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Abstract. In this paper, we propose that the select operator in relational data-
bases be adopted for incorporating evidence in Bayesian networks. This ap-
proach does not involve the construction of new evidence potentials, nor the as-
sociated computational costs of multiplying the evidence potentials into the 
knowledge base. The select operator also provides unified treatment of hard and 
soft evidence in Bayesian networks. Finally, some query optimization rules, in-
volving the select operator implemented in relational databases, can be directly 
incorporated into probabilistic expert systems. 

1 Introduction 

Bayesian networks [3] are an established framework for uncertainty management and 
have been successfully applied in practice in a variety of problem domains. Process-
ing evidence is a fundamental task in Bayesian networks [2]. Evidence means that 
some information about the values of a set E of variables is obtained. For instance, the 
exact values E = e are known or perhaps that E does not take specific values E ≠ e. 
Given evidence, say E = e, several techniques have been proposed for processing que-
ries of the form p(X | E = e), where X is a set of non-evidence variables. These tech-
niques, however, have two disadvantages. First, the construction of a new probability 
table, called an evidence potential, is required. Second, the evidence potential is mul-
tiplied with the probability tables stored in the knowledge. 

Several researchers, including [4, 5], have pointed out the intrinsic relationship be-
tween Bayesian networks and relational databases [1]. More recently, Wong et al. [5] 
established that the logical implication of probabilistic conditional independence ex-
actly coincides with that of embedded multivalued dependency in relational databases 
for the classes of Bayesian networks, Markov networks, and fixed-context. 

In this paper, we propose that the select operator [1] in relational databases be 
adopted for incorporating evidence in Bayesian networks. We first show that the se-
lect operator can be applied on probabilistic relations and not only traditional rela-
tions. As the name suggests, the select operator selects a subset of rows from a prob-
abilistic relation that satisfy the select condition. Our main result is that incorporating 
evidence with the select operator is equivalent to the approach with evidence poten-
tials. Our approach does not involve the construction of new evidence potentials, nor 



the associated computational costs of multiplying the evidence potentials into the 
knowledge base. The select operator also provides unified treatment of hard and soft 
evidence in Bayesian networks. Finally, some query optimization rules, involving the 
select operator implemented in relational databases, can be directly incorporated into 
probabilistic expert systems. 

This paper is organized as follows. The select operator and query optimization 
rules are presented in Section 2. In Section 3, we discuss two methods for incorporat-
ing evidence in Bayesian networks. In Section 4, advantages of processing evidence 
with the select operator are provided. The conclusion is presented in Section 5. 

2 The Select Operator 

Wong et al. [4, 5] have shown how probability tables in Bayesian networks can be 
viewed as probabilistic relations, i.e., traditional relations in conventional databases 
[1] can be extended with a probability column. In this section, we incorporate the se-
lect operator [1] into this probabilistic setting. 

Let r(X) be a probabilistic relation on X. Let A be an attribute in X, a ∈ dom(A), 
and op be an operator in {=, ≠, <, ≤, ≥, >}. Then 

σA op a (r) = { t | t ∈ r and t(A) op a }, (1) 

where t(A) is the restriction of tuple t to attribute A. 

Example 1. In Table 1, given the probabilistic relation r(z|h) on the left, σ z=1 ( r(z|h) ) 
and σ z≠0 ( r(z|h) ) are shown in the middle and on the right, respectively. 

Table 1. A probabilistic relation r(z|h) (left). σ z=1 ( r(z|h) ) (middle). σ z≠0 ( r(z|h) ) (right)  

 

 

 
 

 
We now consider the relationship of the select operator with the multiplication and 

marginalization operators implemented in probabilistic expert systems. Here X and Y 
are sets of attributes and the select conditions do not involve probability columns. The 
soundness of these rules follows from the corresponding rules in databases [1]. 

1: The σ operator is commutative. Given select conditions c1 and c2, 

                            
1cσ (

2cσ ( r(X) )       =     
2cσ (

1cσ ( r(X) ) ). (2) 

2: Given a conjunction of select conditions { 1 2 m, , ...,c c c } involving attributes in X: 

                                 m1 2 ...c c cσ ∧ ∧ ∧ ( r(X) )       =    
1cσ (

2cσ …(
mcσ ( r(X) ) ) ). (3) 

h z p(z≠0|h) 
1 2 0.123 
1 1 0.456 
0 2 0.111 
0 1 0.333 

h z p(z=1|h) 
1 1 0.456 
0 1 0.333 

h z p(z|h) 

1 2 0.123 
1 1 0.456 
1 0 0.421 
0 2 0.111 
0 1 0.333 
0 0 0.556 



 

3: If the select condition c only involves attributes in X, then 

                         XΣ (σ c ( r(XY) ) )      =    σ c ( XΣ ( r(XY) ) ). (4) 

4: If the select condition c only involves attributes in X, then 

                           σ c ( r(Y) ⊗ r(X) )      =      r(Y) ⊗ σc ( r(X) ), (5) 

where ⊗ is a multiplication join for probabilistic relations [4]. 

3 Incorporating Evidence in Bayesian networks 

Traditionally, evidence in incorporated into Bayesian networks [3] using evidence po-
tentials [2]. We suggest using the select operator. 

3.1 With Evidence Potentials 

In the literature [2], there are two distinct kinds of evidence, namely, hard and soft. 
Hard evidence is an instantiation of a set E of variables, i.e., it is observed that 

E = e. Hard evidence is incorporated into a Bayesian network as follows. First, a find-
ing potential F(E = e) is constructed. The probability column of F(E = e) is set as fol-
lows: for the row with E = e, the probability value is one; for all other rows, the prob-
ability value is zero. Second, F(E = e) is multiplied with the stored CPTs. 

Soft evidence means E ≠ e, i.e., it is known that the set E of variables does not take 
on value e. Soft evidence is incorporated into a Bayesian network as follows. First, a 
likelihood potential L(E ≠ e) is constructed. The probability column of L(E ≠ e) is set 
as follows: for the rows with E ≠ e, the probability value is one; for all other rows, the 
probability value is zero. Second, L(E ≠ e) is multiplied with the stored CPTs. 

Example 2. Suppose we observe hard evidence z = 1. The constructed finding poten-
tial F(z = 1) is shown in Table 2 (left). The product F(z = 1) ⋅ p(z|h) is illustrated in 
Table 2, where p(z|h) is the CPT from Table 1 (left). Similarly, given soft evidence 
z ≠ 0, the CPT p(z|h) is multiplied with the constructed likelihood potential L(z≠0). 

Table 2. Given hard evidence z = 1, the finding potential F(z=1) is multiplied with the CPT 
p(z|h) giving p(z=1|h) 

 
 
 
 
 
 
 

z F(z=1) 
0 0 
1 1 
2 0 

h z p(z=1|h) 
1 1 0.456 
0 1 0.333 

h z p(z|h) 
1 2 0.123 
1 1 0.456 
1 0 0.421 
0 2 0.111 
0 1 0.333 
0 0 0.556 

⋅ = 



3.2 With the Select Operator 

Here, we incorporate evidence in Bayesian networks using the select operator. 
Consider hard evidence Ai = ai, where ai ∈ dom(Ai). The select condition c is the 

hard evidence Ai = ai. Compute A = ai i
σ ( r(Ai|Pi) ), where r(Ai|Pi)  is the probabilistic 

relation for the CPT p(Ai|Pi) of the hard evidence variable Ai. 
Consider soft evidence Ai ≠ ai, where ai ∈ dom(Ai). The select condition c is the 

soft evidence Ai ≠ ai. Compute A  ai i
σ ≠ ( r(Ai|Pi) ), where r(Ai|Pi) is the probabilistic 

relation for the CPT p(Ai|Pi) of the hard evidence variable Ai. 

Example 3. Recall the probabilistic relation r(z|h) in Table 1 (left). The hard evidence 
z = 1 is incorporated using the select operator as σ z=1 ( r(z|h) ), as shown in Table 1 
(middle). Similarly, the soft evidence z ≠ 0 is incorporated using the select operator as 
σ z≠0 ( r(z|h) ), as shown in Table 1 (right). 

Theorem 1. Given a Bayesian network, suppose hard evidence Ai = ai is observed. In-
corporating Ai = ai with the select operator is equivalent to using a finding potential. 

Proof: Consider the constructed finding potential F(Ai = ai). There is one row in table 
F(Ai = ai) for each value in dom(Ai). The probability column in F(Ai = ai) is set as fol-
lows: one, for the row with Ai = ai; zero, otherwise. Now consider the product of the 
finding potential F(Ai = ai) with the Bayesian network CPT p(Ai|Pi) for variable Ai. 
By definition, rows of F(Ai = ai) will be multiplied with rows p(Ai|Pi) provided they 
have the same value for Ai. Since the probability value in F(Ai = ai) is zero for all 
rows with Ai ≠ ai, the only rows appearing in the product F(Ai = ai) ⋅ p(Ai|Pi) are those 
with Ai = ai. Moreover, since the probability column of F(Ai = ai) is one when Ai = ai, 
the probabilities of p(Ai|Pi) with Ai = ai and F(Ai = ai) ⋅ p(Ai|Pi) are equal. Hence, the 
result is the selection of those rows of p(Ai|Pi) with Ai = ai. This is the definition of 

iAi aσ = ( r(Ai|Pi) ) = { t  | t∈ r(Ai|Pi) and t(Ai) = ai }, where r(Ai|Pi)  is the probabilistic 

relation for the CPT p(Ai|Pi) of the hard evidence variable Ai. 

Corollary 1. Given a Bayesian network, suppose soft evidence Ai≠ai is observed. 
Incorporating Ai≠ai with the select operator is the same as using a likelihood potential. 

For instance, the hard evidence z = 1 can be incorporated either using the select 
operator as in Table 1 (middle) or with a finding potential as in Table 2. 

4 Advantages of Processing Evidence with the Select Operator 

In this section, we give three advantages of using the select operator to incorporate 
evidence in Bayesian networks, namely, (i) there is no need to construct an evidence 



 

potential, (ii) we can reduce the number of multiplications, and (iii) the select opera-
tor unifies the notions of hard evidence and soft evidence. 

The select operator does not require the construction of evidence potentials. On the 
contrary, the traditional approach [2] requires the construction of finding potentials 
for hard evidence, and likelihood potentials for soft evidence. See, for instance, 
F(z = 1) in Table 2. It is well known that query optimization in Bayesian networks in-
volves reducing the number of multiplications. While the traditional approach neces-
sarily involves some multiplications to incorporate the evidence potentials into the 
knowledge base (i.e., Table 2), the select operator does not involve constructing evi-
dence tables, nor their associated multiplicative costs (i.e., Table 1 (middle)). The last 
advantage concerns the distinct treatment of hard and soft evidence in the traditional 
approach. Here hard evidence is incorporated with finding potentials, while soft evi-
dence involves likelihood potentials. On the contrary, the select operator readily han-
dles both hard and soft evidence. 

5 Conclusion 

One objective in query optimization is to reduce the number of multiplications [2]. On 
the contrary, the traditional approach to incorporate evidence in Bayesian networks 
constructs new evidence tables simply to multiply them into the knowledge base (see 
Table 2). By adopting the select operator from relational databases, evidence can be 
incorporated without constructing evidence tables and without their associated multi-
plicative costs (see Table 1 (middle)). Moreover, the select operator provides unified 
treatment of both hard and soft evidence. We have also shown how select interacts 
with the multiplication and marginalization operators in probabilistic expert systems. 
Thus, the above analysis suggests that the select operator is a very convenient tool for 
incorporating evidence in Bayesian networks. 
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