
Chapter 2 – Evolution of the Major Programming Languages

Chapter 2 Topics

Zuse’s Plankalkül

Minimal Hardware Programming: Pseudocodes

The IBM 704 and Fortran

Functional Programming: LISP

The First Step Toward Sophistication: ALGOL 60

Computerizing Business Records: COBOL

The Beginnings of Timesharing: BASIC

Everything for Everybody: PL/I

Two Early Dynamic Languages: APL and SNOBOL

The Beginnings of Data Abstraction: SIMULA 67

Orthogonal Design: ALGOL 68

Some Early Descendants of the ALGOLs

Programming Based on Logic: Prolog

History's Largest Design Effort: Ada

Object-Oriented Programming: Smalltalk

Combining Imperative ad Object-Oriented Features: C++

An Imperative-Based Object-Oriented Language: Java

Scripting Languages

A C-Based Language for the New Millennium: C#

Markup/Programming Hybrid Languages

Genealogy of Common Languages

Zuse’s Plankalkül

Designed in 1945, but not published until 1972

Never implemented

Advanced data structures

floating point, arrays, records

Invariants

Plankalkül Syntax

An assignment statement to assign the expression A[4] + 1 to A[5]

 A + 1 ⇒ A

V 4 5 (subscripts)

S 1.n 1.n (data types)

Minimal Hardware Programming: Pseudocodes

What was wrong with using machine code?

Poor readability

Poor modifiability

Expression coding was tedious

Machine deficiencies--no indexing or floating point

Pseudocodes: Short Code

Short Code developed by Mauchly in 1949 for BINAC computers

Expressions were coded, left to right

Example of operations:

01 –

02)

03 =

04 /

06 abs value

07 +

08 pause

09 (

1n (n+2)
nd

 power

2n (n+2)
nd

 root

4n if ≤ n

58 print and tab

Pseudocodes: Speedcoding

Speedcoding developed by Backus in 1954 for IBM 701

Pseudo ops for arithmetic and math functions

Conditional and unconditional branching

Auto-increment registers for array access

Slow!

Only 700 words left for user program

Pseudocodes: Related Systems

The UNIVAC Compiling System

Developed by a team led by Grace Hopper

Pseudocode expanded into machine code

David J. Wheeler (Cambridge University)

developed a method of using blocks of re-locatable addresses to solve the problem of

absolute addressing

IBM 704 and Fortran

Fortran 0: 1954 - not implemented

Fortran I:1957

Designed for the new IBM 704, which had index registers and floating point hardware

 - This led to the idea of compiled programming languages, because there was no

place to hide the cost of interpretation (no floating-point software)

Environment of development

Computers were small and unreliable

Applications were scientific

No programming methodology or tools

Machine efficiency was the most important concern

Design Process of Fortran

Impact of environment on design of Fortran I

No need for dynamic storage

Need good array handling and counting loops

No string handling, decimal arithmetic, or powerful input/output (for business software)

Fortran I Overview

First implemented version of Fortran

Names could have up to six characters

Post-test counting loop (DO)

Formatted I/O

User-defined subprograms

Three-way selection statement (arithmetic IF)

No data typing statements

First implemented version of FORTRAN

No separate compilation

Compiler released in April 1957, after 18 worker-years of effort

Programs larger than 400 lines rarely compiled correctly, mainly due to poor reliability of

704

Code was very fast

Quickly became widely used

Fortran II

Distributed in 1958

Independent compilation

Fixed the bugs

Fortran IV

Evolved during 1960-62

Explicit type declarations

Logical selection statement

Subprogram names could be parameters

ANSI standard in 1966

Fortran 77

Became the new standard in 1978

Character string handling

Logical loop control statement

IF-THEN-ELSE statement

Fortran 90

Most significant changes from Fortran 77

Modules

Dynamic arrays

Pointers

Recursion

CASE statement

Parameter type checking

Latest versions of Fortran

Fortran 95

relatively minor additions, plus some deletions

Fortran 2003

ditto

Fortran Evaluation

Highly optimizing compilers (all versions before 90)

Types and storage of all variables are fixed before run time

Dramatically changed forever the way computers are used

Characterized as the lingua franca of the computing world

Functional Programming: LISP

LISt Processing language

 Designed at MIT by McCarthy

AI research needed a language to

Process data in lists (rather than arrays)

Symbolic computation (rather than numeric)

Only two data types: atoms and lists

Syntax is based on lambda calculus

Representation of Two LISP Lists

Representing the lists (A B C D)

and (A (B C) D (E (F G)))

LISP Evaluation

Pioneered functional programming

No need for variables or assignment

Control via recursion and conditional expressions

Still the dominant language for AI

COMMON LISP and Scheme are contemporary dialects of LISP

ML, Miranda, and Haskell are related languages

Scheme

Developed at MIT in mid 1970s

Small

Extensive use of static scoping

Functions as first-class entities

Simple syntax (and small size) make it ideal for educational applications

COMMON LISP

An effort to combine features of several dialects of LISP into a single language

Large, complex

The First Step Toward Sophistication: ALGOL 60

Environment of development

FORTRAN had (barely) arrived for IBM 70x

Many other languages were being developed, all for specific machines

No portable language; all were machine- dependent

No universal language for communicating algorithms

ALGOL 60 was the result of efforts to design a universal language

Early Design Process

ACM and GAMM met for four days for design (May 27 to June 1, 1958)

Goals of the language

Close to mathematical notation

Good for describing algorithms

Must be translatable to machine code

ALGOL 58

Concept of type was formalized

Names could be any length

Arrays could have any number of subscripts

Parameters were separated by mode (in & out)

Subscripts were placed in brackets

Compound statements (begin ... end)

Semicolon as a statement separator

Assignment operator was :=

if had an else-if clause

No I/O - “would make it machine dependent”

ALGOL 58 Implementation

Not meant to be implemented, but variations of it were (MAD, JOVIAL)

Although IBM was initially enthusiastic, all support was dropped by mid 1959

ALGOL 60 Overview

Modified ALGOL 58 at 6-day meeting in Paris

New features

Block structure (local scope)

Two parameter passing methods

Subprogram recursion

Stack-dynamic arrays

Still no I/O and no string handling

ALGOL 60 Evaluation

Successes

It was the standard way to publish algorithms for over 20 years

All subsequent imperative languages are based on it

First machine-independent language

First language whose syntax was formally defined (BNF)

Failure

Never widely used, especially in U.S.

Reasons

Lack of I/O and the character set made programs non-portable

Too flexible--hard to implement

Entrenchment of Fortran

Formal syntax description

Lack of support from IBM

Computerizing Business Records: COBOL

Environment of development

UNIVAC was beginning to use FLOW-MATIC

USAF was beginning to use AIMACO

IBM was developing COMTRAN

COBOL Historical Background

Based on FLOW-MATIC

FLOW-MATIC features

Names up to 12 characters, with embedded hyphens

English names for arithmetic operators (no arithmetic expressions)

Data and code were completely separate

The first word in every statement was a verb

COBOL Design Process

First Design Meeting (Pentagon) - May 1959

Design goals

Must look like simple English

Must be easy to use, even if that means it will be less powerful

Must broaden the base of computer users

Must not be biased by current compiler problems

Design committee members were all from computer manufacturers and DoD branches

Design Problems: arithmetic expressions? subscripts? Fights among manufacturers

COBOL Evaluation

Contributions

First macro facility in a high-level language

Hierarchical data structures (records)

Nested selection statements

Long names (up to 30 characters), with hyphens

Separate data division

COBOL: DoD Influence

First language required by DoD

would have failed without DoD

Still the most widely used business applications language

The Beginning of Timesharing: BASIC

Designed by Kemeny & Kurtz at Dartmouth

Design Goals:

Easy to learn and use for non-science students

Must be “pleasant and friendly”

Fast turnaround for homework

Free and private access

User time is more important than computer time

Current popular dialect: Visual BASIC

First widely used language with time sharing

2.8 Everything for Everybody: PL/I

Designed by IBM and SHARE

Computing situation in 1964 (IBM's point of view)

Scientific computing

IBM 1620 and 7090 computers

FORTRA,

SHARE user group

Business computing

IBM 1401, 7080 computers

COBOL

GUIDE user group

PL/I: Background

By 1963

Scientific users began to need more elaborate I/O, like COBOL had; business users

began to need floating point and arrays for MIS

It looked like many shops would begin to need two kinds of computers, languages, and

support staff--too costly

The obvious solution

Build a new computer to do both kinds of applications

Design a new language to do both kinds of applications

PL/I: Design Process

Designed in five months by the 3 X 3 Committee

Three members from IBM, three members from SHARE

Initial concept

An extension of Fortran IV

Initially called NPL (New Programming Language)

Name changed to PL/I in 1965

PL/I: Evaluation

PL/I contributions

First unit-level concurrency

First exception handling

Switch-selectable recursion

First pointer data type

First array cross sections

Concerns

Many new features were poorly designed

Too large and too complex

Two Early Dynamic Languages: APL and SNOBOL

Characterized by dynamic typing and dynamic storage allocation

Variables are untyped

A variable acquires a type when it is assigned a value

Storage is allocated to a variable when it is assigned a value

APL: A Programming Language

Designed as a hardware description language at IBM by Ken Iverson around 1960

Highly expressive (many operators, for both scalars and arrays of various dimensions)

Programs are very difficult to read

Still in use; minimal changes

SNOBOL

Designed as a string manipulation language at Bell Labs by Farber, Griswold, and

Polensky in 1964

Powerful operators for string pattern matching

Slower than alternative languages (and thus no longer used for writing editors)

Still used for certain text processing tasks

The Beginning of Data Abstraction: SIMULA 67

Designed primarily for system simulation in Norway by Nygaard and Dahl

Based on ALGOL 60 and SIMULA I

Primary Contributions

Coroutines - a kind of subprogram

Classes, objects, and inheritance

Orthogonal Design: ALGOL 68

From the continued development of ALGOL 60 but not a superset of that language

Source of several new ideas (even though the language itself never achieved

widespread use)

Design is based on the concept of orthogonality

A few basic concepts, plus a few combining mechanisms

ALGOL 68 Evaluation

Contributions

User-defined data structures

Reference types

Dynamic arrays (called flex arrays)

Comments

Less usage than ALGOL 60

Had strong influence on subsequent languages, especially Pascal, C, and Ada

Pascal - 1971

Developed by Wirth (a former member of the ALGOL 68 committee)

Designed for teaching structured programming

Small, simple, nothing really new

Largest impact was on teaching programming

From mid-1970s until the late 1990s, it was the most widely used language for teaching

programming

C - 1972

Designed for systems programming (at Bell Labs by Dennis Richie)

Evolved primarily from BCLP, B, but also ALGOL 68

Powerful set of operators, but poor type checking

Initially spread through UNIX

Many areas of application

Programming Based on Logic: Prolog

Developed, by Comerauer and Roussel (University of Aix-Marseille), with help from

Kowalski (University of Edinburgh)

Based on formal logic

Non-procedural

Can be summarized as being an intelligent database system that uses an inferencing

process to infer the truth of given queries

Highly inefficient, small application areas

History’s Largest Design Effort: Ada

Huge design effort, involving hundreds of people, much money, and about eight years

Strawman requirements (April 1975)

Woodman requirements (August 1975)

Tinman requirements (1976)

Ironman equipments (1977)

Steelman requirements (1978)

Named Ada after Augusta Ada Byron, the first programmer

Ada Evaluation

Contributions

Packages - support for data abstraction

Exception handling - elaborate

Generic program units

Concurrency - through the tasking model

Comments

Competitive design

Included all that was then known about software engineering and language design

First compilers were very difficult; the first really usable compiler came nearly five years

after the language design was completed

Ada 95

Ada 95 (began in 1988)

Support for OOP through type derivation

Better control mechanisms for shared data

New concurrency features

More flexible libraries

Popularity suffered because the DoD no longer requires its use but also because of

popularity of C++

Object-Oriented Programming: Smalltalk

Developed at Xerox PARC, initially by Alan Kay, later by Adele Goldberg

First full implementation of an object-oriented language (data abstraction, inheritance,

and dynamic binding)

Pioneered the graphical user interface design

Promoted OOP

Combining Imperative and Object-Oriented Programming: C++

Developed at Bell Labs by Stroustrup in 1980

Evolved from C and SIMULA 67

Facilities for object-oriented programming, taken partially from SIMULA 67

Provides exception handling

A large and complex language, in part because it supports both procedural and OO

programming

Rapidly grew in popularity, along with OOP

ANSI standard approved in November 1997

Microsoft’s version (released with .NET in 2002): Managed C++

delegates, interfaces, no multiple inheritance

Related OOP Languages

Eiffel (designed by Bertrand Meyer - 1992)

Not directly derived from any other language

Smaller and simpler than C++, but still has most of the power

Lacked popularity of C++ because many C++ enthusiasts were already C programmers

Delphi (Borland)

Pascal plus features to support OOP

More elegant and safer than C++

An Imperative-Based Object-Oriented Language: Java

Developed at Sun in the early 1990s

C and C++ were not satisfactory for embedded electronic devices

Based on C++

Significantly simplified (does not include struct, union, enum, pointer arithmetic,

and half of the assignment coercions of C++)

Supports only OOP

Has references, but not pointers

Includes support for applets and a form of concurrency

Java Evaluation

Eliminated many unsafe features of C++

Supports concurrency

Libraries for applets, GUIs, database access

Portable: Java Virtual Machine concept, JIT compilers

Widely used for Web programming

Use increased faster than any previous language

Most recent version, 5.0, released in 2004

Scripting Languages for the Web

Perl

Designed by Larry Wall—first released in 1987

Variables are statically typed but implicitly declared

Three distinctive namespaces, denoted by the first character of a

 variable’s name

Powerful, but somewhat dangerous

Gained widespread use for CGI programming on the Web

Also used for a replacement for UNIX system administration language

JavaScript

Began at Netscape, but later became a joint venture of Netscape and Sun

Microsystems

A client-side HTML-embedded scripting language, often used to create dynamic HTML

documents

Purely interpreted

Related to Java only through similar syntax

PHP

PHP: Hypertext Preprocessor, designed by Rasmus Lerdorf

A server-side HTML-embedded scripting language, often used for form processing and

database access through the Web

Purely interpreted

Scripting Languages for the Web

Scripting Languages for the Web

Ruby

Designed in Japan by Yukihiro Matsumoto (a.k.a, “Matz”)

Began as a replacement for Perl and Python

A pure object-oriented scripting language

 - All data are objects

Most operators are implemented as methods, which can be redefined by user code

Purely interpreted

A C-Based Language for the New Millennium: C#

Part of the .NET development platform (2000)

Based on C++ , Java, and Delphi

Provides a language for component-based software development

All .NET languages use Common Type System (CTS), which provides a common class

library

Markup/Programming Hybrid Languages

XSLT

eXtensible Markup Language (XML): a metamarkup language

eXtensible Stylesheet Language Transformation (XSTL) transforms XML documents for

display

Programming constructs (e.g., looping)

JSP

Java Server Pages: a collection of technologies to support dynamic Web documents

servlet: a Java program that resides on a Web server and is enacted when called by a

requested HTML document; a servlet’s output is displayed by the browser

JSTL includes programming constructs in the form of HTML elements

Summary

Development, development environment, and evaluation of a number of important

programming languages

Perspective into current issues in language design

