Flow Fields

Hao Li and Howard Hamilton
Motivation for Flow Fields

- Multiple AI algorithms in a computer game can produce conflicting results. The AI must resolve these conflicts and find a simultaneous solution.
Example Flowfield

- Simple definition: A flow field is a grid of vectors.
- If you are here, go this way.
- Or: one influence on your motion is captured in this flow field, e.g., magnetic attraction.
Flow Field

- “A flow field consists of a three-dimensional sample space that returns a vector at every point, indicating an attraction toward objects of interest or repulsion away from objects to be avoided” [Alexander, 2006].
- We will concentrate on two-dimensional flow fields.
A flow field has two components:

- A static data set constructed around static objects (e.g. terrain)
- A dynamically generated data set constructed around dynamic objects (e.g. vehicles)
Static Fields

- “A static field is time-invariant: it will always return the same output vector for any given input vector” [Alexander 2006].
- We can use it as a function: we give it an (x, y) vector representing a position and it returns an (x, y) vector representing a velocity.
Dynamic Fields

- “A dynamic field can vary with time to produce different output vectors for a given input vector” [Alexander 2006].
- It is usually controlled by parameters other than the input vector.
Representing Flow Fields

- Storing the Field
 - Use a grid to store the data (vectors) that represent the state of the flow field

- Sampling the Field
 - Interpolate values between data points
Bilinear Interpolation

- **Bilinear interpolation** interpolates a function of two variables, defined at grid points, to the continuous space between.

- Suppose the function’s values is defined at grid points $Q_{11} = (x_1, y_1)$, Q_{12}, Q_{21}, and Q_{22}.

- We want to find the value at point $P = (x, y)$.
Step 1: linear interpolation in the x-direction

\[f(R_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}) \] where \(R_1 = (x, y_1) \),

\[f(R_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}) \] where \(R_2 = (x, y_2) \).

Step 2: interpolating in the y-direction

\[f(P) \approx \frac{y_2 - y}{y_2 - y_1} f(R_1) + \frac{y - y_1}{y_2 - y_1} f(R_2). \]

This gives us the desired estimate of \(f(x, y) \)

\[f(x, y) \approx \frac{f(Q_{11})}{(x_2 - x_1)(y_2 - y_1)} (x_2 - x)(y_2 - y) \]
\[+ \frac{f(Q_{21})}{(x_2 - x_1)(y_2 - y_1)} (x - x_1)(y_2 - y) \]
\[+ \frac{f(Q_{12})}{(x_2 - x_1)(y_2 - y_1)} (x_2 - x)(y - y_1) \]
\[+ \frac{f(Q_{22})}{(x_2 - x_1)(y_2 - y_1)} (x - x_1)(y - y_1). \]
Combining Fields

- Weighted Addition (+)
 Take all of the component fields into account and provide the ability to prioritize some fields.

- Conditional Operation (OR)
 Allow one field to completely override other fields.

- Field Multiplication (*)
 Scaling value for each point in the field is the result of sampling another field. (Scaling or dot product)
Example 1: A* Smoothing

- Use flow field to create a smooth path
Example 2: Collision Avoidance

- **Dynamic Object Avoidance**
 1. Non-mirrored radial repulsion field – has dead zone at center
 2. Mirrored radial repulsion field – avoids dead zone
 3. Sideways repulsion
Flocking

- Reynolds’s boids
 - **Separation**: steer to avoid crowding nearby fish (provides collision avoidance).
 - **Alignment**: steer towards the average heading of nearby fish (helps keep school together).
 - **Cohesion**: steer to move toward the average position of nearby members (helps flock centering).
Flocking System with Flow Field

- Generate a local dynamic flow field around each fish according to their movement.
- Combine all local fields together before adjusting fish’s movement.
Sources of Flow Fields

- Visualization and editing tools can be used to create flow fields.
- Convert from a 2-D sample to a 3-D sample.
- Brushes can be used to create a good flow field.
Conclusion

- Flow fields provide elegant solutions to a wide variety of problems.
- They greatly reduce problems such as oscillation by representing smooth flow rather than giving different results at nearby samples.