
Chapter 8Chapter 8Chapter 8Chapter 8

Statement-Level
Control Structures

Copyright © 2009 Addison-Wesley. All rights reserved. 1-2

Chapter 8 Topics

• Introduction

• Selection Statements

• Iterative Statements

• Unconditional Branching

• Guarded Commands

• Conclusions

Copyright © 2009 Addison-Wesley. All rights reserved. 1-3

Levels of Control Flow

– Within expressions (Chapter 7)

– Among program units (Chapter 9)

– Among program statements (this chapter)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-4

Control Statements: Evolution

• FORTRAN I control statements were based
directly on IBM 704 hardware

• Much research and argument in the 1960s
about the issue

– One important result: It was proven that all
algorithms represented by flowcharts can be
coded with only two-way selection and pretest
logical loops

Copyright © 2009 Addison-Wesley. All rights reserved. 1-5

Control Structure

• A control structure is a control statement
and the statements whose execution it
controls

• Design question

– Should a control structure have multiple entries?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-6

Selection Statements

• A selection statement provides the means
of choosing between two or more paths of
execution

• Two general categories:

– Two-way selectors

– Multiple-way selectors

Copyright © 2009 Addison-Wesley. All rights reserved. 1-7

Two-Way Selection Statements

• General form:

if control_expression

then clause

else clause

• Design Issues:
– What is the form and type of the control
expression?

– How are the then and else clauses specified?

– How should the meaning of nested selectors be
specified?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-8

The Control Expression

• If the then reserved word or some other
syntactic marker is not used to introduce
the then clause, the control expression is
placed in parentheses

• In C89, C99, Python, and C++, the control
expression can be arithmetic

• In languages such as Ada, Java, Ruby, and
C#, the control expression must be Boolean

Copyright © 2009 Addison-Wesley. All rights reserved. 1-9

Clause Form

• In many contemporary languages, the then and
else clauses can be single statements or compound
statements

• In Perl, all clauses must be delimited by braces
(they must be compound)

• In Fortran 95, Ada, and Ruby, clauses are
statement sequences

• Python uses indentation to define clauses

if x > y :

x = y

print "case 1"

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

Nesting Selectors

• Java example

if (sum == 0)

if (count == 0)

result = 0;

else result = 1;

• Which if gets the else?

• Java's static semantics rule: else matches
with the nearest if

Copyright © 2009 Addison-Wesley. All rights reserved. 1-11

Nesting Selectors (continued)

• To force an alternative semantics,
compound statements may be used:

if (sum == 0) {

if (count == 0)

result = 0;

}

else result = 1;

• The above solution is used in C, C++, and C#

• Perl requires that all then and else clauses to be
compound

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

Nesting Selectors (continued)

• Statement sequences as clauses: Ruby

if sum == 0 then

if count == 0 then

result = 0

else

result = 1

end

end

Copyright © 2009 Addison-Wesley. All rights reserved. 1-13

Nesting Selectors (continued)

• Python

if sum == 0 :

if count == 0 :

result = 0

else :

result = 1

Copyright © 2009 Addison-Wesley. All rights reserved. 1-14

Multiple-Way Selection Statements

• Allow the selection of one of any number of
statements or statement groups

• Design Issues:

1. What is the form and type of the control expression?

2. How are the selectable segments specified?

3. Is execution flow through the structure restricted to
include just a single selectable segment?

4. How are case values specified?

5. What is done about unrepresented expression values?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

Multiple-Way Selection: Examples

• C, C++, and Java

switch (expression) {

case const_expr_1: stmt_1;

…

case const_expr_n: stmt_n;

[default: stmt_n+1]

}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-16

Multiple-Way Selection: Examples

• Design choices for C’s switch statement

1. Control expression can be only an integer type

2. Selectable segments can be statement sequences,
blocks, or compound statements

3. Any number of segments can be executed in one
execution of the construct (there is no implicit
branch at the end of selectable segments)

4. default clause is for unrepresented values (if
there is no default, the whole statement does
nothing)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-17

Multiple-Way Selection: Examples

• C#

– Differs from C in that it has a static semantics
rule that disallows the implicit execution of
more than one segment

– Each selectable segment must end with an
unconditional branch (goto or break)

– Also, in C# the control expression and the case
constants can be strings

Copyright © 2009 Addison-Wesley. All rights reserved. 1-18

Multiple-Way Selection: Examples

• Ada

case expression is

when choice list => stmt_sequence;

…

when choice list => stmt_sequence;

when others => stmt_sequence;]

end case;

• More reliable than C’s switch (once a
stmt_sequence execution is completed, control is
passed to the first statement after the case
statement

Copyright © 2009 Addison-Wesley. All rights reserved. 1-19

Multiple-Way Selection: Examples

• Ada design choices:

1. Expression can be any ordinal type

2. Segments can be single or compound

3. Only one segment can be executed per
execution of the construct

4. Unrepresented values are not allowed

• Constant List Forms:

1. A list of constants

2. Can include:

- Subranges

- Boolean OR operators (|)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-20

Multiple-Way Selection: Examples

• Ruby has two forms of case statements

1. One form uses when conditions

leap = case

when year % 400 == 0 then true

when year % 100 == 0 then false

else year % 4 == 0

end

2. The other uses a case value and when values
case in_val

when -1 then neg_count++

when 0 then zero_count++

when 1 then pos_count++

else puts "Error – in_val is out of range"

end

Copyright © 2009 Addison-Wesley. All rights reserved. 1-21

Multiple-Way Selection Using if

• Multiple Selectors can appear as direct
extensions to two-way selectors, using
else-if clauses, for example in Python:

if count < 10 :

bag1 = True

elif count < 100 :

bag2 = True

elif count < 1000 :

bag3 = True

Copyright © 2009 Addison-Wesley. All rights reserved. 1-22

Multiple-Way Selection Using if

• The Python example can be written as a
Ruby case

case

when count < 10 then bag1 = true

when count < 100 then bag2 = true

when count < 1000 then bag3 = true

end

Copyright © 2009 Addison-Wesley. All rights reserved. 1-23

Iterative Statements

• The repeated execution of a statement or
compound statement is accomplished
either by iteration or recursion

• General design issues for iteration control
statements:

1. How is iteration controlled?

2. Where is the control mechanism in the loop?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-24

Counter-Controlled Loops

• A counting iterative statement has a loop
variable, and a means of specifying the
initial and terminal, and stepsize values

• Design Issues:

1. What are the type and scope of the loop
variable?

2. Should it be legal for the loop variable or loop
parameters to be changed in the loop body,
and if so, does the change affect loop control?

3. Should the loop parameters be evaluated only
once, or once for every iteration?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-25

Iterative Statements: Examples

• FORTRAN 95 syntax

DO label var = start, finish [, stepsize]

• Stepsize can be any value but zero

• Parameters can be expressions

• Design choices:

1. Loop variable must be INTEGER

2. The loop variable cannot be changed in the loop, but the
parameters can; because they are evaluated only once, it
does not affect loop control

3. Loop parameters are evaluated only once

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

Iterative Statements: Examples

• FORTRAN 95 : a second form:
[name:] Do variable = initial, terminal [,stepsize]

…

End Do [name]

- Cannot branch into either of Fortran’s Do
statements

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

Iterative Statements: Examples

• Ada
for var in [reverse] discrete_range loop
...

end loop

• Design choices:
- Type of the loop variable is that of the discrete
range (A discrete range is a sub-range of an
integer or enumeration type).
- Loop variable does not exist outside the loop
- The loop variable cannot be changed in the loop,
but the discrete range can; it does not affect loop
control
- The discrete range is evaluated just once

• Cannot branch into the loop body

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

Iterative Statements: Examples

• C-based languages
for ([expr_1] ; [expr_2] ; [expr_3]) statement

- The expressions can be whole statements, or even
statement sequences, with the statements separated by
commas
– The value of a multiple-statement expression is the value of the
last statement in the expression

– If the second expression is absent, it is an infinite loop

• Design choices:

- There is no explicit loop variable

- Everything can be changed in the loop

- The first expression is evaluated once, but the other two
are evaluated with each iteration

Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

Iterative Statements: Examples

• C++ differs from C in two ways:

1. The control expression can also be Boolean

2. The initial expression can include variable
definitions (scope is from the definition to the
end of the loop body)

• Java and C#

– Differs from C++ in that the control
expression must be Boolean

Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

Iterative Statements: Examples

• Python
for loop_variable in object:
- loop body
[else:
- else clause]

– The object is often a range, which is either a list of values
in brackets ([2, 4, 6]), or a call to the range function
(range(5), which returns 0, 1, 2, 3, 4

– The loop variable takes on the values specified in the
given range, one for each iteration

– The else clause, which is optional, is executed if the loop
terminates normally

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

Iterative Statements: Logically-
Controlled Loops

• Repetition control is based on a Boolean
expression

• Design issues:

– Pretest or posttest?

– Should the logically controlled loop be a
special case of the counting loop statement or
a separate statement?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

Iterative Statements: Logically-
Controlled Loops: Examples

• C and C++ have both pretest and posttest
forms, in which the control expression can
be arithmetic:

while (ctrl_expr) do

loop body loop body

while (ctrl_expr)

• Java is like C and C++, except the control
expression must be Boolean (and the body
can only be entered at the beginning -- Java
has no goto

Copyright © 2009 Addison-Wesley. All rights reserved. 1-33

Iterative Statements: Logically-
Controlled Loops: Examples

• Ada has a pretest version, but no posttest

• FORTRAN 95 has neither

• Perl and Ruby have two pretest logical
loops, while and until. Perl also has two
posttest loops

Copyright © 2009 Addison-Wesley. All rights reserved. 1-34

Iterative Statements: User-Located Loop
Control Mechanisms

• Sometimes it is convenient for the
programmers to decide a location for loop
control (other than top or bottom of the
loop)

• Simple design for single loops (e.g., break)

• Design issues for nested loops

1. Should the conditional be part of the exit?

2. Should control be transferable out of more
than one loop?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-35

Iterative Statements: User-Located Loop
Control Mechanisms break and continue

• C , C++, Python, Ruby, and C# have
unconditional unlabeled exits (break)

• Java and Perl have unconditional labeled
exits (break in Java, last in Perl)

• C, C++, and Python have an unlabeled
control statement, continue, that skips the
remainder of the current iteration, but does
not exit the loop

• Java and Perl have labeled versions of
continue

Copyright © 2009 Addison-Wesley. All rights reserved. 1-36

Iterative Statements: Iteration Based on
Data Structures

• Number of elements of in a data structure
control loop iteration

• Control mechanism is a call to an iterator
function that returns the next element in
some chosen order, if there is one; else
loop is terminate

• C's for can be used to build a user-defined
iterator:

for (p=root; p==NULL; traverse(p)){

}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-37

Iterative Statements: Iteration Based on
Data Structures (continued)

PHP

- current points at one element of the array

- next moves current to the next element

- reset moves current to the first element

• Java

- For any collection that implements the Iterator interface

- next moves the pointer into the collection

- hasNext is a predicate

- remove deletes an element

• Perl has a built-in iterator for arrays and hashes, foreach

Copyright © 2009 Addison-Wesley. All rights reserved. 1-38

Iterative Statements: Iteration Based on
Data Structures (continued)

• Java 5.0 (uses for, although it is called foreach)

- For arrays and any other class that implements

Iterable interface, e.g., ArrayList

for (String myElement : myList) { … }

• C#’s foreach statement iterates on the elements of arrays and

other collections:

Strings[] = strList = {"Bob", "Carol", "Ted"};

foreach (Strings name in strList)

Console.WriteLine ("Name: {0}", name);

- The notation {0} indicates the position in the string to be displayed

Iterative Statements: Iteration Based on
Data Structures (continued)

• Lua

– Lua has two forms of its iterative statement, one
like Fortran’s Do, and a more general form:

for variable_1 [, variable_2] in iterator(table) do

…

end

– The most commonly used iterators are pairs

and ipairs

Copyright © 2009 Addison-Wesley. All rights reserved. 1-39

Copyright © 2009 Addison-Wesley. All rights reserved. 1-40

Unconditional Branching

• Transfers execution control to a specified place in
the program

• Represented one of the most heated debates in
1960’s and 1970’s

• Major concern: Readability

• Some languages do not support goto statement
(e.g., Java)

• C# offers goto statement (can be used in switch
statements)

• Loop exit statements are restricted and somewhat
camouflaged goto’s

Copyright © 2009 Addison-Wesley. All rights reserved. 1-41

Guarded Commands

• Designed by Dijkstra

• Purpose: to support a new programming
methodology that supported verification
(correctness) during development

• Basis for two linguistic mechanisms for
concurrent programming (in CSP and Ada)

• Basic Idea: if the order of evaluation is not
important, the program should not specify
one

Copyright © 2009 Addison-Wesley. All rights reserved. 1-42

Selection Guarded Command

• Form
if <Boolean exp> -> <statement>

[] <Boolean exp> -> <statement>

...

[] <Boolean exp> -> <statement>

fi

• Semantics: when construct is reached,
– Evaluate all Boolean expressions

– If more than one are true, choose one non-
deterministically

– If none are true, it is a runtime error

Copyright © 2009 Addison-Wesley. All rights reserved. 1-43

Loop Guarded Command

• FormFormFormForm
do <Boolean> -> <statement>

[] <Boolean> -> <statement>

...

[] <Boolean> -> <statement>

od

• Semantics: for each iteration
– Evaluate all Boolean expressions

– If more than one are true, choose one non-
deterministically; then start loop again

– If none are true, exit loop

Copyright © 2009 Addison-Wesley. All rights reserved. 1-44

Guarded Commands: Rationale

• Connection between control statements
and program verification is intimate

• Verification is impossible with goto
statements

• Verification is possible with only selection
and logical pretest loops

• Verification is relatively simple with only
guarded commands

Copyright © 2009 Addison-Wesley. All rights reserved. 1-45

Conclusion

• Variety of statement-level structures

• Choice of control statements beyond
selection and logical pretest loops is a
trade-off between language size and
writability

• Functional and logic programming
languages are quite different control
structures

