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Chapter 3 Topics 
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• Formal Methods of Describing Syntax 

• Attribute Grammars 

• Describing the Meanings of Programs:    
Dynamic Semantics 
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Introduction 

• Syntax: the form or structure of the 
expressions, statements, and program 
units 

• Semantics: the meaning of the expressions,  
statements, and program units 

• Syntax and semantics provide a language’s 
definition 
–  Users of a language definition 

• Other language designers 

• Implementers 

• Programmers (the users of the language) 
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The General Problem of Describing 
Syntax: Terminology 

• A sentence is a string of characters over 
some alphabet 

 

• A language is a set of sentences 

 

• A lexeme is the lowest level syntactic unit 
of a language (e.g., *, sum, begin) 

 

• A token is a category of lexemes (e.g., 
identifier) 
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Formal Definition of Languages 

• Recognizers 
– A recognition device reads input strings over the alphabet 

of the language and decides whether the input strings 
belong to the language  

– Example: syntax analysis part of a compiler 

     - Detailed discussion of syntax analysis appears in  

         Chapter 4 

 

• Generators 
– A device that generates sentences of a language 

– One can determine if the syntax of a particular sentence is 
syntactically correct by comparing it to the structure of 
the generator 
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BNF and Context-Free Grammars 

• Context-Free Grammars 

– Developed by Noam Chomsky in the mid-1950s 

– Language generators, meant to describe the 
syntax of natural languages 

– Define a class of languages called context-free 
languages 

 

• Backus-Naur Form (1959) 

– Invented by John Backus to describe Algol 58 

– BNF is equivalent to context-free grammars 
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BNF Fundamentals 

 

• In BNF, abstractions are used to represent classes of syntactic structures--they act like  
syntactic  variables (also called nonterminal symbols, or just terminals) 

 
• Terminals are lexemes or tokens 
  
• A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand side (RHS), 

which is a string of terminals and/or nonterminals 
 

• Nonterminals are often enclosed in angle brackets 
 

– Examples of BNF rules: 
 <ident_list> → identifier | identifier, <ident_list> 

 <if_stmt> → if <logic_expr> then <stmt> 

 

• Grammar: a finite non-empty set of rules 
 

• A start symbol is a special element of the nonterminals of a grammar 
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BNF Rules 

 

• An abstraction (or nonterminal symbol) 
can have more than one RHS 

     <stmt>  <single_stmt>  

             | begin <stmt_list> end 
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Describing Lists 

• Syntactic lists are described using 
recursion 

    <ident_list>  ident 

                | ident, <ident_list> 

 

• A derivation is a repeated application of 
rules, starting with the start symbol and 
ending with a sentence (all terminal 
symbols) 
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An Example Grammar 

 <program>  <stmts> 

   <stmts>  <stmt> | <stmt> ; <stmts> 

   <stmt>  <var> = <expr> 

   <var>  a | b | c | d 

   <expr>  <term> + <term> | <term> - <term> 

   <term>  <var> | const 
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An Example Derivation 

 <program> => <stmts> => <stmt>  

                      => <var> = <expr>  

                      => a = <expr>  

                      => a = <term> + <term> 

                      => a = <var> + <term>  

                      => a = b + <term> 

                      => a = b + const 
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Derivations 

• Every string of symbols in a derivation is a 
sentential form 

• A sentence is a sentential form that has 
only terminal symbols 

• A leftmost derivation is one in which the 
leftmost nonterminal in each sentential 
form is the one that is expanded 

• A derivation may be neither leftmost nor 
rightmost 
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Parse Tree 

• A hierarchical representation of a derivation 
           

   <program> 

<stmts> 

<stmt> 

const 

a 

<var> = <expr> 

<var> 

b 

<term> + <term> 
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Ambiguity in Grammars 

• A grammar is ambiguous if and only if it 
generates a sentential form that has two 
or more distinct parse trees 
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An Ambiguous Expression Grammar 

<expr>  <expr> <op> <expr>  |  const 

<op>  /  |  - 

 

<expr> 

<expr> <expr> 

<expr> <expr> 

<expr> 

<expr> <expr> 

<expr> <expr> 

<op> 

<op> 

<op> 

<op> 

const const const const const const - - / / 

<op> 
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An Unambiguous Expression Grammar 

• If we use the parse tree to indicate 
precedence levels of the operators, we 
cannot have ambiguity 

 

<expr>  <expr> - <term>  |  <term> 

<term>  <term> / const| const 

 

<expr> 

<expr> <term> 

<term> <term> 

const const 

const / 

- 
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Associativity of Operators 

• Operator associativity can also be indicated by a 
grammar 

 
<expr> -> <expr> + <expr> |  const  (ambiguous) 

<expr> -> <expr> + const  |  const  (unambiguous) 

 

 <expr> <expr> 

<expr> 

<expr> const 

const 

const 

+ 

+ 
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Extended BNF 

• Optional parts are placed in brackets [ ] 

 <proc_call> -> ident [(<expr_list>)] 

• Alternative parts of RHSs are placed 
inside parentheses and separated via 
vertical bars  

 <term> → <term> (+|-) const 

• Repetitions (0 or more) are placed inside 
braces { } 

 <ident> → letter {letter|digit} 
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BNF and EBNF 

• BNF 

   <expr>  <expr> + <term> 

           | <expr> - <term> 

           | <term> 

    <term>  <term> * <factor> 

           | <term> / <factor> 

          | <factor> 

• EBNF 

   <expr>  <term> {(+ | -) <term>} 

    <term>  <factor> {(* | /) <factor>} 
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Recent Variations in EBNF 

• Alternative RHSs are put on separate lines 

• Use of a colon instead of => 

• Use of opt for optional parts 

• Use of oneof for choices 
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Static Semantics 

• Nothing to do with meaning 

• Context-free grammars (CFGs) cannot 
describe all of the syntax of programming 
languages  

• Categories of constructs that are trouble: 

    - Context-free, but cumbersome (e.g., 

        types of operands in expressions) 

    - Non-context-free (e.g., variables must 

        be declared before they are used) 
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Attribute Grammars 

 

• Attribute grammars (AGs) have additions 
to CFGs to carry some semantic info on 
parse tree nodes  

 

• Primary value of AGs: 

– Static semantics specification 

– Compiler design (static semantics checking) 
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Attribute Grammars : Definition 

• Def: An attribute grammar is a context-free 
grammar G = (S, N, T, P) with the following 
additions: 

– For each grammar symbol x there is a set A(x) 
of attribute values 

– Each rule has a set of functions that define 
certain attributes of the nonterminals in the rule 

– Each rule has a (possibly empty) set of 
predicates to check for attribute consistency   
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Attribute Grammars: Definition 

• Let   X0  X1 ... Xn  be a rule 

• Functions of the form S(X0) = f(A(X1), ... , 
A(Xn)) define synthesized attributes 

• Functions of the form I(Xj) = f(A(X0), ... , 
A(Xn)), for i <= j <= n, define inherited 
attributes 

• Initially, there are intrinsic attributes on the 
leaves 
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Attribute Grammars: An Example 

• Syntax 

<assign> -> <var> = <expr> 

<expr> -> <var> + <var> | <var> 

<var> A | B | C 

• actual_type: synthesized for <var> 
and <expr>  

• expected_type: inherited for <expr>   
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Attribute Grammar (continued) 

• Syntax rule:  <expr>  <var>[1] + <var>[2] 

 Semantic rules:  

 <expr>.actual_type  <var>[1].actual_type 

    Predicate:  

 <var>[1].actual_type == <var>[2].actual_type 

 <expr>.expected_type == <expr>.actual_type 

 

• Syntax rule:  <var>  id 

    Semantic rule: 

 <var>.actual_type  lookup (<var>.string) 
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Attribute Grammars (continued) 

• How are attribute values computed? 

– If all attributes were inherited, the tree could be 
decorated in top-down order. 

– If all attributes were synthesized, the tree could 
be decorated in bottom-up order. 

– In many cases, both kinds of attributes are 
used, and it is some combination of top-down 
and bottom-up that must be used. 
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Attribute Grammars (continued) 

<expr>.expected_type  inherited from parent 

 

<var>[1].actual_type  lookup (A) 

<var>[2].actual_type  lookup (B) 

<var>[1].actual_type =? <var>[2].actual_type 

 

<expr>.actual_type  <var>[1].actual_type 

<expr>.actual_type =? <expr>.expected_type 
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Semantics 

• There is no single widely acceptable 
notation or formalism for describing 
semantics 

• Several needs for a methodology and 
notation for semantics: 
– Programmers need to know what statements mean 

– Compiler writers must know exactly what language 
constructs do 

– Correctness proofs would be possible 

– Compiler generators would be possible 

– Designers could detect ambiguities and inconsistencies 

 



Operational Semantics 
 

• Operational Semantics 

– Describe the meaning of a program by 
executing its statements on a machine, either 
simulated or actual.  The change in the state of 
the machine (memory, registers, etc.) defines 
the meaning of the statement 

• To use operational semantics for a high-
level language,  a virtual machine is needed 
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Operational Semantics 

• A hardware pure interpreter would be too 
expensive 

• A software pure interpreter also has 
problems 

– The detailed characteristics of the particular 
computer would make actions difficult to 
understand 

– Such a semantic definition would be machine- 
dependent 
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Operational Semantics (continued) 

• A better alternative: A complete computer 
simulation 

• The process: 

– Build a translator (translates source code to the 
machine code of an idealized computer) 

– Build a simulator for the idealized computer 

• Evaluation of operational semantics: 

– Good if used informally (language manuals, etc.) 

– Extremely complex if used formally (e.g., VDL), 
it was used for describing semantics of PL/I. 
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Operational Semantics (continued) 

• Uses of operational semantics: 

   - Language manuals and textbooks 

   - Teaching programming languages 

 

• Two different levels of uses of operational 
semantics: 

   - Natural operational semantics 

   - Structural operational semantics 

 

• Evaluation 

   - Good if used informally (language  

      manuals, etc.) 

   - Extremely complex if used formally  (e.g.,VDL)  

 

 



Denotational Semantics 

• Based on recursive function theory 

• The most abstract semantics description 
method 

• Originally developed by Scott and Strachey 
(1970) 
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Denotational Semantics - continued 

• The process of building a denotational 
specification for a language: 

    - Define a mathematical object for each language 

        entity 

– Define a function that maps instances of the 
language entities onto instances of the 
corresponding mathematical objects 

• The meaning of language constructs are 
defined by only the values of the program's 
variables 
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Denotational Semantics: program state 

• The state of a program is the values of all 
its current variables 

      s = {<i1, v1>, <i2, v2>, …, <in, vn>} 

 

• Let VARMAP be a function that, when given 
a variable name and a state, returns the 
current value of the variable 

         VARMAP(ij, s) = vj 
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Decimal Numbers 

<dec_num>   '0' | '1' | '2' | '3' | '4' | '5' |  

              '6' | '7' | '8' | '9' |  

              <dec_num> ('0' | '1' | '2' | '3' | 

                         '4' | '5' | '6' | '7' |  

                         '8' | '9') 

 

Mdec('0') = 0,  Mdec ('1') = 1, …,  Mdec ('9') = 9 

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>) 

Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1 

… 

Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9 
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Expressions 

• Map expressions onto Z   {error} 

• We assume expressions are decimal 
numbers, variables, or binary expressions 
having one arithmetic operator and two 
operands, each of which can be an 
expression 
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Expressions 

Me(<expr>, s) = 
    case <expr> of 
      <dec_num> => Mdec(<dec_num>, s) 
      <var> =>  
           if VARMAP(<var>, s) == undef 
                then error 
                else VARMAP(<var>, s) 
     <binary_expr> =>  
          if (Me(<binary_expr>.<left_expr>, s) == undef 
                OR Me(<binary_expr>.<right_expr>, s) = 
                              undef) 
               then error 

   else 

   if (<binary_expr>.<operator> == '+' then 

      Me(<binary_expr>.<left_expr>, s) +  

             Me(<binary_expr>.<right_expr>, s) 

   else Me(<binary_expr>.<left_expr>, s) *  

       Me(<binary_expr>.<right_expr>, s) 

... 

 

Copyright © 2009 Addison-Wesley. All rights reserved. 1-39 



Assignment Statements 

• Maps state sets to state sets U {error} 
 

Ma(x := E, s) = 

    if Me(E, s) == error 

       then error 

       else s’ =        

 {<i1,v1’>,<i2,v2’>,...,<in,vn’>}, 

               where for j = 1, 2, ..., n, 

                   if ij == x 

                     then vj’ = Me(E, s)  

                     else vj’ = VARMAP(ij, s) 
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Logical Pretest Loops 

• Maps state sets to state sets U {error} 

 

 Ml(while B do L, s) =  

    if Mb(B, s) == undef 

        then error 

        else if Mb(B, s) == false 

            then s 

            else if Msl(L, s) == error 

                  then error 

                  else Ml(while B do L, Msl(L, s)) 
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Loop Meaning 

• The meaning of the loop is the value of the 
program variables after the statements in the loop 
have been executed the prescribed number of  
times, assuming there have been no errors 

• In essence, the loop has been converted from  
iteration to recursion, where the recursive control  
is mathematically defined by other recursive state 
mapping functions 

 

    - Recursion, when compared to iteration, is easier 

        to describe with mathematical rigor 
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Evaluation of Denotational Semantics 

• Can be used to prove the correctness of 
programs 

• Provides a rigorous way to think about 
programs 

• Can be an aid to language design 

• Has been used in compiler generation 
systems  

• Because of its complexity, it are of little use 
to language users 
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Axiomatic Semantics 

• Based on formal logic (predicate calculus) 

• Original purpose: formal program 
verification 

• Axioms or inference rules are defined for 
each statement type in the language (to 
allow transformations of logic expressions 
into more formal logic expressions) 

• The logic expressions are called assertions 
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Axiomatic Semantics (continued) 

• An assertion before a statement (a 
precondition) states the relationships and 
constraints among variables that are true at 
that point in execution 

• An assertion following a statement is a  
postcondition 

• A weakest precondition is the least 
restrictive precondition that will guarantee 
the postcondition 
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Axiomatic Semantics Form 

• Pre-, post form:  {P} statement {Q} 

 

• An example 

– a = b + 1  {a > 1} 

– One possible precondition: {b > 10} 

– Weakest precondition:        {b > 0} 
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Program Proof Process 

• The postcondition for the entire program is 
the desired result 

– Work back through the program to the first 
statement.  If the precondition on the first 
statement is the same as the program 
specification, the program is correct. 
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Axiomatic Semantics: Axioms 

• An axiom for assignment statements   
(x = E): {Qx->E}  x = E  {Q} 

 

• The Rule of Consequence: 

}{Q' S }{P'

Q'   Q P,  P' {Q}, S {P} 
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Axiomatic Semantics: Axioms 

• An inference rule for sequences of the form 
S1; S2 

 

 {P1} S1 {P2} 

 {P2} S2 {P3} 

{P3} S2 S1; {P1}

{P3} S2 {P2} {P2}, S1 {P1}
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Axiomatic Semantics: Axioms 

• An inference rule for logical pretest loops 

  

   {P} while B do S end {Q} 

   

 

  
 

 where I is the loop invariant (the inductive 
hypothesis) 

B)}(not  and {I S do B  while{I}

{I} S B) and (I



Copyright © 2009 Addison-Wesley. All rights reserved. 1-51 

Axiomatic Semantics: Axioms 

• Characteristics of the loop invariant: I must 
meet the following conditions: 

– P => I    -- the loop invariant must be true initially 

– {I} B {I}    -- evaluation of the Boolean must not change the validity of I 

– {I and B} S {I}   -- I is not changed by executing the body of the loop 

– (I and (not B)) => Q     -- if I is true and B is false, Q is implied 

– The loop terminates    -- can be difficult to prove 
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Loop Invariant 

• The loop invariant I is a weakened version 
of the loop postcondition, and it is also a 
precondition. 

• I must be weak enough to be satisfied prior 
to the beginning of the loop, but when 
combined with the loop exit condition, it 
must be strong enough to force the truth of 
the postcondition 
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Evaluation of Axiomatic Semantics 

• Developing axioms or inference rules for all 
of the statements in a language is difficult 

• It is a good tool for correctness proofs, and 
an excellent framework for reasoning about  
programs, but it is not as useful for 
language users and compiler writers 

• Its usefulness in describing the meaning of 
a programming language is limited for 
language users or compiler writers 
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Denotation Semantics vs Operational 
Semantics 

• In operational semantics, the state changes 
are defined by coded algorithms 

• In denotational semantics, the state 
changes are defined by rigorous 
mathematical functions 
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Summary 

• BNF and context-free grammars are 
equivalent meta-languages 

– Well-suited for describing the syntax of 
programming languages 

• An attribute grammar is a descriptive 
formalism that can describe both the 
syntax and the semantics of a language 

• Three primary methods of semantics 
description 

– Operation, axiomatic, denotational 


