
Chapter 15Chapter 15Chapter 15Chapter 15

Functional
Programming
Languages

Copyright © 2009 Addison-Wesley. All rights reserved. 1-2

Copyright © 2009 Addison-Wesley. All rights reserved. 1-3

Chapter 15 Topics

• Introduction

• Mathematical Functions

• Fundamentals of Functional Programming Languages

• The First Functional Programming Language: LISP

• Introduction to Scheme

• COMMON LISP

• ML

• Haskell

• Applications of Functional Languages

• Comparison of Functional and Imperative Languages

Copyright © 2009 Addison-Wesley. All rights reserved. 1-4

Introduction

• The design of the imperative languages is
based directly on the von Neumann
architecture
– Efficiency is the primary concern, rather than
the suitability of the language for software
development

• The design of the functional languages is
based on mathematical functions
– A solid theoretical basis that is also closer to the
user, but relatively unconcerned with the
architecture of the machines on which programs
will run

Copyright © 2009 Addison-Wesley. All rights reserved. 1-5

Mathematical Functions

• A mathematical function is a mapping of
members of one set, called the domain set,
to another set, called the range set

• A lambda expression specifies the
parameter(s) and the mapping of a function
in the following form

λ(x) x * x * x

for the function cube (x) = x * x * x

Copyright © 2009 Addison-Wesley. All rights reserved. 1-6

Lambda Expressions

• Lambda expressions describe nameless
functions

• Lambda expressions are applied to
parameter(s) by placing the parameter(s)
after the expression

e.g., (λ(x) x * x * x)(2)

which evaluates to 8

Copyright © 2009 Addison-Wesley. All rights reserved. 1-7

Functional Forms

• A higher-order function, or functional
form, is one that either takes functions as
parameters or yields a function as its result,
or both

Copyright © 2009 Addison-Wesley. All rights reserved. 1-8

Function Composition

• A functional form that takes two functions
as parameters and yields a function whose
value is the first actual parameter function
applied to the application of the second

Form: h ≡ f ° g

which means h (x) ≡ f (g (x))

For f (x) ≡ x + 2 and g (x) ≡ 3 * x,

h ≡ f ° g yields (3 * x)+ 2

Copyright © 2009 Addison-Wesley. All rights reserved. 1-9

Apply-to-all

• A functional form that takes a single
function as a parameter and yields a list of
values obtained by applying the given
function to each element of a list of
parameters

Form: α

For h (x) ≡ x * x

α(h, (2, 3, 4)) yields (4, 9, 16)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

Fundamentals of Functional
Programming Languages

• The objective of the design of a FPL is to mimic
mathematical functions to the greatest extent
possible

• The basic process of computation is fundamentally
different in a FPL than in an imperative language

– In an imperative language, operations are done and the
results are stored in variables for later use

– Management of variables is a constant concern and
source of complexity for imperative programming

• In an FPL, variables are not necessary, as is the
case in mathematics

Copyright © 2009 Addison-Wesley. All rights reserved. 1-11

Fundamentals of Functional
Programming Languages - continued

• Referential Transparency - In an FPL, the
evaluation of a function always produces
the same result given the same parameters

• Tail Recursion – Writing recursive functions
that can be automatically converted to
iteration

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

LISP Data Types and Structures

• Data object types: originally only atoms and
lists

• List form: parenthesized collections of
sublists and/or atoms

e.g., (A B (C D) E)

• Originally, LISP was a typeless language

• LISP lists are stored internally as single-
linked lists

Copyright © 2009 Addison-Wesley. All rights reserved. 1-13

LISP Interpretation

• Lambda notation is used to specify functions and
function definitions. Function applications and data
have the same form.

e.g., If the list (A B C) is interpreted as data it is

a simple list of three atoms, A, B, and C

If it is interpreted as a function application,

it means that the function named A is

applied to the two parameters, B and C

• The first LISP interpreter appeared only as a
demonstration of the universality of the
computational capabilities of the notation

Copyright © 2009 Addison-Wesley. All rights reserved. 1-14

Origins of Scheme

• A mid-1970s dialect of LISP, designed to be
a cleaner, more modern, and simpler
version than the contemporary dialects of
LISP

• Uses only static scoping

• Functions are first-class entities

– They can be the values of expressions and
elements of lists

– They can be assigned to variables and passed as
parameters

Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

Evaluation

• Parameters are evaluated, in no particular
order

• The values of the parameters are
substituted into the function body

• The function body is evaluated

• The value of the last expression in the
body is the value of the function

Copyright © 2009 Addison-Wesley. All rights reserved. 1-16

Primitive Functions

• Arithmetic: +, -, *, /, ABS, SQRT,
REMAINDER, MIN, MAX
e.g., (+ 5 2) yields 7

• QUOTE - takes one parameter; returns the
parameter without evaluation
– QUOTE is required because the Scheme interpreter,

named EVAL, always evaluates parameters to function
applications before applying the function. QUOTE is
used to avoid parameter evaluation when it is not
appropriate

– QUOTE can be abbreviated with the apostrophe prefix
operator

'(A B) is equivalent to (QUOTE (A B))

Copyright © 2009 Addison-Wesley. All rights reserved. 1-17

Function Definition: LAMBDA

• Lambda Expressions

– Form is based on λ notation

e.g., (LAMBDA (x) (* x x)

x is called a bound variable

• Lambda expressions can be applied

e.g., ((LAMBDA (x) (* x x)) 7)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-18

Special Form Function: DEFINE

• A Function for Constructing Functions DEFINE -
Two forms:

1. To bind a symbol to an expression

e.g., (DEFINE pi 3.141593)

Example use: (DEFINE two_pi (* 2 pi))

2. To bind names to lambda expressions

e.g., (DEFINE (square x) (* x x))

Example use: (square 5)

- The evaluation process for DEFINE is different! The first
parameter is never evaluated. The second parameter is
evaluated and bound to the first parameter.

Copyright © 2009 Addison-Wesley. All rights reserved. 1-19

Output Functions

• (DISPLAY expression)

• (NEWLINE)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-20

Numeric Predicate Functions

• #T is true and #F is false (sometimes () is
used for false)

• =, <>, >, <, >=, <=

• EVEN?, ODD?, ZERO?, NEGATIVE?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-21

Control Flow: IF

• Selection- the special form, IF

(IF predicate then_exp else_exp)

e.g.,

(IF (<> count 0)

(/ sum count)

0)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-22

Control Flow: COND

• Multiple Selection - the special form, COND
General form:

(COND

(predicate_1 expr {expr})

(predicate_1 expr {expr})

...

(predicate_1 expr {expr})

(ELSE expr {expr}))
• Returns the value of the last expression in
the first pair whose predicate evaluates to
true

Copyright © 2009 Addison-Wesley. All rights reserved. 1-23

Example of COND

(DEFINE (compare x y)
(COND
((> x y) “x is greater than y”)
((< x y) “y is greater than x”)
(ELSE “x and y are equal”)

)
)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-24

List Functions: CONS and LIST

• CONS takes two parameters, the first of
which can be either an atom or a list and
the second of which is a list; returns a new
list that includes the first parameter as its
first element and the second parameter as
the remainder of its result

e.g., (CONS 'A '(B C)) returns (A B C)

• LIST takes any number of parameters;
returns a list with the parameters as
elements

Copyright © 2009 Addison-Wesley. All rights reserved. 1-25

List Functions: CAR and CDR

• CAR takes a list parameter; returns the first
element of that list

e.g., (CAR '(A B C)) yields A

(CAR '((A B) C D)) yields (A B)

• CDR takes a list parameter; returns the list
after removing its first element

e.g., (CDR '(A B C)) yields (B C)

(CDR '((A B) C D)) yields (C D)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

Predicate Function: EQ?

• EQ? takes two symbolic parameters; it
returns #T if both parameters are atoms
and the two are the same; otherwise #F

e.g., (EQ? 'A 'A) yields #T

(EQ? 'A 'B) yields #F
– Note that if EQ? is called with list parameters,
the result is not reliable

– Also EQ? does not work for numeric atoms

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

Predicate Functions: LIST? and NULL?

• LIST? takes one parameter; it returns #T if
the parameter is a list; otherwise #F

• NULL? takes one parameter; it returns #T if
the parameter is the empty list; otherwise
#F
– Note that NULL? returns #T if the parameter is()

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

Example Scheme Function: member

• member takes an atom and a simple list;
returns #T if the atom is in the list; #F
otherwise

DEFINE (member atm lis)

(COND

((NULL? lis) #F)

((EQ? atm (CAR lis)) #T)

((ELSE (member atm (CDR lis)))

))

Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

Example Scheme Function: equalsimp

• equalsimp takes two simple lists as parameters;
returns #T if the two simple lists are equal; #F
otherwise

(DEFINE (equalsimp lis1 lis2)

(COND

((NULL? lis1) (NULL? lis2))

((NULL? lis2) #F)

((EQ? (CAR lis1) (CAR lis2))

(equalsimp(CDR lis1)(CDR lis2)))

(ELSE #F)

))

Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

Example Scheme Function: equal

• equal takes two general lists as parameters;
returns #T if the two lists are equal; #F otherwise

(DEFINE (equal lis1 lis2)

(COND

((NOT (LIST? lis1))(EQ? lis1 lis2))

((NOT (LIST? lis2)) #F)

((NULL? lis1) (NULL? lis2))

((NULL? lis2) #F)

((equal (CAR lis1) (CAR lis2))

(equal (CDR lis1) (CDR lis2)))

(ELSE #F)

))

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

Example Scheme Function: append

• append takes two lists as parameters; returns the
first parameter list with the elements of the second
parameter list appended at the end

(DEFINE (append lis1 lis2)

(COND

((NULL? lis1) lis2)

(ELSE (CONS (CAR lis1)

(append (CDR lis1) lis2)))

))

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

Example Scheme Function: LET

• General form:

(LET (

(name_1 expression_1)

(name_2 expression_2)

...

(name_n expression_n))

body

)

• Evaluate all expressions, then bind the values to
the names; evaluate the body

Copyright © 2009 Addison-Wesley. All rights reserved. 1-33

LET Example

(DEFINE (quadratic_roots a b c)
(LET (
(root_part_over_2a
(/ (SQRT (- (* b b) (* 4 a c)))(* 2 a)))

(minus_b_over_2a (/ (- 0 b) (* 2 a)))
(DISPLAY (+ minus_b_over_2a root_part_over_2a))
(NEWLINE)
(DISPLAY (- minus_b_over_2a root_part_over_2a))

))

Tail Recursion in Scheme

• Definition: A function is tail recursive if its
recursive call is the last operation in the
function

• A tail recursive function can be
automatically converted by a compiler to
use iteration, making it faster

• Scheme language definition requires that
Scheme language systems convert all tail
recursive functions to use iteration

Copyright © 2009 Addison-Wesley. All rights reserved. 1-34

Tail Recursion in Scheme - continued

• Example of rewriting a function to make it
tail recursive, using helper a function

Original: (DEFINE (factorial n)

(IF (= n 0)

1

(* n (factorial (- n 1)))

))

Tail recursive: (DEFINE (facthelper n factpartial)

(IF (= n 0)

factpartial

facthelper((- n 1) (* n factpartial)))

))

(DEFINE (factorial n)

(facthelper n 1))

Copyright © 2009 Addison-Wesley. All rights reserved. 1-35

Copyright © 2009 Addison-Wesley. All rights reserved. 1-36

Scheme Functional Forms

• Composition

– The previous examples have used it

– (CDR (CDR '(A B C))) returns (C)

• Apply to All - one form in Scheme is mapcar
– Applies the given function to all elements of the given list;

(DEFINE (mapcar fun lis)

(COND

((NULL? lis) ())

(ELSE (CONS (fun (CAR lis))

(mapcar fun (CDR lis))))

))

Copyright © 2009 Addison-Wesley. All rights reserved. 1-37

Functions That Build Code

• It is possible in Scheme to define a function
that builds Scheme code and requests its
interpretation

• This is possible because the interpreter is a
user-available function, EVAL

Copyright © 2009 Addison-Wesley. All rights reserved. 1-38

Adding a List of Numbers

((DEFINE (adder lis)

(COND

((NULL? lis) 0)

(ELSE (EVAL (CONS '+ lis)))

))
• The parameter is a list of numbers to be added;
adder inserts a + operator and evaluates the
resulting list
– Use CONS to insert the atom + into the list of numbers.
– Be sure that + is quoted to prevent evaluation
– Submit the new list to EVAL for evaluation

Copyright © 2009 Addison-Wesley. All rights reserved. 1-39

COMMON LISP

• A combination of many of the features of the
popular dialects of LISP around in the early 1980s

• A large and complex language--the opposite of
Scheme

• Features include:
– records

– arrays

– complex numbers

– character strings

– powerful I/O capabilities

– packages with access control

– iterative control statements

Copyright © 2009 Addison-Wesley. All rights reserved. 1-40

ML

• A static-scoped functional language with syntax
that is closer to Pascal than to LISP

• Uses type declarations, but also does type
inferencing to determine the types of undeclared
variables

• It is strongly typed (whereas Scheme is essentially
typeless) and has no type coercions

• Includes exception handling and a module facility
for implementing abstract data types

• Includes lists and list operations

Copyright © 2009 Addison-Wesley. All rights reserved. 1-41

ML Specifics

• Function declaration form:

fun name (parameters) = body;

e.g., fun cube (x : int) = x * x * x;

- The type could be attached to return value, as in
fun cube (x) : int = x * x * x;

- With no type specified, it would default to

int (the default for numeric values)
- User-defined overloaded functions are not
allowed, so if we wanted a cube function for real
parameters, it would need to have a different name

- There are no type coercions in ML

Copyright © 2009 Addison-Wesley. All rights reserved. 1-42

ML Specifics (continued)

• ML selection
if expression then then_expression

else else_expression

where the first expression must evaluate to a
Boolean value

• Pattern matching is used to allow a function
to operate on different parameter forms
fun fact(0) = 1
| fact(n : int) : int =

n * fact(n – 1)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-43

ML Specifics (continued)

• Lists
Literal lists are specified in brackets
[3, 5, 7]
[] is the empty list
CONS is the binary infix operator, ::
4 :: [3, 5, 7], which evaluates to [4, 3, 5, 7]

CAR is the unary operator hd
CDR is the unary operator tl
fun length([]) = 0
| length(h :: t) = 1 + length(t);

fun append([], lis2) = lis2
| append(h :: t, lis2) = h :: append(t, lis2);

Copyright © 2009 Addison-Wesley. All rights reserved. 1-44

ML Specifics (continued)

• The val statement binds a name to a value
(similar to DEFINE in Scheme)
val distance = time * speed;

- As is the case with DEFINE, val is
nothing like an assignment statement in an
imperative language

Copyright © 2009 Addison-Wesley. All rights reserved. 1-45

Haskell

• Similar to ML (syntax, static scoped, strongly typed, type
inferencing, pattern matching)

• Different from ML (and most other functional languages) in
that it is purely functional (e.g., no variables, no assignment
statements, and no side effects of any kind)

Syntax differences from ML
fact 0 = 1
fact n = n * fact (n – 1)

fib 0 = 1

fib 1 = 1

fib (n + 2) = fib (n + 1) + fib n

Copyright © 2009 Addison-Wesley. All rights reserved. 1-46

Function Definitions with Different
Parameter Ranges

fact n
| n == 0 = 1
| n > 0 = n * fact(n – 1)

sub n
| n < 10 = 0
| n > 100 = 2
| otherwise = 1

square x = x * x

- Works for any numeric type of x

Copyright © 2009 Addison-Wesley. All rights reserved. 1-47

Lists

• List notation: Put elements in brackets
e.g., directions = ["north",

"south", "east", "west"]
• Length: #
e.g., #directions is 4

• Arithmetic series with the .. operator
e.g., [2, 4..10] is [2, 4, 6, 8, 10]

• Catenation is with ++
e.g., [1, 3] ++ [5, 7] results in [1, 3, 5, 7]

• CONS, CAR, CDR via the colon operator (as in
Prolog)
e.g., 1:[3, 5, 7] results in [1, 3, 5, 7]

Copyright © 2009 Addison-Wesley. All rights reserved. 1-48

Factorial Revisited

product [] = 1
product (a:x) = a * product x

fact n = product [1..n]

Copyright © 2009 Addison-Wesley. All rights reserved. 1-49

List Comprehension

• Set notation

• List of the squares of the first 20 positive
integers: [n * n | n ← [1..20]]

• All of the factors of its given parameter:

factors n = [i | i ← [1..n SdivS2],

n SmodSi == 0]

Copyright © 2009 Addison-Wesley. All rights reserved. 1-50

Quicksort

sort [] = []

sort (a:x) =

sort [b | b ← x; b <= a] ++

[a] ++

sort [b | b ← x; b > a]

Copyright © 2009 Addison-Wesley. All rights reserved. 1-51

Lazy Evaluation

• A language is strict if it requires all actual parameters to be
fully evaluated

• A language is nonstrict if it does not have the strict
requirement

• Nonstrict languages are more efficient and allow some
interesting capabilities – infinite lists

• Lazy evaluation - Only compute those values that are
necessary

• Positive numbers
positives = [0..]

• Determining if 16 is a square number
member [] b = False
member(a:x) b=(a == b)||member x b
squares = [n * n | n ← [0..]]
member squares 16

Copyright © 2009 Addison-Wesley. All rights reserved. 1-52

Member Revisited

• The member function could be written as:

member [] b = False

member(a:x) b=(a == b)||member x b
• However, this would only work if the parameter to
squares was a perfect square; if not, it will keep
generating them forever. The following version will
always work:

member2 (m:x) n

| m < n = member2 x n

| m == n = True

| otherwise = False

Copyright © 2009 Addison-Wesley. All rights reserved. 1-53

Applications of Functional Languages

• APL is used for throw-away programs

• LISP is used for artificial intelligence

– Knowledge representation

– Machine learning

– Natural language processing

– Modeling of speech and vision

• Scheme is used to teach introductory
programming at some universities

Copyright © 2009 Addison-Wesley. All rights reserved. 1-54

Comparing Functional and Imperative
Languages

• Imperative Languages:
– Efficient execution

– Complex semantics

– Complex syntax

– Concurrency is programmer designed

• Functional Languages:
– Simple semantics

– Simple syntax

– Inefficient execution

– Programs can automatically be made concurrent

Copyright © 2009 Addison-Wesley. All rights reserved. 1-55

Summary

• Functional programming languages use function application,
conditional expressions, recursion, and functional forms to
control program execution instead of imperative features
such as variables and assignments

• LISP began as a purely functional language and later included
imperative features

• Scheme is a relatively simple dialect of LISP that uses static
scoping exclusively

• COMMON LISP is a large LISP-based language
• ML is a static-scoped and strongly typed functional language
which includes type inference, exception handling, and a
variety of data structures and abstract data types

• Haskell is a lazy functional language supporting infinite lists
and set comprehension.

• Purely functional languages have advantages over imperative
alternatives, but their lower efficiency on existing machine
architectures has prevented them from enjoying widespread
use

