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Abstract— Rough support vector machines (RSVMs) supple-
ment conventional support vector machines (SVMs) by provid-
ing a better representation of the boundary region. Increasing
interest has been paid to the theoretical development of RSVMs,
which has already lead to a modification of existing SVM
implementations as RSVMs. This paper shows how to extend
the use of precision and recall from a SVM implementation
to a RSVM implementation. Our approach is demonstrated in
practice with the help of Gist, a popular SVM implementation.

I. INTRODUCTION

Support vector machines (SVMs) [15] and multilayer
neural networks are two approaches that are popularly used
to overcome the linear separability limitations of percep-
trons [7], [13]. Neural networks use hidden layers to intro-
duce non-linearity. SVMs, on the other hand, use non-linear
transformations for separating non-linearly separable objects.
In addition, SVMs maximize the margin between two classes,
and use the hyperplane bisecting the margin for separating
the two classes. It is postulated that with the help of an
appropriate kernel function, every binary classification prob-
lem can be modeled using an SVM. However, such a kernel
function may lead to very high dimensional feature space,
and as such, may be computationally infeasible. Therefore,
SVMs must allow for soft margins. SVMs with soft margins
allow for classification errors. Most real world classification
problems are modeled by SVMs with soft margins. The
margins used by SVMs, in general, and, soft margins in
particular, provide a natural link between SVMs and rough
set theory (RST) [10].

Lingras and Butz [5] first proposed rough support vec-
tor machines (RSVMs) as a link between binary SVMs
and RST. Subsequently, they extended their approach to
multi-classifications and also provided some experimental
findings [6]. Since then other researchers have also con-
tributed to the theoretical and experimental development of
RSVMs [16].

The quality of classifications resulting from SVMs can
be measured using the notions of precision and recall. The
measures are defined for a binary classification of “yes” and
“no” with a particular emphasis on the objects classified as
“yes.” Precision measures the percentage of objects that are
correctly classified as “yes” as a ratio of all the objects that
should truly be “yes.” Recall describes what proportion of
objects that should be classified as “yes” are in fact classified
as “yes.”
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This paper adapts the notions of precision and recall to
binary SVM classifiers, where both class labels are mean-
ingful, that is, one class is not simply the negation of the
other class. The precision and recall measures are then used
to in RSVM classification. A popular implementation of
SVM, called Gist, will be used to demonstrate the proposed
implementation of RSVM.

The remainder of this paper is organized as follows. Sec-
tions 2 and 3 briefly review SVMs and RSVMs, respectively.
In Sections 4 and 5, we respectively show how to use
precision and recall in SVMs and RSVMs. Section 6 contains
our conclusions.

II. SUPPORT VECTOR MACHINES

In this paper, we will restrict our attention to binary
classification problems. Let x be an input vector in the
input space X . Let y be the output in Y = {+1,−1}. Let
S = {(x1, y1), (x2, y2), . . . , (xi, yi), . . .} be the training set
used for supervised classification. Let us define the inner
product of two vectors x and w as:

< x,w > =
∑

j

xj × wj ,

where xj and wj are components of the vectors x and
w, respectively. If the training set is linear separable, the
perceptron learning algorithm will find the vector w such
that:

y × [ < x,w > + b ] ≥ 0, (1)

for all (x, y) ∈ S. SVMs overcome the shortcomings of
linear separability in the perceptron approach by using a
mapping Φ of the input space to another feature space
with higher dimension. Equation (1) for perceptrons is then
changed as follows:

y × [ < Φ(x), Φ(w) > + b ] ≥ 0, (2)

for all (x, y) ∈ S. Usually, a high dimensional transformation
is needed in order to obtain reasonable classification [2].
Computational overhead can be reduced by not explicitly
mapping the data to feature space, but instead just working
out the inner product in that space. In fact, SVMs use a
kernel function K corresponding to the inner product in the
transformed feature space as: K(x,w) =< Φ(x), Φ(w) >.
Polynomial kernel is one of the popular kernel functions.
Let us derive the polynomial kernel function of degree 2
for two dimensional input space. Let x = (x1, x2) and



w = (w1, w2):

K(x,w) = < x,w >2

= (x1w1 + x2w2)2

= (x2
1w

2
1 + x2

2w
2
2 + 2x1w1x2w2)

= < x2
1 + x2

2 +
√

2x1x2, w2
1

+ w2
2 +
√

2w1w2 >

= < Φ(x), Φ(w) > .

The dimensionality rises very quickly with the degree of
polynomial. For example, Hoffmann [3] reports that for an
original input space with 256 dimensions, the transformed
space with second degree polynomials was approximately
33,000, and for the third degree polynomials the dimension-
ality was more than a million, and fourth degree led to a
more than billion dimension space. This problem of high
dimensionality will be discussed later in the paper.

The original perceptron algorithm was used to find one
of the possibly many hyperplanes separating two classes.
The choice of the hyperplane was arbitrary. SVMs use the
size of margin between two classes to search for an optimal
hyperplane. The problem of maximizing the margin can
be reduced to an optimization problem [2], [15]: minimize
< x,w > such that

y × [ < x,w > + b ] ≥ 0, (3)

for all (x, y) ∈ S. SVMs attempt to find a solution to such
an optimization problem.

III. ROUGH SUPPORT VECTOR MACHINES

This section describes rough support vector machines
(RSVMs), proposed by Lingras and Butz [5]. A certain
familiarity with RST is assumed. We will first consider the
ideal scenario, where the transformed feature space is linear
separable and the SVM has found the optimal hyperplane by
maximizing the margin between the two classes. There are
no training examples in the margin. The optimal hyperplane
gives us the best possible dividing line. However, if one
chooses to not make an assumption about the classification
of objects in the margin, the margin can be designated as the
boundary region. This will allow us to create rough sets as
follows.

Let us define b1 as: y × [ < x,w > + b1 ] ≥ 0, for
all (x, y) ∈ S, and there exists at least one training example
(x, y) ∈ S such that y = 1 and y× [ < x,w > + b1 ] = 0.
Similarly, b2 is defined as: y × [ < x,w > + b2 ] ≥ 0, for
all (x, y) ∈ S, and there exists at least one training example
(x, y) ∈ S such that y = −1 and y × [ < x,w > + b2 ] =
0. It can be easily seen that b1 and b2 correspond to the
boundaries of the margin. The modified SVM classifier can
then be defined as follows:

If < x,w > + b1 ≥ 0, classification of x is +1.
If < x,w > + b2 ≥ 0, classification of x is −1.
Otherwise, classification of x is uncertain.

The proposed classifier will allow us to create three
equivalence classes, and define a rough set based approxi-
mation space. This simple extension of an SVM classifier

provides a basis for a more practical application, when the
SVM transformation does not lead to a linear separable
case. Cristianini [2] list disadvantages of refining feature
space to achieve linear separability. Often this will lead
to high dimensions, which will significantly increase the
computational requirements. Moreover, it is easy to overfit in
high dimensional spaces, i.e., regularities could be found in
the training set that are accidental, which would not be found
again in a test set. The soft margin classifiers [2] modify the
optimization problem to allow for an error rate. The rough
set based rules given by the above rules can still be used by
empirically determining the values of b1 and b2. For example,
b1 can be chosen in such a way that, for an (x, y) ∈ S, if
< x,w > + b1 ≥ 0, then y must be +1. Similarly, b2 can be
chosen such that, for an (x, y) ∈ S, if < x,w > + b2 ≤ 0,
then y must be −1. Assuming there are no outliers, such a
choice of b1 and b2 would be reasonable. Otherwise, one can
specify that the requirements hold for a significant percentage
of training examples. For instance, b1 can be chosen in such
a way that, for an (x, y) ∈ S, if < x,w > + b1 ≥ 0,
then in at least 95% of the cases y must be +1. Similarly,
b2 can be chosen in such a way that, for an (x, y) ∈ S, if
< x,w > + b2 ≤ 0, then in at least 95% of the cases y
must be -1.

The extension proposed by Lingras and Butz [5] can be
easily implemented after the soft margin classifier determines
the value of w. All the objects in the training sample will
be sorted based on the values of < x,w >. The value
of b1 can be found by going down (or up if the positive
examples are below the hyperplane) in the list until 95% of
the positive examples are found. The value of b2 can be found
by going up (or down if the positive examples are below the
hyperplane) in the list until 95% of the negative examples
are found.

IV. PRECISION AND RECALL IN SVMS

Precision and recall are complementary measures most
commonly used by information retrieval theorists and prac-
titioners [14]. They can also be used to measure the ef-
fectiveness of a classifier. Let us assume that we have a
classification problem, where we need to decide whether or
not an object belong to a single class. If an object belongs
to a class we will call that object positive; otherwise, it will
be deemed negative. Let R be the set of objects that belong
to the class. Let us assume that our classifier has identified
A as the set of objects as belonging to the class. Precision
is defined as:

precision =
‖R

⋂
A‖

‖A‖
, (4)

where ‖X‖ denotes the cardinality of a set X . Eq. (4) tells
us what proportion of objects that are identified as postitives
are actually positive. Recall is defined as:

recall =
‖R

⋂
A‖

‖R‖
(5)

Eq. (5) gives us the proportion of actual positive objects that
are correctly identified as positives by our classifier. Precision



and recall are competing measures. An attempt to maximize
precision usually leads to lower recall values, and vice versa.

It should be noted that while the precision and recall
measures are technically defined for binary classification
system, they in fact deal with “yes” and “no” answers for
a single class. A typical binary classification problem may
actually want to separate objects into two different classes,
such as class 1 and class 2. In this case, we should extend
the notion of precision and recall by defining separate values
for the two classes. Let p1 and r1 be the precision and recall
for class 1. Similarly, let p2 and r2 be the precision and
recall for class 2. Let R1 be the set of objects belonging to
class 1 and R2 the set of objects belonging to class 2. Let
us assume that our classifier has identified A1 and A2 as the
sets of objects belonging to class 1 and class 2, respectively.
By definition, the precision p1 and recall r1 of class 1 are:

p1 =
‖R1

⋂
A1‖

‖A1‖
, (6)

r1 =
‖R1

⋂
A1‖

‖R1‖
, (7)

while for class 2, we have:

p2 =
‖R2

⋂
A2‖

‖A2‖
, (8)

r2 =
‖R2

⋂
A2‖

‖R2‖
. (9)

When a classifier precisely classifies an object as either
class 1 or 2, then

R1

⋃
R2 = A1

⋃
A2.

Thus,
p1 = r1 = p2 = r2 = 1.

However, the relationship between p1, p2, r1, and r2 is more
complicated. A higher p1 (r1) does not necessary imply a
higher p2 (r2). On the other hand, a higher value of p1 (p2)
will usually result in a higher value of r2 (r1).
Lemma 1 p1 is proportional to r2, and p2 is proportional to
r1.
Proof: A large value of p1 implies that most of the elements
in A1 belong to class 1. This means that there are very few
class 2 objects in A1. This, in turn, implies that most of
the class 2 objects will belong to A2. Hence, a higher r2 is
obtained. A similar argument hold for the second claim.

The interaction between these four values becomes even
more complex, once we introduce the notion of boundary
region from RST.

V. PRECISION AND RECALL IN RSVMS

In this section, we will discuss the operational details of
implementing precision and recall in a binary RSVM.

Our implementation utilizes the Gist software tools [8],
[9] for SVM classification that are downloadable from
http://microarray.cpmc.columbia.edu/gist/. The SVM portion
of Gist is also available via an interactive web server at

http://svm.sdsc.edu [8]. The web interface for Gist expects
the following three input three files [9]:

1) Training data: This file should be a tab-delimited text
file. The first row should contain feature names, and the
first column should contain example names. The rest
of the file should consist of a matrix of numbers with
each row of the matrix corresponding to an example.

2) Class labels: This file should be a tab-delimited text
file containing two columns. The first column should
contain the same example identifiers (as the training set
file) and in the same order. The second column should
contain class labels (1 for the positive class, and -1 for
the negative class).

3) Test data: This file is similar in format to the training
set. It should contain the same number of features as
the training set, but may contain different examples. If
you do not have a separate test file, you can always use
the training data file here. The class labels have to be
modified to take the values of 1 and -1. For example,
when we run Gist for classification of classes 1 and 2,
we specify 1 for class 1 and -1 for class 2.

Once these three files have been specified, you can choose
various options, including the Kernel function, and then
submit the data. After Gist has completed the training and
testing phases, the results are returned.

As shown in Fig. 1, we created a synthetic feature space
with two dimensions and consisting of 100 objects. These
100 objects belong to two classes; each class containing 50
objects. As can be seen from Fig. 1, it is possible to separate
most of the objects from these two classes using hyperplanes,
but there will be a certain percentage of false positives and
negatives that should belong to the boundary regions.

Table 1 shows partial results of SVM classification ob-
tained from Gist for classification of classes 1 and 2. The first
column in the table is Object ID, the second column gives the
actual classification of the object. The weight shown in third
column is an indication of whether the object is a support
vector or not. The predicted class appears in the fourth
column. The fifth column gives the values of discriminants,
which can be used as surrogates of the distances from the
hyperplane separating the positives from negatives. Usually,
a positive discriminant corresponds to the object above the
hyperplane, and negative discriminant indicates an object
below the hyperplane. Therefore, we do not have to explicitly
determine b1 and b2 [6]. If we sort the objects in descending
order first according to the actual class and then according
to the discriminant value, as shown in Table 1, we will be
able to identify the boundary region using the precision and
recall values.

Fig. 2 shows the precision and recall values for the objects
from Table 1. As we can see that the values of p1 are
positively correlated to r2, and p2 is positively correlated
with r1. This provides experimental evidence for Lemma 1.

Based on the precision and recall graph, we can draw the
cut-offs for lower bounds of both the classes. Let us assume
that we are aiming for a precision of 0.8 and recall of 0.7.
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Fig. 1. Synthetic training data of 100 two-dimensional objects.

c class weight train classification train discriminant
41 1 0 1 1.335
24 1 0 1 1.192
...

...
...

...
...

4 1 1.294 1 0.2862
40 1 1.308 1 0.2796
77 -1 -2.312 1 0.2757
...

...
...

...
...

36 1 2.683 -1 -0.4806
...

...
...

...
...

61 -1 -1.109 -1 -0.3897
81 -1 -1.099 -1 -0.3949
...

...
...

...
...

69 -1 0 -1 -1.145
57 -1 0 -1 -1.191

TABLE I
PARTIAL GIST OUTPUT FOR THE TRAINING DATA IN FIG. 1.

The boundaries drawn in Fig. 2 provide a reasonable balance
between precision and recall, which describe the lower and
upper bounds of classes 1 and 2 as follows. The lower bound
of class 1 is drawn at a precision, denoted p1, of 0.86, while
the recall, denoted r1, is 0.74. The upper bound of class
1 has precision p1 = 0.74 and recall r1 = 0.86. For class
2, the lower bound is represented with precision p2 = 0.84
and recall r2 = 0.72, while the upper bound corresponds to
precision p2 = 0.76 and recall r2 = 0.88.

It is important to note that the end of the lower bound of
class 1 in a precision and recall graph signifies the beginning
of upper bound of class 2, and vice versa. The precision for
an upper bound will be lower than that for the lower bound.
As can be seen from Fig. 2, the precision for the upper bound
of class 1 is p1 = 0.74, which is less than the precision of
the lower bound p1 = 0.86. On the contrary, the recall for
upper bound will be higher than that of the lower bound. For
instance, the recall r1 = 0.86 of the upper bound is greater
than r1 = 0.74 for the lower bound. Similarly, the precision
p2 = 0.76 is less than p2 = 0.84, while the recall r2 = 0.88
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Fig. 2. A RSVM precision and recall graph for the Gist output in Table I.

is greater than r2 = 0.72.

VI. CONCLUSION

This paper describes a precision and recall based imple-
mentation of RSVMs. The conventional precision and recall
values are based on whether an object belongs to a class
or not. We suggest using two different precision and recall
values for binary SVM classification. Lemma 1 shows that
the precision of one class is correlated to the recall of the
other class.

The paper uses results from an implementation of SVM
called Gist. The graphs of precision and recall for binary
SVM classification of a synthetic dataset is used to illustrate
how to draw the boundaries for lower bounds of both
classes. We will be applying these precision and recall based
implementation for multi-classification. The results of our
work will be presented in a future publication.

REFERENCES

[1] F. Chang, C-H. Chou, C-C. Lin, and C-J. Chen, “A Prototype Classifi-
cation Method and Its Application to Handwritten Character Recogni-
tion,” Proceedings of IEEE International Conference on Systems, Man
and Cybernetics, 2004, pp. 4738-4743.

[2] N. Cristianini, “Support Vector and Kernel Methods for Pattern Recog-
nition,” http://www.support-vector.net/tutorial.html, 2003.

[3] A. Hoffmann, “VC Learning Theory and Support Vector Machines”
http://www.cse.unsw.edu.au/ cs9444/Notes02/Achim-Week11.pdf,
2003.

[4] S. Knerr, L. Personnaz, G. Dreyfus, “Single-layer learning revisited:
A stepwise procedure for building and training a neural network” In
Fogelman-Soulie and Herault, editors, Neurocomputing: Algorithms,
Architectures and Applications, NATO ASI. Springer, 1990.

[5] P. Lingras, C.J. Butz, “Interval Set Classifiers using Support Vector
Machines,” Proceedings of 2004 conference of the North American
Fuzzy Information Processing Society, Banff, AB., June 27-30, pp.
707-710, 2004.

[6] P. Lingras, C.J. Butz, “Rough Set based 1-v-1 and 1-v-r Approaches to
Support Vector Machine Multi-classification,” to appear in Information
Sciences, 2007.

[7] M.L. Minsky, S.A. Papert, Perceptrons, The MIT Press, Cambridge,
MA., 1969.

[8] W. S. Noble and P. Pavlidis, Gist Support Vector Machine,
http://svm.sdsc.edu/svm-intro.html, 2006.

[9] W. S. Noble and P. Pavlidis, Gist Support Vector Machine: Web
Interface, http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi, 2006.

[10] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publishers, 1992.

[11] J.C. Platt, “Support Vector Machines,”
http://research.microsoft.com/users/jplatt/svm.html, 2003.

[12] J.C. Platt, N. Cristianini, J. Shawe-Taylor, “Large margin DAG’s for
multiclass classification,” Advances in Neural Information Processing
Systems, MIT Press, Cambridge, MA, (2000) 547-553

[13] F. Rosenblatt, “The perceptron: A perceiving and recognizing automa-
ton,” Technical Report 85-460-1, Project PARA, Cornell Aeronautical
Lab, 1957.

[14] G. Salton, M. McGill, Introduction to Modern Information Retrieval,
McGraw-Hill, New York, NY., 1983.

[15] V. Vapnik, Statistical Learning Theory. Wiley, NY., 1998.
[16] T. Wakaki, H. Itakura, M. Tamura, H. Motoda, and T. Washio, “A

Study on Rough Set-Aided Feature Selection for Automatic Web-Page
Classification,” Web Intelligence and Agent Systems: An International
Journal, 4(3), 431-441, 2006.


