
Chapter 10Chapter 10Chapter 10Chapter 10

Implementing Implementing
Subprograms

Chapter 10 Topics

• The General Semantics of Calls and Returns

• Implementing “Simple” Subprograms

• Implementing Subprograms with Stack-Dynamic
Local Variables

• Nested Subprograms

Copyright © 2009 Addison-Wesley. All rights reserved. 1-2

• Nested Subprograms

• Blocks

• Implementing Dynamic Scoping

The General Semantics of Calls and
Returns

• The subprogram call and return operations
of a language are together called its
subprogram linkage

• General semantics of subprogram calls
– Parameter passing methods

Copyright © 2009 Addison-Wesley. All rights reserved. 1-3

– Parameter passing methods

– Stack-dynamic allocation of local variables

– Save the execution status of calling program

– Transfer of control and arrange for the return

– If subprogram nesting is supported, access to
nonlocal variables must be arranged

The General Semantics of Calls and
Returns

• General semantics of subprogram returns:

– In mode and inout mode parameters
must have their values returned

Copyright © 2009 Addison-Wesley. All rights reserved. 1-4

must have their values returned

– Deallocation of stack-dynamic locals

– Restore the execution status

– Return control to the caller

Implementing “Simple”
Subprograms: Call Semantics

• Call Semantics:

- Save the execution status of the caller
- Pass the parameters
- Pass the return address to the callee

Copyright © 2009 Addison-Wesley. All rights reserved. 1-5

- Pass the return address to the callee
- Transfer control to the callee

Implementing “Simple”
Subprograms: Return Semantics

• Return Semantics:
– If pass-by-value-result or out mode parameters
are used, move the current values of those
parameters to their corresponding actual
parameters

– If it is a function, move the functional value to a
place the caller can get it

Copyright © 2009 Addison-Wesley. All rights reserved. 1-6

place the caller can get it
– Restore the execution status of the caller
– Transfer control back to the caller

• Required storage:
– Status information, parameters, return address,
return value for functions

Implementing “Simple”
Subprograms: Parts

• Two separate parts: the actual code and the
non-code part (local variables and data that
can change)

• The format, or layout, of the non-code part
of an executing subprogram is called an

Copyright © 2009 Addison-Wesley. All rights reserved. 1-7

of an executing subprogram is called an
activation record

• An activation record instance is a concrete
example of an activation record (the
collection of data for a particular
subprogram activation)

An Activation Record for “Simple”
Subprograms

Copyright © 2009 Addison-Wesley. All rights reserved. 1-8

Code and Activation Records of a
Program with “Simple” Subprograms

Copyright © 2009 Addison-Wesley. All rights reserved. 1-9

Implementing Subprograms with
Stack-Dynamic Local Variables

• More complex activation record

– The compiler must generate code to cause
implicit allocation and deallocation of local
variables

– Recursion must be supported (adds the
possibility of multiple simultaneous activations

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

possibility of multiple simultaneous activations
of a subprogram)

Typical Activation Record for a Language
with Stack-Dynamic Local Variables

Copyright © 2009 Addison-Wesley. All rights reserved. 1-11

Implementing Subprograms with Stack-
Dynamic Local Variables: Activation Record

• The activation record format is static, but its size
may be dynamic

• The dynamic link points to the top of an instance
of the activation record of the caller

• An activation record instance is dynamically
created when a subprogram is called

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

created when a subprogram is called

• Activation record instances reside on the run-time
stack

• The Environment Pointer (EP) must be maintained
by the run-time system. It always points at the
base of the activation record instance of the
currently executing program unit

An Example: C Function

void sub(float total, int part)

{

int list[5];

float sum;

…

[4]

[3]

[2]

Copyright © 2009 Addison-Wesley. All rights reserved. 1-13

…

}

[1]

[0]

An Example Without Recursion

void A(int x) {

int y;

...

C(y);

...

}

void B(float r) {

int s, t;

... main calls B

Copyright © 2009 Addison-Wesley. All rights reserved. 1-14

...

A(s);

...

}

void C(int q) {

...

}

void main() {

float p;

...

B(p);

...

}

main calls B
B calls A
A calls C

An Example Without Recursion

Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

Dynamic Chain and Local Offset

• The collection of dynamic links in the stack at a
given time is called the dynamic chain, or call
chain

• Local variables can be accessed by their offset
from the beginning of the activation record, whose
address is in the EP. This offset is called the

Copyright © 2009 Addison-Wesley. All rights reserved. 1-16

address is in the EP. This offset is called the
local_offset

• The local_offset of a local variable can be
determined by the compiler at compile time

An Example With Recursion

• The activation record used in the
previous example supports recursion,
e.g.

int factorial (int n) {
<-----------------------------1

if (n <= 1) return 1;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-17

if (n <= 1) return 1;
else return (n * factorial(n - 1));
<-----------------------------2

}
void main() {
int value;
value = factorial(3);
<-----------------------------3

}

Activation Record for factorial

Copyright © 2009 Addison-Wesley. All rights reserved. 1-18

Nested Subprograms

• Some non-C-based static-scoped languages
(e.g., Fortran 95, Ada, Python, JavaScript, Ruby,
and Lua) use stack-dynamic local variables and
allow subprograms to be nested

• All variables that can be non-locally accessed
reside in some activation record instance in the
stack

Copyright © 2009 Addison-Wesley. All rights reserved. 1-19

stack

• The process of locating a non-local reference:
1. Find the correct activation record instance

2. Determine the correct offset within that activation record
instance

Locating a Non-local Reference

• Finding the offset is easy

• Finding the correct activation record
instance

– Static semantic rules guarantee that all non-
local variables that can be referenced have been

Copyright © 2009 Addison-Wesley. All rights reserved. 1-20

local variables that can be referenced have been
allocated in some activation record instance that
is on the stack when the reference is made

Static Scoping

• A static chain is a chain of static links that
connects certain activation record instances

• The static link in an activation record instance for
subprogram A points to one of the activation
record instances of A's static parent

Copyright © 2009 Addison-Wesley. All rights reserved. 1-21

• The static chain from an activation record instance
connects it to all of its static ancestors

• Static_depth is an integer associated with a static
scope whose value is the depth of nesting of that
scope

Static Scoping (continued)

• The chain_offset or nesting_depth of a nonlocal
reference is the difference between the
static_depth of the reference and that of the scope
when it is declared

• A reference to a variable can be represented by the • A reference to a variable can be represented by the
pair:
(chain_offset, local_offset),
where local_offset is the offset in the activation
record of the variable being referenced

Copyright © 2009 Addison-Wesley. All rights reserved. 1-22

Example Ada Program

procedure Main_2 is
X : Integer;
procedure Bigsub is
A, B, C : Integer;
procedure Sub1 is
A, D : Integer;
begin -- of Sub1
A := B + C; <-----------------------1

end; -- of Sub1
procedure Sub2(X : Integer) is
B, E : Integer;
procedure Sub3 is

Copyright © 2009 Addison-Wesley. All rights reserved. 1-23

procedure Sub3 is
C, E : Integer;
begin -- of Sub3
Sub1;
E := B + A: <--------------------2
end; -- of Sub3

begin -- of Sub2
Sub3;
A := D + E; <-----------------------3
end; -- of Sub2 }

begin -- of Bigsub
Sub2(7);
end; -- of Bigsub

begin

Bigsub;
end; of Main_2 }

Example Ada Program (continued)

• Call sequence for Main_2

Main_2 calls Bigsub

Bigsub calls Sub2

Sub2 calls Sub3

calls

Copyright © 2009 Addison-Wesley. All rights reserved. 1-24

Sub3 calls Sub1

Stack Contents at
Position 1

Copyright © 2009 Addison-Wesley. All rights reserved. 1-25

Static Chain Maintenance

• At the call,
- The activation record instance must be built
- The dynamic link is just the old stack top pointer
- The static link must point to the most recent ari
of the static parent

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

of the static parent
- Two methods:

1. Search the dynamic chain
2. Treat subprogram calls and

definitions like variable references
and definitions

Evaluation of Static Chains

• Problems:
1. A nonlocal areference is slow if the

nesting depth is large
2. Time-critical code is difficult:

a. Costs of nonlocal references are

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

a. Costs of nonlocal references are
difficult to determine

b. Code changes can change the
nesting depth, and therefore the cost

Displays

• An alternative to static chains that solves
the problems with that approach

• Static links are stored in a single array
called a display

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

• The contents of the display at any given
time is a list of addresses of the accessible
activation record instances

Blocks

• Blocks are user-specified local scopes for variables
• An example in C
{int temp;

temp = list [upper];

list [upper] = list [lower];

Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

list [lower] = temp

}

• The lifetime of temp in the above example begins
when control enters the block

• An advantage of using a local variable like temp is
that it cannot interfere with any other variable with
the same name

Implementing Blocks

• Two Methods:

1. Treat blocks as parameter-less subprograms
that are always called from the same location

– Every block has an activation record; an instance is
created every time the block is executed

Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

created every time the block is executed

2. Since the maximum storage required for a
block can be statically determined, this amount
of space can be allocated after the local
variables in the activation record

Implementing Dynamic Scoping

• Deep Access: non-local references are
found by searching the activation record
instances on the dynamic chain
- Length of the chain cannot be statically
determined

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

determined
- Every activation record instance must
have variable names

• Shallow Access: put locals in a central place
– One stack for each variable name

– Central table with an entry for each variable
name

Using Shallow Access to Implement
Dynamic Scoping

void sub3() {

int x, z;

x = u + v;

…

}

void sub2() {

int w, x;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

int w, x;

…

}

void sub1() {

int v, w;

…

}

void main() {

int v, u;

…

}

Summary

• Subprogram linkage semantics requires
many action by the implementation

• Simple subprograms have relatively basic
actions

• Stack-dynamic languages are more

Copyright © 2009 Addison-Wesley. All rights reserved. 1-33

• Stack-dynamic languages are more
complex

• Subprograms with stack-dynamic local
variables and nested subprograms have two
components
– actual code

– activation record

Summary (continued)

• Activation record instances contain formal
parameters and local variables among other
things

• Static chains are the primary method of
implementing accesses to non-local

Copyright © 2009 Addison-Wesley. All rights reserved. 1-34

implementing accesses to non-local
variables in static-scoped languages with
nested subprograms

• Access to non-local variables in dynamic-
scoped languages can be implemented by
use of the dynamic chain or thru some
central variable table method

