
Chapter 7Chapter 7Chapter 7Chapter 7

Expressions and
Assignment
Statements

Copyright © 2009 Addison-Wesley. All rights reserved. 1-2

Chapter 7 Topics

• Introduction

• Arithmetic Expressions

• Overloaded Operators

• Type Conversions

• Relational and Boolean Expressions

• Short-Circuit Evaluation

• Assignment Statements

• Mixed-Mode Assignment

Copyright © 2009 Addison-Wesley. All rights reserved. 1-3

Introduction

• Expressions are the fundamental means of
specifying computations in a programming
language

• To understand expression evaluation, need
to be familiar with the orders of operator
and operand evaluation

• Essence of imperative languages is
dominant role of assignment statements

Copyright © 2009 Addison-Wesley. All rights reserved. 1-4

Arithmetic Expressions

• Arithmetic evaluation was one of the
motivations for the development of the first
programming languages

• Arithmetic expressions consist of
operators, operands, parentheses, and
function calls

Copyright © 2009 Addison-Wesley. All rights reserved. 1-5

Arithmetic Expressions: Design Issues

• Design issues for arithmetic expressions

– Operator precedence rules?

– Operator associativity rules?

– Order of operand evaluation?

– Operand evaluation side effects?

– Operator overloading?

– Type mixing in expressions?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-6

Arithmetic Expressions: Operators

• A unary operator has one operand

• A binary operator has two operands

• A ternary operator has three operands

Copyright © 2009 Addison-Wesley. All rights reserved. 1-7

Arithmetic Expressions: Operator
Precedence Rules

• The operator precedence rules for
expression evaluation define the order in
which “adjacent” operators of different
precedence levels are evaluated

• Typical precedence levels
– parentheses

– unary operators

– ** (if the language supports it)

– *, /

– +, -

Copyright © 2009 Addison-Wesley. All rights reserved. 1-8

Arithmetic Expressions: Operator
Associativity Rule

• The operator associativity rules for expression
evaluation define the order in which adjacent
operators with the same precedence level are
evaluated

• Typical associativity rules
– Left to right, except **, which is right to left

– Sometimes unary operators associate right to left (e.g., in
FORTRAN)

• APL is different; all operators have equal
precedence and all operators associate right to left

• Precedence and associativity rules can be overriden
with parentheses

Copyright © 2009 Addison-Wesley. All rights reserved. 1-9

Ruby Expressions

• All arithmetic, relational, and assignment
operators, as well as array indexing, shifts,
and bit-wise logic operators, are
implemented as methods

- One result of this is that these operators can all

be overriden by application programs

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

Arithmetic Expressions: Conditional
Expressions

• Conditional Expressions

– C-based languages (e.g., C, C++)

– An example:

average = (count == 0)? 0 : sum / count

– Evaluates as if written like
if (count == 0)

average = 0

else

average = sum /count

Copyright © 2009 Addison-Wesley. All rights reserved. 1-11

Arithmetic Expressions: Operand
Evaluation Order

• Operand evaluation order
1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory;
sometimes the constant is in the machine
language instruction

3. Parenthesized expressions: evaluate all
operands and operators first

4. The most interesting case is when an operand
is a function call

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

Arithmetic Expressions: Potentials for
Side Effects

• Functional side effects: when a function changes a
two-way parameter or a non-local variable

• Problem with functional side effects:

– When a function referenced in an expression alters
another operand of the expression; e.g., for a parameter
change:

a = 10;

/* assume that fun changes its parameter */

b = a + fun(&a);

Copyright © 2009 Addison-Wesley. All rights reserved. 1-13

Functional Side Effects

• Two possible solutions to the problem

1. Write the language definition to disallow functional side
effects

• No two-way parameters in functions

• No non-local references in functions

• Advantage:Advantage:Advantage:Advantage: it works!

• Disadvantage:Disadvantage:Disadvantage:Disadvantage: inflexibility of one-way parameters and
lack of non-local references

2. Write the language definition to demand that operand
evaluation order be fixed

• DisadvantageDisadvantageDisadvantageDisadvantage: limits some compiler optimizations

• Java requires that operands appear to be evaluated in
left-to-right order

Copyright © 2009 Addison-Wesley. All rights reserved. 1-14

Overloaded Operators

• Use of an operator for more than one
purpose is called operator overloading

• Some are common (e.g., + for int and
float)

• Some are potential trouble (e.g., * in C and
C++)
– Loss of compiler error detection (omission of an
operand should be a detectable error)

– Some loss of readability

Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

Overloaded Operators (continued)

• C++ and C# allow user-defined overloaded
operators

• Potential problems:

– Users can define nonsense operations

– Readability may suffer, even when the operators
make sense

Copyright © 2009 Addison-Wesley. All rights reserved. 1-16

Type Conversions

• A narrowing conversion is one that converts
an object to a type that cannot include all
of the values of the original type e.g.,
float to int

• A widening conversion is one in which an
object is converted to a type that can
include at least approximations to all of the
values of the original type
e.g., int to float

Copyright © 2009 Addison-Wesley. All rights reserved. 1-17

Type Conversions: Mixed Mode

• A mixed-mode expression is one that has
operands of different types

• A coercion is an implicit type conversion

• Disadvantage of coercions:

– They decrease in the type error detection ability of the
compiler

• In most languages, all numeric types are coerced
in expressions, using widening conversions

• In Ada, there are virtually no coercions in
expressions

Copyright © 2009 Addison-Wesley. All rights reserved. 1-18

Explicit Type Conversions

• Called casting in C-based languages

• Examples
– C: (int)angle

– Ada: Float (Sum)

Note that Ada’s syntax is similar to that of Note that Ada’s syntax is similar to that of Note that Ada’s syntax is similar to that of Note that Ada’s syntax is similar to that of
function callsfunction callsfunction callsfunction calls

Copyright © 2009 Addison-Wesley. All rights reserved. 1-19

Type Conversions: Errors in Expressions

• Causes

– Inherent limitations of arithmetic
e.g., division by zero

– Limitations of computer arithmetic
e.g. overflow

• Often ignored by the run-time system

Copyright © 2009 Addison-Wesley. All rights reserved. 1-20

Relational and Boolean Expressions

• Relational Expressions

– Use relational operators and operands of
various types

– Evaluate to some Boolean representation

– Operator symbols used vary somewhat among
languages (!=, /=, ~=, .NE., <>, #)

• JavaScript and PHP have two additional
relational operator, === and !==

- Similar to their cousins, == and !=, except that

they do not coerce their operands

Copyright © 2009 Addison-Wesley. All rights reserved. 1-21

Relational and Boolean Expressions

• Boolean Expressions

– Operands are Boolean and the result is Boolean

– Example operators

FORTRAN 77 FORTRAN 90FORTRAN 77 FORTRAN 90FORTRAN 77 FORTRAN 90FORTRAN 77 FORTRAN 90 C AdaC AdaC AdaC Ada

.AND. and && and

.OR. or || or

.NOT. not ! not

xor

Copyright © 2009 Addison-Wesley. All rights reserved. 1-22

Relational and Boolean Expressions: No
Boolean Type in C

• C89 has no Boolean type--it uses int type
with 0 for false and nonzero for true

• One odd characteristic of C’s expressions:
a < b < c is a legal expression, but the
result is not what you might expect:

– Left operator is evaluated, producing 0 or 1

– The evaluation result is then compared with the
third operand (i.e., c)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-23

Short Circuit Evaluation

• An expression in which the result is
determined without evaluating all of the
operands and/or operators

• Example: (13*a) * (b/13–1)
If a is zero, there is no need to evaluate (b/13-1)

• Problem with non-short-circuit evaluation
index = 1;

while (index <= length) && (LIST[index] != value)

index++;

– When index=length, LIST [index] will cause an
indexing problem (assuming LIST has length -1
elements)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-24

Short Circuit Evaluation (continued)

• C, C++, and Java: use short-circuit evaluation for
the usual Boolean operators (&& and ||), but also
provide bitwise Boolean operators that are not
short circuit (& and |)

• Ada: programmer can specify either (short-circuit
is specified with and then and or else)

• Short-circuit evaluation exposes the potential
problem of side effects in expressions
e.g. (a > b) || (b++ / 3)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-25

Assignment Statements

• The general syntax
<target_var> <assign_operator> <expression>

• The assignment operator

= FORTRAN, BASIC, the C-based languages

:= ALGOLs, Pascal, Ada

• = can be bad when it is overloaded for the
relational operator for equality (that’s why
the C-based languages use == as the
relational operator)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

Assignment Statements: Conditional
Targets

• Conditional targets (Perl)
($flag ? $total : $subtotal) = 0

Which is equivalent to

if ($flag){

$total = 0

} else {

$subtotal = 0

}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

Assignment Statements: Compound
Operators

• A shorthand method of specifying a
commonly needed form of assignment

• Introduced in ALGOL; adopted by C

• Example

a = a + b

is written as

a += b

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

Assignment Statements: Unary
Assignment Operators

• Unary assignment operators in C-based
languages combine increment and
decrement operations with assignment

• Examples

sum = ++count (count incremented, added to sum)

sum = count++ (count incremented, added to sum)

count++ (count incremented)

-count++ (count incremented then negated)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

Assignment as an Expression

• In C, C++, and Java, the assignment
statement produces a result and can be
used as operands

• An example:

while ((ch = getchar())!= EOF){…}

ch = getchar() is carried out; the result
(assigned to ch) is used as a conditional
value for the while statement

Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

List Assignments

• Perl and Ruby support list assignments

e.g.,

($first, $second, $third) = (20, 30, 40);

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

Mixed-Mode Assignment

• Assignment statements can also be
mixed-mode

• In Fortran, C, and C++, any numeric type
value can be assigned to any numeric
type variable

• In Java, only widening assignment
coercions are done

• In Ada, there is no assignment coercion

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

Summary

• Expressions

• Operator precedence and associativity

• Operator overloading

• Mixed-type expressions

• Various forms of assignment

