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Abstract. Inductive inference is concerned with algorithmic learning
of recursive functions. In the model of learning in the limit a learner
successful for a class of recursive functions must eventually find a pro-
gram for any function in the class from a gradually growing sequence of
its values. This approach is generalized in uniform learning, where the
problem of synthesizing a successful learner for a class of functions from
a description of this class is considered.
A common reduction-based approach for comparing the complexity of
learning problems in inductive inference is intrinsic complexity. In this
context, reducibility between two classes is expressed via recursive op-
erators transforming target functions in one direction and sequences of
corresponding hypotheses in the other direction.
The present paper is the first one concerned with intrinsic complexity
of uniform learning. The relevant notions are adapted and illustrated
by several examples. Characterizations of complete classes finally allow
for various insightful conclusions. The connection to intrinsic complexity
of non-uniform learning is revealed within several analogies concerning
firstly the role and structure of complete classes and secondly the general
interpretation of the notion of intrinsic complexity.

1 Introduction

Inductive inference is concerned with algorithmic learning of recursive functions.
In the model of learning in the limit, cf. [7], a learner successful for a class of
recursive functions must eventually find a correct program for any function in
the class from a gradually growing sequence of its values. The learner is under-
stood as a machine – called inductive inference machine or IIM – reading finite
sequences of input-output pairs of a target function, and returning programs as
its hypotheses, see also [2]. The underlying programming system is then called
a hypothesis space.

Studying the potential of such IIMs in general leads to the question whether
– given a description of a class of functions – a corresponding successful IIM can
be synthesized computationally from this description. This idea is generalized in
the notion of uniform learning: we consider a collection C0, C1, . . . of learning
problems – which may be seen as a decomposition of a class C = C0 ∪ C1 ∪ . . .
– and ask for some kind of meta-IIM tackling the whole collection of learning
problems. As an input, such a meta-IIM gets a description of one of the learning



problems Ci (in our context a class Ci of recursive functions) in the collection.
The meta-IIM is then supposed to develop a successful IIM for Ci. Besides
studies on uniform learning of classes of recursive functions, cf. [12, 16], this
topic has also been investigated in the context of learning formal languages, see
in particular [1, 13, 14].

Since we consider IIMs as tackling a given problem, namely the problem of
identifying all elements in a particular class of recursive functions, the complex-
ity of such IIMs might express, how hard a learning problem is. For instance, the
class of all constant functions allows for a simple and straightforward identifica-
tion method; for other classes successful methods might seem more complicated.
But this does not involve any rule allowing us to compare two learning problems
with respect to their difficulty. So a formal approach for comparing the complex-
ity of learning problems (i. e. of classes of recursive functions) is desirable.

Different aspects have been analysed in this context. One approach is, e. g.,
mind change complexity measured by the maximal number of hypothesis changes
a machine needs to identify a function in the given class, see [3]. But since in
general this number of mind changes is unbounded, other notions of complexity
might be of interest.

Various subjects in theoretical computer science deal with comparing the
complexity of decision problems, e. g. regarding decidability as such, see [15], or
the possible efficiency of decision algorithms, see [5]. In general Problem A is at
most as hard as Problem B, if A is reducible to B under a given reduction. Each
such reduction involves a notion of complete (hardest solvable) problems. Besides
studies concerning language learning, see [9–11], in [4] an approach for reductions
in the context of learning recursive functions is introduced. This subject, intrinsic
complexity, has been further analysed in [8] with a focus on complete classes. It
has turned out that, for learning in the limit, a class is complete, iff it contains
a dense r. e. subclass. Here the aspect of high topological complexity (density),
contrasts with the aspect of low algorithmic complexity of r. e. sets, which is
somehow striking and has caused discussions on whether this particular approach
of intrinsic complexity is adequate.

The present paper deals with intrinsic complexity in the context of uniform
learning. Assume some new reduction expresses such an idea of intrinsic com-
plexity. If a class C of functions is complete in the initial sense, natural ques-
tions are (i) whether C can be decomposed into a uniformly learnable collection
C0, C1, . . ., which is not a hardest problem in uniform learning, and (ii) whether
there are also inappropriate decompositions of C, i. e. collections of highest com-
plexity in uniform learning.

Below a notion of intrinsic complexity for uniform learning is developed and
the corresponding complete classes are characterized. The obtained structure of
degrees of complexity matches recent results on uniform learning: it has been
shown that even decompositions into singleton classes can yield problems too
hard for uniform learning in Gold’s model. This suggests that collections rep-
resenting singleton classes may sometimes form hardest problems in uniform
learning. Indeed, the notion developed below expresses this intuition, i. e. collec-



tions of singleton sets may constitute complete classes in uniform learning. Still,
the characterization of completeness here reveals a weakness of the general idea
of intrinsic complexity, namely – as in the non-uniform case – complete classes
have a low algorithmic complexity (see Theorem 7). All in all, this shows that
intrinsic complexity, as in [4], is on the one hand a useful approach, because it
can be adapted to match the intuitively desired results in uniform learning. On
the other hand, the doubts in [8] are corroborated.

2 Preliminaries

2.1 Notations

Knowledge of basic notions used in mathematics and computability theory is
assumed, cf. [15]. N is the set of natural numbers. The cardinality of a set
X is denoted by cardX. Partial-recursive functions always operate on natural
numbers. If f is a function, f(n) ↑ indicates that f(n) is undefined. Our target
objects for learning will always be recursive functions, i. e. total partial-recursive
functions. R denotes the set of all recursive functions.

If α is a finite tuple of numbers, then |α| denotes its length. Finite tuples
are coded, i. e. if f(0), . . . , f(n) are defined, a number f [n] represents the tuple
(f(0), . . . , f(n)), called an initial segment of f . f [n]↑ means that f(x)↑ for some
x ≤ n. For convenience, a function may be written as a sequence of values or
as a set of input-output pairs. A sequence σ = x0, x1, x2, . . . converges to x,
iff xn = x for all but finitely many n; we write lim(σ) = x. For example let
f(n) = 7 for n ≤ 2, f(n) ↑ otherwise; g(n) = 7 for all n. Then f = 73 ↑∞=
{(0, 7), (1, 7), (2, 7)}, g = 7∞ = {(n, 7) | n ∈ N}; lim(g) = 7, and f ⊆ g. For
n ∈ N, the notion f =n g means that for all x ≤ n either f(n) ↑ and g(n) ↑ or
f(n) = g(n). A set C of functions is dense, iff for any f ∈ C, n ∈ N there is
some g ∈ C satisfying f =n g, but f 6= g.

Recursive functions – our target objects for learning – require appropriate
representation schemes, to be used as hypothesis spaces. Partial-recursive enu-
merations serve for that purpose: any (n+ 1)-place partial-recursive function ψ
enumerates the set Pψ := {ψi | i ∈ N} of n-place partial-recursive functions,
where ψi(x) := ψ(i, x) for all x = (x1, . . . , xn). Then ψ is called a numbering.
Given f ∈ Pψ, any index i satisfying ψi = f is a ψ-program of f .

Following [6], we call a family (di)i∈N of natural numbers limiting r. e., iff
there is a recursive numbering d such that lim(di) = di for all i ∈ N.

2.2 Learning in the limit and intrinsic complexity

Below, let τ be a fixed acceptable numbering, serving as a hypothesis space. The
learner is a total computable device called IIM (inductive inference machine)
working in steps. The input of an IIM M in step n is an initial segment f [n]
of some f ; the output M(f [n]) is interpreted as a τ -program. In learning in the
limit, M is successful for f , if the sequence M(f) := (M(f [n]))n∈N of hypotheses
is admissible for f :



Definition 1 [4] Let f, σ ∈ R. σ is admissible for f , iff σ converges and lim(σ)
is a τ -program for f .

Now a class of recursive functions is learnable in the limit (Ex -learnable; Ex
is short for explanatory), if a single IIM is successful for all functions in the class.

Definition 2 [7, 2] A class C ⊆ R is Ex-learnable (C ∈ Ex), iff there is an IIM
M such that, for any f ∈ C, the sequence M(f) is admissible for f . M is then
called an Ex-learner or an IIM for C.

The class of constant functions and the class Cfsup = {α0∞ | α is an initial
segment} of recursive functions of finite support are in Ex , but intuitively, the
latter is harder to learn. A reduction-based approach for comparing the learning
complexity is proposed in [4], using the notion of recursive operators.

Definition 3 [15, 8] Let Θ be a total function operating on functions. Θ is a
recursive operator, iff for all functions f, g and all numbers n, y ∈ N:
1. if f ⊆ g, then Θ(f) ⊆ Θ(g);
2. if Θ(f)(n) = y, then Θ(f ′)(n) = y for some initial segment f ′ ⊆ f ;
3. if f is finite, then one can effectively (in f) enumerate Θ(f).

Reducing a class C1 of functions to a class C2 of functions requires two oper-
ators: the first one maps C1 into C2; the second maps any admissible sequence
for a mapped function in C2 to an admissible sequence for the associated original
function in C1.

Definition 4 [4] Let C1, C2 ∈ Ex. C1 is Ex-reducible to C2, iff there are recur-
sive operators Θ, Ξ such that all functions f ∈ C1 fulfil the following conditions:
1. Θ(f) belongs to C2,
2. if σ is admissible for Θ(f), then Ξ(σ) is admissible for f .

Note, if C1 is Ex -reducible to C2, then an IIM for C1 can be deduced from any
IIM for C2; e. g. by [4], each class in Ex is Ex -reducible to Cfsup . As usual, this
reduction yields complete classes, i. e. learnable classes of highest complexity.

Definition 5 [4] A class C ∈ Ex is Ex-complete, iff each class C ′ ∈ Ex is
Ex-reducible to C.

By the remark above, the class Cfsup is Ex -complete. Note that Cfsup is
r. e. and dense – a relevant property for characterizing Ex -complete classes:

Theorem 1 [8] A class C ∈ Ex is Ex-complete iff it has an r. e. dense subset.

Ex -complete classes have subsets, which are dense, i. e. topologically complex,
but r. e., i. e. algorithmically non-complex. The latter is astonishing, since there
are dense classes, which are not Ex -complete, cf. [8], so they do not contain
r. e. dense subsets. These classes are algorithmically more complex than Cfsup ,
but belong to a lower degree of intrinsic complexity. R. e. subsets as in Theorem 1
are obtained by mapping r. e. Ex -complete classes – such as Cfsup – to C with
the help of an operator Θ. So perhaps this approach of intrinsic complexity just
makes a class complete, if it is a suitable ‘target’ for recursive operators. This
may be considered as a weakness of the notion of intrinsic complexity.



2.3 Uniform learning in the limit

Uniform learning views the approach of Ex -learning on a meta-level; it is not
only concerned with the existence of methods solving specific learning problems,
but with the problem to synthesize such methods. So the focus is on families of
learning problems (here families of classes of recursive functions). Given a repre-
sentation or description of a class of recursive functions, the aim is to effectively
determine an adequate learner, i. e. to compute a program for a successful IIM
learning the class.

For a formal definition of uniform learning it is necessary to agree on a scheme
for describing classes of recursive functions (i. e. describing learning problems).
For that purpose we fix a three-place acceptable numbering ϕ. If d ∈ N, the
numbering ϕd is the function resulting from ϕ, if the first input is fixed by d.
Then any number d corresponds to a two-place numbering ϕd enumerating the
set Pϕd of partial-recursive functions. Now it is conceivable to consider the subset
of all total functions in Pϕd as a learning problem which is uniquely determined
by the number d. Thus each number d acts as a description of the set Rd, where

Rd := {ϕdi | i ∈ N and ϕdi is recursive} = Pϕd ∩R for any d ∈ N .

Rd is called recursive core of the numbering ϕd. So any set D = {d0, d1, . . .} can
be regarded as a set of descriptions, i. e. a collection of learning problems Rd0 ,
Rd1 , . . . In this context, D is called a description set.

A meta-IIM M is an IIM with two inputs: (i) a description d of a recursive
core Rd, and (ii) an initial segment f [n] of some f ∈ R. Then Md is the IIM
resulting from M , if the first input is fixed by d. A meta-IIM M can be seen
as mapping descriptions d to IIMs Md; it is a successful uniform learner for a
set D, in case Md learns Rd for all d ∈ D; i. e. given any description in D, M
develops a suitable learner for the corresponding recursive core.

Definition 6 Let D ⊆ N. D is uniformly Ex-learnable (D ∈ UEx), iff there is
a meta-IIM M such that, for any d ∈ D, the IIM Md is an Ex-learner for Rd.

As a numbering ϕd enumerates a superset of Rd, a meta-IIM might also
use ϕd as a hypothesis space for Rd. This involves a new notion of admissible
sequences.

Definition 7 Let d ∈ N, f ∈ Rd, σ ∈ R. σ is r-admissible for d and f , iff σ
converges and lim(σ) is a ϕd-program for f .

This approach yields just a special (restricted) case of uniform Ex -learning,
because ϕd-programs can be uniformly translated into τ -programs.

Definition 8 Let D ⊆ N. D is uniformly Ex-learnable restrictedly (D ∈ rUEx),
iff there is a meta-IIM M such that, for any d ∈ D and any function f ∈ Rd,
the sequence Md(f) is r-admissible for d and f .

By the following result, special sets describing only singleton recursive cores
are not uniformly Ex -learnable (restrictedly). For Claim 2 cf. a proof in [16].



Theorem 2 1. [12, 16] {d ∈ N | cardRd = 1} /∈ UEx.
2. Fix s ∈ R. Then {d ∈ N | Rd = {s}} /∈ rUEx.

It has turned out, that even UEx -learnable subsets of these description sets
are not in UEx (or rUEx ), if additional demands concerning the sequence of hy-
potheses are posed, see [17]. This suggests that description sets representing only
singletons may form hardest problems in uniform learning; analogously descrip-
tion sets representing only a fixed singleton recursive core may form hardest
problems in restricted uniform learning. Hopefully, this intuition can be ex-
pressed by a notion of intrinsic complexity of uniform learning.

3 Intrinsic complexity of uniform learning

3.1 Intrinsic complexity of UEx -learning

The crucial notion now concerns the reduction between description sets D1

and D2. As in the non-uniform model, a meta-IIM for D1 should be computable
from a meta-IIM for D2, if D1 is reducible to D2. We first focus on UEx -learning;
the restricted variant will be discussed later on. A first idea for UEx -reducibility
might be to demand the existence of operators Θ and Ξ such that for d1 ∈ D1

and f1 ∈ Rd1

Θ transforms (d1, f1) into a pair (d2, f2) with d2 ∈ D2 and f2 ∈ Rd2 ;

where Ξ maps any admissible sequence for f2 to an admissible sequence for f1.
Unfortunately, this does not allow us to reduce every set in UEx to a set

describing only singleton recursive cores: suppose Rd = Cfsup . As the set D1 =
{d} is uniformly Ex -learnable, it should be reducible to a set D2 representing
only singleton recursive cores, say via Θ and Ξ as above. Now for any initial
segment α, there are d2 ∈ D2 and f2 ∈ Rd2 such that Θ(d, α0∞) = (d2, f2).
The usual notion of an operator yields an n > 0 and a subfunction σ ⊆ f2 such
that Θ(d, α0n) = (d2, σ). As cardRd2 = 1, this implies Θ(d, α0nβ0∞) = (d2, f2)
for all initial segments β. In particular, there are f, f ′ ∈ Rd such that f 6= f ′,
but Θ(d, f) = Θ(d, f ′) = (d2, f2). By assumption, Ξ maps each admissible
sequence for f2 to a sequence admissible for both f and f ′. The latter is of
course impossible, so this approach does not meet our purpose.

The problem above is that the description d2, once it is output by Θ on input
of (d1, f1[m]), can never be changed depending on the values of f1 to be read.
Hence, Θ should be allowed to return a sequence of descriptions, when fed a pair
(d1, f1). As an improved approach, it is conceivable to demand, that for d1 ∈ D1

and f1 ∈ Rd1
Θ transforms (d1, f1) into a pair (δ2, f2) .

Here δ2 is a sequence converging to some d2 ∈ D2 with f2 ∈ Rd2 . Moreover, Ξ
maps any admissible sequence for f2 to an admissible sequence for f1.

Still this approach bears a problem. Intuitively, reducibility should be tran-
sitive. In general, such a transitivity is achieved by connecting the operators of a



first reduction with the operators of a second reduction. The idea above cannot
guarantee that: assume D1 is reducible to D2 via Θ1 and Ξ1; D2 is reducible to
D3 via Θ2 and Ξ2. If Θ1 maps (d1, f1) to (δ2, f2), then which description d in the
sequence δ2 should form an input (d, f2) for Θ2? It is in general impossible to
detect the limit d2 of the sequence δ2, and any description d 6= d2 might change
the output of Θ2.

So it is inevitable to let Θ operate on sequences of descriptions and on func-
tions, i. e., Θ maps pairs (δ1, f1), where δ1 is a sequence of descriptions, to pairs
(δ2, f2).

Definition 9 Let Θ be a total function operating on pairs of functions. Θ is a re-
cursive meta-operator, iff the following properties hold for all functions δ, δ′, f, f ′:

1. if δ ⊆ δ′, f ⊆ f ′, as well as Θ(δ, f) = (γ, g) and Θ(δ′, f ′) = (γ′, g′), then
γ ⊆ γ′ and g ⊆ g′;

2. if n, y ∈ N, Θ(δ, f) = (γ, g), and γ(n) = y (or g(n) = y, resp.), then there
are initial segments δ0 ⊆ δ and f0 ⊆ f such that (γ0, g0) = Θ(δ0, f0) fulfils
γ0(n) = y (g0(n) = y, resp.);

3. if δ, f are finite, Θ(δ, f) = (γ, g), one can effectively (in δ, f) enumerate γ, g.

This finally allows for the following definition of UEx -reducibility.

Definition 10 Let D1, D2 ∈ UEx. Fix a recursive meta-operator Θ and a re-
cursive operator Ξ. D1 is UEx-reducible to D2 via Θ and Ξ, iff for any d1 ∈ D1,
any f1 ∈ Rd1 , and any initial segment δ1 there are functions δ2 and f2 satisfying:

1. Θ(δ1d∞1 , f1) = (δ2, f2),
2. δ2 converges to some description d2 ∈ D2 such that f2 ∈ Rd2 ,
3. if σ is admissible for f2, then Ξ(σ) is admissible for f1.

D1 is UEx-reducible to D2, iff D1 is UEx-reducible to D2 via some Θ′ and Ξ ′.

Note that this definition expresses intrinsic complexity in the sense that a
meta-IIM for D1 can be computed from a meta-IIM for D2, if D1 is UEx -
reducible to D2. Moreover, as has been demanded in advance, the resulting
reducibility is transitive:

Lemma 3 If D1, D2, D3 are description sets such that D1 is UEx-reducible to
D2 and D2 is UEx-reducible to D3, then D1 is UEx-reducible to D3.

The notion of completeness can be adapted from the usual definitions.

Definition 11 A description set D ∈ UEx is UEx-complete, iff each description
set D′ ∈ UEx is UEx-reducible to D.

The question is, whether this notion of intrinsic complexity expresses the
intuitions formulated in advance, e. g., that there are UEx -complete description
sets representing only singleton recursive cores. Before answering this question
consider an illustrative example.



This example states that there is a single description d of an Ex -complete
set such that the description set {d} is UEx -complete. On the one hand, this
might be surprising, because a description set consisting of just one index rep-
resenting an Ex -learnable class might be considered rather simple and thus not
complete for uniform learning. But on the other hand, this result is not contrary
to the intuition, that the hardest problems in non-uniform learning may remain
hardest, when considered in the context of meta-learning. The reason is that
the complexity is still of highest degree, if the corresponding class of recursive
functions is not decomposed appropriately.

Example 4 Let d ∈ N fulfil Rd = Cfsup. Then the set {d} is UEx-complete.

Proof. Obviously, {d} ∈ UEx . To show that each description set in UEx is UEx -
reducible to {d}, fix D1 ∈ UEx and let M be a corresponding meta-IIM as in
Definition 6. It remains to define a recursive meta-operator Θ and a recursive
operator Ξ appropriately.

Given initial segments δ1 and α, let Θ just modify the sequence of hypotheses
returned by the meta-IIM M , if the first input parameter is gradually taken from
the sequence δ1 and the second input parameter is gradually taken from the
sequence α. The modification is to increase each hypothesis by 1 and to change
each repetition of hypotheses into a zero output. A formal definition is omitted.

Moreover, given an initial segment σ = (s0, . . . , sn), let Ξ(σ) look for the
maximal m ≤ n such that at least one of the values τsm(x), x ≤ n, is de-
fined within n steps and greater than 0. In case m does not exist, Ξ(σ) =
Ξ(s0, . . . , sn−1). Otherwise, let y ≤ n be maximal such that τsm

(y) has already
been computed and is greater than 0. Then Ξ(σ) = Ξ(s0, . . . , sn−1)τsm

(y)− 1.
Now D1 is UEx -reducible to {d} via Θ, Ξ; details are omitted. ut

That decompositions of Ex -complete classes may also be not UEx -complete,
is shown in Section 3.3. Example 4 moreover serves for proving the completeness
of other sets, if Lemma 5 – an immediate consequence of Lemma 3 – is applied.

Lemma 5 Let D1, D2 ∈ UEx. If D1 is UEx-complete and UEx-reducible to D2,
then D2 is UEx-complete.

Lemma 5 and Example 4 simplify the proofs of further examples, finally
revealing that there are indeed UEx -complete description sets representing sin-
gleton recursive cores only.

Example 6 1. Let (αi)i∈N be an r. e. family of all initial segments. Let g ∈ R
fulfil ϕg(i)0 = αi0∞ and ϕ

g(i)
x+1 =↑∞ for i, x ∈ N. Then the description set

{g(i) | i ∈ N} is UEx-complete.
2. Let g ∈ R fulfil ϕg(i)0 = τi and ϕg(i)x+1 =↑∞ for i, x ∈ N. Then the description

set {g(i) | i ∈ N} is UEx-complete.

Proof. ad 1. Obviously, {g(i) | i ∈ N} ∈ UEx . Now we reduce the UEx -complete
set {d} from Example 4 to {g(i) | i ∈ N}. Lemma 5 then proves Assertion 1.



It is easy to define Θ such that, if α does not end with 0, then Θ(δ1, α0∞) =
(δ2, α0∞), where δ2 converges to some g(i) with αi = α. Let Ξ(σ) = σ for all σ.
Then {d} is UEx -reducible to {g(i) | i ∈ N} via Θ and Ξ. Details are omitted.

ad 2. Fix an r. e. family (αi)i∈N of all initial segments; fix h ∈ R with τh(i) =
αi0∞ for all i ∈ N. Then ϕg(h(i))0 = αi0∞ and ϕg(h(i))x+1 =↑∞ for i, x ∈ N. As above,
the set {g(h(i)) | i ∈ N} is UEx -complete; so is its superset {g(i) | i ∈ N}. ut

Just as the properties of Cfsup are characteristic for Ex -completeness, the
properties of description sets representing decompositions of Cfsup are charac-
teristic for UEx -completeness, as is stated in Theorem 7 and Corollary 8.

Theorem 7 Let D ∈ UEx. D is UEx-complete, iff there are a recursive num-
bering ψ and a limiting r. e. family (di)i∈N of descriptions in D such that:

1. ψi belongs to Rdi
for all i ∈ N;

2. Pψ is dense.

Proof. Fix a description set D in UEx .
Necessity. Assume D is UEx -complete. Fix any one-one recursive numbering χ
such that Pχ = Cfsup . Moreover fix g ∈ R which, given any i, x ∈ N, fulfils
ϕ
g(i)
0 = χi and ϕ

g(i)
x =↑∞, if x > 0. Then the description set {g(i) | i ∈ N} is

UEx -complete, as can be verified similarly to Example 6. Lemma 5 then implies
that {g(i) | i ∈ N} is UEx -reducible to D, say via Θ and Ξ.

Fix a one-one r. e. family (αi)i∈N of all finite tuples over N. For i ∈ N, i
coding the pair (x, y), define (δi, ψi) := Θ(αyg(x)∞, χx). By definition, ψ is a
recursive numbering and, for all i ∈ N, the sequence δi converges to some di ∈ D
such that ψi ∈ Rdi

. Hence (di)i∈N is a limiting r. e. family of descriptions in D.
It remains to verify Property 2.
For that purpose fix i, n ∈ N. By definition, if i encodes (x, y), we obtain

Θ(αyg(x)∞, χx) = (δi, ψi). The properties of Θ yield some m ∈ N such that
Θ(αyg(x)m, χx[m]) = (δ′i, α

′) for some δ′i, α
′ with δ′i ⊆ δi and ψi[n] ⊆ α′ ⊆ ψi.

Because of the particular properties of χ, there is some x′ ∈ N, x′ 6= x,
such that χx′ =m χx, but χx′ 6= χx. Moreover, there is some y′ ∈ N such
that αy′ = αyg(x)m. If j encodes (x′, y′), this yields Θ(αyg(x)mg(x′)∞, χx′) =
(δj , ψj), where α′ ⊆ ψj . In particular ψj =n ψi.

Assume ψi = ψj . Suppose σ is any admissible sequence for ψi. Then σ is
admissible for ψj . This implies that Ξ(σ) is admissible for both χx and χx′ . As
χx 6= χx′ , this is impossible. So ψi 6= ψj .
Sufficiency. Assume D, ψ, and (di)i∈N fulfil the conditions of Theorem 7. Let d
denote a numbering associated to the limiting r. e. family (di)i∈N. The results in
the context of non-uniform learning help to show that D is UEx -complete:

By assumption, Pψ is a dense r. e. subset of R. Theorem 1 then implies that
Pψ is Ex -complete, so Cfsup is Ex -reducible to Pψ, say via Θ′, Ξ ′.

Using Θ′ and Ξ ′ one can show that the UEx -complete set {d} from Example 4
is UEx -reducible to D. This implies that D is UEx -complete, too. Note that
Rd = Cfsup .



It remains to define a recursive meta-operator Θ and a recursive operator Ξ
appropriately. If δ1 and α1 are finite tuples over N, define Θ(δ1, α1) as follows.

Compute Θ′(α1) = α2 and n = |α2|.
For all x < n, let ix be minimal such that α2[x] ⊆ ψix .
Return Θ(δ1α1) = ((di0(0), di1(1), . . . , din−1(n − 1)), α2) (if n = 0, then the
first component of Θ(δ1α1) is the empty sequence).

Clearly, if f1 ∈ R, then Θ(δ1, f1) = (δ2, Θ′(f1)) for some sequence δ2.
Moreover, let Ξ := Ξ ′.
Finally, to verify that {d} is UEx -reducible to D, fix a sequence δ1 and a

function f1 ∈ Rd.
First, note that f2 = Θ′(f1) ∈ Pψ. Let i be the minimal ψ-program of

Θ′(f1) = f2. As ψ ∈ R, for all x ∈ N the minimal ix satisfying f2[x] ⊆ ψix can
be computed. Additionally, lim(ix)x∈N = i. Note that di converges to di. Hence
Θ(δ1, f1) = (δ2, f2), where f2 ∈ Pψ and δ2 converges to di, given f2 = ψi. In
particular, f2 ∈ Rdi .

Second, if σ is admissible for f2, then Ξ ′(σ) is admissible for f1.
So {d} is UEx -reducible to D via Θ and Ξ, and thus D is UEx -complete. ut

Corollary 8 Let D ∈ UEx. D is UEx-complete, iff there are a recursive num-
bering ψ and a limiting r. e. family (di)i∈N of descriptions in D such that:

1. ψi belongs to Rdi
for all i ∈ N;

2. Pψ is Ex-complete.

Proof. Necessity. The assertion follows from Theorem 1 and Theorem 7.
Sufficiency. Let D ∈ UEx . Assume ψ and (di)i∈N fulfil the conditions above.
Let d be a recursive numbering corresponding to the limiting r. e. family (di)i∈N.
By Property 2, Pψ is Ex -complete; thus, by Theorem 1, there exists a dense
r. e. subclass C ⊆ Pψ. Let ψ′ be a one-one, recursive numbering with Pψ′ = C,
in particular Pψ′ is dense. It remains to find a limiting r. e. family (d′i)i∈N of
descriptions in D such that ψ′i ∈ Rd′i for all i ∈ N. For that purpose define a
corresponding numbering d′. Given i, n ∈ N, define d′i(n) as follows.

Let j ∈ N be minimal such that ψ′i =n ψj . (* Note that, for all but finitely
many n, the index j will be the minimal ψ-program of ψ′i. *)
Return d′i(n) := dj(n). (* lim(d′i) = dj , for j minimal with ψ′i = ψj . *)

Finally, let d′i be given by the limit of the function d′i, in case a limit exists.
Fix i ∈ N. Then there is a minimal j with ψ′i = ψj . By definition, the limit

d′i of d′i exists and d′i = dj ∈ D. Moreover, as ψj ∈ Rdj
, the function ψ′i is in Rd′i .

As ψ′ and (d′i)i∈N allow us to apply Theorem 7, the set D is UEx -complete. ut

Thus certain decompositions of Ex -complete classes remain UEx -complete,
and UEx -complete description sets always represent decompositions of supersets
of Ex -complete classes. Example 9 illustrates how to apply the above characteri-
zations of UEx -completeness. A similar short proof may be given for Example 6.



Example 9 Fix a recursive numbering χ such that Pχ is dense. Let g ∈ R fulfil
ϕ
g(i)
0 = χi and ϕg(i)x+1 =↑∞ for i, x ∈ N. Then {g(i) | i ∈ N} is UEx-complete.

Proof. (g(i))i∈N is a (limiting) r. e. family such that χi ∈ Rg(i) for all i ∈ N and
Pχ is Ex -complete. Corollary 8 implies that {g(i) | i ∈ N} is UEx -complete. ut

3.2 Intrinsic complexity of rUEx -learning

Adapting the formalism of intrinsic complexity for restricted uniform learning,
we have to be careful concerning the operator Ξ. In UEx -learning, the current
description d has no effect on whether a sequence is admissible for a function
or not. For restricted learning this is different. Therefore, to communicate the
relevant information to Ξ, it is inevitable to include a description from D2 in
the input of Ξ. That means, Ξ should operate on pairs (δ2, σ) rather than on
sequences σ only. Since only the limit of the function output by Ξ is relevant for
the reduction, this idea can be simplified. It suffices, if Ξ operates correctly on the
inputs d2 and σ, where d2 is the limit of δ2. Then an operator on the pair (δ2, σ)
is obtained from Ξ by returning the sequence (Ξ(δ2(0)σ[0]), Ξ(δ2(1)σ[1]), . . .).
Its limit will equal the limit of Ξ(d2σ).

Definition 12 Let D1, D2 ∈ rUEx. Fix a recursive meta-operator Θ and a re-
cursive operator Ξ. D1 is rUEx-reducible to D2 via Θ and Ξ, iff for any d1 ∈ D1,
any f1 ∈ Rd1 , and any initial segment δ1 there are functions δ2 and f2 satisfying:

1. Θ(δ1d∞1 , f1) = (δ2, f2),
2. δ2 converges to some description d2 ∈ D2 such that f2 ∈ Rd2 ,
3. if σ is r-admissible for d2 and f2, then Ξ(d2σ) is r-admissible for d1 and f1.

D1 is rUEx-reducible to D2, iff D1 is rUEx-reducible to D2 via some Θ′ and Ξ ′.

Completeness is defined as usual. As in the UEx -case, rUEx -reducibility is
transitive; so the rUEx -completeness of one set may help to verify the rUEx -
completeness of others.

Lemma 10 If D1, D2, D3 are description sets such that D1 is rUEx-reducible
to D2 and D2 is rUEx-reducible to D3, then D1 is rUEx-reducible to D3.

Lemma 11 Let D1, D2 ∈ rUEx. If D1 is rUEx-complete and rUEx-reducible
to D2, then D2 is rUEx-complete.

Recall that, intuitively, sets describing just one singleton recursive core may
be rUEx -complete. This is affirmed by Example 12, the proof of which is omitted.

Example 12 Let s, g ∈ R such that ϕg(i)i = s and ϕg(i)x =↑∞, if i, x ∈ N, x 6= i.
Then {g(i) | i ∈ N} is rUEx-complete, but not UEx-complete.

Example 12 helps to characterize rUEx -completeness. In particular, it shows
that the demand ‘Pψ is dense’ has to be dropped.



Theorem 13 Let D ∈ rUEx. D is rUEx-complete, iff there are a recursive
numbering ψ and a limiting r. e. family (di)i∈N of descriptions in D such that:

1. ψi belongs to Rdi for all i ∈ N;
2. for each i, n ∈ N there are infinitely many j ∈ N satisfying ψi =n ψj and

(di, ψi) 6= (dj , ψj).

Proof. Fix a description set D in rUEx .
Necessity. Assume D is rUEx -complete. Lemma 11 implies that the description
set {g(i) | i ∈ N} from Example 12 is rUEx -reducible to D, say via Θ and Ξ.

Fix a one-one r. e. family (αi)i∈N of all finite tuples over N. For i ∈ N, i coding
the pair (x, y), define (δi, ψi) := Θ(αyg(x)∞, s). By definition, ψ is a recursive
numbering and, for all i ∈ N, the sequence δi converges to some di ∈ D such
that ψi ∈ Rdi . Hence (di)i∈N is a limiting r. e. family of descriptions in D.

It remains to verify Property 2.
For that purpose fix i, n ∈ N. By definition, if i encodes (x, y), we have

Θ(αyg(x)∞, s) = (δi, ψi). The properties of Θ yield some m ∈ N such that
Θ(αyg(x)m, s) = (δ′i, α

′) for some δ′i and α′ with δ′i ⊆ δi and ψi[n] ⊆ α′ ⊆ ψi.
Now choose any x′ ∈ N such that x′ 6= x. Moreover, there is some y′ ∈ N

such that αy′ = αyg(x)m. If j encodes (x′, y′), this yields Θ(αyg(x)mg(x′)∞, s) =
(δj , ψj), where α′ ⊆ ψj . In particular ψj =n ψi.

Assume (di, ψi) = (dj , ψj). Suppose σ is any rUEx -admissible sequence for
di and ψi. Then Ξ(diσ) is rUEx -admissible for both g(x) and s and g(x′) and s.
As x is the only ϕg(x)-number for s and x′ is the only ϕg(x

′)-number for s, the
latter is impossible. So (di, ψi) 6= (dj , ψj).

Repeating this argument for any x′ with x′ 6= x yields the desired property.
Sufficiency. First note: if (di)i∈N is a limiting r. e. family and ψ any recursive
numbering, such that {(di, ψi) | i ∈ N} is an infinite set, then there are a limiting
r. e. family (d′i)i∈N and a recursive numbering ψ′, such that {(d′i, ψ′i) | i ∈ N} ⊆
{(di, ψi) | i ∈ N} and i 6= j implies (d′i, ψ

′
i) 6= (d′j , ψ

′
j). Details are omitted.

So let D, ψ, (di)i∈N fulfil the demands of Theorem 7 and assume wlog that
i 6= j implies (di, ψi) 6= (dj , ψj). Let d be the numbering associated to the
limiting r. e. family (di)i∈N. We show that the set {g(i) | i ∈ N} from Example 12
is rUEx -reducible to D; so Lemma 11 implies that D is rUEx -complete.

For that purpose fix a one-one numbering η ∈ R such that Pη equals the
set Cconst := {αi∞ | α is a finite tuple over N and i ∈ N} of all recursive finite
variants of constant functions.

Using a construction from [8] we define an operator Θ′ mapping Pη into Pψ.
In parallel, a function θ is constructed to mark used indices. Let Θ′(η0) := ψ0

and θ(0) = 0. If i > 0, let Θ′(ηi) be defined as follows.

For x < i, let mx be maximal with ηi(mx) 6= ηx(mx). Let m := maxx<i(mx).
Let k < i be minimal with mk = m. (* Among the functions η0, . . . , ηi−1,
none agree with ηi on a longer initial segment than ηk does. *)
Compute the set H := {j ∈ N | j /∈ {θ(0), . . . , θ(i− 1)} and ψj =m Θ′(ηk)}.
(* H is the set of unused ψ-programs of functions agreeing with Θ′(ηk) on
the first m+ 1 values. *)



Choose h = min(H); return Θ′(ηi) := ψh, moreover let θ(i) := h. (* Because
of Property 2, the index h exists. As ψ is recursive, h is found effectively. *)

Note that Θ′ is a recursive operator mapping Pη into Pψ. θ is a recursive function,
that maps each number i to the index h used in the construction of Θ′(ηi) = ψh.
θ is one-one, yet it may happen, that Θ′(ηi) = Θ′(ηj), but θ(i) 6= θ(j) for some
i, j ∈ N.

It remains to define a recursive meta-operator Θ and a recursive operator Ξ
such that {g(i) | i ∈ N} is rUEx -reducible to D via Θ and Ξ. If δ is an infinite
sequence, define Θ(δ, s) as follows.

For each x ∈ N, let jx ∈ N be minimal such that ηjx =x δ. Let ix := θ(jx).
Return Θ(δ, s) := ((di0(0), di1(1), . . .), Θ′(δ)).

Clearly, the output of Θ depends only on δ. If δ converges, then Θ(δ, s) = (δ′, f ′),
where f ′ ∈ Pψ and δ′ converges to some description di such that i = θ(j) for the
minimal number j satisfying ηj = δ. To define an operator Ξ, compute Ξ(dσ)
for d ∈ N, σ ∈ R as follows.

For x ∈ N let X := {y ≤ x | dy(x) = d and, for all z ≤ x, if ϕdσ(x)(z) is
defined in x steps of computation, then ϕdσ(x)(z) = ψy(z)}. If X is empty,
let ix = 0, otherwise let ix be the minimum of X. (* In the limit, the only i
satisfying di = d and ϕdlim(σ) = ψi is found – provided that i exists. *)
For each x ∈ N, compute jx ∈ N with θ(jx) = ix. (* In the limit, a number j
with θ(j) = i, di = d, and Θ′(ηj) = ψi is found – provided that j exists. *)
Return Ξ(dσ) := (g−1(ηj0(0)), g−1(ηj1(1)), g−1(ηj2(2)), . . .). (* g−1 denotes
the function inverse to g. Ξ(dσ) converges to g−1(l), where l is the limit of
ηj with Θ′(ηj) = ψi and di equals d – provided that i and j exist. *)

To show that {g(i) | i ∈ N} is rUEx -reducible to D via Θ and Ξ, fix some
δ1 ∈ R converging to some description d ∈ {g(i) | i ∈ N}.

First, by the remarks below the definition of Θ, we obtain Θ(δ1, s) = (δ2, f2),
where f2 ∈ Pψ and δ2 converges to some description di such that i = θ(j) for
the minimal j satisfying ηj = δ1. This implies f2 = ψi. In particular, f2 ∈ Rdi .

Second, if σ ∈ R is r -admissible for di and ψi, then Ξ(diσ) converges to
g−1(d) (by the note in the definition of Ξ and d = lim(ηj)). Recall that g−1(d)
is the only ϕd-program of s, whenever d ∈ {g(i) | i ∈ N}. Hence Ξ(diσ) is
r -admissible for d and s.

So {g(i) | i ∈ N} is rUEx -reducible to D and finally D is rUEx -complete. ut

As an immediate consequence of Theorems 7 and 13 we have:

Corollary 14 Let D ∈ rUEx. If D is UEx-complete, then D is rUEx-complete.

3.3 Algorithmic structure of complete classes in uniform learning

Theorems 7 and 13 suggest a weakness of the notion of intrinsic complexity,
similar to the non-uniform case: though UEx -/rUEx -complete sets involve a



topologically complex structure, expressed by Property 2, this goes along with
the demand for a limiting r. e. subset combined with an r. e. subset Pψ of the
union of all represented recursive cores. The latter again can be seen as a non-
complex algorithmic structure.

Now Theorem 15 shows that there are non-complete description sets, for
which the properties of Theorems 7 and 13 can be fulfilled, but only if the
demand for limiting r. e. sets is dropped. These sets are algorithmically more
complex than our examples of UEx -complete sets, but they belong to a lower
degree of intrinsic complexity.

Theorem 15 Let C ⊆ R. Then there is a set D ∈ rUEx such that

1. C equals the union of all recursive cores described by D,
2. D is not rUEx-complete (and hence not UEx-complete).

Proof. Fix a list A0, A1, . . . of all infinite limiting r. e. sets such that ϕd0 ∈ C and
ϕdx+1 =↑∞ for all i, x ∈ N and d ∈ Ai. Let A :=

⋃
i∈N Ai and C = {f0, f1, . . .}.

Define a set D0 as follows.

Fix the least elements d0, d
′
0 of A0, d0 < d′0. Let I0 := {d0}, I ′0 := {d′0}. Let

e0 ∈ A \ (I0 ∪ I ′0) be minimal such that f0 ∈ Re0 . (* e0 exists, because A
contains infinitely many descriptions d with ϕd0 = f0. *)
Let D0 := I0 ∪ {e0}. (* The disjoint sets D0 and I ′0 both intersect with A0;
some recursive core described by D0 equals {f0}. *)

Moreover, for any k ∈ N, define a set Dk+1 as follows.

Fix the least elements dk+1, d
′
k+1 of Ak+1 \ (Dk ∪ I ′k), dk+1 < d′k+1. (* These

have not been touched in the definition of D0, . . . , Dk yet. *)
Let Ik+1 := Dk∪{dk+1}, I ′k+1 := I ′k∪{d′k+1}. Let ek+1 ∈ A\(Ik+1∪I ′k+1) be
minimal such that fk+1 ∈ Rek+1 . (* ek+1 exists, because A contains infinitely
many descriptions d with ϕd0 = fk+1. *)
Let Dk+1 := Ik+1∪{ek+1}. (* The disjoint sets Dk+1 and I ′k+1 both intersect
with Ak+1; some recursive core described by Dk+1 equals {fk+1}. *)

Choose D :=
⋃
k∈N Dk ⊂ A, so D does not contain any infinite limiting r. e. set.

As ϕdx+1 =↑∞ for all d ∈ D, x ∈ N, we have D ∈ rUEx . Moreover, C is the union
of all cores described by D. It remains to prove that D is not rUEx -complete.

Assume D is rUEx -complete. Then some limiting r. e. set {di | i ∈ N} ⊆ D
and some ψ ∈ R fulfil the conditions of Theorem 13. In particular, {(di, ψi) |
i ∈ N} is infinite. As D does not contain any infinite limiting r. e. set, the set
{di | i ∈ N} is finite. cardRdi

= 1 for i ∈ N implies that {ψi | i ∈ N} is finite, too;
thus {(di, ψi) | i ∈ N} is finite – a contradiction. So D is not rUEx -complete. ut

The reason why each UEx -/rUEx -complete set D contains a limiting r. e. sub-
set representing a decomposition of an r. e. class is that certain properties of
UEx -complete sets are ‘transferred’ by meta-operators Θ. This corroborates the
possible interpretation that our approach of intrinsic complexity just makes a



class complete, if it is a suitable ‘target’ for recursive meta-operators – similar
to the non-uniform case.

By the way, Theorem 15 shows, that every Ex -complete class C has a decom-
position represented by a description set which is not UEx -complete – answering
a question in Section 3.1.
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