(b, f [n]) = i]} ,

we conclude with statement 1, that H [b] is finite. Now we define a new hypothesis
space η[b] by

η
[b]
i :=

{
ψ

[b]
i if i /∈ H [b]

g if i ∈ H [b]
for all i ∈ N ,

where g ∈ Rb is an arbitrary function in the recursive core described by b. Since
ψ[b] ∈ P2 and H [b] is finite, η[b] is computable.
ThenRb ∈ CPη[b](λx.S(b, x)) by definition of η[b]. As b ∈ B was chosen arbitrarily,
we conclude B ∈ suit(J∗,CP). �

Corollary 11 suit(J∗,CONS) ⊂ suit(J∗,CONF) ⊂ suit(J∗,CP).

Proof. This fact follows immediately from Theorem 10 and Theorem 11 and by
the result suit(J∗,EX) = suit(J∗,CP) in Theorem 15. �

Obviously, a further change in the hierarchies of inference criteria is witnessed
by the fact suit(J∗,CONS) ⊂ suit(J∗,CEX), which follows by the same argumen-
tation as in the proof of Corollary 11.

5.3 The Hierarchy in Lemma 2.5

A strict version of the first inclusion in Lemma 2.5 now follows immediately
from our observations in Corollary 10 and Theorem 15. Since suit(J∗,EX0) ⊂
suit(J∗,EX) by Corollary 10.2 and suit(J∗,EX) = suit(J∗,CP) by Theorem 15,
we conclude

suit(J∗,EX0) ⊂ suit(J∗,CP) .

72



A proof of suit(J∗,EX0) ⊂ suit(J∗,CONS) can be deduced from Corollary 2 as
follows: as suitϕ(J∗,CP) ⊆ suitϕ(J∗,CONS) and suitϕ(J∗,CP) \ suit(J∗,EX0) 6=
∅, we know that suit(J∗,CONS) \ suit(J∗,EX0) 6= ∅. Together with Lemma 2.5
we obtain

suit(J∗,EX0) ⊂ suit(J∗,CONS) .

Corollary 12

1. suit(J∗,EX0) ⊂ suit(J∗,CP),

2. suit(J∗,EX0) ⊂ suit(J∗,CONS).

5.4 Incomparable Classes

There are only a few incomparabilities remaining in uniform learning with general
hypothesis spaces: CONF as well as CONS are still incomparable to the criteria
resulting in mind change bounds (where at least one mind change is allowed).

If m ≥ 1 is chosen arbitrarily, then suit(J∗,EXm) \ suit(J∗,CONF) 6= ∅ and
suit(J∗,EXm)\suit(J∗,CONS) 6= ∅ follow immediately from Theorem 10. For the
opposite direction, note that suit(J∗,CONS)\suit(J∗,EXm) 6= ∅ is a consequence
of Corollary 2. This also yields suit(J∗,CONF) \ suit(J∗,EXm) 6= ∅. Altogether
we obtain the following corollary.

Corollary 13

1. suit(J∗,EXm) # suit(J∗,CONF) for all m ≥ 1,

2. suit(J∗,EXm) # suit(J∗,CONS) for all m ≥ 1.

5.5 Summary

Finally we can summarize our separation results for uniform identification of
finite classes without any restrictions concerning the hypothesis spaces.

Summary 2

1. suit(J∗,EX) ⊂ suit(J∗,BC) = suit(J∗,BC∗)
= {B ⊆ N | Rb is finite for all b ∈ B},

2. suit(J∗,EXm) ⊂ suit(J∗,EXm+1) ⊂ suit(J∗,EX) for all m ∈ N,

3. suit(J∗,EX0) ⊂ suit(J∗,CONS) ⊂ suit(J∗,CONF) ⊂ suit(J∗,CP)
= suit(J∗,TOTAL) = suit(J∗,CEX) = suit(J∗,EX),

4. if I ∈ {CONS,CONF} and m ≥ 1, then suit(J∗,EXm) # suit(J∗, I).

73



So in contrast to uniform learning of finite classes with respect to fixed hy-
pothesis spaces just a few of the separations in Theorem 2 can be transferred to
the unrestricted concept of uniform learning. Still it is remarkable, how many
inference criteria for uniform identification can be separated by collections of fi-
nite classes – even with very strong results (cf. the remarks below Theorem 8).
But similar considerations as in Section 4 lead us to the observation that again
our results are not as strict as possible. For none of these separations the whole
class J∗ was necessary; in most comparisons a subset of the set of all descriptions
of recursive cores consisting of up to two elements was sufficient. To verify this,
note that in the associated proofs the specially constructed description b0 cor-
responds to a set of at most two recursive functions. In these cases the special
classes B of descriptions witnessing the separations might have been restricted
to classes of descriptions of recursive cores of up to two elements. If we set
J2 := {U ⊆ R | card U ≤ 2}, we obtain for example

• in Summary 2.1: suit(J2,EX) ⊂ suit(J2,BC), where suit(J2,BC) equals
the set {B ⊆ N | card Rb ≤ 2 for all b ∈ B} (see the proof of Theorem 8);

• in Summary 2.3: suit(J2,EX0) ⊂ suit(J2,CONS) ⊂ suit(J2,CONF) (see
the proofs of Theorem 9 and Theorem 11).

For the verification of suit(J∗,CONF) ⊂ suit(J∗,EX) and suit(J∗,EXm) 6⊆
suit(J∗,CONS), as well as suit(J∗,EXm) 6⊆ suit(J∗,CONF) for all m ≥ 1,
descriptions of recursive cores of at most three elements were sufficient (see
the proof of Theorem 10). But perhaps this number of elements might be re-
duced to 2, if learning with convergently incorrect intermediate hypotheses was
not involved in the proof of Theorem 10. Finally, in order to verify the re-
sults suit(J∗,EXm) ⊂ suit(J∗,EXm+1) and suit(J∗,CONS) 6⊆ suit(J∗,EXm),
suit(J∗,CONF) 6⊆ suit(J∗,EXm) for all m ∈ N, we might restrict ourselves to
recursive cores consisting of no more than 2m+1 functions (see the construction
in the proof of Theorem 9). Of course, in many of our results the description sets
might still be reduced further without violating the conditions of separations. As
has already been mentioned in Section 4, it might be interesting to learn more
about the structure of description sets fit for our separations, and thus perhaps
to find something like “smallest description sets” to be used as witnesses for the
results in Summary 2. We might conjecture, that for uniform learning according
to the definition of suit (without subscript) such smallest descriptions sets are in
general “bigger” than for uniform learning with respect to suitτ or suitϕ: in many
results concerning suitτ and suitϕ descriptions of singleton recursive cores are suf-
ficient (cf. the remarks below Summary 1 in Section 4), whereas – by Theorem
3 – such descriptions can never be enough to separate any of our identification
criteria in the context of suit.

74



BC∗

BC

EX

...

EX2

EX1

EX0

CP

TOTAL

CONS

CONF
CEX

!!
!!
!

b
b
b
b
bb

%
%
%
%
%
%
%
%

PPPPPPPPPPPPP

suit(J∗,BC) = suit(J∗,BC∗)

suit(J∗,EX) = suit(J∗,CEX) = suit(J∗,TOTAL) = suit(J∗,CP)

...

suit(J∗,EX2)

suit(J∗,EX1)

suit(J∗,EX0)

suit(J∗,CONS)

suit(J∗,CONF)

PPPPPPPPPP

%
%
%
%
%
%
%
%
%
%
%
%

Figure 4: The hierarchy of inference criteria according to Theorem 2 compared
with the corresponding hierarchy for uniform learning without specifying the hy-
pothesis spaces in advance. Any line drawn upwards indicates a proper inclusion.
If two classes are not connected by a line or a sequence of lines drawn upwards,
they are incomparable.

75



References

[An80] Angluin, D. (1980); Inductive Inference of Formal Languages from
Positive Data, Information and Control 45, 117-135.

[Ba74a] Barzdins, J. (1974); Two Theorems on the Limiting Synthesis of Func-
tions, Theory of Algorithms and Programs, Latvian State University,
Riga 210, 82-88 (in Russian).

[Ba74b] Barzdins, J. (1974); Inductive Inference of Automata, Functions and
Programs, In: Proceedings International Congress of Math., Vancou-
ver, 455-460.

[BCJ96] Baliga, G.; Case, J.; Jain, S. (1996); Synthesizing Enumeration Tech-
niques for Language Learning, In: Proceedings of the Ninth Annual
Conference on Computational Learning Theory, ACM Press, 169-180.

[Bl67] Blum, M. (1967); A Machine-Independent Theory of the Complexity
of Recursive Functions, Journal of the ACM 14 (2), 322-336.

[CS83] Case, J.; Smith, C. (1983); Comparison of Identification Criteria for
Machine Inductive Inference, Theoretical Computer Science 25, 193-
220.

[FKW95] Freivalds, R.; Kinber, E.B.; Wiehagen, R. (1995); How Inductive In-
ference Strategies Discover Their Errors, Information and Computa-
tion 118, 208-226.

[Fu88] Fulk, M.A. (1988); Saving the Phenomena: Requirements that Induc-
tive Inference Machines Not Contradict Known Data, Information
and Computation 79, 193-209.

[Go67] Gold, E.M. (1967); Language Identification in the Limit, Information
and Control 10, 447-474.

[Ja79] Jantke, K.P. (1979); Natural Properties of Strategies Identifying Re-
cursive Functions, Elektronische Informationsverarbeitung und Ky-
bernetik 15, 487-496.

[JB81] Jantke, K.P.; Beick, H. (1981); Combining Postulates of Naturalness
in Inductive Inference, Elektronische Informationsverarbeitung und
Kybernetik 17, 465-484.

[KB92] Kapur, S.; Bilardi, G. (1992); On Uniform Learnability of Language
Families, Information Processing Letters 44, 35-38.

[Ne01] Nessel, J. (2001); personal communication.

76



[OSW88] Osherson, D.N.; Stob, M.; Weinstein, S. (1988); Synthesizing Induc-
tive Expertise, Information and Computation 77, 138-161.

[Oy98] Oymanns, L. (1998); Lernen von rekursiven Funktionen mit guten
Beispielen, Diploma Thesis, University of Kaiserslautern (in Ger-
man).

[Ro87] Rogers, H. (1987); Theory of Recursive Functions and Effective Com-
putability, MIT Press, Cambridge, Massachusetts.

[Wie78] Wiehagen, R. (1978); Zur Theorie der algorithmischen Erkennung,
Dissertation B, Humboldt-University, Berlin (in German).

[WZ95] Wiehagen, R.; Zeugmann, T. (1995); Learning and Consistency,
In: K.P. Jantke and S. Lange, editors, Algorithmic Learning for
Knowledge-Based Systems, Lecture Notes in Artificial Intelligence
961, 1-24.

[Zi99] Zilles, S. (1999); Induktive Inferenz mit beschränkter Zahl von Hy-
pothesenwechseln, Diploma Thesis, University of Kaiserslautern (in
German).

[Zi00] Zilles, S. (2000); On Uniform Learning of Classes of Recursive Func-
tions, Technical Report LSA-2000-05E, Centre for Learning Systems
and Applications, University of Kaiserslautern.

77


