
Recovery Protocols in Multi-Agent Probabilistic Reasoning SystemsC.J. Butz and S.K.M. WongDepartment of Computer ScienceUniversity of ReginaRegina, Saskatchewan, Canada, S4S 0A2fbutz,wongg@cs.uregina.caAbstractIn this paper, we introduce a probabilistic relationaldata model as the basis for developing multi-agentprobabilistic reasoning systems. Since our model sub-sumes the traditional relational data model, it im-mediately follows that we can take full advantage ofthe existing distributed and concurrency control tech-niques to address the undesirable characteristics exhib-ited by current multi-agent probabilistic reasoning sys-tems. Thereby, our probabilistic relational data modelhas important theoretical and practical rami�cations.One uni�ed model allows the cross-fertilization of tech-niques, and serves as a basis for implementing one sys-tem for both of these similar domains.1. IntroductionThe relational data model [5] was proposed fordata management in transaction processing systems.Data dependencies, such as functional dependenciesand multivalued dependencies (MVD), were exten-sively studied as they played a key role in the nor-malization process. A main result [1] of this researchwas that the class of acyclic database schemes, i.e.,the universal relation satis�es an acyclic join depen-dency (AJD), possess a number of desirable propertiesin database applications.On the other hand, probabilistic networks [4, 6] haveproven to be a useful tool for uncertainty managementin many AI applications. It has been shown [8, 11]how the traditional relational data model can be gen-eralized for developing probabilistic reasoning systems.This probabilistic relational data model consists of aprobabilistic relation as its data structure and the ad-dition of the two new relational operators product join� and marginalization #. The notion of probabilis-tic conditional independence can then be equivalently

expressed as a probabilistic relation satisfying a proba-bilistic multivalued dependency (PMVD). Furthermore,the representation of probabilistic knowledge in prac-tice can be expressed as a probabilistic relation satis-fying a probabilistic acyclic join dependency (PAJD).There is increasing interest in developing multi-agent probabilistic models for uncertainty managementin distributed AI applications. The �rst model pro-posed [12], while innovative, exhibits several undesir-able characteristics including: (i) each agent processestransactions serially; (ii) the multi-agent network is al-lowed to be inconsistent; (iii) the entire system has tobe brought o�-line to restore consistency; (iv) there isno concept of a distributed query; (v) no provisions aremade for transaction or agent failure.Once it is acknowledged that a probabilistic networkis a generalized relational database, however, it im-mediately follows that relational database techniquescan be modi�ed for probabilistic reasoning purposes.In [10], the well known database concurrency controltechnique two-phase locking was extended to ensureconsistency at all times. Maintaining global consis-tency permits the introduction of distributed queriesinto the multi-agent environment [10]. In this case,the query optimization techniques used in distributeddatabases can be applied to reduce the amount of datatransmitted between the agents in answering this typeof request. In this paper, we incorporate recovery pro-tocols into our model [10] in order to ensure consistencyin recovering from transaction and agent failure. Whileit is acknowledged that the actual extension to the rela-tional database recovery technique is not signi�cant initself, the main contribution of this paper is to demon-strate multi-agent uncertainty management as an areaof distributed relational database research and imple-mentation.A rigorous generalization of the traditional rela-tional model has important theoretical and practicalrami�cations. In practice, one intelligent system can

be designed for both of these problems by includingthe appropriate relational operators. On the theoreti-cal side, a uni�ed model provides the opportunity forthe cross-fertilization of techniques between Bayesiannetworks and relational databases.This paper is organized as follows. Section 2 con-tains background knowledge including our probabilis-tic relational data model and multi-agent probabilisticreasoning. Section 3 motivates the need for recoveryprotocols by explicitly demonstrating the inconsistencyproblems that may arise from agent failure. Recoveryprotocols to ensure consistency in a multi-agent envi-ronment are presented in Section 4. The conclusion isgiven in Section 5.2. Basic notionsWe �rst de�ne the basic notions of hyper-graphs, probabilistic networks, a probabilistic rela-tional database model, and multi-agent probabilisticreasoning.
2.1. HypergraphsLet N = fA1; A2; : : : ; Amg be a �nite set of vari-ables. A hypergraph, denoted H, is a family of subsetsof variables in N , i.e., H � 2N . An element in H iscalled a hyperedge. We call an element t 2 H a twig, ifthere exists another distinct element b 2 H such thatt \ ([fh j h 2 H and h 6= tg) = t \ b:(By this de�nition, the hyperedge in a hypergraphconsisting of a single hyperedge is not a twig). Thismeans that the intersection of t and the hypergraph[(H � ftg) is contained in the hyperedge b. We callany such b a branch for the twig t, and note that a twigt may have many possible branches. A hypergraphH = fh1; h2; : : : ; hng is called an acyclic hypergraph(a hypertree) [1, 7] if its elements h1; h2; : : : ; hi can beordered such that hi is a twig in the sub-hypergraphfh1; h2; : : : ; hig, i = 1; 2; : : : ; n. We call any orderingsatisfying this condition a hypertree construction order-ing for H. (A hypertree construction ordering can alsobe represented as a join tree [1].) Given a particularhypertree construction ordering, we can choose an in-teger b(i), for i = 2; : : : ; n, such that 1 � b(i) � i � 1and hb(i) is a branch for hi in fh1; h2; : : : ; hig. We callb(i) a branching function for this ordering. It is pos-sible that a hypertree construction ordering may havemore than one branching function.For example, consider the case where N =fA1; A2; : : : ; A6g. Let H = fh1 = fA1; A2; A3g, h2 =

fA2; A3; A4g, h3 = fA2; A3; A5g, h4 = fA5; A6gg de-note the hypergraph shown in Figure 1. Since we cande�ne a hypertree construction ordering h1; h2; h3; h4,by de�nition this hypergraph is a hypertree. One pos-sible branching function for this ordering h1; h2; h3; h4is b(2) = 1; b(3) = 1; b(4) = 3.
AAAA

h
A

13

h2

A 4

24

h3
h1

65

Figure 1. A graphical representation of the
hypergraph H = fh1; h2; h3; h4g.

2.2. Probabilistic NetworksProbabilistic networks [4, 6] have proven to be a use-ful tool for uncertainty management in many AI appli-cations. A probabilistic network consists of a depen-dency (graphical) structure coupled with a correspond-ing set of probability tables. A Bayesian network [6]consists of a directed acyclic graph (DAG) and corre-sponding conditional probability tables. In practice, itis useful to transform a Bayesian network into a Markovnetwork to facilitate probabilistic inference. A Markovnetwork [4] consists of an acyclic hypergraph with acorresponding set of marginal distributions.Formally, a relation scheme N is a �nite set ofattributes (attribute names) N = fA1; A2; : : : ; Amg.Corresponding to each attribute Ai is a nonempty �-nite set Di, 1 � i � m, called the domain of Ai. LetD = D1 [D2 : : : [Dm. A relation r on the relationscheme N , written r(N), is a �nite set of mappingsft1; t2; : : : ; tsg from N to D with the restriction thatfor each mapping t 2 r, t(Ai) must be in Di, 1 � i � k,where t(Ai) denotes the value obtained by restrictingthe mapping to Ai. The mappings are called tuplesand t(A) is called the A-value of t. We use t(X) in theobvious way and call it the X-value of t. To simplifythe notation, however, we will henceforth denote rela-tions by writing the attributes in a certain order andthe tuples as lists of values in the same order.Let r(N) be a �xed relation representing the domainof a �nite set of attributes N = A1A2 � � �Am. A jointprobability distribution [4, 6] over r(N) is a function pon r(N) assigning to each tuple t 2 r(N) a real number

0 � p(t) � 1 such that Pt2r(N) p(t) = 1. (We say thedistribution is over N when the domain r(N) is under-stood, and sometimes write p as p(A1; A2; : : : ; Am) orpN .) By the chain rule, a joint probability distributionp over N = A1A2 � � �Am can always be written as:p(N) = p(A1) � p(A2jA1) � p(A3jA1A2) � : : : �p(AmjA1A2 : : :Am�1):The above equation is an identity. However, one canuse known conditional independencies to obtain a sim-pler representation of a jpd.Let X;Y and Z be disjoint subsets of N . We saythat Y and Z are conditionally independent given X ifp(Y jXZ) = p(Y jX); (1)or equivalentlyp(Y XZ) = p(Y X) � p(XZ)p(X) : (2)For example, consider a jpd p(N) on N =A1A2A3A4A5A6 and the following known conditionalindependencies:p(A3jA1A2) = p(A3jA1);p(A4jA1A2A3) = p(A4jA2; A3g);p(A5jA1A2A3A4) = p(A5jfA2; A3g);p(A6jA1A2A3A4A5) = p(A6jfA5g):Utilizing these conditional independencies, the jpd pwritten using the chain rule can be expressed in a sim-pler form, namely:p(N) = p(A1) � p(A2jA1) � p(A3jA1) � p(A4jA2A3)�p(A5jA2A3) � p(A6jA5): (3)We can represent the dependency structure of this jpdby a DAG as shown in Figure 2. A Bayesian net-work is de�ned by this DAG together with the con-ditional probability tables p(A1), p(A2jA1), p(A3jA1),p(A4jA2A3), p(A5jA2A3), and p(A6jA5).In practice, however, it is useful to transform aBayesian network into a Markov network [4] to facili-tate probabilistic inference. The DAG representing thedependency structure of a Bayesian network can beconverted by the moralization and triangulation pro-cedures [4, 6] into an acyclic hypergraph. As well, theconditional probability tables de�ned over the DAGare used to de�ne marginal distributions over the hy-peredges of the acyclic hypergraph.For example, the DAG in Figure 2 may be trans-formed into the acyclic hypergraph H = fh1 =

5
A4A

A

1

32

6

AA

A

Figure 2. The DAG representing the condi-
tional independencies in equation (3).fA1; A2; A3g, h2 = fA2; A3; A4g, h3 = fA2; A3; A5g,h4 = fA5; A6gg depicted in Figure 1. Such an acyclichypergraph represents the dependency structure of aMarkov network. A Markov network can then be de-�ned by specifying a marginal distribution p(h) overeach hyperedge h in H. The jpd in equation (3) isthen rewritten in terms of marginal distributions overthe acyclic hypergraph H in Figure 1 as follows:p = p(A1A2A3) � p(A2A3A4) � p(A2A3A5) � p(A5A6)p(A2A3) � p(A2A3) � p(A5) : (4)Once the probabilistic knowledge is represented asa Markov network in terms of marginal distributions,the probabilistic reasoning system is ready for user in-teraction.Note that all embedded conditional independenciesare sacri�ced in transforming a Bayesian network intoa Markov network. For example, the embedded condi-tional independency of A2 and A3 given A1 is re
ectedby the Bayesian network de�ned by equation (3), butnot by the Markov network de�ned by equation (4).

2.3. A probabilistic relational data modelIn this section, we extend the traditional relationaldata model [5] for transaction processing systems intoa more general model for intelligent systems.A jpd can be represented as a relation. The relationr representing the jpd p has attributes N[fApg, wherethe column labelled by Ap stores the probability value.The relation r representing a jpd p on the set of vari-ables N = A1A2 � � �Am is shown in Figure 3. Each tu-ple t 2 r is de�ned by t(N) = t 2D and t(Ap) = p(t).That is, t = < t; p(t) >. For convenience we will sayrelation r is on N with the attribute Ap understood bycontext. That is, relations denoted by boldface repre-sent probability distributions. A relation r on schemeN = A1A2A3 is depicted in Figure 4.

A1 A2 : : : Am Apt1(A1) t1(A2) : : : t1(Am) t1(Ap) = p(t1)t2(A1) t2(A2) : : : t2(Am) t2(Ap) = p(t2)...ts(A1) ts(A2) : : : ts(Am) ts(Ap) = p(ts)
Figure 3. A joint distribution p expressed as a
relation r. A1 A2 A3 Apr = 0 0 0 0:30 0 1 0:30 1 1 0:21 0 0 0:11 0 1 0:1

Figure 4. A relation r on N = A1A2A3.Let r(N) be a relation and X be a subset of N . Themarginalization of r onto X, written �X (r), is de�nedas �X(r) = f t(XAp(X)) j t(X) 2 �X(r)and t(Ap(X)) =Xt02r t0(Ap) g; (5)where t0(X) = t(X), and � is the project operator [5].That is, �X(r) represents a probability distribution onthe traditional projection �X(r) = f t(X) j t 2 r g ofr onto X. In the literature [4, 6], the relation �X(r)is called the marginal distribution p(X) of p(N) ontoX. For example, the relations �A1A2(r) and �A2A3(r)in Figure 5 depict the marginalization of relation r inFigure 4 onto A1A2 and A2A3, respectively.A1 A2 Ap(A1;A2) A2 A3 Ap(A2;A3)0 0 0:6 0 0 0:40 1 0:2 0 1 0:41 0 0:2 1 1 0:2
Figure 5. The relations �A1A2(r) and �A2A3(r),
where r is shown in Figure 4.The product join of two relations r1(X) and r2(Y),written r1(X) � r2(Y), is de�ned asr1(X) � r2(Y)= ft(XY ApX �pY) j t(XY) 2 �X (r1) 1 �Y (r2)and t(ApX �pY) = t(ApX) � t(ApY)g; (6)

where 1 is the natural join operator [5]. Thus,r1(X) � r2(Y) denotes the product p(X) � p(Y) of thetwo distributions p(X) and p(Y).Generalized relational data dependencies can nowbe introduced. The fundamental notion of probabilisticmultivalued dependency is introduced �rst.Let N be a relation scheme, X and Y be disjointsubsets of N , and Z = N �XY . A relation r(N) satis-�es the probabilistic multivalued dependency (PMVD)X)) Y ifr(N) = �XY (r)� �XZ(r)� �X (r)�1; (7)where the relation �X (r)�1 is de�ned from �X(r)by renaming attribute Ap(X) as A1=p(X), and settingt(A1=p(X)) = 1=t(Ap(X)), if t(Ap(X)) > 0, for everyt 2 �X(r)�1. Saying that Y and Z are conditionallyindependent given X in equation (2) is the same assaying that relation r satis�es the PMVD X)) Y .We introduce shorthand notation for the right handside of equation (7) as follows:�XY (r)
 �XZ (r) � �XY (r) � �XZ(r) � �X (r)�1:We call the binary operator
 Markov join. Hence, arelation r(N) satis�es the PMVD X)) Y if and onlyif r(N) = �XY (r)
 �XZ(r): (8)Example 2.1 Relation r(A1A2A3) in Figure 4 satis�esthe PMVD A2)) A1 sincer(A1A2A3) = �A1A2(r)
 �A2A3(r);where �A1A2 (r) and �A2A3 (r) are shown in Figure 5.PMVD is a special case of a more general kindof data dependency, called probabilistic acyclic joindependency. Let N = fN1; N2; : : : ; Nng and N =N1 [N2 [: : :[Nn. A relation r(N) satis�es the prob-abilistic acyclic join dependency (PAJD)
N , ifr(N) = ((�N1 (r)
 �N2 (r))
 : : :)
 �Nn (r); (9)where the sequence N1; N2; : : : ; Nn is a hypertree con-struction ordering for N . Thus, a Markov network canbe expressed as a PAJD. The Markov network de�nedby equation (4), for example, can be written as thePAJDr(N) = ((�h1 (r)
 �h2 (r))
 �h3 (r))
 �h4(r): (10)The important point to realize is that the probabilis-tic knowledge is represented as a generalized relationaldatabase. It is straightforward to simulate probabilis-tic inference using simple SQL queries [11]. Thereby,uncertainty management in AI can be processed as typ-ical relational applications by replacing natural join 1and projection � with product join � and marginaliza-tion � , respectively.

2.4. Multi-Agent probabilistic reasoningIn this section, we brie
y review related research onmulti-agent probabilistic reasoning. The �rst task is toconstruct the probabilistic network. Once the networkis constructed, the system is ready for user interaction.There is increasing interest in extending the prob-abilistic formulism for uncertainty management intoa distributed multi-agent environment [9, 10, 12, 13].This environment consists of multiple agents, denotedS1; S2; : : : ; Sn, perhaps located at distinct sites. Weassume that each agent's knowledge is represented bya marginal distribution of the joint probability distri-bution. As in the single agent environment the jointprobability distribution r satis�es a PAJD. However,in the multi-agent environment the following two con-ditions are imposed:(i) the marginal distribution at each site satis�es aPAJD, and(ii) the marginal distribution on the intersection at-tributes between any two sites satis�es a PAJD.Conditions (i) and (ii) ensure that the joint probabilitydistribution is well-de�ned [12].There are at least three methods for constructinga multi-agent probabilistic network. The multiply-sectioned Bayesian network [14] technique can be ap-plied to section a large Bayesian network into multi-ple local Bayesian networks. These local Bayesian net-works are then transformed into a PAJD satisfying con-ditions (i) and (ii). Another method [13] involves thesituation where the agents are cooperative yet desire toconceal their internal attributes. The solution here issimply to check if the combination of the local DAGsform a multi-agent DAG under the imposed conditionof privacy. If so, the agents can work together to trans-form the representation of the probabilistic knowledgeinto a PAJD satisfying conditions (i) and (ii). A morerobust method [9] for constructing a multi-agent prob-abilistic network is to allow each domain expert to sup-ply any known PMVDs and not necessarily an explicitDAG. The method determines a minimal cover of allthe supplied independency information by detecting allinconsistent information, and removing all redundantinformation. A unique acyclic hypergraph of the multi-agent probabilistic network can be constructed directlyfrom this minimal cover. In fact, it was shown thatthe constructed acyclic hypergraph is a perfect-map [6]of the minimal cover. That is, every PMVD logicallyimplied by the minimal cover can be inferred from theacyclic hypergraph, and every PMVD inferred from theacyclic hypergraph is logically implied by the minimal

cover. The constructed acyclic hypergraph can be sec-tioned to satisfy conditions (i) and (ii).Example 2.2 Consider the constructed multi-agentprobabilistic network depicted in Figure 6. The PAJD
H is satis�ed by the jpd r, namely,r = ((�h1 (r)
 �h2 (r))
 : : :)
 �h12 (r);where H = fh1; h2; : : : ; h12g is an acyclic hypergraph.The marginal distribution at site S1 satis�es the PAJD,�S1 (r) = ((�h1 (r)
 �h2 (r))
 : : :)
 �h6 (r); (11)where the subscript S1 in �S1 (r) is an abbreviation forthe set of attributes at S1. Similarly, the marginaldistribution at site S2 satis�es the PAJD�S2 (r) = ((�h7 (r)
 �h8 (r))
 : : :)
 �h12 (r):(12)Equations (11) and (12) indicate that condition (i)is satis�ed. Condition (ii) is also satis�ed since themarginal distribution on the intersection attributes sat-is�es the PAJD�A1A2���A9(r) = (�A1A2A3(r)
 �A3A4A5A6 (r))
�A6A7A8A9(r): (13)Agents S1 and S2 can take advantage of the respectivePAJDs in equations (11) and (12) to optimize local pro-cessing. Both agents can take advantage of the PAJDin equation (13) to reduce the amount of data trans-mitted in distributed processing.The �rst cooperative, interpretive system which ap-plies probabilistic techniques for managing uncertaintyin a distributed multi-agent environment was pro-posed in [12]. That system, while innovative, exhibitsseveral undesirable characteristics including: (i) eachagent processes evidence and answers local probabilis-tic queries serially; (ii) each agent's knowledge base isprivate. That is, the agents may share evidence enter-ing their respective local sites, but they do not sharetheir knowledge bases. Consequently, each agent canonly answer local queries. There is no concept of a dis-tributed query; (iii) the entire system has to be broughto�-line periodically such that global consistency can berestored. Although techniques were suggested to re-duce this o�-line time, shutting down the system evenfor a relatively short time could be unacceptable tomany multi-agent systems; (iv) no provisions are madefor transaction or agent failure.Aside from these undesirable characteristics, theclaim was made in [12] that the proposed system pro-cesses evidence \asynchronously". While the claim istrue, it should be somewhat quali�ed. Even though theagents process evidence \asynchronously" with respect

5

21hh1

h

A
A

A
A

A

h0

2

02

91

8

1

11

98
7

2

1

A

A A

S

S

A

AA

A11

AA

A

A

A
A

A

A

A
A

A
A

A

A

A A

A

A
1

51

3
2

1

0

1

h
h21h

3

1

4h

3

9
7

8

64

5

h

71
61

hh

4

5

6
h

21

4
6

1

3
1

2

9
8

7

Figure 6. A multi-agent system consisting of
two agents S1 and S2.to each other, each agent processes local evidence se-rially. More importantly, each agent only updates thelocal knowledge base and does not immediately shareevidence with the other agents. Thereby, knowledge in-consistency of two agents having unique belief on com-mon attributes is allowed to occur. Thus, processingevidence in this \asynchronous" fashion avoids the fun-damental problem of concurrent access to one knowl-edge base, as well as leads to an inconsistent globalknowledge base.Section 2.3 explicitly demonstrates that a prob-abilistic network is simply a generalized relationaldatabase. It immediately follows that relationaldatabase techniques can be modi�ed where necessaryfor probabilistic reasoning purposes. In [10], two-phaselocking results were applied to ensure consistency at alltimes. Maintaining global consistency permits the in-troduction of distributed queries into the multi-agentenvironment [10]. In this case, the semi-join operatorused in distributed databases can be applied to reducethe amount of data transmitted between the agents inanswering this type of request. In this paper, the prob-lems of transaction and agent failure are discussed.

3. ProblemsManaging Agent Failure andRecoveryIn this section, we use examples from [2] to demon-strate the problems involved in managing agent failureand recovery. (For convenience, we will use the termsagent and site interchangeably.)There is a simple method to manage replicated at-tributes if agents never fail. Process Read(X) (orR(X)) by reading any copy of �X (r) and processWrite(X) (or W (X)) by writing all copies of �X (r).Asynchronous control is achieved by distributed two-phase locking [3].In practice, however, agents will fail and subse-quently recover. Agent failure can be managed by ex-tending the simple method as follows. Process R(X)by reading any copy of �X (r) at an \up" agent. Pro-cess W (X) by updating all copies of �X (r) at \up"agents and ignoring copies at \down" agents. This sim-ple method of managing agent failure is not necessarilycorrect.Example 3.1 Consider a distributed multi-agent en-vironment representing distributions �X (r) and �Y (r)with copies �XS1 (r), �XS2 (r), �YS3 (r) and �YS4 (r). Con-sider two transactions [10] T1 and T2, where T1 reads�X (r) then writes �Y (r) and T2 reads �Y (r) then writes�X (r). The simple method allows the following execu-tion:R1(XS1); R2(YS4); S1u; S4u;W1(YS3);W2(XS2):where Siu denotes the failure of agent Si.T1 and T2 each set a read-lock on the correspond-ing copy and then perform their reads asynchronously.Next agents S1 and S4 fail. Finally, T1 and T2 performtheir writes asynchronously. T1 writes �Y (r) by lock-ing all copies at \up" agents, namely, �YS3 (r). Notethat T1's write-lock on �YS3 (r) does not con
ict withT2's read-lock on �YS4 (r) because �YS3 (r) and �YS4 (r)are di�erent copies at di�erent agents. T2 writes �X(r)similarly.This execution is not correct since T2 does not readthe distribution �Y (r) written by T1, and T1 does notread the distribution �X (r) written by T2. One of thesetwo cases must occur in a serial execution of T1 and T2in a single copy environment.Managing agent recovery is slightly more complex.Consider a distribution �X (r) with copies �XS1 (r) and�XS2 (r) at agents S1 and S2, respectively. Supposeagent S1 fails. Copy �XS1 (r) may become outdatedwhile S1 is down since copy �XS2 (r) may be updated.Copy �XS1 (r) must be updated when agent S1 recoversbefore users access it. A simple method to accomplishthis is to copy the value of �XS2 (r) into �XS1 (r). This

simple method of handling agent recovery is not neces-sarily correct.Example 3.2 Consider a distributed multi-agent en-vironment with four agents S1; S2; S3, and S4. Let�X (r) and �Y (r) be distributions with copies �XS1 ,�XS2 , �XS3 , and �YS4 (r). Consider two transactions T1and T2, where T1 writes �X (r) and then reads �Y (r),and T2 reads �X (r) and then writes �Y (r). The simplemethod for handling agent recovery allows the follow-ing execution:W1(XS3); Rin(XS1);Win(XS2);W1(XS1); R2(XS2);R1(YS4);W2(YS4);where Readin(XS1) and Writein(XS2) are issued byagent S2 to update copy �XS2 (r).Since agent S2 has failed when the execution begins,T1 only updates copies �XS1 (r) and �XS3 (r). How-ever, S2 recovers in parallel with T1 by reading theoutdated copy �XS1 (r). Since S2 has recovered by thetime T2 starts, T2 subsequently reads the outdated copy�XS2 (r).This execution is not correct since it is not equiva-lent to a serial execution of T1 and T2 in a single copyenvironment. In a serial execution where T1 is exe-cuted �rst, T2 reads the distribution �X (r) written byT1. However, T2 reads a prior value of �X(r) in theabove execution. A similar argument holds if T2 is ex-ecuted �rst in a serial execution.In the next section, recovery protocols are presentedwhich only produce correct executions.4. Recovery Protocols in Multi-AgentProbabilistic Reasoning SystemsIn Section 2.3, we presented a generalized relationaldata model as the basis for developing probabilisticreasoning systems. It immediately follows that wecan take full advantage of the techniques already im-plemented in existing database systems. While vastamounts of distributed and currency control techniqueshave been developed for relational databases, the ex-position here draws from Bernstein et al. [2].There are two correctness criteria for multi-agentprobabilistic environments, namely, replication controland asynchronous control. Replication control statesthat multiple copies of a distribution should behave asa single copy as far as the user can tell. Asynchronouscontrol states that the asynchronous execution of trans-actions must be equivalent to some serial execution ofthose transactions. Executing transactions serially ina single copy environment is the correctness criteria,called 1-serializability, for asynchronous access with

replicated attributes. Unlike the model in [12] (see Sec-tion 2.4) which violates both correctness criteria, ourgoal here is to de�ne a multi-agent probabilistic rea-soning system that exhibits 1-serializability.We begin by de�ning some mathematical structurespertinent to our discussion. A transaction is a mathe-matical structure used to model asynchronous read andwrite operations for one user. Asynchronous executionof transactions are then modelled in a history.An agent translates transaction T 's read and writeoperations on distributions into operations on thereplicated copies of those distributions. Hence, wede�ne a function h that maps R(X) into R(XS),where �XS (r) is a copy of �X(r); each W (X) intoW (XS1); : : : ;W (XSq) for some copies �XSi (r), 0 < i �q; each transaction commit into ci; and each transac-tion abort into ai.A complete replicated data (RD) history H over T =fT1; : : : ; Tng is a partial order with ordering relation <where(i) H = h([li=1Ti) for some translation function h;(ii) For each Ti and all operations Pi; Qi in Ti, if Pi <iQi, then every operation in h(Pi) is related by <to every operation in h(Qi);(iii) For every Rj(XA), there is at least one Wi(XA) <Rj(XA);(iv) All pairs of con
icting operations are related by<, where two operations con
ict if they operateon the same copy and at least one of them is awrite operation; and(v) If Wi(X) <i Ri(X) and h(Ri(X)) = Ri(XA) thenWi(XA) 2 h(Wi(X)).The nodes in a serialization graph (SG) [2] for anRD history correspond to committed transactions inthe history, and there is an edge Ti ! Tj if there arecon
icting operations Pi in Ti and Qj in Tj such thatPi < Qj. Unfortunately, standard SGs for RD historiesare too weak for our purposes.Example 4.1Consider a multi-agent environment rep-resenting distributions �X (r) and �Y (r) with copies�XS1 (r), �XS2 (r), �YS3 (r), and �YS4 (r). Suppose wehave three transactions T1; T2 and T3: T1 wants to up-date �X(r) and �Y (r); T2 wants to read �X(r) then up-date �Y (r); T3 wants to read �Y (r) then update �X (r).If the agent uses two-phase locking and ignores failedcopies, history H1 depicted in Figure 7 is allowed tooccur, where XSiu denotes the failure of copy �XSi (r).(Here we �nd it convenient to speak of copies, ratherthan agents, failing.)

Y(
2

WY

3

X(
3

W(

3

2

R

X

)
4

(

)
1

2S

S
S

S S

S

S

SS

S

c

c)

)

2
Y

4

1
X 3

R

1W

1
W (

1W

)
3

(

1c

)
4

Y

Y

(

)
1

X

X

(
1W

)
2

Figure 7. History H1 models an incorrect exe-
cution even though SG(H1) is acyclic.Transactions T2 and T3 begin by reading �XS1 (r)and �YS4 (r). The copies that they read fail after theycomplete their reads. The agent translates W2(Y)into W2(YS3) since �YS3 (r) is the only available copyof �Y (r). Similarly, the agent translates W3(X) intoW3(XS2). The agent has no trouble locking each copythat T2 and T3 access because no two operations ofthese transactions access the same copy of any distri-bution. The important point is that H1 is not correctsince it is not 1-serializable, namely, H1 is not equiv-alent to a serial history over fT1; T2; T3g on a singlecopy environment. A serial execution of T1; T2, andT3 on a single copy environment would have either T2reading the value of �X (r) written by T3, or T3 readingthe value of �Y (r) written by T2. However, standardSGs are too weak for our purposes since it can be ver-i�ed that SG(H1) is still acyclic. (Acyclicity in SGs isregarded as a correctness criteria [2].)Example 4.1 explicitly demonstrates that simplytranslating R(X) into R(XS) for some copy �XS (r) andW (X) into W (XS) for all available copies �XS (r) maylead to an incorrect execution even if failed copies neverrecover. The problem here is that the logical con
ict-ing access of T2 and T3 on �X(r) and �Y (r) was nevermanifested into con
icting access on copies of �X(r)and �Y (r). The task now is to develop a method toensure that any two transactions that have con
ictingaccess to the same distribution also have con
ictingaccess to some copy of that distribution.The available copies algorithm [2] handles repli-cated attributes by using a validation protocol, in con-junction with this read-any and write-all-available ap-proach, to ensure correctness. The validation protocolconsists of two steps:(i) Missing writes validation: Ti makes sure that allcopies it was unable to write are still unavailable,and(ii) Access validation: Ti makes sure that all copies it

read or wrote are still available.This algorithm also assumes that the agent uses stricttwo-phase locking. The following two examples illus-trate how the available copies algorithm ensures 1-serializability.Let ti denote the moment when transaction Ti be-gins its access validation step. By the available copiesalgorithm, ti must follow all Ri(X) and Wi(X) as wellas the missing writes validation step (if present), andmust precede ci.Example 4.2 Consider the incorrect history H1 inFigure 7 redrawn as history H01 in Figure 8. Since T2read �XS1 (r), the failure of �XS1 (r) must have occurredafter T2 started its access validation. Otherwise, T2would have found �XS1 (r) to be unavailable and wouldtherefore abort. Therefore, t2 < XS1u and, similarly,t3 < YS4u. Since T2 wrote �YS3 (r) but not �YS4 (r), itmust have carried out the missing writes validation andfound that �YS4 (r) is still unavailable. Since �YS4 (r)had already been initialized, it must be that �YS4 (r)failed before the completion of Ti's missing writes val-idation and thus before the beginning of access valida-tion. Hence YS4u < t2. The precedence XS1u < t3 isjusti�ed on similar grounds. Given these precedenceswe have a cycle in H01: t2 < XS1u < t3 < YS4u < t2.This is impossible since H01, being a history, is sup-posed to be a partial order. This means that H01 couldnot have happened.
2c2t)

R W)Y(
3

Y(2R

1
c

X (2W)
1

3

S

S

S

S

3S S

S

S

SS

4

t)
2

X(
33

1
X

Y

3c

1

W

W

)

)
3

Y

1

t

)
4

Y(

(

)
1

X(
1

W

1W

2
X(

1

Figure 8. The incorrect history H1 in Figure 7
redrawn as history H01.The next example illustrates the signi�cance thatthe agent uses strict two-phase locking.Example 4.3 Let T1; T2 and T3 be the same trans-actions as in H1 except where there is only one copy�YS3 (r) of �Y (r). Consider history H2 in Figure 9 ig-noring for the moment the broken arrow from c3 toW2(YS3). H2 is not 1-serializable since T2 does notread the distribution �X(r) written by T3, and T3does not read the distribution �Y (r) written by T2.One of these two cases must occur in a serial single

copy environment. However, the validation protocolin the available copies algorithm does not prevent H2from occurring. Instead the assumption that the agentuses two-phase locking prohibits history H2 from hap-pening. Since T3 read YS3 before T2 updated it, T3must have locked �YS3 (r) before T2 did. By stricttwo-phase locking, T2 won't lock �YS3 (r) until afterT3 has committed. That is, we have the precedencec3 < W2(YS3). Given these precedences we have a cy-cle in H2: t3 < c3 < W2(YS3) < t2 < XS1u < t3. Thisis impossible since H2, being a history, is supposed tobe a partial order. This means that H2 could not havehappened.
3

Y(
2

)

1
X

2
tW)

1
X(

R)Y(
3 W

SS

S

S S
3S

S

S 2

2
X(

3
)

c

3
c

3
t

21W (

)
3

Y(

t

R

1
c

1

1

W

)
1

X

1

W

)
2

X(

Figure 9. History H1 in Figure 7 with only one
copy of �Y (r) redrawn as history H2.Theorem 4.1 [2] The available copies algorithm onlyproduces 1-serializable histories.The model proposed in [12] for probabilistic reason-ing in a multi-agent environment does not include pro-visions for transaction or agent failure, nor exhibit 1-serializability. In fact, it violates both correctness crite-ria, namely, replication control and asynchronous con-trol. On the other hand, Theorem 4.1 indicates thatour generalized relational data model will only produce1-serializable histories even in light of transaction andagent failure.5. ConclusionIn this paper, we have shown that probabilistic net-works are generalized relational databases. Our prob-abilistic relational data model then serves as a basisfor developing multi-agent probabilistic reasoning sys-tems. Since our model subsumes the traditional rela-tional data model, it immediately follows that we cantake full advantage of the existing distributed and con-currency control techniques to address the undesirablecharacteristics exhibited by current multi-agent prob-abilistic reasoning systems.A rigorous generalization of the traditional rela-tional model has important theoretical and practical

rami�cations. In practice, one intelligent system canbe designed for both of these problems by includingthe appropriate relational operators. On the theoreti-cal side, a uni�ed model provides the opportunity forthe cross-fertilization of techniques between Bayesiannetworks and relational databases.References[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. Onthe desirability of acyclic database schemes. Journalof the ACM, 30(3):479{513, July 1983.[2] P. A. Berstein, V. Hadzilacos, and N. Goodman. Con-currency Control and Recovery in Database Systems.Addison-Wesley, Don Mills, Ontario, 1987.[3] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The no-tions of consistency and predicate locks in a databasesystem. Communication of ACM, 19(11):624{633,November 1976.[4] P. Hajek, T. Havranek, and R. Jirousek. UncertainInformation Processing in Expert Systems. CRC Press,1992.[5] D. Maier. The Theory of Relational Databases. Prin-ciples of Computer Science. Computer Science Press,Rockville, Maryland, 1983.[6] J. Pearl. Probabilistic Reasoning in Intelligent Sys-tems: Networks of Plausible Inference. Morgan Kauf-mann Publishers, San Francisco, California, 1988.[7] G. Shafer. An axiomatic study of computation in hy-pertrees. School of Business Working Papers 232, Uni-versity of Kansas, 1991.[8] S. Wong. An extended relational data model for prob-abilistic reasoning. Journal of Intelligent InformationSystems, 9:181{202, 1997.[9] S. Wong and C. Butz. Constructing the dependencystructure of a multi-agent probabilistic network. Sub-mitted for publication, 1998.[10] S. Wong and C. Butz. Probabilistic reasoning in adistributed multi-agent environment. In Third Inter-national Conference on Multi-Agent Systems, 1998.[11] S. Wong, C. Butz, and Y. Xiang. A method for imple-menting a probabilistic model as a relational database.In Eleventh Conference on Uncertainty in Arti�cialIntelligence, pages 556{564. Morgan Kaufmann Pub-lishers, 1995.[12] Y. Xiang. A probabilistic framework for cooperativemulti-agent distributed interpretation and optimiza-tion of communication. Arti�cial Intelligence, 87:295{342, 1996.[13] Y. Xiang. Veri�cation of dag structures in cooperativebelief network based multi-agent systems. Networks,31:183{191, 1998.[14] Y. Xiang, D. Poole, and M. Beddoes. Multiply sec-tioned bayesian networks and junction forests for largeknowledge based systems. Computational Intelligence,9:171{220, 1993.

