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Abstract. It is known that d-separation can determine the minimum
amount of information needed to process a query during exact infer-
ence in discrete Bayesian networks. Unfortunately, no practical method
is known for determining the semantics of the intermediate factors con-
structed during inference. Instead, all inference algorithms are relegated
to denoting the inference process in terms of potentials. In this theoreti-
cal paper, we give an algorithm, called Semantics in Inference (SI), that
uses d-separation to denote the semantics of every potential constructed
during inference. We show that SI possesses four salient features: poly-
nomial time complexity, soundness, completeness, and strong complete-
ness. SI provides a better understanding of the theoretical foundation of
Bayesian networks and can be used for improved clarity, as shown via
an examination of Bayesian network literature.

1 Introduction

In [12], Pearl advocated the restoration of probabilistic methods in artificial
intelligence systems and explored the possibility of representing and manipu-
lating probabilistic knowledge in graphical forms, latter called Bayesian net-
works. When recounting the development of Bayesian networks, Pearl [14] states
that perhaps [12] made its greatest immediate impact through the notion of d-
separation. As a method for deciding which conditional independence relations
are implied by the directed acyclic graph of a Bayesian network, d-separation
provides the semantics needed for defining and characterizing Bayesian networks.
Observe that Pearl emphasizes the importance of d-separation with respect to
Bayesian network modeling. With respect to inference, Pearl only states that d-
separation can determine the minimum information needed for answering a query
posed to a Bayesian network. No claim has ever been made that d-separation
can also provide semantics during Bayesian network inference.

Koller and Friedman [8] state that it is interesting to consider the semantics
of the potentials constructed during inference. They mention that sometimes the
probabilities are defined with respect to the joint distribution, but not at other
times. As no practical algorithm exists for deciding the semantics of inference, all
inference algorithms denote the intermediate factors constructed during inference
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as potentials. Potentials have no constraints [8] meaning they do not have clear
physical interpretation [4].

In this theoretical paper, we present Semantics in Inference (SI), an algorithm
for denoting semantics during exact inference in discrete Bayesian networks. SI
works by introducing the notion of evidence normal form to organize how each
potential was constructed. SI then decides semantics of the potential by perform-
ing one d-separation test. Formal properties of the SI algorithm are obtained,
namely, polynomial time complexity, soundness, completeness, and strong com-
pleteness. SI can be utilized for clarity of exposition in Bayesian network litera-
ture, since the semantics of potentials can now be articulated.

2 Inference

Here we consider only discrete Bayesian networks. U = {v1, v2, . . . , vn} is a
finite set of random variables and each vi ∈ U can take a value from a finite
domain, dom(vi). Given X ⊆ U , dom(X) is the Cartesian product of dom(vi),
vi ∈ X . A potential on dom(X) is a function ψ on dom(X) such that ψ(x) ≥ 0
for each x ∈ dom(X), and at least one ψ(x) is positive. For brevity, we refer
to ψ as a mapping on X rather than dom(X). A potential p on U that sums
to 1 is called a joint probability distribution on U , denoted p(U). A conditional
probability table (CPT) for X given disjoint Y , denoted ψ(X |Y ), is a potential
on XY that sums to 1, for each configuration y ∈ dom(Y ). The unity-potential
1(vi) for vi is a function 1 mapping every element of dom(vi) to one. The unity-
potential for a non-empty set X = {v1, v2, . . . , vk} of variables, denoted 1(X), is
defined as 1(X) = 1(v1) · 1(v2) · · · 1(vk). For simplified notation, we may write
{v1, v2, . . . , vk} as v1, v2, . . . , vk.

A Bayesian network [13] is a pair (B,C). B denotes a directed acyclic
graph with vertex set U and C is a set of conditional probability tables (CPTs)
{p(vi|P (vi)) | i = 1, 2, . . . , n}, where P (vi) denotes the parents (immediate pre-
decessors) of vi ∈ B. The product of CPTs in C is a joint probability distribution
p(U). For example, the directed acyclic graph in Figure 1 is called the extended
student Bayesian network (ESBN) [8]. We give CPTs in Table 1, where only bi-
nary variables are used in examples, and probabilities not shown can be obtained
by definition. By the above,

p(U) = p(c) · p(d|c) · p(i) · p(g|d, i) · · · p(h|g, j). (1)

We say X and Z are conditionally independent [16] given Y in p(U), denoted
Ip(X,Y, Z), if given any x ∈ dom(X), y ∈ dom(Y ), for all z ∈ dom(Z):
p(x|y, z) = p(x|y), whenever p(y, z) > 0, where X,Y, Z ⊆ U .

Pearl [12] gave a method, called d-separation, for determining those inde-
pendencies encoded in a directed acyclic graph. The following is the definition
of d-separation based on [8]. In a Bayesian network B, a trail (an undirected
path) v1, v2, . . . , vn is active given Y , if: (i) whenever we have a v-structure
vi−1 → vi ← vi+1, then vi or one of its descendants are in Y ; (ii) no other node
along the trail is in Y . Note that if v1 or vn are in Y the trail is not active.
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Fig. 1. The directed acyclic graph of ESBN

Table 1. CPTs for the ESBN in Figure 1

c p(c) c d p(d|c) d i g p(g|d, i)
0 0.20 0 0 0.40 0 0 0 0.90

1 0 0.70 0 1 0 0.20
i p(i) 1 0 0 0.50

0 0.75 g l p(l|g) 1 1 0 0.40

0 0 0.30
g j h p(h|g, j) 1 0 0.60 s l j p(j|s, l)
0 0 0 0.25 0 0 0 0.10
0 1 0 0.65 i s p(s|i) 0 1 0 0.60

1 0 0 0.50 0 0 0.40 1 0 0 0.45
1 1 0 0.85 1 0 0.80 1 1 0 0.50

We say that X and Z are d-separated given Y in B, denoted IB(X,Y, Z), if
there is no active trail between any variable v ∈ X and v′ ∈ Z given Y .

In inference, p(X |E = e) is the most common query type, which are useful for
many reasoning patterns, including explanation, prediction, intercausal reason-
ing, and many more [8]. Here, X and E are disjoint subsets of U , and E is ob-
served taking value e. We describe a basic algorithm for computing p(X |E = e),
called variable elimination (VE), first put forth in [17]. We do not consider
alternative approaches to inference such as conditioning [6] and join tree prop-
agation [1,2,10]. Inference involves the elimination of variables. Algorithm 1,
called sum-out (SO), eliminates a single variable v from a set Φ of potentials [8],
and returns the resulting set of potentials. The algorithm collect-relevant simply
returns those potentials in Φ involving variable v.

Algorithm 1. SO(v,Φ)
Ψ = collect-relevant(v,Φ)
ψ = the product of all potentials in Ψ
τ =

∑
v ψ

return (Φ− Ψ) ∪ {τ}
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SO uses Lemma 1, which means that potentials not involving the variable being
eliminated can be ignored.

Lemma 1. [15] If ψ1 is a potential on W and ψ2 is a potential on Z, then
the marginalization of ψ1 · ψ2 onto W is the same as ψ1 multiplied with the
marginalization of ψ2 onto W ∩ Z, where W,Z ⊆ U .

The evidence potential for E = e, denoted 1(E = e), assigns probability 1 to the
single value e of E and probability 0 to all other values of E. Hence, for a variable
v observed taking value λ and v ∈ {vi}∪P (vi), the product p(vi|P (vi)) ·1(v = λ)
keeps only those configurations agreeing with v = λ.

Algorithm 2, taken from [8], computes p(X |E = e) from a discrete Bayesian
network B. VE calls SO to eliminate variables one by one. More specifically,
in Algorithm 2, Φ is the set C of CPTs for B, X is a list of query variables,
E is a list of observed variables, e is the corresponding list of observed values,
and σ is an elimination ordering for variables U−XE, where XE denotes X∪E.

Algorithm 2. VE(Φ, X , E, e, σ)
Multiply evidence potentials with appropriate CPTs
While σ is not empty

Remove the first variable v from σ
Φ = sum-out(v, Φ)

p(X,E = e) = the product of all potentials ψ ∈ Φ
return p(X,E = e)/

∑
X p(X,E = e)

As in [8], suppose the observed evidence for the ESBN is i = 1 and h = 0 and
the query is p(j|h = 0, i = 1). The weighted-min-fill algorithm [8] can yield
σ = (c, d, l, s, g). VE first incorporates the evidence:

ψ(i = 1) = p(i) · 1(i = 1),

ψ(d, g, i = 1) = p(g|d, i) · 1(i = 1),

ψ(i = 1, s) = p(s|i) · 1(i = 1),

ψ(g, h = 0, j) = p(h|g, j) · 1(h = 0).

To eliminate c, the SO algorithm computes

ψ(d) =
∑

c

p(c) · p(d|c).

SO computes the following to eliminate d

ψ(g, i = 1) =
∑

d

ψ(d) · ψ(d, g, i = 1).

To eliminate l,

ψ(g, j, s) =
∑

l

p(l|g) · p(j|l, s).
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SO computes the following when eliminating s,

ψ(g, i = 1, j) =
∑

s

ψ(i = 1, s) · ψ(g, j, s). (2)

For g, SO can compute:

∑

g

ψ(g, i = 1, j) · ψ(g, i = 1) · ψ(g, h = 0, j)

=
∑

g

ψ(g, i = 1, j) · ψ(g, h = 0, i = 1, j) (3)

= ψ(h = 0, i = 1, j).

Next, VE multiplies all remaining potentials as

p(h = 0, i = 1, j) = ψ(i = 1) · ψ(h = 0, i = 1, j).

Finally, VE answers the query by

p(j|h = 0, i = 1) =
p(h = 0, i = 1, j)

∑
j p(h = 0, i = 1, j)

.

3 Understanding Semantics

We review the current limited understanding of semantics in inference.
Kjaerulff and Madsen [7] suggest that in working with probabilistic networks

it is convenient to denote distributions as potentials. In fact, the use of potentials
is built into the standard inference algorithms (see the SO and VE algorithms,
for instance). For example, suppose query p(j) is posed to the ESBN [8]. Even
without evidence being considered, the initial step of VE is to regard CPTs as
potentials, i.e., p(U) is factorized as

p(U) = ψ(c) · ψ(c, d) · ψ(i) · · ·ψ(g, h, j). (4)

By comparing (1) and (4), it is clear that semantics are destroyed even before the
CPTs in computer memory are modified. The notation used for potentials does
not convey the semantic meaning of the probabilities comprising the potential.

Darwiche [6] ascribes meaning during inference by representing each potential
by what we will call evidence expanded form, except that products involving
evidence potentials are taken. Let ψ be any potential constructed by VE. The
evidence expanded form of ψ, denoted F (ψ), is the unique expression defining
how ψ was built using the multiplication and marginalization operators on the
Bayesian network CPTs together with any appropriate evidence potentials.
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For example, consider potential ψ(g, i = 1, j) in (2). F (ψ(g, i = 1, j)), the
evidence expanded form, can be easily obtained in a recursive manner as follows:

∑

s

ψ(i = 1, s) · ψ(g, j, s)

=
∑

s

ψ(i = 1, s) · (
∑

l

(p(l|g) · p(j|l, s))) (5)

=
∑

s

((p(s|i) · 1(i = 1)) · (
∑

l

(p(l|g) · p(j|l, s)))).

Henceforth, parentheses are understood and may not be shown. Unfortunately,
the expanded form by itself does not directly articulate semantics.

By semantics, we mean that a CPT ψ(X |Y ) constructed by VE’s manipulation
of Bayesian network CPTs is not necessarily equal to the CPT p(X |Y ) obtained
from the defined joint probability distribution p(U). For instance, it can be
verified that in the ESBN,

p(h|g, j) ·
∑

d

p(g|d, i) ·
∑

c

p(c) · p(d|c) (6)

produces the CPT ψ(g, h|i, j) in Table 2 (left). In contrast, the CPT p(g, h|i, j)
built from the joint distribution p(U) in (1) is shown in Table 2 (right).

Table 2. (left) CPT ψ(g, h|i, j) built by (6). (right) CPT p(g, h|i, j) built from p(U)
in (1).

i j g h ψ(g, h|i, j) i j g h p(g,h|i, j)
0 0 0 0 0.1890 0 0 0 0 0.1960
0 0 0 1 0.5670 0 0 0 1 0.5880
0 0 1 0 0.1220 0 0 1 0 0.1080
0 1 0 0 0.4914 0 1 0 0 0.4762
0 1 0 1 0.2646 0 1 0 1 0.2564
0 1 1 0 0.2074 0 1 1 0 0.2272
1 0 0 0 0.0680 1 0 0 0 0.0846
1 0 0 1 0.2040 1 0 0 1 0.2537
1 0 1 0 0.3640 1 0 1 0 0.3309
1 1 0 0 0.1768 1 1 0 0 0.1518
1 1 0 1 0.0952 1 1 0 1 0.0817
1 1 1 0 0.6188 1 1 1 0 0.6515

Semantics in inference are not well understood. In their comprehensive and
highly recommended text, Koller and Friedman [8] consider the semantics of
potential ψ(b, c, d) built by eliminating variable a from the Bayesian network B
in Figure 2 (left):

ψ(b, c, d) =
∑

a

p(a) · p(b|a) · p(d|a, c). (7)
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Koller and Friedman [8] incorrectly state

p(b, d|c) 	= ψ(b, c, d). (8)

While this claim is almost always true, there are a few exceptions to refute it. For
one counter-example, eliminating variable a using the CPTs in Table 3 yields:

p(b, d|c) = ψ(b, c, d). (9)

Koller and Friedman [8] also state it must necessarily be the case that

p′(b, d|c) = ψ(b, c, d), (10)

where p′(U) is defined by a different Bayesian network B′ - the one given in
Figure 2 (right). Our objective is to stipulate semantics in the current Bayesian
network B - the one on which inference is being conducted.

a 

b 

c 

d 

a 

b 

c 

d 

Fig. 2. Bayesian networks B (left) and B′ (right)

Table 3. Exceptional CPTs for B in Figure 2 (left)

a p(a) a b p(b|a) b c p(c|b) a c d p(d|a, c)
0 0.2 0 0 0.4 0 0 0.5 0 0 0 0.5

1 0 0.9 1 0 0.5 0 1 0 0.5
1 0 0 0.5
1 1 0 0.5

4 CPT Structure

It is instructive to review that, when evidence is not considered, each potential
built by VE is a CPT.

A topological ordering [8] is an ordering ≺ of the variables in a Bayesian
network B so that for every arc (vi, vj) in B, vi precedes vj in ≺. For example,
c ≺ d ≺ i ≺ g ≺ s ≺ l ≺ j ≺ h is a topological ordering of the directed acyclic
graph in Figure 1, but d ≺ c ≺ i ≺ g ≺ h ≺ l ≺ j ≺ s is not.

Recall this feature of Bayesian networks,

p(U) =
∏

vi∈U

p(vi|P (vi)).

This can be established by showing

1 =
∑

U

∏

vi∈U

p(vi|P (vi)).

More generally, we have the following two lemmas.



20 C.J. Butz, W. Yan, and A.L. Madsen

Lemma 2. [3] Consider a Bayesian network (B,C) on U . Given any non-
empty subset X of U ,

∏
vi∈X p(vi|P (vi)) is a CPT ψ(X |P (X)), where P (X) =

(∪vi∈XP (vi))−X.

Lemma 3. [3] When evidence is not considered, each potential constructed by
VE is a CPT.

Lemma 3 can be seen as first applying Lemma 1 on the evidence expanded form
of a potential built by VE, keeping in mind E = ∅, and then applying Lemma 2.

For example, consider the potential ψ built by (6), which is already in evidence
expanded form. By applying Lemma 1,

∑

d

∑

c

p(h|g, j) · p(g|d, i) · p(c) · p(d|c). (11)

By Lemma 2,

ψ(g, h|i, j) =
∑

d

∑

c

ψ(c, d, g, h|i, j),

Thus, the potential ψ built by (6) is, in fact, a CPT ψ(g, h|i, j), in Table 2 (left).

5 Denoting Semantics

The evidence expanded form F (ψ) of any potential ψ constructed by VE is in
evidence normal form, if F (ψ) is written as

γ · N,

where γ is the product of 1 and all evidence potentials in F (ψ), andN is the same
factorization as F (ψ) except without products involving evidence potentials.

Recall ψ(g, h = 0, i = 1, j) in (3). The evidence expanded form F (ψ) is

p(h|g, j) · 1(h = 0) ·
∑

d

p(g|d, i) · 1(i = 1) ·
∑

c

p(c) · p(d|c), (12)

and the evidence normal form γ ·N is

1(h = 0, i = 1) · p(h|g, j) ·
∑

d

p(g|d, i) ·
∑

c

p(c) · p(d|c), (13)

namely, γ = 1(h = 0, i = 1) and N is (6).

Lemma 4. The evidence expanded form F (ψ) of any potential ψ constructed by
VE always can be equivalently written in normal form, i.e., F (ψ) = γ ·N .

Proof. Since evidence variables are never marginalized in VE, the claim follows
from Lemma 1.
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Observe that, by Lemma 3, N in evidence normal form is a CPT. We may denote
evidence normal form γ · N simply as N with evidence γ understood, since γ
only serves to select configurations of N agreeing with the evidence. We now
turn to denoting semantics.

To understand when N = p(X |Y ) in evidence normal form, some terminology
is needed. A path from v1 to vn is a sequence v1, v2, . . . , vn with arcs (vi, vi+1)
in B, i = 1, . . . , n − 1. With respect to a variable vi, we define three sets: (i)
the ancestors of vi, denoted A(vi), are those variables having a path to vi; (ii)
the descendants of vi, denoted D(vi), are those variables to which vi has a path;
and, (iii) the children of vi are those variables vj such that arc (vi, vj) is in B.
The ancestors of a set X ⊆ U are defined as A(X) = (∪vi∈XA(vi)) − X . The
descendants D(X) are defined similarly. IB(X,Y, Z) means an independence
statement I(X,Y, Z) [13] holds in B by d-separation, where X,Y, Z ⊆ U .

We now give the Semantics in Inference (SI) algorithm, which uses d-separation
to denote the semantics of any potential ψ built by VE onB. Each potentialψ con-
structed by VE is represented in evidence normal form ψ(X |Y ). If the semantics
ofB ensure the ψ(X |Y ) = p(X |Y ), then ψ is denoted as pB(X |Y ); otherwise, it is
denoted as φB(X |Y ). S is the set of variables marginalized in F (ψ). A(XS) and
D(XS) are computed from the transitive closure, denoted T , of B [5].

Algorithm 3. SI(ψ)
Compute the evidence expanded form F (ψ) of ψ
Compute the evidence normal form γ ·N of F (ψ)
Compute the CPT structure ψ(X |Y ) of N
Compute Z = A(XS) ∩D(XS)
Compute X1 = X ∩ P (Z)
if IB(X1, ∅, Y ) holds in B by d-separation

return pB(X |Y )
else

return φB(X |Y )

Recall ψ(g, i = 1, j) in (2). The evidence expanded form is (6). Its evidence
normal form γ ·N is γ = 1(i = 1) and N = ψ(j|g, i). Now X = {j}, Y = {g, i}
and S = {l, s}. By the transitive closure T of the ESBN, A(XS) = {c, d, i, g}
and D(XS) = {h}. Hence, Z = ∅, P (Z) = ∅, and X1 = ∅. Trivially, IB(X1, ∅, Y )
holds. Thus, SI denotes ψ(g, i = 1, j) in (2) as pB(j|g, i = 1).

Now consider ψ(g, h = 0, i = 1, j) in (3). The evidence expanded form is (12).
The evidence normal form γ · N is (13). Here N = ψ(g, h|i, j), as seen in (6).
With X = {g, h}, Y = {i, j} and S = {c, d}, from T on the ESBN we have
A({c, d, g, h}) = {i, j, l, s} and D({c, d, g, h}) = {j, l}. Thus, Z = {j, l}, giving
P (Z) = {g, s} and X1 = {g}. Now, IB(X1, ∅, Y ) does not hold. Thereby, SI
denotes ψ(g, h = 0, i = 1, j) in (3) as φB(g, h = 0|i = 1, j).

In this example, there is a path from XS = {c, d, g, h} to XS through Z =
{j, l}, starting at X1 = {g}. With X1 = {g} and Y = {i, j}, we focus on
IB(g, ∅, ij). Note that when deciding semantics of ψ(X |Y ), the independence
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to be tested is IB(X1, ∅, Y ) and not IB(XS, Y,A(XSY )). In Figure 2 (left),
IB(abd, c, ∅) holds, but p(b, d|c) 	= ψ(b, d|c) in (8) is possible.

6 Theoretical Foundation

We present four salient features of SI. Only the proofs of time complexity and
strong completeness are shown due to space considerations.

Theorem 1. Let ψ be any potential built by VE during exact inference in a
discrete Bayesian network with n variables. Then the time complexity of the SI
algorithm to determine the semantics of ψ is O(n3).

Proof. As ψ may require n−1 multiplications and nmarginalizations, computing
F (ψ) takes 2n steps. The normal form γ · N can be decided in linear time, as
can the CPT structure ψ(X |Y ) of N . The transitive closure T of the directed
acyclic graph can be computed in O(n3) [5]. Let XS be a set of k variables,
1 ≤ k ≤ n. Then A(XS) and D(XS) each can be computed in O(k · n). Now
Z and X1 each can be computed in O(n2). Testing IB(X1, ∅, Y ) is linear in the
size of B [6]. Thus, the semantics of ψ can be determined by SI in O(n3).

Theorem 2. In a Bayesian network (B,C) defining a joint distribution p(U),
suppose VE computes a potential ψ whose evidence normal form is γ ·N . If SI
denotes the semantics of N as pB(X |Y ), then N = p(X |Y ).

Theorem 2 guarantees that if SI denotes the semantics of a VE potential ψ as
γ · pB(X |Y ), then

ψ = γ · p(X |Y ).

Recall potential ψ(g, i = 1, j) in (2). As illustrated in Table 4, Theorem 2 ensures
that ψ(g, i = 1, j) is equal to p(j|g, i = 1), since SI denotes it as pB(j|g, i = 1).

Table 4. Potential ψ(g, i = 1, j) in (2) is p(j|g, i = 1)

i g j pB(j|g, i = 1)

1 0 0 0.457
ψ(g, i = 1, j) = p(j|g, i = 1) = 1 0 1 0.543

1 1 0 0.334
1 1 1 0.666

With respect to inference, the question of completeness is this. Can SI de-
termine the semantics of every VE potential defined with respect to the joint
distribution? The answer is no.

Theorem 3. In a Bayesian network B on U , suppose VE computes a potential
ψ whose evidence normal form is γ · N . If SI denotes the semantics of N as
φB(X |Y ), there exists a set C of CPTs for B defining a joint distribution p(U)
such that N 	= p(X |Y ).
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Theorem 3 states that whenever SI indicates that a potential is not defined with
respect to the joint distribution, then this is true for at least one set of CPTs for
the given Bayesian network. Recall once again ψ(g, h = 0, i = 1, j) in (3), which
SI denotes as φB(g, h = 0, l|i = 1, j). With respect to p(U) defined by the CPTs
in Table 1, we have

ψ(g, h = 0, i = 1, j) 	= p(g, h = 0|i = 1, j).

However, Theorem 3 can be made significantly stronger.

Lemma 5. [11] Except for a measure zero set in the space of all joint distribu-
tions p(U) defined by all discrete Bayesian networks (B,C), the independencies
satisfied by p(U) are precisely those satisfied by d-separation in B.1

Lemma 5 says that for nearly all choices C of CPTs for a Bayesian network B
defining p(U), d-separation perfectly characterizes the independencies in p(U),
i.e., for X,Y, Z ⊆ U ,

Ip(X,Y, Z) ⇐⇒ IB(X,Y, Z).

Theorem 4. Except for a measure zero set in the space of all joint distributions
p(U) defined by all discrete Bayesian networks (B,C), for any potential ψ built
by VE,

ψ = γ · p(X |Y ) ⇐⇒ SI denotes ψ as pB(X |Y ),

where γ ·N is the evidence normal form of ψ.

Proof. (⇒) Suppose VE constructs a ψ whose evidence normal form is γ ·N and
whose semantics are defined with respect to p(U). By contraposition, suppose SI
denotes N as φB(X |Y ). By SI, IB(X1, ∅, Y ) does not hold. Then, by Lemma 5,
Ip(X1, ∅, Y ) does not hold in essentially all possible p(U) defined over B. It
follows that for each such p(U),

γ · p(X |Y ) 	= γ ·N.

A contradiction to our initial assumption. Therefore, SI correctly denotes the
potential ψ as pB(X |Y ).

(⇐) Follows directly from Theorem 2.

Let B be any Bayesian network. Theorem 4 states that for nearly all choices C
of CPTs for B, the SI algorithm correctly denotes the semantics of potentials
constructed by VE during exact inference on B.

1 A set has measure zero if it is infinitesimally small relative to the overall space [8].
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7 Conclusion

We extend d-separation’s role from determining the minimum amount of infor-
mation needed to answer a query p(X |E = e) [12] to also giving the semantics of
the potentials constructed when answering p(X |E = e). Our results contribute
to a deeper understanding of Bayesian networks, since semantics of VE’s inter-
mediate factors are now articulated with respect to the joint distribution. The
main result (Theorem 4) showed that our SI algorithm correctly denotes the
semantics of inference in nearly all Bayesian networks. Future work will include
applying the results here to differential semantics in Bayesian networks [6,9].
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