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Introduction

• The design of the imperative languages is 
based directly on the von Neumann 
architecture
– Efficiency is the primary concern, rather than 
the suitability of the language for software 
development

• The design of the functional languages is 
based on mathematical functions
– A solid theoretical basis that is also closer to the 
user, but relatively unconcerned with the 
architecture of the machines on which programs 
will run
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Mathematical Functions

• A mathematical function is a mapping of 
members of one set, called the domain set, 
to another set, called the range set

• A lambda expression specifies the 
parameter(s) and the mapping of a function 
in the following form

λ(x) x * x * x

for the function  cube (x) = x * x * x
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Lambda Expressions

• Lambda expressions describe nameless 
functions

• Lambda expressions are applied to 
parameter(s) by placing the parameter(s) 
after the expression

e.g.,   (λ(x) x * x * x)(2)

which evaluates to 8
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Functional Forms

• A higher-order function, or functional 
form, is one that either takes functions as 
parameters or yields a function as its result, 
or both
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Function Composition

• A functional form that takes two functions 
as parameters and yields a function whose 
value is the first actual parameter function 
applied to the application of the second

Form: h ≡ f ° g

which means h (x) ≡ f ( g ( x))

For f (x) ≡ x + 2 and  g (x) ≡ 3 * x,

h ≡ f ° g yields (3 * x)+ 2
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Apply-to-all

• A functional form that takes a single 
function as a parameter and yields a list of 
values obtained by applying the given 
function to each element of a list of 
parameters

Form: α

For h (x) ≡ x * x

α( h, (2, 3, 4)) yields  (4, 9, 16)
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Fundamentals of Functional 
Programming Languages

• The objective of the design of a FPL is to mimic 
mathematical functions to the greatest extent 
possible

• The basic process of computation is fundamentally 
different in a FPL than in an imperative language

– In an imperative language, operations are done and the 
results are stored in variables for later use

– Management of variables is a constant concern and 
source of complexity for imperative programming

• In an FPL, variables are not necessary, as is the 
case in mathematics
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Fundamentals of Functional 
Programming Languages - continued

• Referential Transparency - In an FPL, the 
evaluation of a function always produces 
the same result given the same parameters

• Tail Recursion – Writing recursive functions 
that can be automatically converted to 
iteration
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LISP Data Types and Structures

• Data object types: originally only atoms and 
lists

• List form: parenthesized collections of 
sublists and/or atoms

e.g., (A B (C D) E)

• Originally, LISP was a typeless language

• LISP lists are stored internally as single-
linked lists
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LISP Interpretation

• Lambda notation is used to specify functions and 
function definitions. Function applications and data 
have the same form.

e.g., If the list (A B C) is interpreted as data it is

a simple list of three atoms, A, B, and C

If it is interpreted as a function application,

it means that the function named A is

applied to the two parameters, B and C

• The first LISP interpreter appeared only as a  
demonstration of the universality of the 
computational capabilities of the notation
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Origins of Scheme

• A mid-1970s dialect of LISP, designed to be 
a cleaner, more modern, and simpler 
version than the contemporary dialects of 
LISP

• Uses only static scoping

• Functions are first-class entities

– They can be the values of expressions and 
elements of lists

– They can be assigned to variables and passed as 
parameters 



Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

Evaluation

• Parameters are evaluated, in no particular 
order

• The values of the parameters are 
substituted into the function body

• The function body is evaluated

• The value of the last expression in the 
body is the value of the function
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Primitive Functions

• Arithmetic: +, -, *, /, ABS, SQRT, 
REMAINDER, MIN, MAX
e.g., (+ 5 2) yields 7

• QUOTE - takes one parameter; returns the 
parameter without evaluation
– QUOTE is required because the Scheme interpreter, 

named EVAL, always evaluates parameters to function 
applications before applying the function.  QUOTE is 
used to avoid parameter evaluation when it is not 
appropriate

– QUOTE can be abbreviated with the apostrophe prefix 
operator

'(A B) is equivalent to (QUOTE (A B))
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Function Definition: LAMBDA

• Lambda Expressions

– Form is based on λ notation

e.g., (LAMBDA (x) (* x x)

x is called a bound variable

• Lambda expressions can be applied

e.g., ((LAMBDA (x) (* x x)) 7)
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Special Form Function: DEFINE

• A Function for Constructing Functions DEFINE -
Two forms:

1. To bind a symbol to an expression

e.g., (DEFINE pi 3.141593)

Example use: (DEFINE two_pi (* 2 pi))

2. To bind names to lambda expressions

e.g., (DEFINE (square x) (* x x))

Example use: (square 5)

- The evaluation process for DEFINE is different! The first 
parameter is never evaluated. The second parameter is 
evaluated and bound to the first parameter. 
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Output Functions

• (DISPLAY expression)

• (NEWLINE)
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Numeric Predicate Functions

• #T is true and #F is false (sometimes () is 
used for false)

• =, <>, >, <, >=, <=

• EVEN?, ODD?, ZERO?, NEGATIVE?
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Control Flow: IF

• Selection- the special form, IF

(IF predicate then_exp else_exp)

e.g., 

(IF (<> count 0)

(/ sum count)

0)
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Control Flow: COND

• Multiple Selection - the special form, COND
General form:

(COND

(predicate_1  expr {expr})

(predicate_1  expr {expr})

...

(predicate_1  expr {expr})

(ELSE expr {expr}))
• Returns the value of the last expression in 
the first pair whose predicate evaluates to 
true
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Example of COND

(DEFINE (compare x y)
(COND
((> x y) “x is greater than y”)
((< x y) “y is greater than x”)
(ELSE “x and y are equal”)

)
)
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List Functions: CONS and LIST

• CONS takes two parameters, the first of 
which can be either an atom or a list and 
the second of which is a list; returns a new 
list that  includes the first parameter as its 
first element and the second parameter as 
the remainder of its result

e.g., (CONS 'A '(B C)) returns (A B C)

• LIST takes any number of parameters; 
returns a list with the parameters as 
elements
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List Functions: CAR and CDR

• CAR takes a list parameter; returns the first 
element of that list

e.g., (CAR '(A B C)) yields A

(CAR '((A B) C D)) yields (A B)

• CDR takes a list parameter; returns the list 
after removing its first element

e.g., (CDR '(A B C)) yields (B C)

(CDR '((A B) C D)) yields (C D)
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Predicate Function: EQ?

• EQ? takes two symbolic parameters; it 
returns #T if both parameters are atoms 
and the two are the same; otherwise #F

e.g., (EQ? 'A 'A) yields #T

(EQ? 'A 'B) yields #F
– Note that if EQ? is called with list parameters, 
the result is not reliable

– Also EQ? does not work for numeric atoms
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Predicate Functions: LIST? and NULL?

• LIST? takes one parameter; it returns #T if 
the parameter is a list; otherwise #F

• NULL? takes one parameter; it returns #T if 
the parameter is the empty list; otherwise
#F
– Note that NULL? returns #T if the parameter is()
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Example Scheme Function: member

• member takes an atom and a simple list; 
returns #T if the atom is in the list; #F
otherwise

DEFINE (member atm lis)

(COND

((NULL? lis) #F)

((EQ? atm (CAR lis)) #T)

((ELSE (member atm (CDR lis)))

))
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Example Scheme Function: equalsimp

• equalsimp takes two simple lists as parameters; 
returns #T if the two simple lists are equal; #F
otherwise

(DEFINE (equalsimp lis1 lis2)

(COND

((NULL? lis1) (NULL? lis2))

((NULL? lis2) #F)

((EQ? (CAR lis1) (CAR lis2))

(equalsimp(CDR lis1)(CDR lis2)))

(ELSE #F)

))
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Example Scheme Function: equal

• equal takes two general lists as parameters;  
returns #T if the two lists are equal; #F otherwise

(DEFINE (equal lis1 lis2)

(COND

((NOT (LIST? lis1))(EQ? lis1 lis2))

((NOT (LIST? lis2)) #F)

((NULL? lis1) (NULL? lis2))

((NULL? lis2) #F)

((equal (CAR lis1) (CAR lis2))

(equal (CDR lis1) (CDR lis2)))

(ELSE #F)

))
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Example Scheme Function: append

• append takes two lists as parameters; returns the 
first parameter list with the elements of the second 
parameter list appended at the end

(DEFINE (append lis1 lis2)

(COND

((NULL? lis1) lis2)

(ELSE (CONS (CAR lis1)

(append (CDR lis1) lis2)))

))
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Example Scheme Function: LET

• General form:

(LET (

(name_1 expression_1)

(name_2 expression_2)

...

(name_n expression_n))

body

)

• Evaluate all expressions, then bind the values to 
the names; evaluate the body
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LET Example

(DEFINE (quadratic_roots a b c)
(LET (
(root_part_over_2a 
(/ (SQRT (- (* b b) (* 4 a c)))(* 2 a)))

(minus_b_over_2a (/ (- 0 b) (* 2 a)))
(DISPLAY (+ minus_b_over_2a root_part_over_2a))
(NEWLINE)
(DISPLAY (- minus_b_over_2a root_part_over_2a))

))



Tail Recursion in Scheme

• Definition: A function is tail recursive if its 
recursive call is the last operation in the 
function

• A tail recursive function can be 
automatically converted by a compiler to 
use iteration, making it faster

• Scheme language definition requires that 
Scheme language systems convert all tail 
recursive functions to use iteration
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Tail Recursion in Scheme - continued

• Example of rewriting a function to make it 
tail recursive, using helper a function

Original: (DEFINE (factorial n)

(IF (= n 0)

1

(* n (factorial (- n 1)))

))

Tail recursive: (DEFINE (facthelper n factpartial)

(IF (= n 0)

factpartial

facthelper((- n 1) (* n factpartial)))

))

(DEFINE (factorial n)

(facthelper n 1))
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Scheme Functional Forms

• Composition

– The previous examples have used it

– (CDR  (CDR '(A B C))) returns (C)

• Apply to All - one form in Scheme is mapcar
– Applies the given function to all elements of the given list; 

(DEFINE (mapcar fun lis)

(COND

((NULL? lis) ())

(ELSE (CONS (fun (CAR lis))

(mapcar fun (CDR lis))))

))
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Functions That Build Code

• It is possible in Scheme to define a function 
that builds Scheme code and requests its 
interpretation

• This is possible because the interpreter is a 
user-available function, EVAL
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Adding a List of Numbers

((DEFINE (adder lis)

(COND

((NULL? lis) 0)

(ELSE (EVAL (CONS '+ lis)))

))
• The parameter is a list of numbers to be added; 
adder inserts a + operator and evaluates the 
resulting list
– Use CONS to insert the atom + into the list of numbers.
– Be sure that + is quoted to prevent evaluation
– Submit the new list to EVAL for evaluation
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COMMON LISP

• A combination of many of the features of the 
popular dialects of LISP around in the early 1980s

• A large and complex language--the opposite of 
Scheme

• Features include:
– records 

– arrays 

– complex numbers

– character strings

– powerful I/O capabilities

– packages with access control

– iterative control statements
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ML

• A static-scoped functional language with syntax 
that is closer to Pascal than to LISP

• Uses type declarations, but also does type 
inferencing to determine the types of undeclared 
variables

• It is strongly typed (whereas Scheme is essentially 
typeless) and has no type coercions

• Includes exception handling and a module facility 
for implementing abstract data types

• Includes lists and list operations
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ML Specifics

• Function declaration form:

fun name (parameters) = body;

e.g., fun cube (x : int) = x * x * x;

- The type could be attached to return value, as in
fun cube (x) : int = x * x * x;

- With no type specified, it would default to

int (the default for numeric values)
- User-defined overloaded functions are not 
allowed, so if we wanted a cube function for real 
parameters, it would need to have a different name

- There are no type coercions in ML
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ML Specifics (continued)

• ML selection
if expression then then_expression

else else_expression

where the first expression must evaluate to a 
Boolean value

• Pattern matching is used to allow a function 
to operate on different parameter forms
fun fact(0) = 1
|     fact(n : int) : int = 

n * fact(n – 1)
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ML Specifics (continued)

• Lists
Literal lists are specified in brackets
[3, 5, 7]
[] is the empty list
CONS is the binary infix operator, ::
4 :: [3, 5, 7], which evaluates to [4, 3, 5, 7]

CAR is the unary operator hd
CDR is the unary operator tl
fun length([]) = 0
|   length(h :: t) = 1 + length(t);

fun append([], lis2) = lis2
|   append(h :: t, lis2) = h :: append(t, lis2);
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ML Specifics (continued)

• The val statement binds a name to a value 
(similar to DEFINE in Scheme)
val distance = time * speed;

- As is the case with DEFINE, val is 
nothing like an assignment statement in an 
imperative language
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Haskell

• Similar to ML (syntax, static scoped, strongly typed, type 
inferencing, pattern matching)

• Different from ML (and most other functional languages) in 
that it is purely functional (e.g., no variables, no assignment 
statements, and no side effects of any kind)

Syntax differences from ML
fact 0 = 1
fact n = n * fact (n – 1)

fib 0 = 1

fib 1 = 1

fib (n + 2) = fib (n + 1) + fib n
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Function Definitions with Different 
Parameter Ranges

fact n
|  n == 0 = 1
|  n > 0 = n * fact(n – 1)

sub n
| n < 10 = 0
| n > 100 = 2
| otherwise = 1

square x = x * x

- Works for any numeric type of x
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Lists

• List notation: Put elements in brackets
e.g., directions = ["north",                   

"south", "east", "west"]
• Length: #
e.g.,  #directions is 4

• Arithmetic series with the .. operator
e.g., [2, 4..10] is [2, 4, 6, 8, 10]

• Catenation is with ++
e.g., [1, 3] ++ [5, 7] results in [1, 3, 5, 7]

• CONS, CAR, CDR via the colon operator (as in 
Prolog)
e.g., 1:[3, 5, 7] results in [1, 3, 5, 7]
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Factorial Revisited

product [] = 1
product (a:x) = a * product x

fact n = product [1..n]
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List Comprehension

• Set notation

• List of the squares of the first 20 positive 
integers: [n * n | n ← [1..20]]

• All of the factors of its given parameter:

factors n = [i | i ← [1..n SdivS2], 

n SmodSi == 0]
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Quicksort

sort [] = []

sort (a:x) =

sort [b | b ← x; b <= a] ++

[a] ++

sort [b | b ← x; b > a]
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Lazy Evaluation

• A language is strict if it requires all actual parameters to be 
fully evaluated

• A language is nonstrict if it does not have the strict 
requirement

• Nonstrict languages are more efficient and allow some 
interesting capabilities – infinite lists

• Lazy evaluation - Only compute those values that are 
necessary

• Positive numbers
positives = [0..]

• Determining if 16 is a square number
member [] b = False
member(a:x) b=(a == b)||member x b
squares = [n * n | n ← [0..]]
member squares 16
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Member Revisited

• The member function could be written as:

member [] b = False

member(a:x) b=(a == b)||member x b
• However, this would only work if the parameter to 
squares was a perfect square; if not, it will keep 
generating them forever. The following version will 
always work:

member2 (m:x) n

| m < n = member2 x n

| m == n = True

| otherwise = False
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Applications of Functional Languages

• APL is used for throw-away programs

• LISP is used for artificial intelligence

– Knowledge representation

– Machine learning

– Natural language processing

– Modeling of speech and vision

• Scheme is used to teach introductory 
programming at some universities
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Comparing Functional and Imperative 
Languages

• Imperative Languages:
– Efficient execution

– Complex semantics

– Complex syntax

– Concurrency is programmer designed

• Functional Languages:
– Simple semantics

– Simple syntax

– Inefficient execution

– Programs can automatically be made concurrent 
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Summary

• Functional programming languages use function application, 
conditional expressions, recursion, and functional forms to 
control program execution instead of imperative features 
such as variables and assignments

• LISP began as a purely functional language and later included 
imperative features

• Scheme is a relatively simple dialect of LISP that uses static 
scoping exclusively

• COMMON LISP is a large LISP-based language
• ML is a static-scoped and strongly typed functional language 
which includes type inference, exception handling, and a 
variety of data structures and abstract data types

• Haskell is a lazy functional language supporting infinite lists 
and set comprehension.

• Purely functional languages have advantages over imperative 
alternatives, but their lower efficiency on existing machine 
architectures has prevented them from enjoying widespread 
use 


