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Abstract. A classical learning problem in Inductive Inference consists
of identifying each function of a given class of recursive functions from
a finite number of its output values. Uniform learning is concerned with
the design of single programs solving infinitely many classical learning
problems. For that purpose the program reads a description of an iden-
tification problem and is supposed to construct a technique for solving
the particular problem.
As can be proved, uniform solvability of collections of solvable identifi-
cation problems is rather influenced by the description of the problems
than by the particular problems themselves. When prescribing a specific
inference criterion (for example learning in the limit), a clever choice of
descriptions allows uniform solvability of all solvable problems, whereas
even the most simple classes of recursive functions are not uniformly
learnable without restricting the set of possible descriptions. Further-
more the influence of the hypothesis spaces on uniform learnability is
analysed.

1 Introduction

Inductive Inference is concerned with methods of identifying objects in a target
class from incomplete information. The learning model is based on a recursion-
theoretic background, i.e. target objects as well as learners are represented by
computable functions. From an input sequence consisting of finite subgraphs of
the graph of a target function the learner produces a sequence of hypotheses
interpreted as indices of functions enumerated by a partial-recursive numbering.
In the initial approach of identification in the limit introduced by Gold in [6]
that sequence of hypotheses is supposed to converge to a correct index of the
target function. Several further identification criteria have been introduced and
analysed in [2], [3] and [5]. In general, a learning problem is given by

– a class U of recursive functions,
– a hypothesis space ψ and
– an identification criterion I.



The aim is to find a learner identifying each function in the class U with respect
to ψ within the scope of the criterion I.

Now imagine a collection of infinitely many learning problems solvable ac-
cording to a given criterion. Uniform Inductive Inference is concerned with the
question, whether there exists a single program which – given a description of
a special learning problem of our collection – synthesizes an appropriate learner
solving the actual problem. Such a program may be interpreted as a very “in-
telligent” learner able to simulate infinitely many learners of the classical type.
Instead of tackling each problem in a specific way we want to use a kind of
uniform strategy coping with the whole accumulation of problems.

Jantke’s work [7] is concerned with the uniform identification of classes of
recursive functions in the limit, particularly for the case that in each learning
step the intermediate hypothesis generated by the learner is consistent with
the information received up to the actual time of the learning process. Jantke
proved that his model of uniform identification does not allow the synthesis of
a program learning a class consisting of just a single recursive function, as long
as the synthesizer is supposed to cope with any possible description of such a
class. His negative result indicates that the concept of uniform learning might
be rather fruitless. But this suggestion is mitigated by the results on uniform
identification of classes of languages – a concept which is studied for example in
[10], [9] and [4]. Especially [4] contains lots of positive results allowing a more
optimistic point of view concerning the fruitfulness of the uniform identification
model. The work of Osherson, Stob and Weinstein additionally deals with several
possibilities for the description of learning problems.

The present paper provides its own definition of uniform identifiability with
the special feature that any of the learning problems described may be solved
with respect to any appropriate hypothesis space without requiring the synthe-
sis of the particular hypothesis spaces. The first result in Section 4 shows the
existence of a special set of descriptions accumulating all learning problems solv-
able according to a given criterion I, such that synthesizing learners successful
with respect to I is possible. The trick is to encode programs for the learners
within the descriptions. Of course in general such tricks should be avoided, for
example by fixing the set of descriptions in advance. But then it is still possible
to use tricks by a clever choice of the hypothesis spaces. The results in Section 5
show that such tricks provide a uniform strategy for behaviourally correct iden-
tification1 of any class learnable according to that criterion, even coping with
any description of such a class. Nevertheless the free choice of the hypothesis
spaces does not trivialize uniform learning in the limit. For example the collec-
tion of all descriptions of classes consisting of just two recursive functions is not
suitable in that sense, i.e. there is no uniform strategy constructing a successful
program for learning in the limit from such a description. Unfortunately, those
results are rather negative: either uniform learnability is achieved by tricks and
thus becomes trivial or it cannot be achieved at all. When fixing the hypothesis
spaces in advance, our situation gets even worse. Jantke’s result is strengthened

1 For the definitions of inference criteria mentioned here see Section 2.



by proving that there is no uniform learner for behaviourally correct identifi-
cation with respect to an acceptable numbering coping with all descriptions of
sets of just one recursive function. The same collection of learning problems be-
comes unsolvable even for behaviourally correct identification with anomalies, if
we further tighten our demands concerning the hypothesis spaces.

On the other hand we also present some quite positive results, which at least
seem to justify some further research on uniform learning. For example, if the
descriptions of the learning problems fulfill some special topological conditions,
one can uniformly construct strategies learning the corresponding classes in the
limit – even with total and consistent intermediate hypotheses2. Results of this
kind strongly substantiate the suggestion that uniform identification is indeed a
model of rich learning power. The negative results mentioned above just have to
be interpreted carefully. The reason for the failure of uniform learners is most
often not a substantial lack of power, but lies in the choice of unsuitable descrip-
tions. So our model really seems worthy of investigation. In general, Section 2
provides preliminaries and Section 3 deals with the notion of uniform identifica-
tion as well as basic results. General results are presented in Section 4, followed
by results on particular description sets in Section 5. Finally Section 6 is con-
cerned with the influence of the choice of the hypothesis spaces. We also transfer
Wiehagen’s characterizations of classes identifiable in the limit (see [13]) to the
case of uniform learning.

2 Preliminaries

First we fix some notions that will be used in this paper. All conceptions in the
context of recursion theory not explicitly introduced here can be found in [12].

We denote the set of (nonnegative) integers by N and write N∗ for the set of
all finite tuples of elements of N. If n is any integer, we refer to the set of all n-
tuples of integers by Nn. By means of a bijective and computable mapping from
Nn onto N we identify n-tuples of integers with elements in N. Between N∗ and N
we also choose a bijective, computable mapping and denote it by cod : N∗ → N.
Thus we may use α to refer to cod(α), where α ∈ N∗. The quantifiers ∀ and
∃ are used in the common way. Quantifying an expression with ∀∞n indicates
that the expression is true for all but finitely many n ∈ N.

Inclusion of sets is expressed by the symbol ⊆, proper inclusion by ⊂. card X
serves as a notation for the cardinality of a set X, and we write card X = ∞,
whenever X is an infinite set. The set of all subsets of X is referred to by ℘X.
Pn denotes the class of all partial-recursive functions of n variables. Its sub-

class of total functions (called recursive functions) is denoted by Rn. Whenever
the number of arguments is of no special interest, we omit the superscripts. For
any function f ∈ P and any integer n the notation f [n] refers to the coding
cod(f(0), . . . , f(n)) of the initial segment of length n + 1 of f , as long as the
values f(0), . . . , f(n) are all defined. For f ∈ P and x ∈ N we write f(x)↓, if f
is defined for the argument x; f(x)↑, if f is not defined for the argument x.
2 See Section 6 for definitions.



For piecewise comparison of two functions f, g ∈ P we agree on the notation
f =n g, if {(x, f(x)) | x ≤ n and f(x) ↓} = {(x, g(x)) | x ≤ n and g(x) ↓};
otherwise f 6=n g. If the set of arguments on which the functions f, g ∈ P
disagree is finite, i.e. if [[f(n)↑ ∧g(n)↑] or [f(n)↓ ∧g(n)↓ ∧f(n) = g(n)]] for all
but finitely many n ∈ N, we write f =∗ g.

A function f may be identified with the sequence (f(n))n∈N of its values,
which yields notations like e.g. f = 0k↑∞ or g = 0k12∞. A finite tuple α ∈ N∗ is
often regarded as the function α↑∞ implicitly. For two functions f, g the notation
f v g means that {(x, f(x)) | x ∈ N, f(x)↓} ⊆ {(x, g(x)) | x ∈ N, g(x)↓}.

Any ψ ∈ Pn+1 (n ∈ N) is used as a numbering for the set Pψ := {ψi | i ∈ N}
by means of the definition ψi(x) := ψ(i, x) for all i ∈ N, x ∈ Nn. The index
i ∈ N is called ψ-number of the function ψi.

Given ψ ∈ Pn+2 (n ∈ N), every integer b ∈ N “describes” a partial-recursive
numbering, which we will denote by ψb. We set ψb(i, x) := ψ(b, i, x) for all
i ∈ N, x ∈ Nn and thus write by analogy with the notations above: ψbi (x) :=
ψb(i, x) for all i ∈ N, x ∈ Nn.

For any ψ ∈ Pn+1, n ∈ N we will often refer to the entirety of total functions
in Pψ, which will be called the “recursive core” or “R-core” of Pψ (abbreviated
by Rψ). Hence Rψ = R∩ Pψ.

Identification in the limit3 provides the fundamentals for learning models
examined in Inductive Inference and has first been analysed by Gold in [6].

Definition 1. Let U ⊆ R, ψ ∈ P2. The class U is an element of EXψ and
called identifiable in the limit with respect to ψ iff there is a function S ∈ P
(called strategy) such that for any f ∈ U :

1. ∀n ∈ N [S(f [n])↓] (S(f [n]) is called hypothesis on f [n]),
2. ∃j ∈ N [ψj = f and ∀∞n [S(f [n]) = j]].

If S is given, we also write U ∈ EXψ(S). We set EX :=
⋃
ψ∈P2 EXψ.

On every function f ∈ U the strategy S generates a sequence of indices
converging to a ψ-number of f . [13] supplies the following characterization of
the classes learnable in the limit, which will be useful for us later on.

Theorem 1. Let U ⊆ R. U ∈ EX iff there exist ψ ∈ P2 and d ∈ R2 such that

1. U ⊆ Pψ,
2. ∀i, j ∈ N [i 6= j ⇒ ψi 6=d(i,j) ψj ].

If we omit the demand for convergence to a single hypothesis, we talk of
“behaviourally correct” identification, defined for example in [2].

Definition 2. Let U ⊆ R, ψ ∈ P2. U is called BC-identifiable wrt ψ iff there
exists an S ∈ P, such that for all f ∈ U the following conditions are fulfilled:

1. ∀n ∈ N [S(f [n])↓],
3 We also use the term “explanatory identification”, abbreviated by EX-identification.



2. ∀∞n [ψS(f [n]) = f ].

We also write U ∈ BCψ(S) and define BCψ and BC as usual.

BC-identifiability has also been characterized in [13]. But for our purpose the
following characterization proved in [11] is more useful.

Theorem 2. Let U ⊆ R. U ∈ BC iff there exist ψ ∈ P2 and d ∈ R2 satisfying

1. U ⊆ Pψ,
2. ∀i, j ∈ N [ψi = ψj ⇐⇒ ψi =d(i,j) ψj ].

Though BC-identification provides more learning power than EX-identifica-
tion – a proof can be found in [2] – there are still classes of recursive functions
which are not in BC. In [5] we find a variation of BC-identification, which allows
learnability of the whole class R.

Definition 3. Let U ⊆ R, ψ ∈ P2. U is called BC-identifiable with finitely
many anomalies wrt ψ iff there exists an S ∈ P, such that for all f ∈ U the
following conditions are fulfilled:

1. ∀n ∈ N [S(f [n])↓],
2. ∀∞n [ψS(f [n]) =∗ f ].

We write U ∈ BC ∗ψ(S) and use the notations BC ∗ψ and BC ∗ in the usual way.

From now on let I := {EX,BC,BC∗} denote the set of all previously declared
inference criteria. The following results have been proved (see [2] and [5]):

Theorem 3. EX ⊂ BC ⊂ BC ∗ = ℘R.

3 Uniform Learning – Model and Basic Results

Throughout this paper let ϕ ∈ P3 be a fixed acceptable numbering of P2. If
we choose a number b ∈ N, we may interpret it as an index for the partial-
recursive numbering ϕb ∈ P2, which assigns the value ϕ(b, x, y) to each pair
(x, y) of integers. Thus we can regard b as a description of a class of recursive
functions, namely the recursive core of Pϕb . We will denote this class by Rb,
i.e. Rb := Rϕb = R ∩ Pϕb for b ∈ N. Similarly each set B ⊆ N describes a set
RB := {Rb | b ∈ B} of classes of recursive functions.

If V and W are sets of sets, we will write V �W if and only if for all X ∈ V
there exists a set Y ∈W such that X ⊆ Y .

Definition 4. Let I, I ′ be elements of I satisfying I ⊆ I ′. A set J ⊆ ℘R of
classes of recursive functions is said to be uniformly learnable with respect to I
and I ′ iff there exists a set B ⊆ N such that the following conditions are fulfilled:

1. J � RB,
2. RB ⊆ I,
3. ∃S ∈ P2 ∀b ∈ B ∃ψ ∈ P2 [Rb ∈ I ′ψ(λx.S(b, x))].



We refer to this definition by J ∈ uni(I, I ′).

So J ∈ uni(I, I ′) iff there is a set B of indices of numberings such that

– every class in J is contained in some recursive core Rb corresponding to an
index b ∈ B;

– every recursive core Rb described by some b ∈ B is learnable under the
criterion I;

– there is a uniform strategy S which, given b ∈ B, learns Rb under the
criterion I ′ with respect to some appropriate hypothesis space ψ.

The set B is called description set for J, I, I ′. We also write J ∈ uniB(I, I ′),
J ∈ uni(I, I ′)(S) or J ∈ uniB(I, I ′)(S), whenever the description set B, the
uniform strategy S or both of them are fixed.

In order to prove the uniform learnability of a subset J ⊆ ℘R wrt I, I ′ ∈ I we
first have to specify the set B ⊆ N describing the classes to be learned, secondly
the (possibly distinct) numberings ψ ∈ P2 serving as hypothesis spaces for the
particular classes Rb (b ∈ B) and finally the strategy S ∈ P2 designed to do the
actual “learning job”. Starting from this point of view two main questions arise:

1. Which classes J ⊆ ℘R are uniformly learnable wrt given criteria I, I ′ at all?
2. Which classes J ⊆ ℘R remain learnable in the sense of uni(I, I ′), if we

specify in advance one of the parameters mentioned above?

Of course these questions are much too general to be answered exhaustively
in this paper. Nevertheless some characterizations and interesting special cases
are considered.

On condition that J ∈ uniB(I, I ′) we obviously obtain RB ∈ uniB(I, I ′). As
all classes in I are closed under inclusion, we also verify that RB ∈ uniB(I, I ′)
implies J ∈ uniB(I, I ′) for all J � RB . Therefore the sets J ∈ uni(I, I ′) are
characterized by those description sets B ⊆ N which are suitable for uniform
learning of some set J ′ ⊆ ℘R:

Lemma 1. Assume I, I ′ ∈ I, J ⊆ ℘R. Then J ∈ uni(I, I ′) if and only if there
exists a set B ⊆ N satisfying RB ∈ uniB(I, I ′) and J � RB.

For that reason the appropriate description sets for uniform learning are of
particular interest for our further research. Now consider a set RB of recursive
cores described by a set B ⊆ N. The mere statement that RB ∈ uni(I, I ′) for
some I, I ′ ∈ I does not imply the uniform learnability of RB wrt I, I ′ from B. It
is quite conceivable that RB might be uniformly learnable from a description set
B′ ⊆ N, but not from the description set B. This would as well involve that no
set J ⊆ ℘R was uniformly learnable wrt I, I ′ from description set B at all; thus
we might consider the description set B to be unsuitable for uniform learning
with respect to I and I ′.

Definition 5. Let I, I ′ ∈ I, B ⊆ N. The description set B is said to be suitable
for uniform learning with respect to I and I ′ if RB ∈ uniB(I, I ′). The class of
all description sets suitable in that sense will be denoted by suit(I, I ′).



These considerations raise the question whether there are certain specific
properties characterizing our appropriate description sets B ∈ suit(I, I ′).

Definition 6. Fix I, I ′ ∈ I, h : N → N. A set J ⊆ ℘R is called uniformly
learnable wrt I and I ′ by the interpretation function h, iff there exist B ⊆ N and
S ∈ P2 such that:

1. J ∈ uniB(I, I ′)(S),
2. ∀b ∈ B [Rb ∈ I ′ϕh(b)(λx.S(b, x))].

We abbreviate this formulation by J ∈ uni[h](I, I ′). If additionally there is a
numbering τ ∈ P2 satisfying ϕh(b) = τ for all b ∈ N, we write J ∈ uniτ (I, I ′)
instead.

Note that the interpretation function h in our definition is not necessarily
computable or total. Of course we might wish to fix both our hypothesis spaces
by means of an interpretation function h and our description set B in advance.
In that case we use the notions uniB,[h](I, I ′) as well as uniB,τ (I, I ′) by analogy.
In the usual way we may also refer to fixed uniform strategies in our notations.
Via the function h each description b ∈ B obtains an associated hypothesis
space ϕh(b), by means of which we can interpret the hypotheses produced by the
strategy λx.S(b, x). Regarding practical aspects we are interested especially in
computable interpretation functions, such as for example the identity function
id : N→ N defined by id(x) = (x) for all x ∈ N.

We are now able to formulate some basic results on uniform learning. Al-
though the corresponding proofs are quite simple, these results will be useful
for our further examinations. First we state a necessary condition for uniform
learnability of a subset of ℘R. For the proof of Proposition 1 note that all classes
I ∈ I are closed with respect to the inclusion of sets.

Proposition 1. Let I, I ′ ∈ I, I ⊆ I ′, J ⊆ ℘R. If J ∈ uni(I, I ′), then J ⊆ I.

Proof. Let J ∈ uni(I, I ′). Then there is a set B ⊆ N which fulfills J ∈ uniB(I, I ′).
This implies RB ⊆ I and J � RB . Thus for all U ∈ J there exists b ∈ B such
that U ⊆ Rb ∈ I. So J ⊆ I, because I is closed under inclusion. �

From Proposition 1 and the definition of uniform learning we conclude:

Corollary 1. Let I, I ′ ∈ I, I ⊆ I ′. Then uni(I, I ) ⊆ uni(I, I ′) ⊆ ℘I.

Any strategy identifying a class U ⊆ R with respect to some criterion I ∈ I
can be replaced by a total recursive strategy without loss of learning power.
This new strategy is defined by computing the values of the old strategy for
a bounded number of steps and a bounded number of input examples with
increasing bounds. As long as there is no hypothesis found, some temporary
hypothesis is produced. Afterwards the hypotheses of the former strategy are
put out “with delay”. Now we transfer these observations to the level of uniform
learning and get:



Proposition 2. Let I, I ′ ∈ I, B ⊆ N and let h : N → N be any function.
Assume RB ∈ uniB,[h](I, I ′). Then there exists a total recursive function S sat-
isfying RB ∈ uniB,[h](I, I ′)(S).

We will use this result implicitly in the forthcoming proofs.

Proposition 3. Let I ∈ I, h : N→ N. If B ⊆ N is a finite set with Rb ∈ Iϕh(b)

for all b ∈ B, then RB ∈ uniB,[h](I, I).

The proof is obvious: a finite number of strategies – each learning one of the
given R-cores wrt I – can be merged to a single computable uniform strategy.

4 Uniform Learning without Specification of the Model
Parameters

First we deal with uniform learning according to Definition 4 without specifying
the description set B or the hypothesis spaces ψ in advance. We choose two
inference criteria I, I ′ ∈ I satisfying I ⊆ I ′ and try to characterize the subsets
J ⊆ ℘R contained in uni(I, I ′). From Corollary 1 we already know that these
sets must be subsets of I. Now we will even prove the sufficiency of that simple
condition.

Theorem 4. If I, I ′ ∈ I, I ⊆ I ′, then uni(I, I) = uni(I, I ′) = ℘I.

Proof. Assume I, I ′ ∈ I, I ⊆ I ′. Applying Corollary 1 we only have to show
℘I ⊆ uni(I, I). Assume J ∈ ℘I. For each U ∈ J there is a numbering ψ ∈ P2

such that U ⊆ Pψ and Rψ ∈ I (a proof can be derived from R ∈ BC∗ and the
characterizations in Theorems 1 and 2 quite easily). Let C ⊆ N be the set of
ϕ-indices of all these numberings. Fix an acceptable numbering τ ∈ P2.

For each c ∈ C there is a τ -index kc of a strategy Sc ∈ P, which identifies
Rc in the limit with respect to τ according to the criterion I.

These τ -indices can now be coded within our hypothesis spaces ϕc by simply
integrating the function kc↑∞ into the numberings. Thus we achieve that our new
numberings obtain two very useful properties. Firstly, their recursive cores are
learnable with respect to the criterion I, because we do not change the recursive
cores by integrating functions of the shape kc↑∞. Secondly, they contain τ -indices
for strategies identifying their recursive cores according to I.

Our suitable description set is the set of all indices of numberings achieved
by modification of the numberings described by C. A uniform I-learner for the
target class J just has to read the indices of the particular strategies and then
simulate their jobs with the help of the functions associated by τ . We obtain
J ∈ uni(I, I) as claimed. �

Note that we even obtain uniτ (I, I ′)=uni(I, I ′)= ℘I for any acceptable num-
bering τ . Now we can easily compare the power of uniform learning criteria
resulting in the choice of particular criteria I, I ′ ∈ I:



Corollary 2. Let I, I ′ ∈ I, I ⊂ I ′. Then uni(I, I ) = uni(I, I ′) ⊂ uni(I ′, I ′).

Proof. By Theorem 4 we know uni(I, I ) = uni(I, I ′). As uni(I, I ′) ⊆ uni(I ′, I ′),
it remains to prove that uni(I ′, I ′) is not a subset of uni(I, I ′). For this purpose
we simply choose any class U ∈ I ′\I and obtain a class J ∈ uni(I ′, I ′)\uni(I, I ′)
by defining J := {U}. �

Intuitively, our uniform strategy defined in the proof of Theorem 4 does not
really learn anything, because the programs for learning the described classes
are coded within the described numberings in advance. In the following sections
we will see some more examples for such easy “tricks” simplifying the work
of uniform strategies. But as we will see later, there are also non-trivial sets of
classes of recursive functions uniformly learnable by really “labouring” strategies.

5 Uniform Learning from Special Description Sets

Now we investigate the suitability of given description sets B, i.e. the uniform
learnability of RB from B wrt some criteria I, I ′ ∈ I. We start with a simple
but useful observation.

Proposition 4. Let I, I ′ ∈ I and B ⊆ N such that Rb ∈ I for all b ∈ B. If⋃
b∈BRb ∈ I ′, then B ∈ suit(I, I ′).

The proof of Proposition 4 is straightforward from the definitions. As a direct
consequence we obtain a simple characterization of the description sets suitable
for uniform learning with BC∗-strategies:

Theorem 5. suit(I,BC ∗) = {B ⊆ N | RB ⊆ I } for I ∈ I. In particular
suit(BC ∗,BC ∗)=℘N.

Since BC is not closed under union of sets, the proof of a corresponding
characterization for suit(I,BC) cannot be based on Proposition 4. Instead –
as in the proof of Theorem 4 – we make use of special “tricks”, such that the
resulting strategy does not really have to do any work.

Theorem 6. Set B := {b ∈ N | Rb ∈ BC}. Then B ∈ suit(BC,BC ) and thus
suit(I,BC ) = {B ⊆ N | RB ⊆ I} for all I ∈ {EX,BC}.

Proof. Fix an acceptable numbering τ ∈ P2. Each class learnable in the sense
of BC can be identified wrt τ by a total strategy, i.e. for all b ∈ B there is an
Sb ∈ R such that Rb ∈ BCτ (Sb).

Given any element b ∈ B we can now list all hypotheses produced by Sb on
all initial segments of recursive functions in a computable way. If we interpret
these hypotheses as τ -indices, we obtain a numbering of all candidate functions
suggested by Sb.

More formally: for each b ∈ B we define ψ[b] ∈ P2 by ψ[b]
i (x) := τSb(i)(x) for

any i, x ∈ N. If f ∈ R, n ∈ N, then the index f [n] via ψ[b] represents exactly



the function “suggested” by Sb on input f [n]. This property can be used by a
uniform BC-strategy: for b, n ∈ N and f ∈ R we set S(b, f [n]) := f [n] and obtain

ψ
[b]
S(b,f [n]) = ψ

[b]
f [n] = τSb(f [n]) for any b ∈ B, f ∈ Rb, n ∈ N .

Let b ∈ B. Since Rb ∈ BCτ (Sb), we conclude Rb ∈ BCψ[b](λx.S(b, x)). This
implies B ∈ suit(BC,BC). The second claim follows immediately. �

As we have seen, the trick of encoding much information within the descrip-
tion sets or within the hypothesis spaces often supplies quite simple uniform
strategies with a huge learning power. But nevertheless, our following results
will make sure that uniform learning procedures cannot always be simplified to
such a trivial level. On the one hand we can easily find a trick to design a uniform
EX-strategy identifying any recursive core consisting of just a single element from
its description, but on the other hand there is no uniform EX-strategy identify-
ing all recursive cores consisting of two elements from their descriptions. In view
of classical learning problems any classes consisting of just two elements are not
more complex than classes consisting of one element, whereas their complexity
is very different regarding uniform learning problems.

Proposition 5. {b ∈ N | card Rb = 1} ∈ suit(EX,EX).

Proof. Let B := {b ∈ N | card Rb = 1}. Then of course Rb ∈ EX for all b ∈ B,
i.e. RB ⊆ EX. Since for all f ∈ R there exists a numbering ψ ∈ P2 with ψ0 = f ,
the function constantly zero learns RB uniformly from B wrt EX and EX. �

Now, in contrast to Proposition 5 we can prove that no kind of trick can help a
strategy to uniformly identify all recursive cores consisting of up to two elements
from their descriptions. In particular we observe that there are collections of
quite simple identification problems, which even cannot be solved uniformly by
encoding information within the hypothesis spaces.

Theorem 7. {b ∈ N | card {i ∈ N|ϕbi ∈ R} ≤ 2} /∈ suit(EX,EX ).

We omit the proof which can be found in [14]. The idea is to proceed indirectly.
Let B := {b ∈ N | card {i ∈ N|ϕbi ∈ R} ≤ 2}. Assuming B ∈ suit(EX,EX)
implies the existence of an S ∈ R2 satisfying Rb ∈ EX(λx.S(b, x)) for all b ∈ B.
But it is possible to construct b0 ∈ B describing an R-core which cannot be
identified in the limit by λx.S(b0, x). This strategy fails for at least one function
f ∈ Rb0 by either converging to an incorrect hypothesis or by diverging.

The following corollaries are direct consequences of Theorem 7.

Corollary 3. {b ∈ N | Rb is finite} /∈ suit(EX,EX ).

Corollary 4. suit(EX,EX) ⊂ suit(EX,BC ).



Proof. Obviously suit(EX,EX) ⊆ suit(EX,BC). From Theorem 6 and Corollary
3 we conclude {b ∈ N | Rb is finite} ∈ suit(EX,BC)\suit(EX,EX). �

Theorem 8 is a summary of our main results in this section.

Theorem 8. Fix a criterion I ∈ I. The following conditions are equivalent:

1. suit(I, I ) = {B ⊆ N | RB ⊆ I },
2. suit(EX, I ) = {B ⊆ N | RB ⊆ EX},
3. I ∈ {BC,BC ∗}.

In order to characterize the sets in suit(EX,EX) we use Theorem 1 with
arguments like those presented in [13], which can be transferred to the case of
uniform learning quite easily (the proof is left out, but can be found in [14]). Note
the similarity of our properties to the conditions for identification of languages
in the limit from text, introduced in [1].

Theorem 9. A set B ⊆ N belongs to suit(EX,EX ) iff ∃d ∈ R2 ∀b ∈ B ∃ψ ∈ P2

1. Rb ⊆ Pψ,
2. ∀i ∈ N [d(b, i) v ψi],
3. ∀i, j ∈ N [d(b, i) v d(b, j) v ψi ⇒ i = j].

6 Uniform Learning with Special Hypothesis Spaces

The trick of encoding information within the hypothesis spaces supplies a strat-
egy uniformly identifying all BC-identifiable recursive cores from their corre-
sponding descriptions. This is a consequence of the freedom of choosing the hy-
pothesis spaces in the definition of uniform learnability. The question arises, to
what extent the learning power of uniform strategies is influenced by fixing spe-
cial hypothesis spaces – for example acceptable numberings – in advance. From
Jantke’s work [7] we already know that the set of descriptions of R-cores consist-
ing of just a single function is not suitable for uniform EX-identification, if we
demand the hypotheses to be correct with respect to an acceptable numbering.
Here we tighten Jantke’s result by proving that for the same set of descriptions
even BC-identification is not strong enough.

Theorem 10. Assume B := {b ∈ N | card {i ∈ N|ϕbi ∈ R} = 1} and let τ ∈ P2

be an acceptable numbering. Then RB /∈ uniB,τ (BC,BC ).

An indirect proof is contained in [14]. The assumption RB ∈ uniB,τ (BC,BC)
implies the existence of S ∈ R2 satisfying Rb ∈ BCτ (λx.S(b, x)) for all b ∈ B.
A contradiction is obtained by construction of an index b0 ∈ B, such that
λx.S(b0, x) produces infinitely many hypotheses incorrect wrt τ for the only
function in Rb0 .

Let B be the description set defined in Theorem 10. Since R ∈ BC∗τ for any
acceptable numbering τ , we obtain RB ∈ uniB,τ (EX,BC∗)\uniB,τ (EX,BC), but
we can prove that our set B is not suitable for uniform BC∗-identification with
respect to the hypothesis spaces ϕb, b ∈ B given a priori:



Corollary 5. Let B := {b ∈ N | card {i ∈ N|ϕbi ∈ R} = 1}. Then RB /∈
uniB,[id](EX,BC ∗).

Proof. Assume RB ∈ uniB,[id](EX,BC∗). Then there exists S ∈ R2 which pro-
vides Rb ∈ BC∗ϕb(λx.S(b, x)) for all b ∈ B. Let τ ∈ P2 be acceptable. We will
define a strategy T ∈ P2 satisfying Rb ∈ EXτ (λx.T (b, x)) for all b ∈ B. For that
purpose we choose g ∈ R, such that

ϕ
g(b)
i (j) :=

{
ϕbi (j) ∀x ≤ j [ϕbi (x)↓]
↑ otherwise

for all b, i, j ∈ N .

Fix c ∈ R2 such that τc(b,i) = ϕ
g(b)
i for all b, i ∈ N. Provided b ∈ B we observe

g(b) ∈ B and
∃nb ∈ N ∀i ∈ N\{nb} [ϕg(b)i initial] .

Let fb denote the function in Rg(b), b ∈ B. Since Rg(b) ∈ BC∗ϕg(b)(λx.S(g(b), x)),
we conclude S(g(b), fb[n]) = nb for all but finitely many n ∈ N. This can be ex-
plained by the fact that ϕg(b)i is initial and thus ϕg(b)i 6=∗ fb for all i 6= nb. There-
fore Rg(b) ∈ EXϕg(b)(λx.S(g(b), x)). If we define T (b, fn) := c(b, S(g(b), fn)) for
all b, n ∈ N, f ∈ R, we obtain RB ∈ uniB,τ (EX,EX) in contradiction to Theo-
rem 10. Thus the assumption RB ∈ uniB,[id](EX,BC∗) has been wrong. �

One might reason that uniform learning from the description set B and with
respect to the hypothesis spaces ϕb given above is so hard, because in each
numbering ϕb the element of the recursive core possesses only one index. But
even if we allow infinitely many ϕb-numbers for the functions to be learned, our
situation does not improve:

Corollary 6. If C := {b | card Rb = 1 ∧ card {i|ϕbi ∈ R} = ∞}, then RC /∈
uniC,[id](EX,BC ∗).

Proof. We use Corollary 5. For this purpose assume RC ∈ uniC,[id](EX,BC∗)(S)
for some appropriate strategy S ∈ R2. We will construct a uniform BC∗-strategy
for our class RB , where B denotes the description set defined in Corollary 5.
There is a function g ∈ R satisfying

ϕ
g(b)
0 = ϕb0,

ϕ
g(b)
1 = ϕb0, ϕ

g(b)
2 = ϕb1,

ϕ
g(b)
3 = ϕb0, ϕ

g(b)
4 = ϕb1, ϕ

g(b)
5 = ϕb2, . . .

for all b ∈ N. The following properties can be verified easily:

1. ∀b ∈ N [Rg(b) = Rb].
2. ∀b ∈ N ∀f ∈ Pϕg(b) [card {i ∈ N | ϕg(b)i = f} = ∞], i.e. each function in
Pϕg(b) possesses infinitely many ϕg(b)-indices.



3. ∃e ∈ R ∀b ∈ N ∀i ∈ N [ϕg(b)i = ϕbe(i)], i.e. ϕg(b)-indices can be translated
effectively into ϕb-indices with a uniform method.

Considering our problem we observe that g(b) ∈ C whenever b ∈ B. Therefore
T (b, x) := e(S(g(b), x)) (for b, x ∈ N) yields a computable strategy satisfying
RB ∈ uniB,[id](EX,BC∗)(T ). That contradiction to Corollary 5 now forces us to
reject our assumption. This implies RC /∈ uniC,[id](EX,BC∗). �

To characterize uniform learning with respect to acceptable numberings, we
use Theorems 1 and 2. We omit the proofs which can be easily transferred from
the non-uniform case.

Theorem 11. Let B ⊆ N fulfill Rb ∈ EX for all b ∈ B. Furthermore, let τ ∈ P2

be acceptable. Then RB ∈ uniB,τ (EX,EX ) ⇐⇒ ∃ψ ∈ P3 ∃d ∈ R3 ∀b ∈ B

1. Rb ⊆ Pψb ,
2. ∀i, j ∈ N [i 6= j ⇒ ψbi 6=d(b,i,j) ψ

b
j ].

Theorem 12. Fix I ∈ {EX,BC}. Let B ⊆ N fulfill Rb ∈ I for all b ∈ B.
Furthermore, let τ ∈ P2 be an acceptable numbering. Then RB ∈ uniB,τ (I,BC )
⇐⇒ ∃ψ ∈ P3 ∃d ∈ R2 ∀b ∈ B

1. Rb ⊆ Pψb ,
2. ∀i, j ∈ N [ψbi =max{d(b,i),d(b,j)} ψ

b
j ⇐⇒ ψbi = ψbj ].

Since R ∈ BC∗τ for any acceptable numbering τ , we can use the same rea-
soning as in Proposition 4 to prove our characterization in Theorem 13.

Theorem 13. Fix I ∈ I and B ⊆ N. Furthermore, let τ ∈ P2 be an acceptable
numbering. Then RB ∈ uniB,τ (I,BC ∗) ⇐⇒ [Rb ∈ I for all b ∈ B].

A very natural learning behaviour is to construct only consistent intermediate
hypotheses, i.e. hypotheses agreeing with the information received so far (cf. [3]).

Definition 7. Assume U ∈ R, ψ ∈ P2. U is called identifiable consistently wrt
ψ iff there is an S ∈ P satisfying U ∈ EXψ(S), such that ψS(f [n]) =n f for
all f ∈ U, n ∈ N. We use the notions CONS, CONSψ, CONSψ(S) for that
criterion in the common way.

Furthermore it is reasonable to demand just total functions to be described
by the intermediate hypotheses (see [8]).

Definition 8. Assume U ∈ R, ψ ∈ P2. U is called identifiable with consistent
and total hypotheses wrt ψ iff there is an S ∈ P satisfying U ∈ CONSψ(S), such
that ψS(f [n]) ∈ R for all f ∈ U, n ∈ N. The notions CT, CTψ, CTψ(S) are
used for that criterion in the usual manner.

Definitions 4, 5 and 6 can be reformulated for the inference criteria CONS
and CT. A quite simple result, based on Identification by Enumeration as has
been introduced in [6], is presented in [10]:



Theorem 14. If B ⊆ N, ϕb ∈ R2 for all b ∈ B, then RB ∈ uniB,[id](CT,CT).

For uniform learning with respect to “meaningful” hypothesis spaces, i.e. in
such a way, that all hypotheses produced by the strategy can be “interpreted” by
the user, most of our results have been negative. Even very “simple” classes yield
bad results. To show that there still remains a sense in the definition of uniform
learning, we present some intuitively more complex description sets suitable
for uniform learning in the limit – even with consistent and total intermediate
hypotheses – with respect to any acceptable numbering.

Definition 9. A set D ⊆ P is called discrete iff for any f ∈ D there is an
n ∈ N, such that f 6=n g for all functions g ∈ D\{f}. This n ∈ N is then called
discreteness point for f wrt D.

Theorem 15. Let τ ∈ P2 be an acceptable numbering, B ⊆ N. Assume that
Pϕb is discrete for all b ∈ B. Then RB ∈ uniB,τ (CT,CT).

Proof. Provided that B fulfills the conditions requested above we first construct
appropriate hypothesis spaces uniformly in b ∈ B. Of course their indices may
then be transformed to equivalent programs in τ effectively. For that purpose we
will fix b ∈ B and collect all initial segments of functions in Pϕb in order to use
them as initial segments for the functions in our new hypothesis space. We will
try to extend these initial segments to computable functions, such that finally
all functions of the recursive core Rb have indices in our constructed numbering.
The uniform strategy defined afterwards works iteratively. It always starts with
a consistent hypothesis and in each following inference step it tests whether
its previous hypothesis is still consistent with the new information received or
not. In the first case the previous hypothesis is maintained, otherwise a new
consistent hypothesis is constructed.

For the definition of our new hypothesis spaces ψb, b ∈ B we need a func-
tion extend ∈ P, which indicates suitable extensions of initial segments. For
b, n, x, k ∈ N and f ∈ R define

extend(b, f [n], x, k) :=

{
1 ϕbk(0)↓, . . . , ϕbk(x)↓ and ϕbk[n] = f [n]
↑ otherwise

Thus extend(b, f [n], x, k) is defined if and only if ϕbk[x] is an “extension” of f [n].

Definition of ψ ∈ P3 with Rb ∈ CTψb for all b ∈ B:
Let b, n, x ∈ N, f ∈ R. We define

ψ(b, f [n], x) :=


f(x) x ≤ n
ϕbk(x) x > n and k ∈ N may be found,

such that extend(b, f [n], x, k) = 1
↑ otherwise

Obviously ψ is computable. For any b ∈ B we observe the following properties:



Claim 1. If f ∈ Rb and n ∈ N is any integer, then ψbf [n] ∈ R.
Claim 2. If f ∈ Rb and nf is a discreteness point of f wrt Pϕb , then ψbf [nf ] = f .
Claim 3. Rb ⊆ Pψb .

Proof of Claim 1. Since f ∈ Pϕb , we know that for all x ∈ N there is an “ex-
tension” of f [n], i.e. ∀x ∈ N ∃k ∈ N [extend(b, f [n], x, k) = 1]. As there is an
extension, it may also be found within a finite amount of time. The definition of
ψ then implies that for all n ∈ N the function ψbf [n] is total and thus recursive.

Proof of Claim 2. For all arguments less than or equal to nf the values of ψbf [nf ]

and f must agree, because those arguments match the first case in the definition
of ψb. For all arguments greater than nf the existence of an “extension” of f [nf ]
is checked. As f ∈ R, we observe that this check will always stop with a positive
answer. Since nf is a discreteness point for f wrt Pϕb , the only function in Pϕb

extending f [nf ] is f . Hence ψbf [nf ] = f .

Proof of Claim 3. Let f ∈ Rb and let nf be a discreteness point of f wrt Pϕb .
As Pϕb is discrete, nf exists. Claim 2 then implies ψbf [nf ] = f , hence f ∈ Pψb .

Now let c ∈ R2 be a recursive function satisfying τc(b,y) = ψby for all b, y ∈ N.

Definition of a strategy S ∈ P2 with Rb ∈ CTτ (λx.S(b, x)) for all b ∈ B:
Let f ∈ R, b, n ∈ N. We define S(b, f [0]) := c(b, f [0]) and

S(b, f [n+ 1]) :=


↑ ∃x ≤ n+ 1 [τS(b,f [n])(x)↑]
S(b, f [n]) τS(b,f [n]) =n+1 f

c(b, f [n+ 1]) otherwise

Now we prove that for all b ∈ B and all initial segments of functions in Rb
our strategy returns consistent indices of total functions. Furthermore we will
show that for any function in Rb the sequence of hypotheses converges. From
consistency we thus obtain convergence to a correct index. We have to verify:

(i) ∀b ∈ B ∀f ∈ Rb ∀n ∈ N [S(b, f [n])↓] .
(ii) ∀b ∈ B ∀f ∈ Rb ∀n ∈ N [τ(b,S(b,f [n])) =n f ] .
(iii) ∀b ∈ B ∀f ∈ Rb ∀n ∈ N [τ(b,S(b,f [n])) ∈ R] .
(iv) ∀b ∈ B ∀f ∈ Rb ∃n0 ∈ N ∀n ≥ n0 [S(b, f [n]) = S(b, f [n0])] .

Proof of (i),(ii) and (iii). Let b ∈ B, f ∈ Rb. We use induction on n.
First assume n = 0. Obviously S(b, f [0]) = c(b, f [0]) is defined. Furthermore,

from the definitions of S, extend, ψ and c we observe that

τS(b,f [0]) = τc(b,f [0]) = ψbf [0] =0 f .

This proves the consistency of the hypothesis S(b, f [0]). Since f ∈ Rb, we observe
from Claim 1 with n = 0, that τS(b,f [0]) = τc(b,f [0]) = ψbf [0] ∈ R.



Assume for a fixed n ∈ N, that S(b, f [n]) is defined, consistent for f [n] and
a τ -index of a total function. From this situation we want to deduce that also
S(b, f [n+ 1]) is defined, consistent for f [n+ 1] and a τ -index of a total function.
Since τS(b,f [n]) is total, we can test effectively whether τS(b,f [n]) =n+1 f or not.
If the first case occurs, the hypothesis is maintained. Then the new hypothesis is
still defined, consistent and an index of a total function. Otherwise, if the second
case occurs, our previous hypothesis must have been wrong. We obtain

τS(b,f [n+1]) = τc(b,f [n+1]) = ψbf [n+1] =n+1 f .

So S(b, f [n + 1]) is consistent for f [n + 1]. Claim 1 now yields τS(b,f [n+1]) ∈ R.
Anyway the hypothesis produced by S fulfills the conditions (i), (ii) and (iii).

Proof of (iv). Again assume b ∈ B, f ∈ Rb. If there exists an n0 ∈ N, such that
for all n ≥ n0 the first case in the definition of S(b, f [n]) occurs, the hypothesis
S(b, f [n0]) will never be changed and the sequence of hypotheses converges.
Provided such an n0 does not exist, we may deduce a contradiction as follows:

As Pϕb is discrete, there is an nf ∈ N satisfying [ϕbi =nf
f ⇐⇒ ϕbi = f ]

for all i ∈ N. From (ii) we already know τS(b,f [nf ]) =nf
f . Since according to

our assumption there exists a number n > nf , such that the second case in the
definition of S(b, f [n]) occurs, the hypothesis put out by S on input (b, f [n])
equals c(b, f [n]). Since n > nf , the number n is a discreteness point of f wrt
Pϕb . Claim 2 now implies f = ψbf [n] = τc(b,f [n]) = τS(b,f [n]). Thus S has found
a correct hypothesis. But correct hypotheses must be consistent for all further
inputs; therefore the first case in the definition of S will occur for all following
input segments. Hence we reach the desired contradiction. This implies (iv).

From conditions (i),(ii) and (iv) we conclude, that the output of our uniform
strategy converges to a correct hypothesis for all “interesting” input sequences.
Together with condition (iii) we finally obtain Rb ∈ CTψb(λx.S(b, x)) for all
b ∈ B. This completes the proof. �

By comparison of Theorem 15 with our previous results we conclude that
the way the recursive cores are described has much more influence upon their
uniform learnability than the R-cores themselves. We know from the proof of
Theorem 4 that from appropriate descriptions even for the entirety of all classes
in EX uniform learning with respect to acceptable numberings is possible. Be-
cause of Theorem 15 the set Bdiscrete := {b ∈ N | Pϕb is discrete} is suitable
for uniform CT-identification with respect to any acceptable numbering. On the
other hand, there are sets describing finite – and thus very “simple” – recursive
cores which are not suitable for uniform learning with respect to EX at all, even if
we allow free choice of the hypothesis spaces. The reason for the failure of all uni-
form strategies might be the inappropriate topological features of the described
numberings. Now if a set B even describes functions ϕb enumerating discrete
sets without repetitions, we observe that B is suitable for uniform learning with
respect to the hypothesis spaces ϕb given a priori. Unfortunately, to prove that



result we will abandon our demand for total intermediate hypotheses. Theorems
15 and 16 give rise to a more optimistic view regarding the learning power of
uniform identification models. Indeed, our concept is not as poor or trivial as
our previous results might have suggested.

Definition 10. A numbering ψ ∈ P2 is called absolutely discrete iff Pψ is dis-
crete and each function in Pψ has exactly one ψ-number.

Theorem 16. Fix B ⊆ N. Assume that ϕb is an absolutely discrete numbering
for all b ∈ B. Then RB ∈ uniB,[id](CT,CONS ).

Proof. From Theorem 15 we know that Rb ∈ CT for all b ∈ B. For any
f ∈ R, n, b ∈ N a uniform strategy S ∈ P2 may look for a number i ∈ N with
ϕbi =n f and then return i. As this strategy S works consistently and B describes
absolutely discrete numberings only, we obtainRB ∈ uniB,[id](CT,CONS)(S). �
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