
Chapter 9Chapter 9Chapter 9Chapter 9

SubprogramsSubprograms

Chapter 9 Topics

• Introduction

• Fundamentals of Subprograms

• Design Issues for Subprograms

• Local Referencing Environments

• Parameter-Passing Methods

Copyright © 2009 Addison-Wesley. All rights reserved. 1-2

• Parameter-Passing Methods

• Parameters That Are Subprograms

• Overloaded Subprograms

• Generic Subprograms

• Design Issues for Functions

• User-Defined Overloaded Operators

• Coroutines

Introduction

• Two fundamental abstraction facilities

– Process abstraction

• Emphasized from early days

– Data abstraction

• Emphasized in the1980s

Copyright © 2009 Addison-Wesley. All rights reserved. 1-3

• Emphasized in the1980s

Fundamentals of Subprograms

• Each subprogram has a single entry point

• The calling program is suspended during
execution of the called subprogram

• Control always returns to the caller when

Copyright © 2009 Addison-Wesley. All rights reserved. 1-4

• Control always returns to the caller when
the called subprogram’s execution
terminates

Basic Definitions

• A subprogram definition describes the interface to and the
actions of the subprogram abstraction

- In Python, function definitions are executable; in

all other languages, they are non-executable

• A subprogram call is an explicit request that the subprogram
be executed

Copyright © 2009 Addison-Wesley. All rights reserved. 1-5

be executed

• A subprogram header is the first part of the definition,
including the name, the kind of subprogram, and the formal
parameters

• The parameter profile (aka signature) of a subprogram is the
number, order, and types of its parameters

• The protocol is a subprogram’s parameter profile and, if it is
a function, its return type

Basic Definitions (continued)

• Function declarations in C and C++ are often
called prototypes

• A subprogram declaration provides the protocol,
but not the body, of the subprogram

• A formal parameter is a dummy variable listed in

Copyright © 2009 Addison-Wesley. All rights reserved. 1-6

• A formal parameter is a dummy variable listed in
the subprogram header and used in the
subprogram

• An actual parameter represents a value or address
used in the subprogram call statement

Actual/Formal Parameter
Correspondence

• Positional

– The binding of actual parameters to formal parameters is
by position: the first actual parameter is bound to the first
formal parameter and so forth

– Safe and effective

• Keyword

Copyright © 2009 Addison-Wesley. All rights reserved. 1-7

• Keyword

– The name of the formal parameter to which an actual
parameter is to be bound is specified with the actual
parameter

– Advantage: Parameters can appear in any order, thereby
avoiding parameter correspondence errors

– Disadvantage: User must know the formal parameter’s
names

Formal Parameter Default Values

• In certain languages (e.g., C++, Python, Ruby, Ada, PHP),
formal parameters can have default values (if no actual
parameter is passed)
– In C++, default parameters must appear last because

parameters are positionally associated

• Variable numbers of parameters

Copyright © 2009 Addison-Wesley. All rights reserved. 1-8

• Variable numbers of parameters
– C# methods can accept a variable number of parameters as long as they

are of the same type—the corresponding formal parameter is an array
preceded by params

– In Ruby, the actual parameters are sent as elements of a hash literal and
the corresponding formal parameter is preceded by an asterisk.

– In Python, the actual is a list of values and the corresponding formal
parameter is a name with an asterisk

– In Lua, a variable number of parameters is represented as a formal
parameter with three periods; they are accessed with a for statement or
with a multiple assignment from the three periods

Ruby Blocks

• Ruby includes a number of iterator functions, which are often used to
process the elements of arrays

• Iterators are implemented with blocks, which can also be defined by
applications

• Blocks are attached methods calls; they can have parameters (in vertical
bars); they are executed when the method executes a yield statement

def fibonacci(last)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-9

first, second = 1, 1

while first <= last

yield first

first, second = second, first + second

end

end

puts "Fibonacci numbers less than 100 are:"

fibonacci(100) {|num| print num, " "}

puts

Procedures and Functions

• There are two categories of subprograms

– Procedures are collection of statements that
define parameterized computations

– Functions structurally resemble procedures but
are semantically modeled on mathematical
functions

Copyright © 2009 Addison-Wesley. All rights reserved. 1-10

functions

• They are expected to produce no side effects

• In practice, program functions have side effects

Design Issues for Subprograms

• Are local variables static or dynamic?

• Can subprogram definitions appear in other
subprogram definitions?

• What parameter passing methods are provided?

• Are parameter types checked?

Copyright © 2009 Addison-Wesley. All rights reserved. 1-11

• Are parameter types checked?

• If subprograms can be passed as parameters and
subprograms can be nested, what is the
referencing environment of a passed subprogram?

• Can subprograms be overloaded?

• Can subprogram be generic?

Local Referencing Environments

• Local variables can be stack-dynamic

- Advantages

• Support for recursion

• Storage for locals is shared among some subprograms

– Disadvantages

• Allocation/de-allocation, initialization time

Copyright © 2009 Addison-Wesley. All rights reserved. 1-12

• Allocation/de-allocation, initialization time

• Indirect addressing

• Subprograms cannot be history sensitive

• Local variables can be static

– Advantages and disadvantages are the opposite of those
for stack-dynamic local variables

Semantic Models of Parameter Passing

• In mode

• Out mode

• Inout mode

Copyright © 2009 Addison-Wesley. All rights reserved. 1-13

Models of Parameter Passing

Copyright © 2009 Addison-Wesley. All rights reserved. 1-14

Conceptual Models of Transfer

• Physically move a path

• Move an access path

Copyright © 2009 Addison-Wesley. All rights reserved. 1-15

Pass-by-Value (In Mode)

• The value of the actual parameter is used to
initialize the corresponding formal parameter

– Normally implemented by copying

– Can be implemented by transmitting an access path but
not recommended (enforcing write protection is not easy)

– Disadvantages (if by physical move): additional storage is

Copyright © 2009 Addison-Wesley. All rights reserved. 1-16

– Disadvantages (if by physical move): additional storage is
required (stored twice) and the actual move can be costly
(for large parameters)

– Disadvantages (if by access path method): must write-
protect in the called subprogram and accesses cost more
(indirect addressing)

Pass-by-Result (Out Mode)

• When a parameter is passed by result, no
value is transmitted to the subprogram; the
corresponding formal parameter acts as a
local variable; its value is transmitted to
caller’s actual parameter when control is
returned to the caller, by physical move

Copyright © 2009 Addison-Wesley. All rights reserved. 1-17

returned to the caller, by physical move
– Require extra storage location and copy
operation

• Potential problem: sub(p1, p1);
whichever formal parameter is copied back
will represent the current value of p1

Pass-by-Value-Result (inout Mode)

• A combination of pass-by-value and
pass-by-result

• Sometimes called pass-by-copy

• Formal parameters have local storage

Copyright © 2009 Addison-Wesley. All rights reserved. 1-18

• Formal parameters have local storage

• Disadvantages:

– Those of pass-by-result

– Those of pass-by-value

Pass-by-Reference (Inout Mode)

• Pass an access path

• Also called pass-by-sharing

• Advantage: Passing process is efficient (no
copying and no duplicated storage)

Copyright © 2009 Addison-Wesley. All rights reserved. 1-19

copying and no duplicated storage)

• Disadvantages

– Slower accesses (compared to pass-by-value) to
formal parameters

– Potentials for unwanted side effects (collisions)

– Unwanted aliases (access broadened)

Pass-by-Name (Inout Mode)

• By textual substitution

• Formals are bound to an access method at
the time of the call, but actual binding to a
value or address takes place at the time of
a reference or assignment

Copyright © 2009 Addison-Wesley. All rights reserved. 1-20

a reference or assignment

• Allows flexibility in late binding

Implementing Parameter-Passing
Methods

• In most language parameter
communication takes place thru the run-
time stack

• Pass-by-reference are the simplest to
implement; only an address is placed in the

Copyright © 2009 Addison-Wesley. All rights reserved. 1-21

implement; only an address is placed in the
stack

• A subtle but fatal error can occur with
pass-by-reference and pass-by-value-
result: a formal parameter corresponding to
a constant can mistakenly be changed

Parameter Passing Methods of Major
Languages

• C
– Pass-by-value

– Pass-by-reference is achieved by using pointers as parameters

• C++
– A special pointer type called reference type for pass-by-

reference

• Java

Copyright © 2009 Addison-Wesley. All rights reserved. 1-22

• Java
– All parameters are passed are passed by value

– Object parameters are passed by reference

• Ada
– Three semantics modes of parameter transmission: in, out,

in out; in is the default mode

– Formal parameters declared out can be assigned but not
referenced; those declared in can be referenced but not
assigned; in out parameters can be referenced and assigned

Parameter Passing Methods of Major
Languages (continued)

• Fortran 95
- Parameters can be declared to be in, out, or inout mode

• C#
- Default method: pass-by-value

– Pass-by-reference is specified by preceding both a formal

Copyright © 2009 Addison-Wesley. All rights reserved. 1-23

– Pass-by-reference is specified by preceding both a formal
parameter and its actual parameter with ref

• PHP: very similar to C#

• Perl: all actual parameters are implicitly placed in a
predefined array named @_

• Python and Ruby use pass-by-assignment (all data
values are objects)

Type Checking Parameters

• Considered very important for reliability

• FORTRAN 77 and original C: none

• Pascal, FORTRAN 90, Java, and Ada: it is always
required

• ANSI C and C++: choice is made by the user

Copyright © 2009 Addison-Wesley. All rights reserved. 1-24

• ANSI C and C++: choice is made by the user

– Prototypes

• Relatively new languages Perl, JavaScript, and PHP
do not require type checking

• In Python and Ruby, variables do not have types
(objects do), so parameter type checking is not
possible

Multidimensional Arrays as Parameters

• If a multidimensional array is passed to a
subprogram and the subprogram is
separately compiled, the compiler needs to
know the declared size of that array to
build the storage mapping function

Copyright © 2009 Addison-Wesley. All rights reserved. 1-25

build the storage mapping function

Multidimensional Arrays as Parameters:
C and C++

• Programmer is required to include the
declared sizes of all but the first subscript
in the actual parameter

• Disallows writing flexible subprograms

• Solution: pass a pointer to the array and the

Copyright © 2009 Addison-Wesley. All rights reserved. 1-26

• Solution: pass a pointer to the array and the
sizes of the dimensions as other
parameters; the user must include the
storage mapping function in terms of the
size parameters

Multidimensional Arrays as Parameters:
Ada

• Ada – not a problem

– Constrained arrays – size is part of the array’s
type

– Unconstrained arrays - declared size is part of
the object declaration

Copyright © 2009 Addison-Wesley. All rights reserved. 1-27

Multidimensional Arrays as Parameters:
Fortran

• Formal parameter that are arrays have
a declaration after the header
– For single-dimension arrays, the
subscript is irrelevant

– For multidimensional arrays, the sizes

Copyright © 2009 Addison-Wesley. All rights reserved. 1-28

– For multidimensional arrays, the sizes
are sent as parameters and used in the
declaration of the formal parameter, so
those variables are used in the storage
mapping function

Multidimensional Arrays as Parameters:
Java and C#

• Similar to Ada

• Arrays are objects; they are all single-
dimensioned, but the elements can be
arrays

Copyright © 2009 Addison-Wesley. All rights reserved. 1-29

• Each array inherits a named constant
(length in Java, Length in C#) that is set to
the length of the array when the array
object is created

Design Considerations for Parameter
Passing

• Two important considerations

– Efficiency

– One-way or two-way data transfer

• But the above considerations are in conflict

Copyright © 2009 Addison-Wesley. All rights reserved. 1-30

– Good programming suggest limited access to
variables, which means one-way whenever
possible

– But pass-by-reference is more efficient to pass
structures of significant size

Parameters that are Subprogram
Names

• It is sometimes convenient to pass
subprogram names as parameters

• Issues:

1. Are parameter types checked?

2. What is the correct referencing environment for

Copyright © 2009 Addison-Wesley. All rights reserved. 1-31

2. What is the correct referencing environment for
a subprogram that was sent as a parameter?

Parameters that are Subprogram
Names: Parameter Type Checking

• C and C++: functions cannot be passed as
parameters but pointers to functions can be
passed and their types include the types of the
parameters, so parameters can be type checked

• FORTRAN 95 type checks

• Ada does not allow subprogram parameters; an

Copyright © 2009 Addison-Wesley. All rights reserved. 1-32

• Ada does not allow subprogram parameters; an
alternative is provided via Ada’s generic facility

• Java does not allow method names to be passed
as parameters

Parameters that are Subprogram
Names: Referencing Environment

• Shallow binding: The environment of the
call statement that enacts the passed
subprogram
- Most natural for dynamic-scoped

languages

Copyright © 2009 Addison-Wesley. All rights reserved. 1-33

languages

• Deep binding: The environment of the
definition of the passed subprogram
- Most natural for static-scoped languages

• Ad hoc binding: The environment of the call
statement that passed the subprogram

Overloaded Subprograms

• An overloaded subprogram is one that has the
same name as another subprogram in the same
referencing environment
– Every version of an overloaded subprogram has a unique

protocol

• C++, Java, C#, and Ada include predefined
overloaded subprograms

Copyright © 2009 Addison-Wesley. All rights reserved. 1-34

overloaded subprograms
• In Ada, the return type of an overloaded function

can be used to disambiguate calls (thus two
overloaded functions can have the same
parameters)

• Ada, Java, C++, and C# allow users to write
multiple versions of subprograms with the same
name

Generic Subprograms

• A generic or polymorphic subprogram takes
parameters of different types on different
activations

• Overloaded subprograms provide ad hoc
polymorphism

Copyright © 2009 Addison-Wesley. All rights reserved. 1-35

polymorphism

• A subprogram that takes a generic parameter that
is used in a type expression that describes the type
of the parameters of the subprogram provides
parametric polymorphism
- A cheap compile-time substitute for dynamic
binding

Generic Subprograms (continued)

• Ada

– Versions of a generic subprogram are created by
the compiler when explicitly instantiated by a
declaration statement

– Generic subprograms are preceded by a generic– Generic subprograms are preceded by a generic
clause that lists the generic variables, which can
be types or other subprograms

Copyright © 2009 Addison-Wesley. All rights reserved. 1-36

Generic Subprograms (continued)

• C++

– Versions of a generic subprogram are created
implicitly when the subprogram is named in a
call or when its address is taken with the &
operatoroperator

– Generic subprograms are preceded by a
template clause that lists the generic variables,
which can be type names or class names

Copyright © 2009 Addison-Wesley. All rights reserved. 1-37

Generic Subprograms (continued)

• Java 5.0
- Differences between generics in Java 5.0 and
those of C++ and Ada:
1. Generic parameters in Java 5.0 must be classes

2. Java 5.0 generic methods are instantiated just

Copyright © 2009 Addison-Wesley. All rights reserved. 1-38

2. Java 5.0 generic methods are instantiated just
once as truly generic methods
3. Restrictions can be specified on the range of
classes that can be passed to the generic method
as generic parameters
4. Wildcard types of generic parameters

Generic Subprograms (continued)

• C# 2005
- Supports generic methods that are similar
to those of Java 5.0
- One difference: actual type parameters in
a call can be omitted if the compiler can

Copyright © 2009 Addison-Wesley. All rights reserved. 1-39

a call can be omitted if the compiler can
infer the unspecified type

Examples of parametric
polymorphism: C++

template <class Type>

Type max(Type first, Type second) {

return first > second ? first : second;

}

Copyright © 2009 Addison-Wesley. All rights reserved. 1-40

• The above template can be instantiated for any
type for which operator > is defined

int max (int first, int second) {

return first > second? first : second;

}

Design Issues for Functions

• Are side effects allowed?

– Parameters should always be in-mode to reduce side
effect (like Ada)

• What types of return values are allowed?

– Most imperative languages restrict the return types

– C allows any type except arrays and functions

Copyright © 2009 Addison-Wesley. All rights reserved. 1-41

– C allows any type except arrays and functions

– C++ is like C but also allows user-defined types

– Ada subprograms can return any type (but Ada
subprograms are not types, so they cannot be returned)

– Java and C# methods can return any type (but because
methods are not types, they cannot be returned)

– Python and Ruby treat methods as first-class objects, so
they can be returned, as well as any other class

– Lua allows functions to return multiple values

User-Defined Overloaded
Operators

• Operators can be overloaded in Ada, C++,
Python, and Ruby

• An Ada example
function "*" (A,B: in Vec_Type): return Integer
is

Sum: Integer := 0;

Copyright © 2009 Addison-Wesley. All rights reserved. 1-42

Sum: Integer := 0;

begin

for Index in A'range loop

Sum := Sum + A(Index) * B(Index)

end loop

return sum;

end "*";

…

c = a * b; -- a, b, and c are of type Vec_Type

Coroutines

• A coroutine is a subprogram that has multiple
entries and controls them itself – supported
directly in Lua

• Also called symmetric control: caller and called
coroutines are on a more equal basis

• A coroutine call is named a resume

Copyright © 2009 Addison-Wesley. All rights reserved. 1-43

• A coroutine call is named a resume

• The first resume of a coroutine is to its beginning,
but subsequent calls enter at the point just after
the last executed statement in the coroutine

• Coroutines repeatedly resume each other, possibly
forever

• Coroutines provide quasi-concurrent execution of
program units (the coroutines); their execution is
interleaved, but not overlapped

Coroutines Illustrated: Possible
Execution Controls

Copyright © 2009 Addison-Wesley. All rights reserved. 1-44

Coroutines Illustrated: Possible
Execution Controls

Copyright © 2009 Addison-Wesley. All rights reserved. 1-45

Coroutines Illustrated: Possible
Execution Controls with Loops

Copyright © 2009 Addison-Wesley. All rights reserved. 1-46

Summary

• A subprogram definition describes the actions
represented by the subprogram

• Subprograms can be either functions or
procedures

• Local variables in subprograms can be stack-
dynamic or static

Copyright © 2009 Addison-Wesley. All rights reserved. 1-47

dynamic or static

• Three models of parameter passing: in mode, out
mode, and inout mode

• Some languages allow operator overloading

• Subprograms can be generic

• A coroutine is a special subprogram with multiple
entries

