
Chapter 3

Describing Syntax
and Semantics

Copyright © 2009 Addison-Wesley. All rights reserved. 1-2

Chapter 3 Topics

• Introduction

• The General Problem of Describing Syntax

• Formal Methods of Describing Syntax

• Attribute Grammars

• Describing the Meanings of Programs:
Dynamic Semantics

Copyright © 2009 Addison-Wesley. All rights reserved. 1-3

Introduction

• Syntax: the form or structure of the
expressions, statements, and program
units

• Semantics: the meaning of the expressions,
statements, and program units

• Syntax and semantics provide a language’s
definition
– Users of a language definition

• Other language designers

• Implementers

• Programmers (the users of the language)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-4

The General Problem of Describing
Syntax: Terminology

• A sentence is a string of characters over
some alphabet

• A language is a set of sentences

• A lexeme is the lowest level syntactic unit
of a language (e.g., *, sum, begin)

• A token is a category of lexemes (e.g.,
identifier)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-5

Formal Definition of Languages

• Recognizers
– A recognition device reads input strings over the alphabet

of the language and decides whether the input strings
belong to the language

– Example: syntax analysis part of a compiler

 - Detailed discussion of syntax analysis appears in

 Chapter 4

• Generators
– A device that generates sentences of a language

– One can determine if the syntax of a particular sentence is
syntactically correct by comparing it to the structure of
the generator

Copyright © 2009 Addison-Wesley. All rights reserved. 1-6

BNF and Context-Free Grammars

• Context-Free Grammars

– Developed by Noam Chomsky in the mid-1950s

– Language generators, meant to describe the
syntax of natural languages

– Define a class of languages called context-free
languages

• Backus-Naur Form (1959)

– Invented by John Backus to describe Algol 58

– BNF is equivalent to context-free grammars

Copyright © 2009 Addison-Wesley. All rights reserved. 1-7

BNF Fundamentals

• In BNF, abstractions are used to represent classes of syntactic structures--they act like
syntactic variables (also called nonterminal symbols, or just terminals)

• Terminals are lexemes or tokens

• A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand side (RHS),

which is a string of terminals and/or nonterminals

• Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:
 <ident_list> → identifier | identifier, <ident_list>

 <if_stmt> → if <logic_expr> then <stmt>

• Grammar: a finite non-empty set of rules

• A start symbol is a special element of the nonterminals of a grammar

Copyright © 2009 Addison-Wesley. All rights reserved. 1-8

BNF Rules

• An abstraction (or nonterminal symbol)
can have more than one RHS

 <stmt>  <single_stmt>

 | begin <stmt_list> end

Copyright © 2009 Addison-Wesley. All rights reserved. 1-9

Describing Lists

• Syntactic lists are described using
recursion

 <ident_list>  ident

 | ident, <ident_list>

• A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

An Example Grammar

 <program>  <stmts>

 <stmts>  <stmt> | <stmt> ; <stmts>

 <stmt>  <var> = <expr>

 <var>  a | b | c | d

 <expr>  <term> + <term> | <term> - <term>

 <term>  <var> | const

Copyright © 2009 Addison-Wesley. All rights reserved. 1-11

An Example Derivation

 <program> => <stmts> => <stmt>

 => <var> = <expr>

 => a = <expr>

 => a = <term> + <term>

 => a = <var> + <term>

 => a = b + <term>

 => a = b + const

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

Derivations

• Every string of symbols in a derivation is a
sentential form

• A sentence is a sentential form that has
only terminal symbols

• A leftmost derivation is one in which the
leftmost nonterminal in each sentential
form is the one that is expanded

• A derivation may be neither leftmost nor
rightmost

Copyright © 2009 Addison-Wesley. All rights reserved. 1-13

Parse Tree

• A hierarchical representation of a derivation

 <program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>

Copyright © 2009 Addison-Wesley. All rights reserved. 1-14

Ambiguity in Grammars

• A grammar is ambiguous if and only if it
generates a sentential form that has two
or more distinct parse trees

Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

An Ambiguous Expression Grammar

<expr>  <expr> <op> <expr> | const

<op>  / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const - - / /

<op>

Copyright © 2009 Addison-Wesley. All rights reserved. 1-16

An Unambiguous Expression Grammar

• If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity

<expr>  <expr> - <term> | <term>

<term>  <term> / const| const

<expr>

<expr> <term>

<term> <term>

const const

const /

-

Copyright © 2009 Addison-Wesley. All rights reserved. 1-17

Associativity of Operators

• Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

 <expr> <expr>

<expr>

<expr> const

const

const

+

+

Copyright © 2009 Addison-Wesley. All rights reserved. 1-18

Extended BNF

• Optional parts are placed in brackets []

 <proc_call> -> ident [(<expr_list>)]

• Alternative parts of RHSs are placed
inside parentheses and separated via
vertical bars

 <term> → <term> (+|-) const

• Repetitions (0 or more) are placed inside
braces { }

 <ident> → letter {letter|digit}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-19

BNF and EBNF

• BNF

 <expr>  <expr> + <term>

 | <expr> - <term>

 | <term>

 <term>  <term> * <factor>

 | <term> / <factor>

 | <factor>

• EBNF

 <expr>  <term> {(+ | -) <term>}

 <term>  <factor> {(* | /) <factor>}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-20

Recent Variations in EBNF

• Alternative RHSs are put on separate lines

• Use of a colon instead of =>

• Use of opt for optional parts

• Use of oneof for choices

Copyright © 2009 Addison-Wesley. All rights reserved. 1-21

Static Semantics

• Nothing to do with meaning

• Context-free grammars (CFGs) cannot
describe all of the syntax of programming
languages

• Categories of constructs that are trouble:

 - Context-free, but cumbersome (e.g.,

 types of operands in expressions)

 - Non-context-free (e.g., variables must

 be declared before they are used)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-22

Attribute Grammars

• Attribute grammars (AGs) have additions
to CFGs to carry some semantic info on
parse tree nodes

• Primary value of AGs:

– Static semantics specification

– Compiler design (static semantics checking)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-23

Attribute Grammars : Definition

• Def: An attribute grammar is a context-free
grammar G = (S, N, T, P) with the following
additions:

– For each grammar symbol x there is a set A(x)
of attribute values

– Each rule has a set of functions that define
certain attributes of the nonterminals in the rule

– Each rule has a (possibly empty) set of
predicates to check for attribute consistency

Copyright © 2009 Addison-Wesley. All rights reserved. 1-24

Attribute Grammars: Definition

• Let X0  X1 ... Xn be a rule

• Functions of the form S(X0) = f(A(X1), ... ,
A(Xn)) define synthesized attributes

• Functions of the form I(Xj) = f(A(X0), ... ,
A(Xn)), for i <= j <= n, define inherited
attributes

• Initially, there are intrinsic attributes on the
leaves

Copyright © 2009 Addison-Wesley. All rights reserved. 1-25

Attribute Grammars: An Example

• Syntax

<assign> -> <var> = <expr>

<expr> -> <var> + <var> | <var>

<var> A | B | C

• actual_type: synthesized for <var>
and <expr>

• expected_type: inherited for <expr>

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

Attribute Grammar (continued)

• Syntax rule: <expr>  <var>[1] + <var>[2]

 Semantic rules:

 <expr>.actual_type  <var>[1].actual_type

 Predicate:

 <var>[1].actual_type == <var>[2].actual_type

 <expr>.expected_type == <expr>.actual_type

• Syntax rule: <var>  id

 Semantic rule:

 <var>.actual_type  lookup (<var>.string)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

Attribute Grammars (continued)

• How are attribute values computed?

– If all attributes were inherited, the tree could be
decorated in top-down order.

– If all attributes were synthesized, the tree could
be decorated in bottom-up order.

– In many cases, both kinds of attributes are
used, and it is some combination of top-down
and bottom-up that must be used.

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

Attribute Grammars (continued)

<expr>.expected_type  inherited from parent

<var>[1].actual_type  lookup (A)

<var>[2].actual_type  lookup (B)

<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type  <var>[1].actual_type

<expr>.actual_type =? <expr>.expected_type

Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

Semantics

• There is no single widely acceptable
notation or formalism for describing
semantics

• Several needs for a methodology and
notation for semantics:
– Programmers need to know what statements mean

– Compiler writers must know exactly what language
constructs do

– Correctness proofs would be possible

– Compiler generators would be possible

– Designers could detect ambiguities and inconsistencies

Operational Semantics

• Operational Semantics

– Describe the meaning of a program by
executing its statements on a machine, either
simulated or actual. The change in the state of
the machine (memory, registers, etc.) defines
the meaning of the statement

• To use operational semantics for a high-
level language, a virtual machine is needed

Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

Operational Semantics

• A hardware pure interpreter would be too
expensive

• A software pure interpreter also has
problems

– The detailed characteristics of the particular
computer would make actions difficult to
understand

– Such a semantic definition would be machine-
dependent

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

Operational Semantics (continued)

• A better alternative: A complete computer
simulation

• The process:

– Build a translator (translates source code to the
machine code of an idealized computer)

– Build a simulator for the idealized computer

• Evaluation of operational semantics:

– Good if used informally (language manuals, etc.)

– Extremely complex if used formally (e.g., VDL),
it was used for describing semantics of PL/I.

Copyright © 2009 Addison-Wesley. All rights reserved. 1-33

Operational Semantics (continued)

• Uses of operational semantics:

 - Language manuals and textbooks

 - Teaching programming languages

• Two different levels of uses of operational
semantics:

 - Natural operational semantics

 - Structural operational semantics

• Evaluation

 - Good if used informally (language

 manuals, etc.)

 - Extremely complex if used formally (e.g.,VDL)

Denotational Semantics

• Based on recursive function theory

• The most abstract semantics description
method

• Originally developed by Scott and Strachey
(1970)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-34

Denotational Semantics - continued

• The process of building a denotational
specification for a language:

 - Define a mathematical object for each language

 entity

– Define a function that maps instances of the
language entities onto instances of the
corresponding mathematical objects

• The meaning of language constructs are
defined by only the values of the program's
variables

Copyright © 2009 Addison-Wesley. All rights reserved. 1-35

Denotational Semantics: program state

• The state of a program is the values of all
its current variables

 s = {<i1, v1>, <i2, v2>, …, <in, vn>}

• Let VARMAP be a function that, when given
a variable name and a state, returns the
current value of the variable

 VARMAP(ij, s) = vj

Copyright © 2009 Addison-Wesley. All rights reserved. 1-36

Decimal Numbers

<dec_num>  '0' | '1' | '2' | '3' | '4' | '5' |

 '6' | '7' | '8' | '9' |

 <dec_num> ('0' | '1' | '2' | '3' |

 '4' | '5' | '6' | '7' |

 '8' | '9')

Mdec('0') = 0, Mdec ('1') = 1, …, Mdec ('9') = 9

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)

Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1

…

Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9

Copyright © 2009 Addison-Wesley. All rights reserved. 1-37

Expressions

• Map expressions onto Z  {error}

• We assume expressions are decimal
numbers, variables, or binary expressions
having one arithmetic operator and two
operands, each of which can be an
expression

Copyright © 2009 Addison-Wesley. All rights reserved. 1-38

Expressions

Me(<expr>, s) =
 case <expr> of
 <dec_num> => Mdec(<dec_num>, s)
 <var> =>
 if VARMAP(<var>, s) == undef
 then error
 else VARMAP(<var>, s)
 <binary_expr> =>
 if (Me(<binary_expr>.<left_expr>, s) == undef
 OR Me(<binary_expr>.<right_expr>, s) =
 undef)
 then error

 else

 if (<binary_expr>.<operator> == '+' then

 Me(<binary_expr>.<left_expr>, s) +

 Me(<binary_expr>.<right_expr>, s)

 else Me(<binary_expr>.<left_expr>, s) *

 Me(<binary_expr>.<right_expr>, s)

...

Copyright © 2009 Addison-Wesley. All rights reserved. 1-39

Assignment Statements

• Maps state sets to state sets U {error}

Ma(x := E, s) =

 if Me(E, s) == error

 then error

 else s’ =

 {<i1,v1’>,<i2,v2’>,...,<in,vn’>},

 where for j = 1, 2, ..., n,

 if ij == x

 then vj’ = Me(E, s)

 else vj’ = VARMAP(ij, s)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-40

Logical Pretest Loops

• Maps state sets to state sets U {error}

 Ml(while B do L, s) =

 if Mb(B, s) == undef

 then error

 else if Mb(B, s) == false

 then s

 else if Msl(L, s) == error

 then error

 else Ml(while B do L, Msl(L, s))

Copyright © 2009 Addison-Wesley. All rights reserved. 1-41

Loop Meaning

• The meaning of the loop is the value of the
program variables after the statements in the loop
have been executed the prescribed number of
times, assuming there have been no errors

• In essence, the loop has been converted from
iteration to recursion, where the recursive control
is mathematically defined by other recursive state
mapping functions

 - Recursion, when compared to iteration, is easier

 to describe with mathematical rigor

Copyright © 2009 Addison-Wesley. All rights reserved. 1-42

Evaluation of Denotational Semantics

• Can be used to prove the correctness of
programs

• Provides a rigorous way to think about
programs

• Can be an aid to language design

• Has been used in compiler generation
systems

• Because of its complexity, it are of little use
to language users

Copyright © 2009 Addison-Wesley. All rights reserved. 1-43

Copyright © 2009 Addison-Wesley. All rights reserved. 1-44

Axiomatic Semantics

• Based on formal logic (predicate calculus)

• Original purpose: formal program
verification

• Axioms or inference rules are defined for
each statement type in the language (to
allow transformations of logic expressions
into more formal logic expressions)

• The logic expressions are called assertions

Copyright © 2009 Addison-Wesley. All rights reserved. 1-45

Axiomatic Semantics (continued)

• An assertion before a statement (a
precondition) states the relationships and
constraints among variables that are true at
that point in execution

• An assertion following a statement is a
postcondition

• A weakest precondition is the least
restrictive precondition that will guarantee
the postcondition

Copyright © 2009 Addison-Wesley. All rights reserved. 1-46

Axiomatic Semantics Form

• Pre-, post form: {P} statement {Q}

• An example

– a = b + 1 {a > 1}

– One possible precondition: {b > 10}

– Weakest precondition: {b > 0}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-47

Program Proof Process

• The postcondition for the entire program is
the desired result

– Work back through the program to the first
statement. If the precondition on the first
statement is the same as the program
specification, the program is correct.

Copyright © 2009 Addison-Wesley. All rights reserved. 1-48

Axiomatic Semantics: Axioms

• An axiom for assignment statements
(x = E): {Qx->E} x = E {Q}

• The Rule of Consequence:

}{Q' S }{P'

Q' Q P, P' {Q}, S {P} 

Copyright © 2009 Addison-Wesley. All rights reserved. 1-49

Axiomatic Semantics: Axioms

• An inference rule for sequences of the form
S1; S2

 {P1} S1 {P2}

 {P2} S2 {P3}

{P3} S2 S1; {P1}

{P3} S2 {P2} {P2}, S1 {P1}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-50

Axiomatic Semantics: Axioms

• An inference rule for logical pretest loops

 {P} while B do S end {Q}

 where I is the loop invariant (the inductive
hypothesis)

B)}(not and {I S do B while{I}

{I} S B) and (I

Copyright © 2009 Addison-Wesley. All rights reserved. 1-51

Axiomatic Semantics: Axioms

• Characteristics of the loop invariant: I must
meet the following conditions:

– P => I -- the loop invariant must be true initially

– {I} B {I} -- evaluation of the Boolean must not change the validity of I

– {I and B} S {I} -- I is not changed by executing the body of the loop

– (I and (not B)) => Q -- if I is true and B is false, Q is implied

– The loop terminates -- can be difficult to prove

Copyright © 2009 Addison-Wesley. All rights reserved. 1-52

Loop Invariant

• The loop invariant I is a weakened version
of the loop postcondition, and it is also a
precondition.

• I must be weak enough to be satisfied prior
to the beginning of the loop, but when
combined with the loop exit condition, it
must be strong enough to force the truth of
the postcondition

Copyright © 2009 Addison-Wesley. All rights reserved. 1-53

Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all
of the statements in a language is difficult

• It is a good tool for correctness proofs, and
an excellent framework for reasoning about
programs, but it is not as useful for
language users and compiler writers

• Its usefulness in describing the meaning of
a programming language is limited for
language users or compiler writers

Copyright © 2009 Addison-Wesley. All rights reserved. 1-54

Denotation Semantics vs Operational
Semantics

• In operational semantics, the state changes
are defined by coded algorithms

• In denotational semantics, the state
changes are defined by rigorous
mathematical functions

Copyright © 2009 Addison-Wesley. All rights reserved. 1-55

Summary

• BNF and context-free grammars are
equivalent meta-languages

– Well-suited for describing the syntax of
programming languages

• An attribute grammar is a descriptive
formalism that can describe both the
syntax and the semantics of a language

• Three primary methods of semantics
description

– Operation, axiomatic, denotational

