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Abstract

The analysis of theoretical learning models is basically concerned with the compar-
ison of identification capabilities in different models. Modifications of the formal
constraints affect the quality of the corresponding learners on the one hand and
regulate the quantity of learnable classes on the other hand.

For many inductive inference models – such as Gold’s identification in the limit
– the corresponding relationships of learning potential provided by the compatible
learners are well-known. Recent work even corroborates the relevance of these re-
lationships by revealing them still in the context of uniform Gold-style learning.
Uniform learning is rather concerned with the synthesis of successful learners in-
stead of their mere existence.

The subsequent analysis further strengthens the results regarding uniform learn-
ing, particularly aiming at the design of methods for increasing the potential of
the relevant learners. This demonstrates how to improve given learning strategies
instead of just verifying the existence of more powerful uniform learners.

For technical reasons these results are achieved using various formal conditions
concerning the learnability of unions of uniformly learnable classes. Therefore nu-
merous sufficient properties for the learnability of such unions are presented and
illustrated with several examples.

1 Introduction

The theory of inductive learning is concerned with abstract learning models.
In general, such models for learning by induction consist of

• a learner,
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• a class of possible target objects to be identified by the learner,
• a method for supplying the learner with information about the target ob-

jects during the learning process, and
• a set of possible hypotheses the learner may output during the learning

process.

Each hypothesis is associated to some object, and hence each representation
scheme for the target objects can be understood as a hypothesis space. 1 The
learner is supposed to find a correct representation for an entire target object,
that is, a correct hypothesis, from incomplete information about this object.
A quite convenient interpretation is to regard each target object as a rule and
the information presented to the learner as examples according to this rule.
Then the learner can be understood as a mechanism generating rules from
given examples and each representation scheme for such rules may serve as a
hypothesis space. In this context, every class of rules constitutes a learning
problem. Each formal conception following this scheme specifies a different
abstract learning model, and it is not conceivable that any simple theoretical
learning model can fully describe all phenomena of natural learning behaviour.
Still such conceptions can be used to explain at least certain aspects of human
learning or to model ‘intelligence’ with the help of mechanisms.

An approach allowing for a quite formal analysis is to consider the learn-
ers as computable devices or machines, each defined by a finite program. Of
course, a formal learning model within the given scope must be defined by
several technical constraints, such as for example the required quality of the
hypotheses returned by the learner, the number of guesses allowed, time or
space constraints for the learner, etc. Altogether, these constraints describe a
successful learning behaviour. Now by varying these constraints we may also
vary the classes of target objects which can be identified by a single learner.
That means, each specific learning model – resulting from modifications of the
given constraints – yields its specific capacities for the corresponding learners.
So each learning model is associated with a collection of learnable classes of
target objects; such a collection will subsequently be called a learning type or
an inference type. 2

On the one hand, strengthening the technical constraints should in some sense
improve the quality of the learning machine (because it may for example com-
pute its hypotheses in less time or provide hypotheses with useful additional
properties). But on the other hand, it is conceivable that any increase in the
technical constraints reduces the pool of learnable classes of target objects. So

1 Note that, in general, hypothesis spaces may also represent objects not contained
in the target class.
2 Informally, the terms learning type and inference type will also refer to the asso-
ciated learning model.
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there may be a trade-off between the quality of the learner and the quantity
of learnable object classes. Investigating this trade-off is a common subject in
many fields concerning theoretical aspects of artificial intelligence.

If a learning type I is modified to a learning type J by adding some technical
constraints to the corresponding inference conditions, we might ask what price
has to be paid, i. e. to what extent the gain in quality results in a loss in
quantity. If there are I-learnable classes of target objects, which no longer
belong to the learning type J , we have witnessed a separation of the learning
types I and J . But we may also turn the corresponding question around. We
know that I results from J by weakening the constraints, and a separation
means that there is now an I-learnable class which was not learnable according
to the former type J . Thus we might want to know whether the loss in quality is
compensated by a gain in quantity. So far this is only an inverted question, but
individual practical needs might give rise to more specific questions: imagine
that, for some reason, it is important for you to identify at least all objects
in a particular J-learnable class C. If all I-learnable supersets of C were even
J-learnable, then relaxing the technical constraints would reduce the quality
of the learner without raising the quantity of all ‘interesting’ learnable classes
(i. e. there would not be any gain with respect to your learning goal C). Hence
the question should no longer be, whether there exists a class learnable in I
and not learnable in J , but whether there exists a superset of C fulfilling these
properties. A strong separation of the learning types I and J holds, if

every J-learnable class C has a superset, which is I-learnable, but no longer
J-learnable.

The term strong separation was chosen by Case, Chen and Jain [7] in the con-
text of inductive inference of recursive functions. Studying the separability of
two learning types involves getting an insight into specific structures of classes
of target objects learnable according to either type. A way to get these insights
might be to keep an eye on the methods of successful learners. Do they use
any particular intrinsic knowledge, any preconditions the target classes or the
corresponding hypothesis spaces have to fulfil? Speaking in the terminology
of machine learning literature, cf. [17,18], the bias of a learning system has
to be studied. The concept of bias refers to a learning system’s restrictions
of the search space, most often based on some kind of background knowledge
about the structure of the possible target objects. Such a bias is needed to
overcome the general problem of logical justification of hypotheses in induct-
ive learning, in particular, it may account for a limitation of the hypothesis
space. In practice the bias is often employed, just because the restriction of
the search space renders a complexity advantage. So a learner in general is
successful, because it has some prior intrinsic knowledge about the class of
target objects. Analogously, if a class of target objects is not learnable, then
the required background knowledge is presumably not expressible adequately
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to be exploited by a learner.

This point of view can also be expressed in other terms: if intrinsic knowledge
of learners about the target classes or hypothesis spaces is assumed, can this
knowledge be exploited in a uniform way? That means we ask for common
preconditions in learnable classes of target objects, allowing for a common
(uniform) method of induction for all these classes. The idea is to aim at some
kind of meta-learner M simulating several (perhaps infinitely many) learners
for special classes C0, C1, C2, . . . of target objects. This realizes an approach
to merging several intelligent systems into a single machine able to cope with
the tasks of any of the systems, which is not a trivial task, if the resulting
machine is required to represent a computable device. In other words, a single
creative learning procedure shall be used for numerous learning problems. This
approach is referred to by the term uniform learning. In summary, an analysis
of uniform learning is of interest for several reasons, for example:

• it concerns the general problem of designing learning systems capable of
simulating numerous expert learners for special target classes;

• it concerns common principles of solvable learning problems and common
principles for possible corresponding successful learners;

• it concerns the general problem of describing and representing learning
problems adequately, and thus of appropriately communicating background
knowledge on the particular target classes to the learner.

In particular, the latter aspect has to be explained in detail. Recall that the
crucial component of uniform learning is supposed to be some kind of meta-
learner M simulating several (perhaps infinitely many) learners for special
classes C0, C1, C2, . . . of target objects. As the intrinsic knowledge to be used
by the meta-learner M may depend on the class Ci of target objects currently
considered, there must be some way to communicate this special knowledge
about Ci to M . This is done via some description di representing the class Ci
of target objects.

For instance, consider the example of inferring compact convex regions of a 2-
dimensional plane. Assume there are just two target classes of interest, namely
the class C0 of rectangular regions and the class C1 of circular regions. Then
the description d0 = 0 might represent the class C0; the description d1 = 1
might represent the class C1. A meta-learner supplied with the parameter 0
may then simulate a procedure for learning the target class of rectangular
regions; analogously, the meta-learner may simulate a procedure for learning
the target class of circular regions on input of the parameter 1. Note that
this example just serves for illustration; of course, in the general case, when
infinitely many target classes are concerned, the choice of descriptions may
become a much more delicate affair.
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After this example, let us come back to the general aspect of representing
additional background knowledge via descriptions of target classes. On the
one hand, by assumption, M exploits some common intrinsic knowledge about
the classes C0, C1, C2, . . .; on the other hand the information di may add to
this bias, because it is used to communicate special knowledge about Ci to
the meta-learner. Altogether, the resulting knowledge should be sufficient for
M to simulate a successful learner for Ci. Thus M learns any of the classes
C0, C1, C2, . . ., if knowledge d0, d1, d2, . . ., respectively, is provided. Now if I is
any identification model adequate for learning C0, C1, C2, . . ., then the set D =
{d0, d1, d2, . . .} is called uniformly I-learnable (UniI-learnable for short), if
there is some meta-learnerM simulating I-learners for C0, C1, C2, . . . according
to the method described above.

The present paper lifts the study of separations and strong separations of
learning models onto this meta-level referred to by the term uniform learning.
Given learning types I and J as before, a separation of UniI and UniJ simply
means that there is some description set D, which is uniformly I-learnable,
but not uniformly J-learnable. If some description d in D represents a class C,
which is learnable under I, but not under J , a separation of UniI and UniJ
is trivially witnessed. Therefore let us additionally demand, that all classes of
target objects described via the separating set D should be J-learnable. Now
a strong separation of UniI and UniJ holds if

every UniJ-learnable set D has a superset, which is UniI-learnable, but no
longer UniJ-learnable.

Again it is demanded, that the superset ofD describes only J-learnable classes
of target objects, thus avoiding trivial results. Now we have addressed the
study of the trade-off between the quality of learners (achieved by technical
constraints) and the quantity of the corresponding identification type (deter-
mined by the amount of learnable classes) to the model of uniform learning.

These are basic considerations of interest for learning in any context. Yet we
can only study the impact of relaxing or increasing the technical constraints, if
a formal learning model is provided. A simple and often studied way to model
learning behaviour is inductive inference of recursive functions. In this model –
introduced by Gold [13] – any set of total recursive functions forms a possible
class of target objects. The learner is an algorithmic device, called inductive
inference machine, or IIM for short. Gradually growing initial segments of
a function graph constitute the information the learner receives during the
learning process. As a hypothesis space any fixed computable enumeration
of at least all target functions may be used. An index of a function in such
an enumeration is considered as a program for this function. In particular,
the learner returns natural numbers as its hypotheses and each such number
represents a computable function via the programming system associated to
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the hypothesis space. An IIM M identifies a function f in the limit, if M is
defined on any initial segment of f and the corresponding sequence of hypo-
theses returned by M converges to a program for f . Of course, the underlying
enumeration – serving as a hypothesis space – should be fixed in advance.

If the constraints in the definition of learning in the limit are modified (e. g. by
adding natural demands concerning the intermediate hypotheses), different
learning models such as for example consistent learning emerge. These learning
models have already been compared with respect to the identification potential
of the compatible learners, revealing a complete hierarchy of identification
types via separations. The basic definitions and comparison results for the
corresponding models may be found in [3,4,6,10–13,15,21,22], partly also in
the survey paper [1]. Strong separations have especially been studied by Case,
Chen and Jain [7].

As explained in general above, Gold-style identification models can also be
lifted onto the meta-level of uniform learning. Research on this topic has re-
vealed numerous negative results concerning the learnability of rather simple
target classes, see for example [14,16,19]. Very fruitful work has been done by
Baliga, Case and Jain [2] in the context of uniform learning of formal lan-
guages. Their results – as aimed at in the motivation above – provide much
insight into common structures of learnable target classes. In the context of
separations of identification types for uniform learning of classes of recursive
functions, a complete picture for several types can be found in [24]. The pur-
pose of the present paper is to reveal the corresponding picture of strong
separations; as it turns out, all separations achieved before also hold in the
strong version. But this analysis is not becoming an end in itself, mostly for
two reasons.

Firstly, the results obtained are even stronger than required: given a separated
pair (UniI,UniJ) as above, there is a fixed description set D∗ which – when
added to any arbitrary description set D in UniJ – forms a set D∪D∗ suitable
for uniform I-learning, but not suitable for uniform J-learning. Hopefully,
such a fixed description set contains more information on specific properties
disallowing J-learning, since it is complex enough to make uniform J-learning
impossible, while still being simple enough always to maintain uniform I-
learnability.

Secondly, the proofs of the strong separations provide techniques for changing
a J-meta-learner for the original description set D into a meta-learner appro-
priate for I-identification of the new set D∪D∗. That means methods making
use of the possible increase of learning potential are revealed. Previous work
by Case, Chen, and Jain, see [7], contains similar results for learning in the
non-uniform model.
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For strong separation results each description set D has to form a union with
some other description set. On the one hand, this union must not be uniformly
J-learnable. On the other hand, it must be appropriate for uniform I-learning.
So, in order to construct such unions carefully, it might be helpful to find
certain properties sufficient for the uniform learnability of the union of two
description sets. This will be the purpose of the first main part of technical
results, to be found in Section 4. The second main part, presented in Section 5,
will deal with the final strong separation results.

A preliminary version of this paper has already appeared, see [25]. The proofs
for the strong separations in Section 5 use many methods presented in [26].
Subsequently, details for these methods will only be shown in an example and
will be omitted in the general case.

2 Preliminaries

2.1 Notations

Knowledge of basic mathematical concepts and common notions is assumed;
for recursion theoretic terms used without definition see [20].

Special notations in the context of set theory are ⊂ and #, used to indicate
proper inclusion and incomparability of sets, respectively. ∅ is a symbol for
the empty set. In order to refer to the cardinality of a set X the notion
cardX is used, where ∞ is the cardinality of an infinite set. If X is a set of
natural numbers, then X denotes its complement with respect to the set of
all natural numbers. Many of the subsequent results deal with sets of partial-
recursive functions, cf. [20]. Inputs and outputs of the latter functions are
natural numbers; the number of input variables of a particular function will
be clear from context on all occasions. e, f , g, and h are used as variables for
partial-recursive functions; other variables denoted by lowercase Roman letters
(with or without subscripts and superscripts) always range over the natural
numbers. f(n) denotes the value of f on input n, where f(n) ↑ indicates, that
f is undefined on input n. The value set {f(x) | x ≥ 0 and f(x) is defined} of
some f will be denoted by val(f). A partial-recursive function which is total,
i. e. defined for all inputs, is simply called recursive function. Such functions
will be the target objects for the learning processes analysed. Sometimes a
coding of pairs of natural numbers, i. e. a recursive bijective function mapping
pairs of numbers to numbers, is needed. Given numbers n and m, 〈n,m〉 will
denote the corresponding code number.

Via a recursive bijective mapping, finite tuples of natural numbers are identi-
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fied with natural numbers. Thus, if f(0), f(1), . . . , f(n) are defined, a code
number f [n] is associated with the finite tuple (f(0), f(1), . . . , f(n)), moreover
the notions g(f [n]) and g(f(0) . . . f(n)) have equal meaning. For convenience,
a partial-recursive function may also be regarded as a sequence of output val-
ues and ‘undefined values’ or as a set of input-output pairs. For example let
f(n) = 7 for n ≤ 2 and f(n) ↑ otherwise; g(n) = 7 for n ≤ 1, g(2) = 6, and
g(n) ↑ otherwise; h(n) = 7 for all n. Then f = 73 ↑∞= {(0, 7), (1, 7), (2, 7)},
g = 726 ↑∞= {(0, 7), (1, 7), (2, 6)}, h = 7∞= {(n, 7) | n ≥ 0}. The latter rep-
resentation explains notions like f # g, g#h, f ⊂ h. In this example f =∗ g
may be written – a notion used, if for all but finitely many n either f(n) and
g(n) are both undefined or f(n) = g(n).

Recall that recursive functions serve as the target objects in the inductive in-
ference models considered here. So we need appropriate representation schemes
for these functions, to be used as hypothesis spaces later on. The idea is to list,
i. e. to enumerate, all possible target objects and represent each object via a
number in the resulting list. But to make this list accessible for a computable
learner, it should correspond to a computable function, which is not possible
for any list of all recursive functions. Therefore we consider partial-recursive
enumerations in general: any (n + 1)-place partial-recursive function ψ enu-
merates the set {ψi | i ≥ 0} of n-place partial-recursive functions, where ψi is
defined by ψi(x1, . . . , xn) := ψ(i, x1, . . . , xn) for all x1, . . . , xn. In this context
ψ is also called a numbering. Given a function f in {ψi | i ≥ 0}, any index
x satisfying ψx = f is called a ψ-number or a ψ-program of f . Note that a
numbering may provide more than one program for a single function. A num-
bering ψ is called finite, if ψi =↑∞ for all but finitely many i, i. e. if almost all
ψ-programs correspond to the empty function. Frequently, the special term
acceptable numbering is used. As an example for an acceptable numbering
consider any programming system derived from an enumeration of all Turing
machines, cf. also [20].

2.2 Inductive inference models

As mentioned in the introduction, some crucial components of a learning model
are the learner, the class of possible target objects, as well as a representa-
tion scheme to be used as a hypothesis space. The target objects in the in-
ductive inference models considered here are always recursive functions; as a
representation scheme some adequate partial-recursive numbering is chosen.
It remains to specify the type of learners to be used. Since only computable
learners should be investigated, each of these might be considered as some
kind of machine, called inductive inference machine or IIM for short. An IIM
M is an algorithmic device working in time steps. In step n it gets some input
f [n] corresponding to an initial segment of a graph of some recursive function
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f . If M returns an output on f [n], then this output is a natural number to
be interpreted as a program in the given numbering serving as a hypothesis
space, cf. [13]. As usual, an IIM which is defined on any input will be called
a total IIM. Subsequently, the term ‘hypothesis space’ will always refer to a
two-place partial-recursive numbering.

The different inference models defined in this context result from different
technical constraints, i. e. from the particular success criteria. In Gold’s basic
model of identification in the limit, cf. [13], also called explanatory identifi-
cation, the IIM working on the graph of some recursive target function f is
required to produce guesses converging to a correct program for f . In case M
is defined for all inputs f [n], n ≥ 0, and the sequence (M(f [n]))n≥0 converges,
this will be denoted by M(f) ↓; moreover M(f) = i then indicates that i is
the limit of this sequence. The notion M(f) ↑ signals the opposite situation.

First the inference type of explanatory identification is defined. Afterwards
examples of how to modify the constraints in this model are presented; in
particular, three kinds of inference types are considered:

• types resulting from special constraints concerning the success criterion of
the sequence of hypotheses;

• types resulting from special constraints concerning the quality of the inter-
mediate hypotheses, independent of the amount of information currently
known about the target function;

• types resulting from special constraints concerning the quality of the inter-
mediate hypotheses, depending on the information currently known about
the target function.

The inference types defined below are chosen to give at least two representative
types for each of these three kinds.

Definition 1 A class C of recursive functions is identifiable in the limit (Ex-
identifiable), iff there is some hypothesis space ψ and an IIM M , such that for
any f in C the following conditions are fulfilled:

(1) M(f [n]) is defined for all n ≥ 0 and M(f) ↓,
(2) M(f) is a ψ-program for f (i. e. there is some i ≥ 0, such that M(f) = i

and ψi = f).

Ex denotes the collection of all Ex-learnable classes C.

Each finite class is trivially Ex -learnable. In general, each class C of functions
enumerated by a recursive numbering belongs to Ex , cf. Gold’s method of
identification by enumeration [13]. In contrast to that, there is no Ex -learner
successful for the whole class of recursive functions, no matter which hypo-
thesis space is used. So it is conceivable that a modification of Definition 1
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might yield a learning model allowing for a higher potential of its compatible
learners. An approach discussed in [3] is behaviourally correct identification.
The corresponding model results from learning in the limit, if the demand for
convergence of the sequence of hypotheses is loosened. Here the learner is sup-
posed to eventually return correct programs, yet possibly alternating between
different correct conjectures.

Definition 2 A class C of recursive functions is Bc-identifiable, iff there is
some hypothesis space ψ and some IIM M , such that for any f in C all values
M(f [n]) (n ≥ 0) are defined and all but finitely many of them are ψ-numbers
for f . Bc is the collection of all Bc-learnable classes.

Note that M(f) ↑ is conceivable for an IIM M which Bc-learns a recursive
function f . Learners according with the Bc-model provide a higher potential
than those compatible with the Ex -model, in particular, the set Ex is a proper
subset of Bc, cf. [3]. Still the whole class of recursive functions constitutes
a learning problem no Bc-learner can cope with. A further modification of
technical constraints, formally enabling solvability of this problem, follows
Case and Smith [10]. Their notion of Bc∗-learning results from permitting ‘a
few’ (i. e. finitely many) errors in each hypothesis.

Definition 3 A class C of recursive functions is Bc∗-identifiable, iff there
is some hypothesis space ψ and some IIM M , such that for any f in C all
values M(f [n]) (n ≥ 0) are defined and all but finitely many of them fulfil
ψM(f [n]) =∗ f . Bc∗ denotes the collection of all Bc∗-learnable classes.

According to [10], L. Harrington has verified that each class C of recursive
functions – so in particular even the whole class of recursive functions – is Bc∗-
identifiable. All in all, weakening the constraints in the definition of learning
in the limit yields the hierarchy Ex ⊂ Bc ⊂ Bc∗ expressing an increase in
the learning potential of the corresponding IIMs. In contrast to that, it is
conceivable to strengthen the demands of Definition 1 concerning the mind
change complexity. Since an IIM Ex -learning a recursive function may change
its hypothesis in an unbounded finite number of steps, it will never be possible
to decide whether the time of convergence is already reached. A restricted
learning model with bounds on the number of mind changes is introduced
in [10]. In this model the learner is allowed only a certain number of mind
changes in its sequence of hypotheses; in particular, whenever this capacity of
mind changes is exhausted, the current hypothesis must be correct.

Definition 4 Let M be an IIM which is permitted to return the auxiliary sign
‘?’. A class C of recursive functions is Exm-identifiable by M , iff C is Ex-
learned by M with respect to some hypothesis space ψ, such that for all f in
C the following conditions hold:

(1) there is some k ≥ 0, such that M(f [n]) =? iff n < k,
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(2) card{n |? 6= M(f [n]) 6= M(f [n + 1])} ≤ m.

Exm is the collection of all classes which are Exm-identifiable by some IIM M .

The case m = 0 has been introduced in [13] and is very often referred to as
finite learning. For all bounds m the inclusion Exm ⊂ Exm+1 is verified in [10],
thus revealing an infinite hierarchy Ex 0 ⊂ Ex 1 ⊂ . . . ⊂ Ex of identification
potential. An alternative approach to modifying the Ex -model by increasing
the constraints is to demand special qualities of the intermediate hypotheses.
Of course the desired additional properties should in some sense arise from a
natural motivation, a few examples known from former studies are collected
in Definition 5. To get an insight into the learning potential of IIMs respecting
these properties the reader is referred to [1,3,4,6,11–13,15,21,22].

Definition 5 Let f be any recursive function, M an IIM, ψ any hypothesis
space, n,m ≥ 0. Assume M(f [n]) is defined. The hypothesis M(f [n]) is called

• consistent for f [m] with respect to ψ iff, for all x ≤ m, ψM(f [n])(x) is defined
and equals f(x);

• conform for f [m] with respect to ψ iff, for all x ≤ m, either ψM(f [n])(x) is
undefined or ψM(f [n])(x) = f(x);

• convergently incorrect for f with respect to ψ iff ψM(f [n]) 6⊆ f ;
• total with respect to ψ iff ψM(f [n]) is a total function.

Consistency is a quite natural demand, because any inconsistent hypothesis is
in particular incorrect. But as in general a learner cannot detect an inconsis-
tency in an undefined value, the demand for consistency might be considered
too hard and loosened to the demand for conformity.

Another aspect motivates the approach of learning with convergently incorrect
intermediate hypotheses: if the learner is construed to maintain its current hy-
pothesis, until a fault is detected, then all hypotheses should either be correct
or justify a mind change via a convergently incorrect value. This means in par-
ticular, that no hypothesis should denote a proper subfunction of the function
to be learned. Otherwise a mind change could not be justified convergently.

Finally, it might be natural to demand only total hypotheses, since any guess
corresponding to a non-total function must be wrong anyway.

Definition 6 Let C be a class of recursive functions, M an IIM and ψ some
hypothesis space, such that C is Ex-learned by M with respect to ψ. Then C is
Cons-learned (Conf -, Cex-, Total-learned, resp.) by M with respect to ψ, iff,
for any f in C and n ≥ 0, M(f [n]) is consistent for f [n] (conform for f [n],
either correct or convergently incorrect for f , total, resp.) with respect to ψ.
The notions Cons, Conf , Cex, Total are defined as usual.
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There are numerous studies analysing consistent identification; most of the im-
portant results, including a proof of Cons ⊂ Ex , can be found in [4,6,13,21,22].

Conform learning is defined by a mitigation of the consistency demands, thus
increasing the potential of the relevant learners. Yet there are still learning
problems solvable in the Ex -model, but not in the Conf -model; for a proof of
Cons ⊂ Conf ⊂ Ex the reader is referred to [21]. More details on conform
identification are collected in [12].

[11] supplies the main results concerning Cex , in particular, the separations
Cex ⊂ Ex , Cex #Cons, and Cex #Exm for all m ≥ 1 are verified there.

Finally, see [8,9,15] for identification with total intermediate hypotheses. Of
relevance for the subsequent sections, most of all the result Total ⊂ Cons ,
cf. [15], must be mentioned.

The reason to consider so many inference types is the purpose to really cor-
roborate the thought of universal dependencies in inductive inference: it will
be shown that known relations between inference types (see Theorem 8) still
hold in uniform learning, even when strong separations are considered. To give
evidence to this fact, it is necessary to regard a few inference types; the ones
defined here have been chosen, because they can be classified into the three
kinds of inference types mentioned above:

• Exm for m ≥ 0, Bc, and Bc∗ are types resulting from special constraints
concerning the success criterion of the sequence of hypotheses (where Bc∗

also includes modified accuracy demands);
• Cex and Total are types resulting from special constraints concerning the

quality of the intermediate hypotheses, independent of the amount of infor-
mation currently known about the target function;

• Cons and Conf are types resulting from special constraints concerning the
quality of the intermediate hypotheses, depending on the information cur-
rently known about the target function.

For each kind of inference type the strong separation results will be verified.

The set of all inference classes defined above is denoted by I.

I := {Ex ,Bc,Bc∗,Cons,Conf ,Cex ,Total} ∪ {Exm | m ≥ 0} .

Note that the term inference type formally refers to a class in I, but informally
also to the corresponding underlying learning model.

Lemma 7 alludes to two simple and fundamental results commonly used in
the literature, also mentioned in [13] and [22].

Lemma 7 Let I ∈ I, C ∈ I and let τ be any acceptable numbering. Then C
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can be I-learned with respect to the hypothesis space τ by some IIM. Moreover,
if I /∈ {Cons,Conf } and ψ is a hypothesis space, such that C is I-learnable
with respect to ψ, then there is some total IIM adequate for I-identification of
C with respect to ψ.

For a counterexample to the second statement of Lemma 7, respecting Cons-
identification, see [22]. Moreover, if that statement held for Conf , then it
would be possible to show its validity also for Cons in contradiction to [22].
Details are omitted.

The following theorem is a summary of the known results concerning the
potential of learners obeying different formal constraints.

Theorem 8 [3,4,6,10,11,15,21]

(1) Exm ⊂ Exm+1 ⊂ Ex ⊂ Bc ⊂ Bc∗ for all m ≥ 0, {f | f recursive} ∈ Bc∗,
(2) Ex 0 ⊂ Total ⊂ Cons ⊂ Conf ⊂ Ex,
(3) Total ⊂ Cex ⊂ Ex,
(4) Cex #Cons, Cex #Conf ,
(5) Exm # I for all m ≥ 1 and all I ∈ {Total ,Cex ,Cons,Conf }.

For most of the results references have been given above. The verification of
Ex 0 ⊂ Total is straightforward, moreover Total ⊂ Cex follows from Total ⊆
Cex , Total ⊂ Cons, and Cex \Cons 6= ∅. To obtain Cex #Conf similar ideas
as in the proof of Cex #Cons in [11] can be used. Adapting conceptions pro-
vided in [11] additionally yields Exm #Cons and Exm #Conf for all bounds
m ≥ 1. Finally Exm #Total can be verified for m ≥ 1 with the help of the
result Exm #Cex and its proof.

3 The model of uniform learning

3.1 Definitions

The scope of uniform learning is to view the learning conceptions defined
above on a meta-level. The formal analysis is not only concerned with the
existence of methods solving specific learning problems, but in particular with
the question whether such methods can be synthesized in a universal way.
So the focus is on families of learning problems (here families of classes of
recursive functions). Given a representation or description of any of these
learning problems, the aim is to effectively determine a strategy solving the
particular problem, i. e. to generate an adequate learner. So, from a description
of a class of recursive functions, we want to compute a program for a successful
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IIM learning the class.

In order to allow for a formal definition of uniform learning it is first of all
necessary to agree on a scheme for describing classes of recursive functions
(i. e. a scheme for describing learning problems). For that purpose from now
on a fixed three-place acceptable numbering ϕ is considered. For d ≥ 0, the
numbering ϕd is defined as the function resulting from ϕ, if the first input
is fixed by d. Then any number d corresponds to a two-place numbering ϕd

enumerating the set {ϕdi | i ≥ 0} of partial-recursive functions. Now it is
conceivable to consider the subset of all total functions in {ϕdi | i ≥ 0} as a
learning problem which in particular is uniquely determined by the number d.
Thus each number d acts as a description of the set Rd, where

Rd := {ϕdi | i ≥ 0 and ϕdi is recursive} for any d ≥ 0 .

The set Rd is also called the recursive core of the numbering ϕd. Moreover each
(finite or infinite) set D = {d0, d1, d2, . . .} of natural numbers can be regarded
as a set of descriptions and thus as a collection of the learning problems Rd0 ,
Rd1 , Rd2 , . . . In this context, D is called a description set.

A meta-IIM is an IIM expecting two inputs: firstly, a natural number d in-
terpreted as a description of some recursive core, and secondly, a coding f [n]
of an initial segment of some recursive function f . If M is a meta-IIM and d
any description, then Md denotes the IIM resulting from M , when the first
input is fixed by d. So a meta-IIM M can also be regarded as some kind of
‘computable function’ mapping descriptions d to IIMs Md (usually of course
the value set of a computable function does not consist of IIMs, but perhaps
of programs for IIMs). Now, if D is any set of natural numbers (i. e. descrip-
tions), M is a uniform learner successful on D, in case Md learns Rd for all
d ∈ D. That means M is supposed to develop a suitable learner from each de-
scription in the set D. Following Lemma 7 an acceptable numbering is chosen
as a hypothesis space.

Definition 9 Let I ∈ I and let D be a set of natural numbers. Fix an ac-
ceptable numbering τ . D is uniformly I-learnable iff there is a meta-IIM M ,
such that, for any description d ∈ D, the IIM Md is an I-learner for the class
Rd with respect to τ . UniI denotes the collection of all uniformly I-learnable
description sets.

Fixing an acceptable numbering as a hypothesis space is a straightforward
idea, because all learnability results will remain valid in any acceptable num-
bering, i. e. Definition 9 is independent of the choice of τ . But this is not the
only suggestive notion of hypothesis spaces in uniform learning. Note that
each numbering ϕd enumerates at least all functions in Rd, so a meta-IIM
might also try to use ϕd as a hypothesis space when learning Rd. This is just a
special case of learning with respect to Definition 9, because ϕd-programs can
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be uniformly translated into programs in a fixed acceptable numbering. As it
goes along with stricter demands than in the UniI -model, this conception is
referred to by the term restricted uniform learning.

Definition 10 Let I ∈ I and let D be a set of natural numbers. D is uniformly
I-learnable with restricted choice of hypothesis spaces iff there is a meta-IIM
M , such that, for any description d in D, the IIM Md is an I-learner for the
class Rd with respect to ϕd. resUniI denotes the collection of all description
sets which are uniformly I-learnable in this restricted sense.

Just as there exists a reasonable restriction of the UniI -model, it is also possi-
ble to extend the view of uniform learning by weakening the formal constraints
of Definition 9. If the meta-IIM is no longer required to synthesize suitable
hypothesis spaces for the particular learning problems, UniI -learning is gen-
eralized to the model of extended uniform learning. Here the meta-IIM must
only develop learners from descriptions; it is sufficient if the corresponding
adequate hypothesis spaces exist.

Definition 11 Let I ∈ I and let D be a set of natural numbers. D is uniformly
I-learnable with extended choice of hypothesis spaces iff there is a meta-IIM
M , such that, for any description d in D, the IIM Md is an I-learner for the
class Rd with respect to some arbitrary hypothesis space ψ. extUniI denotes
the collection of all description sets which are uniformly I-learnable in this
extended sense.

It is not hard to verify that

resUniI ⊆ UniI ⊆ extUniI

for all I ∈ I. In general, equality of these classes does not hold, as will be shown
implicitly in the subsequent examples and theorems. Hopefully, the following
examples give a bit more insight into the concept of uniform learning.

Firstly, consider the whole set of natural numbers as a description set D. As
there are numbers d, such that Rd equals the class of all recursive functions
(which is not Bc-learnable), this set D cannot be uniformly Bc-learnable. This
even holds in the extended model. Therefore D /∈ extUniI for all I ∈ I\{Bc∗}.
As there is an IIM M∗ which Bc∗-learns the whole class of recursive functions
with respect to a given acceptable numbering τ , the meta-IIM M , satisfying
Md = M∗ for all d, witnesses D ∈ UniBc∗. In contrast to that, D is not
resUniBc∗-identifiable (see [23]).

Secondly, define the description set D by

D := {d | ϕd is a total recursive numbering} .

This implies that Rd equals the set {ϕdi | i ≥ 0} for all d in D. Now let a meta-
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IIM M on input (d, f [n]) return the least i satisfying ϕdi [n] = f [n]. 3 Then M
is a meta-IIM witnessing D ∈ resUniCons and D ∈ resUniTotal , and thus
also D ∈ resUniI for all I ∈ {Conf ,Cex ,Ex ,Bc,Bc∗}. But, given m ≥ 0,
the set D is not extUniExm-learnable: obviously, there is some description
d in D, such that the corresponding recursive core Rd equals the class {f |
f is recursive and f =∗ 0∞} of all recursive functions of finite support. This
class is not Exm-learnable and therefore no description set containing d can
be uniformly Exm-learnable – even in the extended sense.

Thirdly, consider the description set D := {d | cardRd = 1} representing
all singleton recursive cores. Defining a meta-IIM M by M(d, f [n]) = 0 for
all d, n and all recursive functions f shows that D ∈ extUniI for all I ∈ I:
for any recursive function f there is a numbering ψ, such that ψ0 = f . So, if
d ∈ D, Rd = {f}, then some ψ fulfils ψMd(f [n]) = f for all n ≥ 0. But, as can be
found in [23], there is no appropriate IIM for uniform Bc-learning or restricted
uniform Bc∗-learning of the set D, i. e. D /∈ UniBc and D /∈ resUniBc∗. An
idea for the corresponding proofs can also be found in Example 16 below.

3.2 Helpful results

As in the non-uniform model, identifiability implies the existence of appropri-
ate total meta-IIMs, if neither consistency nor conformity of the intermediate
hypotheses is required, cf. Lemma 7. In most cases such total meta-IIMs can
be constructed uniformly.

Proposition 12 Let I ∈ I \ {Cons,Conf }. There is a family (MT i)i≥0 of
meta-IIMs satisfying the following properties.

(1) A program for MT i can be uniformly computed from i.
(2) All machines MT i, i ≥ 0, are total.
(3) If D ∈ UniI (or extUniI ), then there is some i ≥ 0, such that the

machine MT i learns D with respect to the model UniI (extUniI , respec-
tively).

(4) If I /∈ {Cex ,Total} and D ∈ resUniI , then there is some i ≥ 0, such
that the machine MT i learns D with respect to the model resUniI .

Note that the family (MT i)i≥0 may depend on the inference criterion I ∈
I\{Cons ,Conf } chosen in advance. The benefit of Proposition 12 shows in its
applications in the proofs of various non-learnability results. If the purpose is
to verify that a certain description set is not suitable for uniform learning in
some specified model, it will in some cases be sufficient to defeat all recursive
IIMs in an indirect proof.

3 This is the uniform version of Gold’s identification by enumeration, cf. [13].
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The following examples illustrate learning problems for which Proposition 12
does not remain valid.

Example 13 Let I ∈ {Cons,Conf ,Cex ,Total}; fix a description set D by

D := {d | Rd = {0∞} and there is exactly one index i such that ϕdi (0) = 0} .

Then D belongs to resUniI , but D is not resUniI -identifiable by any total
meta-IIM.

Example 14 Let I ∈ {Cons,Conf } and define a description set D by

D := {d | ϕd is a recursive function} .

Then D belongs to resUniI , but D is not extUniI -identifiable by any total
meta-IIM.

Proofs for both examples are included in [26].

4 Results on learning of unions

As has been alluded to in the introduction, the investigation of unions of
uniformly learnable description sets is of particular interest with the prospect
of strong separation results. The analysis below concerns the question, what
properties regarding two arbitrary description sets D1, D2 in UniI (or in
resUniI , extUniI ) for some I ∈ I are sufficient for uniform learnability of the
union D1 ∪ D2. Since the whole class of recursive functions is Bc∗-learnable,
the classes UniBc∗ and extUniBc∗ are closed with respect to the union of
sets, whereas in the general case even unions of rather ‘simple’ description
sets yield negative results. The following examples illustrate this fact.

Example 15 Define two description sets by D1 := {d | Rd = {ϕd0} = {0∞}}
and D2 := {d | there is some m such that Rd = {ϕd1} = {0m1∞}}. Then both
D1 and D2 belong to resUniEx 0, but the union D1 ∪ D2 is not contained in
UniEx 0.

Proof. Let i ∈ {1, 2}. Obviously the meta-IIM returning i − 1 on any input
is successful for Di according to the resUniEx 0-model. Now assume D1 ∪
D2 ∈ UniEx 0. This implies the existence of some total meta-IIM M and some
acceptable numbering τ , such that Rd is Ex 0-learned by Md with respect
to τ , whenever d belongs to D1 ∪ D2. A contradiction can be revealed by
constructing a description d∗ ∈ D1 ∪ D2, such that Md∗ fails to Ex 0-identify
Rd∗ in the hypothesis space τ . The construction of d∗ proceeds as follows.
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First for each number d a numbering ψ is defined, such that its recursive core
R fulfils

(1) R = {ψ0} = {0∞} or R = {ψ1} = {0m1∞} for some m,
(2) Md does not learn R in τ according to the Ex 0-model.

The recursion theorem (see [20]) then supplies some fixed point value d∗

which serves as a description for exactly the numbering ψ constructed from
d∗ (i. e. ϕd

∗

= ψ; in particular, Rd∗ equals the recursive core R of ψ). The
properties (1) and (2) then imply d∗ ∈ D1 ∪ D2 and Md∗ does not learn Rd∗

in τ with respect to the Ex 0-model. This provides the desired contradiction.

More formally: for any number d a partial-recursive numbering ψ is con-
structed as follows. Start defining ψ0(x) = 0 for gradually growing x; in parallel
look for some number x ≥ 1 satisfying

Md(0
x) 6=? and τMd(0x)[x] = 0x+1 .

Case A. Such a number x exists. Then let m be the first such number x
found; stop defining ψ0 any further, i. e. ψ0 = 0z ↑∞ for some z. Instead let
ψ1 = 0m1∞. Moreover ψi =↑∞ for all i ≥ 2.

Remark. If no such number x exists, then the search for m does not terminate.
Hence ψ0 = 0∞ and ψi =↑∞ for i ≥ 1. End construction of ψ.

As the whole construction is uniformly effective in d, the recursion theorem
supplies some number d∗, such that ϕd

∗

equals the numbering ψ constructed
from d∗.
If case A does not occur in the definition of ψ, then, by the remark above,
Rd∗ = {ϕd

∗

0 } = {0∞}, so d∗ belongs to D1. In this case there is no x ≥ 1, such
that Md∗(0

x) 6=? and τMd∗ (0x) = 0∞. Therefore Rd∗ is not Ex 0-learned by Md∗

in τ .
If case A occurs in the definition of ψ, then Rd∗ = {ϕd

∗

1 } = {0m1∞}, where m
is the first number found in the corresponding construction. In particular, d∗

belongs to D2. Moreover Md∗(0
m) 6=? and τMd∗(0m)[m] = 0m+1. This implies

τMd∗(0m) 6= 0m1∞, so Md∗ makes a wrong guess on 0m1∞ with respect to τ .
Therefore again Rd∗ is not Ex 0-learned by Md∗ in τ .

Since both cases result in a contradiction, the assumption D1 ∪D2 ∈ UniEx 0

must be wrong. This completes the proof. 2

For the next example recall that in finite numberings almost all programs
correspond to the empty function ↑∞.

Example 16 Define description sets D,D1, D2 by D := {d | Rd = {ϕd0}},
D1 := {d | cardRd = card{i | ϕdi is recursive} = 2 and ϕd is finite}, as well
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as D2 := {d | card{i | ϕdi is recursive} = 1 and ϕd is finite}. Then D ∈
resUniEx 0, moreover D1 and D2 belong to resUniCons. In contrast to that
D ∪D1 /∈ extUniEx , D ∪D2 /∈ UniBc, and D ∪D2 /∈ resUniBc∗.

Proof. D is resUniEx 0-learned by the meta-IIM constantly zero. To identify
functions in some Rd, where d belongs to D1 or D2, let a meta-IIM simulate a
learner that – given f [n] – returns some arbitrary program consistent for f [n]
with respect to ϕd. By definition of D1 and D2 this method must be successful
according to the resUniCons-constraints.

Next assume D∪D1 ∈ extUniEx via some total meta-IIM M . As in the proof
of Example 15, from any number d a numbering ψ is constructed uniformly,
such that some fixed point value d∗ ∈ D∪D1 provides a contradiction, namely
that Rd∗ is not Ex -learned by Md∗ (in any hypothesis space). Since the argu-
mentation is similar to that in the proof of Example 15, just the crucial ideas
are presented.

For each number d construct a two-place function ψ in stages. In stage 0 let
ψ0(0) = 0, n1 = 0, and go to stage 1. In each stage k, for k ≥ 1, proceed as
follows.

Let ψ2k−1[nk+1] = ψ0[nk]0, ψ2k[nk+1] = ψ0[nk]1; moreover consider the guess
Md(ψ0[nk]) as the current hypothesis of Md. Then extend both ψ2k−1 and ψ2k

with a sequence of the value 0, until Md changes its mind on at least one of
the two extensions.

Case A. After m steps Md changes its mind on some extension. Let nk+1 =
nk +m+ 2.

Case A.1. Md(ψ0[nk]00m) 6= Md(ψ0[nk]).
Then define ψ0[nk+1] = ψ0[nk]00m2. Moreover suspend the definition of the
functions ψ2k−1 and ψ2k forever and go to stage k + 1.

Case A.2. Md(ψ0[nk]00m) = Md(ψ0[nk]).
Then Md(ψ0[nk]10m) 6= Md(ψ0[nk]). Let ψ0[nk+1] = ψ0[nk]10m2 and let both
functions ψ2k−1 and ψ2k remain initial; go to stage k + 1.

(* In case A the IIM Md changes its mind on the extension of ψ0 constructed
in stage k. *)

Remark 1. If Md never changes its mind on any of the extensions (i. e. case A
does not occur), then stage k does not terminate. In this case ψ0 is not defined
any further, i. e. ψ0 = ψ0[nk] ↑

∞, ψ2k−1 = ψ0[nk]00∞, ψ2k = ψ0[nk]10∞, and
ψi =↑∞ for all i > 2k. In particular, the recursive core of ψ equals the set
{ψ2k−1, ψ2k}. As Md(ψ2k−1) = Md(ψ2k) = Md(ψ0[nk]), the IIM Md is not Ex -
successful for this recursive core. Moreover note that 2k − 1 and 2k are the
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only ψ-programs of total functions in this case. End stage k.

Now Md does not Ex -learn the recursive core R of ψ in any hypothesis space: if
case A never occurs in any stage of the definition of ψ, see the corresponding
remark 1. If case A always occurs, then all stages k ≥ 1 are reached. This
implies R = {ψ0} and, by the note in case A, Md changes its mind on ψ0

infinitely often. In particular, Md cannot Ex -identify R.

Next, recall that there must be some d∗, such that ϕd
∗

equals the numbering
ψ constructed from d∗. With the help of the above remarks it is not hard to
verify that d∗ belongs to D ∪D1 and that Rd∗ is not Ex -learned by Md∗ . So
D ∪D1 /∈ extUniEx .

A similar construction verifies D ∪ D2 /∈ UniBc. Given a total meta-IIM M
and some acceptable numbering τ , for each number d again some numbering
ψ is constructed in stages. In stage 0, let ψ0(0) = 0, n1 = 0, and go to stage 1.
In stage k, k ≥ 1, let ψk[nk] = ψ0[nk] and extend ψk with zeros, until some
number m is found, such that

τMd(ψ0[nk]0m)(nk +m+ 1) is defined and equals 0 .

If such an m is found, suspend the definition of ψk forever. In this case let
nk+1 = nk + m + 1, ψ0[nk+1] = ψ0[nk]0

m1 and go to stage k + 1. Note that
now Md(ψ0[nk]0

m) is a wrong guess for ψ0 with respect to τ . In case no such
number m exists, stage k is never left and ψk = ψ0[nk]0

∞, whereas ψi =↑∞

for all i > k. This implies that none of the hypotheses Md(ψk[n]), for n ≥ nk,
is a τ -program for ψk.

Via the usual argumentation this construction will prove D ∪D2 /∈ UniBc.

Finally, if D∪D2 was resUniBc∗-identifiable, then also D∪D2 ∈ UniBc would
hold (cf. a proof in [23]) – a contradiction. 2

These two examples first of all show that in general the classes UniI , resUniI ,
and extUniI , resulting from different models of uniform learning, are not
closed with respect to the union of description sets. That means, considering
two learnable description sets, we cannot be sure that their union is also
uniformly learnable. This explains a need for additional conditions concerning
the two description sets, such that learnability of the union can be guaranteed.
Theorem 17 proposes a first conception in view of that purpose.

Theorem 17 Let I ∈ I and assume D1 and D2 are description sets in UniI
(or in resUniI , extUniI , respectively).

(1) If D1 is recursive, then the union D1 ∪D2 belongs to UniI (or resUniI ,
extUniI , respectively).
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(2) If both D1 and D2 are r. e., then the union D1 ∪D2 belongs to UniI (or
resUniI , extUniI , respectively).

(3) If I ∈ {Ex ,Bc,Bc∗} and at least one of the sets D1, D2, D1 \ D2 is
r. e., then the union D1 ∪ D2 belongs to UniI (or resUniI , extUniI ,
respectively).

Proof. Fix I ∈ I and D1, D2 ∈ UniI . For the restricted and the extended
models all proofs proceed analogously. Choose meta-IIMs M1 and M2 appro-
priate for UniI -learning of D1 and D2, respectively.

ad (1). Assume D1 is recursive. Given any number d, let a meta-IIM M simu-
late M1, if d belongs to D1, and M2, otherwise. Obviously M witnesses asser-
tion 1. qed (1).

ad (2). Assume that both D1 and D2 are r. e. Given d, let a meta-IIM M
search in the value sets of some enumerations of D1 and D2, until d is found
to belong to some Di (i ∈ {1, 2}). Afterwards M can simulate M i, so M is a
UniI -learner for D1 ∪D2. qed (2).

ad (3). Let I ∈ {Ex ,Bc,Bc∗} and assume that D1 (D2, D1 \ D2) is r. e. via
some effective enumeration π. Let d be a natural number. The desired meta-
IIM just has to simulate M2, as long as d is not found in the value set of π.
Afterwards M1 can be simulated. qed (3). 2

Note that the third assertion of Theorem 17 is not stated for all of the inference
types in I. As will be shown in Theorem 20, this assertion really does not hold
in the general case. Still, if learning with consistent intermediate hypotheses
is considered, at least parts of the statement remain valid.

Theorem 18 Let D1 and D2 be description sets, such that D1 or D2 or D1 \
D2 is r. e. Moreover assume D2 ∈ UniCons.

(1) If D1 ∈ extUniCons, then D1 ∪D2 ∈ extUniCons.
(2) If D1 ∈ UniCons, then D1 ∪D2 ∈ UniCons.

Proof. Let π be a partial-recursive function with the value setD1 (orD2 orD1\
D2). As D2 belongs to UniCons, there must be an acceptable numbering τ as
well as a meta-IIM M2, such that M2

d learns the recursive core Rd consistently
with respect to τ , whenever d ∈ D2.

ad (1). Assume D1 ∈ extUniCons . This implies the existence of numberings
ψ[d] (d ∈ D1) and a meta-IIM M1 appropriate for uniform Cons-learning of D1

in the following sense: if d belongs to D1, then M1
d learns the recursive core Rd

with consistent intermediate hypotheses with respect to ψ[d]. Now it remains
to define new hypothesis spaces η[d] for d ∈ D1 ∪D2 and a new meta-IIM M
suitable for uniform Cons-learning of D1 ∪D2.
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The new hypothesis spaces just result from ‘mixing’ the numberings ψ[d] with
the acceptable numbering τ . Thus the hypotheses of both M1 and M2 can be
translated into the new numberings, if necessary. Formally let

η
[d]
2i :=







ψ
[d]
i , if d ∈ val(π) ,

4∞ , otherwise ,

η
[d]
2i+1 := τi ,

for all i.

The idea for the new meta-learner, given a number d, is to translate the hypo-
theses of M1 into the numbering η[d], as soon as d has been found in the value
set of π. In parallel with the membership test for d with respect to val(π)
the learner just checks the hypothesis of M2 for consistency in the hypothesis
space τ . A positive consistency test allows to translate the corresponding hy-
pothesis of M2 into η[d]. So define

Md(f [n]) :=















2M1
d (f [n]) , if test A stops within n steps or

if test A stops before test B ,

2M2
d (f [n]) + 1 , otherwise ,

where test A and test B work as follows.

Test A. Enumerate the value set of π and stop as soon as d is listed.

Test B. Compute M2
d (f [n]) = j, then τj(0), . . . , τj(n). Stop in case j is consis-

tent for f [n] with respect to τ .

Now, if d belongs to D2 \ D1 and f is any element of Rd, test A will never
stop for any n, whereas test B will always stop. So Md(f [n]) = 2M2

d (f [n]) + 1
for all n. By choice of M2 and definition of η[d] the IIM Md then learns f with
consistent hypotheses with respect to η[d].

If d belongs to the value set of π, thenM1
d is a Cons-learner for Rd with respect

to ψ[d]. Since test A will stop within a fixed number of steps, the first case in
the definition of Md will be relevant in the limit for all functions in Rd, i. e. Md

learns Rd with respect to η[d] in the limit. All intermediate hypotheses must
also be consistent: in each step either the hypothesis of the suitable Cons-
learner M1

d is translated, or the hypothesis of M2
d is translated after a positive

consistency check in test B.

All in all M is a meta-IIM appropriate for uniform Cons-learning of the set
D1 ∪D2 with respect to the hypothesis spaces η[d] defined above. qed (1).
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ad (2). Assume D1 ∈ UniCons. Without loss of generality the numbering τ is
suitable as a hypothesis space for UniCons-identification of D1, say via some
meta-IIM M1.

The same idea as in assertion (1) shows that the meta-IIM M , defined by

Md(f [n]) :=















M1
d (f [n]) , if test A stops within n steps or

if test A stops before test B ,

M2
d (f [n]) , otherwise ,

is appropriate for UniCons-identification of D1 ∪D2 with respect to τ . Here
test A and test B are defined as above. qed (2). 2

So the results of Theorem 17.(3) concerning Ex -, Bc-, and Bc∗-identification
can be transferred to consistent learning in many cases. Considering identi-
fication with a bounded number of mind changes, the results are not that
straightforward. Still, a simple positive result is obtained, if the demands con-
cerning the number of mind changes allowed for learning the union of two sets
are loosened.

Theorem 19 Let D1 and D2 be description sets and fix m1, m2 ≥ 0. If D1 ∈
extUniExm1

and D2 ∈ extUniExm2
, then the union D1 ∪D2 is an element of

extUniExm1+m2+1.

Proof. Without loss of generality choose total meta-IIMs M i (i ∈ {1, 2}), such
that M i learns Di according to extUniExmi

and M i
d never changes its mind

more than mi times (no matter what d and what graph M i is fed with). In
particular, for each i ∈ {1, 2} and d ∈ Di there is some hypothesis space ψ[d]

which is suitable for Exmi
-learning of Rd via M i

d.

For each number d now define a numbering η[d] by

η
[d]
〈y,z〉 :=















ψ[d]
y , if d ∈ D1 ,

ψ[d]
z , if d ∈ D2 \D1 ,

4∞ , otherwise ,

for all y, z. These numberings η[d] can be used as hypothesis spaces for a new
meta-IIM M which, given d and f [n], works as follows:

Md(f [n]) :=



























? , if M1
d (f [n]) = M2

d (f [n]) =? ,

〈M1
d (f [n]), 0〉 , if M1

d (f [n]) 6=? and M2
d (f [n]) =? ,

〈0,M2
d (f [n])〉 , if M1

d (f [n]) =? and M2
d (f [n]) 6=? ,

〈M1
d (f [n]),M2

d (f [n])〉 , if M1
d (f [n]) 6=? and M2

d (f [n]) 6=? .
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Since for any i ∈ {1, 2} and any description d the IIM M i
d changes its mind at

most mi times on any input sequence, Md must be appropriate for Exm1+m2+1-
identification of Rd with respect to the hypothesis space η[d]. This implies
D1 ∪D2 ∈ extUniExm1+m2+1. 2

Theorem 19 straightly raises the question whether the upper boundm1+m2+1
for the number of mind changes constitutes the optimal result. The following
theorem now provides two insights: firstly, the bound m1 +m2 +1 is tight, and
secondly, the third assertion of Theorem 17 does not remain valid for uniform
identification in the Exm-models.

Theorem 20 Let m1, m2 ≥ 0. There exist description sets D1 and D2 such
that

(1) Di belongs to resUniExmi
for i ∈ {1, 2},

(2) for all d in D1∪D2 the recursive core Rd consists of at most two functions
(at most one function),

(3) D1 is r. e., but
(4) the union D1 ∪ D2 does not belong to extUniExm1+m2

(UniExm1+m2
,

respectively).

Proof. Let (MT i)i≥0 be the enumeration of total meta-IIMs according to
Proposition 12. We only prove the statement for the extUni -model, the proof
for the Uni -model uses similar ideas, see also [26].

First a description set D (= D1 ∪D2) is defined via the uniform construction
of partial-recursive functions ψ, each depending on an index i of some MT i

and a description d. By construction, MT i
d will be inappropriate for learning

the recursive core of ψ. The recursion theorem will yield a recursive function
fp, such that ϕfp(i) always equals the numbering ψ constructed from i and
d = fp(i). D will be the value set of fp, D1 some suitable r. e. subset of D, and
D2 = D \D1. In particular, any total meta-IIM MT i – given the description
fp(i) – will fail to identify Rfp(i) with no more than m1 + m2 mind changes.
This implies D1 ∪D2 = D /∈ extUniExm1+m2

.

Given i and d, construct a numbering ψ in stages as follows.

In stage 0 let ψ0(0) = 0 and extend ψ0 with a sequence of zeros, until MT i
d

returns some value different from ‘?’ on a sequence ψ0[n1] = 0n1+1 constructed
so far.

Case A. n1 exists (so MT i
d(0

n1+1) 6=?).
Then let ψ0 = 0n1+12 ↑∞, α1 = 0n1+1, and go to stage 1.

Remark. If MT i
d(0

x) =? for all x (i. e. case A does not occur), then stage 0 does
not terminate. Hence ψ0 = 0∞ and MT i

d does not Ex -identify ψ0. Moreover
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ψi =↑∞ for all i ≥ 0.

In stage k, 1 ≤ k ≤ m1 + m2, let ψ2k−1[nk + 1] = αk0, ψ2k[nk + 1] = αk1.
Extend both ψ2k−1 and ψ2k with zeros, until MT i

d changes its mind on either
extension (i. e. on some segment αk00y or αk10y).

Case A. y exists.
Then let ψ2k−1 = αk00y2 ↑∞ and ψ2k = αk10y2 ↑∞; define nk+1 = nk + y + 1
and

αk+1 :=















αk00y , if MT i
d(αk00y) 6= MT i

d(αk) ,

αk10y , if MT i
d(αk00y) = MT i

d(αk) ,

(so MT i
d(αk10y) 6= MT i

d(αk)) .

Go to stage k + 1.

Remark. If MT i
d never changes its mind on any of these extensions (i. e. case A

does not occur), then stage k does not terminate. Hence ψ2k−1 = αk00∞,
ψ2k = αk10∞, but

MT i
d(ψ2k−1) = MT i

d(ψ2k) = MT i
d(αk) ,

that means MT i
d does not Ex -learn {ψ2k−1, ψ2k}. Moreover ψi is initial for all

i /∈ {2k − 1, 2k}.

In stage m1 + m2 + 1 finally define ψ2m1+2m2+1 = αm1+m2+100∞ as well as
ψ2m1+2m2+2 = αm1+m2+110∞. In addition let ψx =↑∞ remain undefined for
x > 2m1 + 2m2 + 2. End construction of ψ.

By the recursion theorem there is a recursive function fp, such that ϕfp(i)

equals the numbering ψ constructed from i and fp(i), whenever i ≥ 0. Now
define D := {fp(i) | i ≥ 0}. Note that even D is r. e. Moreover let

D1 := {fp(i) | i ≥ 0 and 2 ∈ val(ϕ
fp(i)
2m2

)} , D2 := D \D1 .

Obviously, D1 is r. e. and for all d ∈ D1 ∪ D2 the recursive core Rd consists
of at most two functions. A possible strategy for Ex -learning such a recursive
core is to look for the value 2 in the value set of the numbering ϕd and always
to return the minimal ϕd-program, for which the value 2 has not yet been
found in the corresponding function.

If d ∈ D2, then stage m2 + 1 is not reached. By construction, any IIM using
the strategy above will be successful for Rd in the sense of Exm2

.

If d ∈ D1, then stage m2 +1 is reached. As there are at most m1 stages left, an
IIM applying the method explained above to all programs greater than 2m2

will Exm1
-identify the class Rd.
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Finally, if D1∪D2 was in extUniExm1+m2
, there would be some number i, such

that MT i is an appropriate meta-IIM forD1∪D2 according to extUniExm1+m2
.

Now let d = fp(i). The construction of ψ then implies that Rd is not Exm1+m2
-

learned by MT i
d (with respect to any hypothesis space). To verify this consider

the following argumentation.

Firstly, if stage m1 +m2 +1 is reached in the corresponding construction, then
MT i

d must change its hypothesis at least m1 + m2 + 1 times on one of the
functions ϕd2m1+2m2+1, ϕ

d
2m1+2m2+2 in order to identify both. The reason for

this is that the current segment αm1+m2+1 is constructed to force MT i
d into

m1 +m2 mind changes. Note that the two distinct functions ϕd2m1+2m2+1 and
ϕd2m1+2m2+2 both have the initial segment αm1+m2+1 in common.

Secondly, if stage m1+m2+1 is not reached in the corresponding construction,
then case A was not fulfilled at some stage before, so MT i

d does not Ex -learn
the recursive core Rd.

Thus D1 ∪D2 /∈ extUniExm1+m2
. 2

Corollary 21 Let D := {d | Rd = {ϕd0}}. Then D belongs to resUniEx 0 and
the following assertions hold.

(1) If I ∈ I \ {Bc,Bc∗}, there is some D′ in resUniI satisfying D ∪ D′ /∈
extUniI . Moreover, D′ can be chosen such that, for any d ∈ D′, Rd

consists of at most two functions.
(2) If I ∈ I \ {Bc∗}, there is some D′ in resUniI satisfying D ∪D′ /∈ UniI .

Moreover, D′ can be chosen such that, for any d ∈ D′, Rd is a singleton.
(3) For all I ∈ I there is some D′ in resUniI satisfying D ∪D′ /∈ resUniI .

Moreover, D′ can be chosen such that, for any d ∈ D′, Rd is a singleton.

Proof. Given I = Exm for some m ≥ 0 the statement is verified as Theorem 20,
where m1 = 0 and m2 = m. In all other cases the assertions are immediate
consequences of Example 16. 2

Up to now we have discussed several conditions sufficient for the uniform
learnability of unions of description sets. In particular, the condition proposed
in Theorem 17.(3) for the inference types Ex , Bc, and Bc∗ turned out not
binding for some other inference types. This might at first suggest that the
conditions in Theorem 17 are quite demanding in the sense that it is not easy to
formulate much weaker sufficient conditions. But a second glance reveals some
kind of inaccuracy of Theorem 17: the properties required there always concern
only the structure of the description sets without alluding to the structure of
the corresponding recursive cores. Thus it is easy to find two simple description
sets D1, D2, which are not r. e. (so the condition in Theorem 17.(3) is not
fulfilled), but still the union D1 ∪ D2 belongs to resUniEx 0. For illustration
consider the following example: let X be any set of natural numbers such that
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neither X nor X is r. e. Moreover define

D1 := {d | Rd = {ϕd0} = {0i∞} for some i ∈ X} ,

D2 := {d | Rd = {ϕd1} = {1i∞} for some i ∈ X} .

The sets D1, D2 are not r. e., because otherwise X, X were r. e. But the
meta-IIM M constructed to make Md(f [n]) always return f(0) witnesses to
D1 ∪ D2 ∈ resUniEx 0. The reason is that the specific form of the functions
in the recursive cores indicates which of the two sets the current description
belongs to. So a successful meta-IIM does not need to exploit any special
structures of the description sets.

These observations propose the choice of sufficient conditions much weaker
than those in Theorem 17, based on the aim to use both the specific structure
of the description sets and the specific information provided by the functions
in the corresponding recursive cores. These two parts form the information
presented in the learning process, so they can both be exploited by successful
meta-IIMs. Definition 22 suggests some notions useful in that sense.

Definition 22 Let D1 and D2 be two description sets of natural numbers.
Then a computable function e is said to fulfil

• Property α, iff
(1) e(d, f(0)) = 0 for all descriptions d ∈ D1 and all functions f ∈ Rd,
(2) e(d, f(0)) = 1 for all descriptions d ∈ D2 \D1 and all functions f ∈ Rd;
• Property β, iff
(1) for all descriptions d ∈ D1 and all functions f ∈ Rd there is some number

n, such that e(d, f [n]) = 0 and e(d, f [n′]) =? whenever n′ < n,
(2) for all descriptions d ∈ D2 \ D1 and all functions f ∈ Rd there is some

number n, such that e(d, f [n]) = 1 and e(d, f [n′]) =? whenever n′ < n;
• Property γ, iff
(1) for all descriptions d ∈ D1 and all functions f ∈ Rd there is some number

n, such that e(d, f [n′]) = 0 whenever n′ ≥ n,
(2) for all descriptions d ∈ D2 \ D1 and all functions f ∈ Rd there is some

number n, such that e(d, f [n′]) = 1 whenever n′ ≥ n.

D1 and D2 possess Property α (Property β, Property γ), iff there is a com-
putable function e satisfying Property α (Property β, Property γ, respectively)
for D1 and D2.

Note that Property α implies Property β and if some computable function sat-
isfies Property β for D1 and D2, this implies the existence of some computable
function satisfying Property γ for D1 and D2.

27



Moreover, these properties are associated to the demands of Theorem 17 as
follows:

• if D1 is recursive and D2 is any arbitrary description set, then D1 and D2

possess Property α.
• if D1 and D2 \D1 are r. e., then D1 and D2 possess Property β.
• if D1 or D1 or D2 \D1 is r. e., then D1 and D2 possess Property γ.

Now let us return to the example above, where X is a set of numbers, X,
X are not r. e., D1 consists of all descriptions d, such that Rd = {ϕd0} =
{0i∞} for some i ∈ X, and D2 consists of all descriptions d, such that Rd =
{ϕd1} = {1i∞} for some i ∈ X. This example reveals that the properties of
Definition 22 definitely weaken the conditions in Theorem 17. The function e
given by e(d, f(0)) = f(0) witnesses to Property α for D1 and D2, whereas
none of the conditions in Theorem 17 are fulfilled. Now the sufficiency of
Properties α, β, γ for uniform learning of unions of description sets holds as
follows.

Theorem 23 Let D1 and D2 be two description sets of natural numbers and
I ∈ I.

(1) If both D1 and D2 belong to resUniI and D1, D2 possess Property α,
then D1 ∪D2 belongs to resUniI .

(2) If both D1 and D2 belong to UniI (or extUniI ) and D1, D2 possess
Property β, then D1 ∪D2 belongs to UniI (or extUniI , respectively).

(3) Let I ∈ {Ex ,Bc,Bc∗}. If both D1 and D2 belong to UniI (or resUniI ,
extUniI , respectively) and D1, D2 possess Property γ, then D1 ∪D2 be-
longs to UniI (or resUniI , extUniI , respectively).

The proof is straightforward and hence omitted. The third assertion of Theo-
rem 23 does not hold for I = Ex 0, as Example 15 shows: here both D1 and D2

belong to resUniEx 0. Defining e(d, 0n) = 0 and e(d, 0n1m) = 1 for all d, n,m
yields a computable function satisfying Property γ for D1 and D2. Still the
union D1 ∪D2 does not even belong to UniEx 0. Following the first two asser-
tions of Theorem 23, this illustrates the existence of pairs of description sets
possessing Property γ, but possessing neither Property β nor Property α.

A final remark in this section is to be made on the relevance of Properties α,
β, and γ. Similar to the demonstration below Corollary 21 it is also possible to
construct two simple description sets D1 and D2, such that D1∪D2 belongs to
resUniEx 0, although no computable function e can satisfy Property γ (or β or
α). For that purpose let X be any set of natural numbers which is Σ4-complete
in the arithmetical hierarchy (cf. [20]). Moreover define
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D1 := {d | Rd = {ϕd0} = {i∞} for some i ∈ X} ,

D2 := {d | Rd = {ϕd0} = {i∞} for some i ∈ X} .

The proof of D1 ∪ D2 ∈ resUniEx 0 is straightforward. If there was a com-
putable function e satisfying Property γ for D1 and D2, then

• e(d, in) = 0 for all but finitely many n, if d ∈ D1 and ϕd0 = i∞ (in particular,
i ∈ X);

• e(d, in) = 1 for all but finitely many n, if d ∈ D2 and ϕd0 = i∞ (in particular,
i ∈ X).

Choose a total recursive function g such that

ϕ
g(i)
0 = i∞ and ϕ

g(i)
j+1 =↑∞

for all i, j. This implies that g(i) belongs toD1 if and only if i ∈ X; analogously
g(i) belongs to D2 if and only if i ∈ X. Therefore

i ∈ X ⇐⇒ e(g(i), in) = 0 for all but finitely many n

⇐⇒ there is an n0 such that for all n ≥ n0 there is an s such

that e(g(i), in) is computed in s steps and e(g(i), in) = 0 .

Hence X belongs to Σ3 in the arithmetical hierarchy, in contradiction to the
choice of X. So there is no computable function e satisfying Property γ (or β
or α) for D1 and D2.

Despite this example, the properties in Definition 22 are of importance, be-
cause they will be applicable in the proofs of the strong separations in the
following section.

5 Strong separation results

This section provides the desired strong separations and thus the main results
of this paper. Informally, the statements of the subsequent theorems can be
summarized as follows:

(1) almost all pairs of inference types are strongly separable, but there are
definitely also pairs, which cannot be separated;

(2) all strong separations can even be witnessed by a fixed r. e. description
set D∗;

(3) almost all separations in the original and the restricted model of uniform
learning are achieved, if D∗ describes only singletons – but there are also
exceptions;
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(4) all separations in the extended model of uniform learning are achieved,
if D∗ describes only recursive cores of up to two elements.

In particular, the results depend on the restrictions concerning the choice of
hypothesis spaces in uniform learning.

Theorem 24 concerns the strong separations in the UniI -model and even in
the restricted cases, except for the separation of the inference types Total and
Exm. The latter exception is handled in Theorem 25; proofs are discussed
below at the end of this section.

Theorem 24 Let I, J ∈ I fulfil I \ J 6= ∅. Then there is a description set D∗

satisfying

(1) D∗ is r. e.,
(2) for any d ∈ D∗ the recursive core Rd is a singleton,
(3) if D belongs to UniJ ∩ UniI , then D ∪D∗ ∈ UniI \ UniJ ,
(4) if D belongs to resUniJ ∩ resUniI and (I, J) 6= (Total ,Exm) for m ≥ 0,

then D ∪D∗ ∈ resUniI \ UniJ .

Theorem 25 Let m ≥ 0. There is a description set D∗ satisfying

(1) D∗ is r. e.,
(2) for any d ∈ D∗ the recursive core Rd consists of at most m+2 functions,
(3) if D belongs to resUniExm ∩ resUniTotal , then D ∪D∗ ∈ resUniTotal \

extUniExm.

The following fact shows that Theorem 25 provides the best result possible
for the separation of Total and Exm. For the corresponding proof see [26].

Fact 26 If D ∈ resUniTotal and each recursive core Rd, d ∈ D, described by
D consists of at most m+ 1 functions, then D ∈ resUniExm.

Dually to Theorem 24, there are also strong separation results for the extended
model of uniform learning, again with a few exceptions handled below.

Theorem 27 Let I, J ∈ I fulfil I \ J 6= ∅, but (I, J) 6= (Bc∗,Bc) and J /∈
{Cex ,Total}. Then there is a description set D∗ satisfying

(1) D∗ is r. e.,
(2) for any d ∈ D∗ the recursive core Rd consists of at most two functions,
(3) if D belongs to extUniJ ∩ extUniI , then D ∪D∗ ∈ extUniI \ extUniJ .

A separation as in Theorem 27 cannot be achieved for (I, J) = (Bc∗,Bc) or
J ∈ {Cex ,Total}, because the learning potentials of the admissible meta-IIMs
coincide in the relevant cases, if the description set represents only finite re-
cursive cores. For a proof of Fact 28 see [23,24]. In particular, this fact shows
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that the inference types resulting from constraints concerning the quality of
the intermediate hypotheses (independent of the amount of information cur-
rently known about the target function) constitute an exception within the
separation results presented.

Fact 28 Let D be a description set such that each recursive core Rd for d ∈ D
is a finite set. Then the following assertions hold.

(1) D ∈ extUniBc.
(2) D ∈ extUniEx iff D ∈ extUniCex iff D ∈ extUniTotal .

A non-trivial separation of extUniBc∗ and extUniBc is even impossible, if
descriptions of infinite recursive cores are admitted. The reason is that ev-
ery set D describing only Bc-learnable classes is uniformly Bc-learnable with
extended choice of hypothesis spaces, cf. [23]. Whether or not a non-trivial
separation of extUniEx , extUniCex , and extUniTotal can be witnessed by
a description set representing infinite Cex - or Total -learnable classes, is not
known yet.

The idea for the proofs of Theorem 24, Theorem 25, and Theorem 27 is
to carefully construct a recursively enumerable set D∗ in UniI \ UniJ (and
correspondingly for the restricted and extended models). By Theorem 17, if
I ∈ {Ex ,Bc,Bc∗}, these properties are already sufficient to obtain D ∪D∗ ∈
UniI \ UniJ for all D ∈ UniJ ∩ UniI (analogously for resUni - and extUni -
learning). Unfortunately, this does not yet help in case I /∈ {Ex ,Bc,Bc∗}.
But, as it turns out, it is possible to define D∗ such that some computable
function e fulfils Property α from Definition 22, where D1 equals D∗ and D2

is any description set. Then Theorem 23 yields the desired consequences.

For example, if I = Conf and J = Cons, Theorem 24 can be verified by
constructing a set D∗ satisfying

• D∗ is r. e.,
• for any d ∈ D∗ the recursive core Rd is a singleton,
• D∗ ∈ resUniConf \ UniCons,
• for any description set D there is some computable function e which fulfils

Property α with D1 = D∗ and D2 = D.

The corresponding idea also works for Theorem 27.

Proof of Theorem 24 for I = Conf and J = Cons. First the set D∗ is defined
via the construction of a partial-recursive function ψ and a recursive function
fp such that ϕfp(i) = ψ(i,fp(i)) for all numbers i. The function fp assigns to each
number i some fixed point value according to the recursion theorem. D∗ will
be the value set of fp. As usual, τ denotes a fixed acceptable numbering to be
used as a hypothesis space for uniform learning.
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Definition of D∗. Let (M i)i≥0 be any fixed enumeration of all meta-IIMs.
Now for each meta-IIM M i we define numberings ψ(i,d) uniformly in such a
manner, that none of the recursive cores of the numberings ψ(i,d), d ≥ 0, is
Cons-learned by the IIM M i

d in τ . For any number i, the construction will then
yield some description d∗, such that ψ(i,d∗) = ϕd

∗

; in particular, the recursive
core Rd∗ of the numbering ϕd

∗

is not Cons-learned by the IIM M i
d∗ in τ .

Finally D∗ will contain – for each number i – one such corresponding fixed
point value d∗. Hence none of the meta-IIMs M i, i ≥ 0, will be suitable for
UniCons-identification of D∗.

Given i, d ≥ 0, the numbering η = ψ(i,d) is defined in stages according to the
following instructions.

In stage 0, let η0(0) = i and go to stage 1. In each stage k, k ≥ 1, proceed as
follows.

Let η2k−1[k + 1] = η0[k − 1]0(k + 1) and η2k[k + 1] = η0[k − 1]1(k + 1) (the
value k + 1 can be used by a Conf -learner as an indicator for the functions
η2k−1 and η2k). Then extend η2k−1 with a sequence of the value k + 1, until
the computations of M i

d(η0[k − 1]) and M i
d(η0[k − 1]0) terminate.

Remark 1. If M i
d(η0[k−1]) is undefined or M i

d(η0[k−1]0) is undefined (i. e. nei-
ther case A nor case B below occurs), then stage k does not terminate. This
yields η2k−1 = η0[k − 1]0(k + 1)∞ as the only element of the recursive core of
η = ψ(i,d), but M i

d does not identify η2k−1.

Case A. M i
d(η0[k − 1]) and M i

d(η0[k − 1]0) are defined and M i
d(η0[k − 1]) 6=

M i
d(η0[k − 1]0).

In this case let η0(k) = 0; η2k−1 and η2k remain initial. Go to stage k + 1.
(* Note that the IIM M i

d changes its mind on the extension of η0 defined in
this case. *)

Case B. M i
d(η0[k − 1]) and M i

d(η0[k − 1]0) are defined and equal.
Then extend η2k−1 with a sequence of the value k + 1, until the computation
of τM i

d
(η0[k−1])(k) stops with the output 0.

Remark 2. If τM i

d
(η0[k−1])(k) is undefined or differs from 0 (i. e. case B.1

below does not occur), then stage k does not terminate. This yields η2k−1 =
η0[k−1]0(k+1)∞ as the only element of the recursive core of η = ψ(i,d), but
the hypothesis M i

d(η2k−1[k]) (= M i
d(η0[k − 1])) is not consistent for η2k−1[k]

with respect to τ . In particular, M i
d does not Cons-learn η2k−1 in τ .

Case B.1. τM i

d
(η0[k−1])(k) = 0.

Then let η2k−1 remain initial and extend η2k with a sequence of the value
k + 1, until the computation of M i

d(η0[k − 1]1) terminates.
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Remark 3. If M i
d(η0[k − 1]1) is undefined (i. e. neither case B.1.1 nor

case B.1.2 below occurs), then stage k does not terminate. Hence η2k =
η0[k − 1]1(k + 1)∞ is the only element of the recursive core of η = ψ(i,d),
but M i

d does not identify η2k.

Case B.1.1. M i
d(η0[k − 1]1) is defined and differs from M i

d(η0[k − 1]0) =
M i

d(η0[k − 1]).
Then define η0(k) = 1; η2k remains initial. Go to stage k + 1.
(* Note that M i

d changes its mind on the extension of η0 constructed in
this case. *)

Case B.1.2. M i
d(η0[k − 1]1) is defined and equal to M i

d(η0[k − 1]).
Let η2k = η0[k − 1]1(k + 1)∞ be the only element of the recursive core of
η = ψ(i,d).
(* Here M i

d(η2k[k]) (= M i
d(η0[k − 1])) is not consistent for η2k[k] with

respect to τ , because τM i

d
(η0[k−1])(k) = 0. In particular, M i

d does not Cons-

learn the function η2k in τ . *) End stage k.

As the construction of ψ(i,d) proceeds uniformly in i and d, there is a recursive
function g satisfying ϕg(i,d) = ψ(i,d) for all i, d ≥ 0. The recursion theorem then
implies the existence of a total recursive function fp such that

ϕfp(i) = ϕg(i,fp(i)) = ψ(i,fp(i))

for all i ≥ 0. Finally let D∗ := {fp(i) | i ≥ 0}. End definition of D∗.

It remains to verify the assertions (1) – (4).

ad (1). D∗ is the value set of a recursive function and thus r. e. qed (1).

ad (2). Let d ∈ D∗, i. e. d = fp(i) for some i ≥ 0 and ϕd = ψ(i,d). If in the
construction of ψ(i,d) one of the cases A or B.1.1 occurs infinitely often, then
the recursive core Rd of ψ(i,d) equals {ψ(i,d)

0 }. If case B.1.2 is fulfilled in some

stage k, then Rd = {ψ
(i,d)
2k }. Otherwise, by remarks 1, 2, and 3, Rd equals

either {ψ(i,d)
2k−1} or {ψ(i,d)

2k }. Consequently, the recursive core Rd is a singleton.
qed (2).

ad (3) and (4). Assertions (3) and (4) are verified via 3 claims:

(i) D∗ /∈ UniCons,
(ii) D∗ ∈ resUniConf ,
(iii) ifD ∈ UniCons (or resUniCons), then there is some computable function
e satisfying Property α for D1 = D∗ and D2 = D.

ad (i). Assume D∗ ∈ UniCons , i. e. there is some meta-IIM M i such that
M i

d learns the recursive core Rd consistently in τ , whenever d ∈ D∗. Now let
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d∗ = fp(i), in particular, d∗ ∈ D∗ and ϕd
∗

= ψ(i,d∗).

Firstly, if in the construction of ψ(i,d∗) one of the cases A or B.1.1 occurs
infinitely often, then the recursive core Rd∗ equals {ψ

(i,d∗)
0 }, but M i

d∗ changes

its mind on ψ
(i,d∗)
0 infinitely often.

Secondly, if case B.1.2 occurs in some stage k, then – by the note in case B.1.2
of stage k – M i

d∗ does not Cons-learn the recursive core Rd∗ in τ .

Otherwise, by the remarks 1, 2, and 3 in stage k, the learner M i
d∗ does not

Cons-learn the recursive core Rd∗ in τ either.

Since in no case M i
d∗ learns Rd∗ consistently in τ , we obtain a contradiction.

Hence D∗ /∈ UniCons. qed (i).

ad (ii). Define a meta-IIM M by

Md(f [n]) :=







































2k − 1 , if n > 1 and f [n] = f [n′]0(k + 1)m for some

k,m ≥ 1, n′ < n− 1 ,

2k , if n > 1 and f [n] = f [n′]1(k + 1)m for some

k,m ≥ 1, n′ < n− 1 ,

0 , otherwise ,

for all recursive functions f and all d, n ≥ 0. Now let d ∈ D∗ and f ∈ Rd.

Firstly, if f = ϕd0, then f(n) ∈ {0, 1} for all n ≥ 1. Thus Md(f [n]) = 0 for all
n ≥ 0, in particular, Md Conf -learns the function f with respect to ϕd.

Secondly, if there is some k ≥ 1, such that f = ϕd2k−1, then f = f [n′]0(k+1)∞

for some n′ ≥ 0 such that f(1), . . . , f(n′) ∈ {0, 1}, if n′ ≥ 1. By definition, Md

returns the hypothesis 0 for f in the first n′ + 2 steps, the hypothesis 2k − 1
afterwards. As ϕd0 is a proper subfunction of ϕd2k−1, Md learns f conformly
with respect to ϕd.

Thirdly, if f = ϕd2k for some k ≥ 1, a similar argumentation shows that Md

learns f conformly in ϕd.

So M witnesses D∗ ∈ resUniConf . qed (ii).

ad (iii). Let D be any description set; moreover define a computable function
e for any d, i ≥ 0 by

e(d, i) :=







0 , if fp(i) = d ,

1 , if fp(i) 6= d .
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Now if d ∈ D∗ and f ∈ Rd, then d = fp(i) for some i ≥ 0 such that f(0) = i.
This implies e(d, f(0)) = e(d, i) = e(fp(i), i) = 0. If d ∈ D \D∗, then d 6= fp(i)
for all i ≥ 0. So e(d, f(0)) = 1 for all f ∈ Rd. Consequently, e satisfies
Property α for D∗ and D. qed (iii).

Finally, to verify assertions (3) and (4), assume that D belongs to UniCons
(or resUniCons). As some computable function e satisfies Property α for
D∗, D and D∗ ∈ resUniConf , Theorem 23 implies D ∪ D∗ ∈ UniConf (or
resUniConf , respectively). Moreover, since D∗ /∈ UniCons , we obtain D ∪
D∗ /∈ UniCons and all in all D∪D∗ ∈ UniConf \UniCons (or resUniConf \
UniCons , respectively). qed (3) and (4).

This completes the proof of Theorem 24 for I = Conf and J = Cons. 2

The idea for the construction of the numberings η in the proof above is taken
from a corresponding proof in [26]. There the existence of some set D ∈
resUniConf \UniCons, describing only singletons, is verified. Here this proof is
combined with a few new ideas. Similarly, all other statements of Theorem 24,
Theorem 25, and Theorem 27 can be witnessed by such constructions using
the corresponding ideas in [26]. Details are omitted.

6 Conclusions

This paper investigates inductive inference of recursive functions on the meta-
level of three versions of uniform learning. Inference types resulting from dif-
ferent learning criteria have been analysed and the identification capacities
of the corresponding meta-learners have been compared to each other. The
desired strong separations have been successfully verified, thereby observing
two additional properties:

• any strong separation verified above can even be witnessed by a fixed de-
scription set D∗;

• there are differences in the results concerning the three models of uniform
learning (which stem from distinct requirements involving the choice of hy-
pothesis spaces).

The strong separation results themselves show that it might in some cases
be reasonable to give up certain constraints concerning the inference type J ,
because thus an increase of learning potential of the corresponding meta-
learners can be achieved, even if it is required to learn at least some given
description set D ∈ UniJ (or D ∈ resUniJ , D ∈ extUniJ ).
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Given suitable inference types I and J , the proofs moreover indicate how to
modify a uniform J-learner into a uniform I-learner of higher capacity. That
means methods for designing more powerful learners are provided.

The existence of a fixed description set D∗, witnessing to the strong sepa-
rations for any description set D ∈ UniJ (analogously for D ∈ resUniJ ,
D ∈ extUniJ ) suggests some structure for a somehow characteristic descrip-
tion set unsuitable for uniform J-learning. This structure is on the one hand
complex enough to disallow for uniform learning according to J , but on the
other hand simple enough to enable uniform I-learning, even in composi-
tion with any description set suitable for uniform I-learning and uniform
J-learning.

The differences in the results concerning the three investigated models of uni-
form learning are evidence to the influence of the hypothesis spaces chosen for
uniform learning.
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