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Abstract

In this paper, we ntroduce a probabilistic relational
data model as the basis for developing multi-agent
probabilistic reasoning systems. Since our model sub-
sumes the traditional relational data model, it im-
mediately follows that we can take full advantage of
the existing distributed and concurrency control tech-
niques to address the undesirable characteristics exhib-
ited by current multi-agent probabilistic reasoning sys-
tems. Thereby, our probabilistic relational data model
has important theoretical and practical ramifications.
One unified model allows the cross-fertilization of tech-
niques, and serves as a basis for implementing one sys-
tem for both of these similar domains.

1. Introduction

The relational data model [5] was proposed for
data management in transaction processing systems.
Data dependencies, such as functional dependencies
and multivalued dependencies (MVD), were exten-
sively studied as they played a key role in the nor-
malization process. A main result [1] of this research
was that the class of acyclic database schemes, i.e.,
the universal relation satisfies an acyclic join depen-
dency (AJD), possess a number of desirable properties
in database applications.

On the other hand, probabilistic networks [4, 6] have
proven to be a useful tool for uncertainty management
in many Al applications. It has been shown [8, 11]
how the traditional relational data model can be gen-
eralized for developing probabilistic reasoning systems.
This probabilistic relational data model consists of a
probabilistic relation as its data structure and the ad-
dition of the two new relational operators product join
x and marginalization J. The notion of probabilis-
tic conditional independence can then be equivalently

expressed as a probabilistic relation satisfying a proba-
bilistic multivalued dependency (PMVD). Furthermore,
the representation of probabilistic knowledge in prac-
tice can be expressed as a probabilistic relation satis-
fying a probabilistic acyclic join dependency (PAJD).

There is increasing interest in developing multi-
agent probabilistic models for uncertainty management
in distributed Al applications. The first model pro-
posed [12], while innovative, exhibits several undesir-
able characteristics including: (i) each agent processes
transactions serially; (ii) the multi-agent network is al-
lowed to be inconsistent; (iii) the entire system has to
be brought off-line to restore consistency; (iv) there is
no concept of a distributed query; (v) no provisions are
made for transaction or agent failure.

Once it 1s acknowledged that a probabilistic network
is a generalized relational database, however, it im-
mediately follows that relational database techniques
can be modified for probabilistic reasoning purposes.
In [10], the well known database concurrency control
technique fwo-phase locking was extended to ensure
consistency at all times. Maintaining global consis-
tency permits the introduction of distributed queries
into the multi-agent environment [10]. In this case,
the query optimization techniques used in distributed
databases can be applied to reduce the amount of data
transmitted between the agents in answering this type
of request. In this paper, we incorporate recovery pro-
tocols into our model [10] in order to ensure consistency
in recovering from transaction and agent failure. While
it is acknowledged that the actual extension to the rela-
tional database recovery technique is not significant in
itself, the main contribution of this paper is to demon-
strate multi-agent uncertainty management as an area
of distributed relational database research and imple-
mentation.

A rigorous generalization of the traditional rela-
tional model has important theoretical and practical
ramifications. In practice, one intelligent system can



be designed for both of these problems by including
the appropriate relational operators. On the theoreti-
cal side, a unified model provides the opportunity for
the cross-fertilization of techniques between Bayesian
networks and relational databases.

This paper is organized as follows. Section 2 con-
tains background knowledge including our probabilis-
tic relational data model and multi-agent probabilistic
reasoning. Section 3 motivates the need for recovery
protocols by explicitly demonstrating the inconsistency
problems that may arise from agent failure. Recovery
protocols to ensure consistency in a multi-agent envi-
ronment are presented in Section 4. The conclusion is
given in Section 5.

2. Basic notions

We first define the basic notions of hyper-
graphs, probabilistic networks, a probabilistic rela-
tional database model, and multi-agent probabilistic
reasoning.

2.1. Hypergraphs

Let N = {Ay, Ay, ..., A} be a finite set of vari-
ables. A hypergraph, denoted H, is a family of subsets
of variables in N, i.e., X C 2V. An element in # is
called a hyperedge. We call an element ¢ € H a twig, if
there exists another distinct element & € H such that

tNU{h|heH and h#£1t}) =tNb.

(By this definition, the hyperedge in a hypergraph
consisting of a single hyperedge is not a twig). This
means that the intersection of ¢ and the hypergraph
U(H — {t}) is contained in the hyperedge b. We call
any such b a branch for the twig ¢, and note that a twig
t may have many possible branches. A hypergraph
H = {hi,ho,..., h,} is called an acyclic hypergraph
(a hypertree) [1, 7] if its elements hy, kg, ..., h; can be
ordered such that h; is a twig in the sub-hypergraph
{hi,ha, ... hi}, i = 1,2,...,n. We call any ordering
satisfying this condition a hypertree construction order-
ing for H. (A hypertree construction ordering can also
be represented as a join tree [1].) Given a particular
hypertree construction ordering, we can choose an in-
teger b(¢), for ¢ = 2,...,n, such that 1 < b(4) <i—1
and hy;) is a branch for h; in {hy, ha, ..., h;i}. We call
b(i) a branching function for this ordering. Tt is pos-
sible that a hypertree construction ordering may have
more than one branching function.

For example, consider the case where N =

{A1, Ag, o Ag). Let H o= {hy = {Ay, Az, Az}, ha =

{A2, Az, As}, hg = {As, A3, As}t, ha = {As5, Ag}} de-
note the hypergraph shown in Figure 1. Since we can
define a hypertree construction ordering hq, hs, ks, ha,
by definition this hypergraph is a hypertree. One pos-

sible branching function for this ordering hq, ho, hs, ha
is 6(2) = 1,0(3) = 1,6(4) = 3.

Figure 1. A graphical representation of the
hypergraph H = {hq1, ha, hg, ha}.

2.2. Probabilistic Networks

Probabilistic networks [4, 6] have proven to be a use-
ful tool for uncertainty management in many Al appli-
cations. A probabilistic network consists of a depen-
dency (graphical) structure coupled with a correspond-
ing set of probability tables. A Bayesian network [6]
consists of a directed acyclic graph (DAG) and corre-
sponding conditional probability tables. In practice, 1t
1s useful to transform a Bayesian network into a Markov
network to facilitate probabilistic inference. A Markov
network [4] consists of an acyclic hypergraph with a
corresponding set of marginal distributions.

Formally, a relation scheme N 1is a finite set of
attributes (attribute names) N = {A;, As,..., Ap}.
Corresponding to each attribute A; is a nonempty fi-
nite set D;, 1 < ¢ < m, called the domain of A;. Let
D=DUDy...UD,y,.
scheme N, written r(N), is a finite set of mappings
{t1,t2,...,t5} from N to D with the restriction that
for each mappingt € r, t(A4;) must be in D;, 1 < ¢ < k,
where t(A4;) denotes the value obtained by restricting
the mapping to A;. The mappings are called tuples
and t(A) is called the A-value of {. We use ¢(X) in the
obvious way and call it the X-value of . To simplify
the notation, however, we will henceforth denote rela-
tions by writing the attributes in a certain order and
the tuples as lists of values in the same order.

Let #(N) be a fixed relation representing the domain
of a finite set of attributes N = A1 Ay ---A,,. A joint
probability distribution [4, 6] over r(N) is a function p
on r(N) assigning to each tuple ¢ € r(N) areal number

A relation r on the relation



0 < p(t) < 1 such that ZtEr(N) p(t) = 1. (We say the
distribution is over N when the domain »(V) is under-
stood, and sometimes write p as p(Ai, Az, ..., Ap) or
pn.) By the chain rule, a joint probability distribution
pover N = Ay Ay - -+ A,y can always be written as:

p(N) = p(Ar) -p(As|Ay) - p(As|A1As) - ...
p(Am|A1A2 .. ~Am—1)~

The above equation 1s an identity. However, one can
use known conditional independencies to obtain a sim-
pler representation of a jpd.

Let X,Y and Z be disjoint subsets of N. We say
that Y and Z are conditionally independent given X if

pY[X2) = p(Y]X), (1)

or equivalently
p(YXZ) = ———F———. (2)

For example, consider a jpd p(N) on N =
A1 As A3 Ay As Ag and the following known conditional
independencies:

P(A3|A1A2
P(A4|A1A2A3
P(A5|A1A2A3A4
P(A6|A1A2A3A4A5

p(As|Aq),
P(A4|A2, AS});
(
(

= p(As|{As, A3}),

)
)
)
) = p(As[{4s}).

Utilizing these conditional independencies, the jpd p
written using the chain rule can be expressed in a sim-
pler form, namely:

p(N) = p(A1) p(Az|AL) - p(As|Ar) - p(Aa|AzA3)
‘P(As|A243) - p(As|As). (3)

We can represent the dependency structure of this jpd
by a DAG as shown in Figure 2. A Bayesian net-
work is defined by this DAG together with the con-
ditional probability tables p(A1), p(Az|A1), p(As]| A1),
p(A4|A2A3), p(A5|A2A3), and p(A6|A5)

In practice, however, it is useful to transform a
Bayesian network into a Markov network [4] to facili-
tate probabilistic inference. The DAG representing the
dependency structure of a Bayesian network can be
converted by the moralization and triangulation pro-
cedures [4, 6] into an acyclic hypergraph. As well, the
conditional probability tables defined over the DAG
are used to define marginal distributions over the hy-
peredges of the acyclic hypergraph.

For example, the DAG in Figure 2 may be trans-
formed into the acyclic hypergraph H = {hy =

3

5

A
AG

Figure 2. The DAG representing the condi-
tional independencies in equation (3).

{Ar, As, As}, hy = {As, A3, Ag}, hs = {As, Ag, As},
hy = {As, As}} depicted in Figure 1. Such an acyclic
hypergraph represents the dependency structure of a
Markov network. A Markov network can then be de-
fined by specifying a marginal distribution p(h) over
each hyperedge h in #. The jpd in equation (3) is
then rewritten in terms of marginal distributions over
the acyclic hypergraph H in Figure 1 as follows:

_ P(A1A2A3) 'P(A2A3A4) 'P(A2A3A5) 'P(A5A6) (4)
P p(A2A3) - p(A243) - p(As) .

Once the probabilistic knowledge is represented as
a Markov network in terms of marginal distributions,
the probabilistic reasoning system is ready for user in-
teraction.

Note that all embedded conditional independencies
are sacrificed in transforming a Bayesian network into
a Markov network. For example, the embedded condi-
tional independency of As and As given A; is reflected
by the Bayesian network defined by equation (3), but
not by the Markov network defined by equation (4).

2.3. A probabilistic relational data model

In this section, we extend the traditional relational
data model [5] for transaction processing systems into
a more general model for intelligent systems.

A jpd can be represented as a relation. The relation
r representing the jpd p has attributes NU{A4,}, where
the column labelled by A, stores the probability value.
The relation r representing a jpd p on the set of vari-
ables N = A1 Ay - - - A, 1s shown in Figure 3. Each tu-
ple t € r is defined by t(N) =t € D and t(4,) = p(?).
That is, t = < ¢, p(t) >. For convenience we will say
relation r is on N with the attribute A, understood by
context. That 1s, relations denoted by boldface repre-
sent probability distributions. A relation r on scheme
N = Ay A5 A3 18 depicted in Figure 4.



Ay A, Am Ap
ti(A1)  ti(A2) ti(An)  t1(Ap) = p(t1)
ta(A1)  to(A2) t2(Am)  t2(Ap) = p(t2)
6(A) 6 (4s) b(Am)  ta(4y) = plt.)

Figure 3. A joint distribution p expressed as a
relation r.
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Figure 4. Arelation ron N = A; A, As.

Let ¥(N) be a relation and X be a subset of N. The
marginalization of r onto X, written 7x (r), is defined
as

{t(XA
and t(A

) | t(X) € mx (r)

=D A ) ()

t'Er

x(r) =

where t/(X) = t(X), and 7 is the project operator [5].
That is, 7x(r) represents a probability distribution on
the traditional projection 7x(r) = { t(X) |t € r } of
r onto X. In the literature [4, 6], the relation rx(r)
is called the marginal distribution p(X) of p(N) onto
X. For example, the relations 74,4, (r) and 74,4, (1)
in Figure 5 depict the marginalization of relation r in
Figure 4 onto A; A» and A; As, respectively.

AL Ay Apagag Ay Az Apasay
0 0 0.6 0 0 0.4
0 1 0.2 0 1 0.4
1 0 0.2 1 1 0.2

Figure 5. The relations 74, 4,(r) and 74,4, (r),
where r is shown in Figure 4.

The product join of two relations r1(X) and ra(V),
written r1(X) x r2(Y), is defined as

I‘1(X) X I‘Q(Y)
= {t(XYAp, py) | 6(XY) € mx (r1) W 7y (r2)
and t(ApX'pY) = t(ApX) 't(APY)}a (6)

where M is the natural join operator [5]. Thus,
r1(X) x ra(Y) denotes the product p(X) - p(Y) of the
two distributions p(X) and p(Y').

Generalized relational data dependencies can now
be introduced. The fundamental notion of probabilistic
multivalued dependency 1s introduced first.

Let N be a relation scheme, X and Y be disjoint
subsets of N, and 7 = N — XY . A relation r(N) satis-
fies the probabilistic multivalued dependency (PMVD)
X=>=Yif

r(N) = mxy(r) x 7xz(r) x Tx(I‘)_l, (7)

where the relation 7x(r)~! is defined from 7x(r)

by renaming attribute A, x) as Aj;,(x), and setting
t(A1/pox)) = L/t(Apx)), if €(Ayx)) > 0, for every
t € TX(I‘) L Saymg that Y and Z are conditionally
independent given X in equation (2) is the same as
saying that relation r satisfies the PMVD X == Y.

We introduce shorthand notation for the right hand
side of equation (7) as follows:
Txy (r) @ Txz(r) = Txv (v) X 7xz(r) x Tx (r)7?
We call the binary operator @ Markov join. Hence, a
relation r(V) satisfies the PMVD X ==Y if and only
if

r(N)=rxy(r) ® rxz(r). (8)

Example 2.1 Relation r(A4; A2 A3) in Figure 4 satisfies
the PMVD A; == A; since

P(A1A2A3) = TA1 Az (I‘) © TA, A, (I‘)a

where 74,4, (r) and 74,4, (r) are shown in Figure 5.
PMVD is a special case of a more general kind
of data dependency, called probabilistic acyclic join
dependency. Let N' = {Ny,Ns,...,N,} and N =
Ny UN3U .. .UN,. A relation r(N) satisfies the prob-
abilistic acyclic join dependency (PAJD) QN if

r(N) = (v, (r) @ 70, (1)) © - ) @7, (1), (9)

where the sequence N1, Na, ..., N, is a hypertree con-
struction ordering for A". Thus, a Markov network can
be expressed as a PAJD. The Markov network defined
by equation (4), for example, can be written as the

PAJD
r(N) = ((7h, (r) @ 7hy (¥)) @ Thy (1) © 7, (x). - (10)

The important point to realize is that the probabilis-
tic knowledge is represented as a generalized relational
database. It is straightforward to simulate probabilis-
tic inference using simple SQL queries [11]. Thereby,
uncertainty management in Al can be processed as typ-
ical relational applications by replacing natural join X
and projection 7 with product join x and marginaliza-
tion 7 , respectively.



2.4. Multi-Agent probabilistic reasoning

In this section, we briefly review related research on
multi-agent probabilistic reasoning. The first task is to
construct the probabilistic network. Once the network
is constructed, the system is ready for user interaction.

There is increasing interest in extending the prob-
abilistic formulism for uncertainty management into
a distributed multi-agent environment [9, 10, 12, 13].
This environment consists of multiple agents, denoted
51,52, ...,5,, perhaps located at distinct sites. We
assume that each agent’s knowledge is represented by
a marginal distribution of the joint probability distri-
bution. As in the single agent environment the joint
probability distribution r satisfies a PAJD. However,
in the multi-agent environment the following two con-
ditions are imposed:

(i) the marginal distribution at each site satisfies a

PAJD, and

(ii) the marginal distribution on the intersection at-
tributes between any two sites satisfies a PAJD.

Conditions (i) and (ii) ensure that the joint probability
distribution is well-defined [12].

There are at least three methods for constructing
a multi-agent probabilistic network. The multiply-
sectioned Bayesian network [14] technique can be ap-
plied to section a large Bayesian network into multi-
ple local Bayesian networks. These local Bayesian net-
works are then transformed into a PAJD satisfying con-
ditions (i) and (ii). Another method [13] involves the
situation where the agents are cooperative yet desire to
conceal their internal attributes. The solution here is
simply to check if the combination of the local DAGs
form a multi-agent DAG under the imposed condition
of privacy. If so, the agents can work together to trans-
form the representation of the probabilistic knowledge
into a PAJD satisfying conditions (i) and (ii). A more
robust method [9] for constructing a multi-agent prob-
abilistic network is to allow each domain expert to sup-
ply any known PMVDs and not necessarily an explicit
DAG. The method determines a minimal cover of all
the supplied independency information by detecting all
inconsistent information, and removing all redundant
information. A unique acyclic hypergraph of the multi-
agent probabilistic network can be constructed directly
from this minimal cover. In fact, it was shown that
the constructed acyclic hypergraph is a perfect-map [6]
of the minimal cover. That is, every PMVD logically
implied by the minimal cover can be inferred from the
acyclic hypergraph, and every PMVD inferred from the
acyclic hypergraph is logically implied by the minimal

cover. The constructed acyclic hypergraph can be sec-
tioned to satisfy conditions (i) and (ii).

Example 2.2 Consider the constructed multi-agent
probabilistic network depicted in Figure 6. The PAJD
®H 1s satisfied by the jpd r, namely,

v = ((7h, (1) © 7, (1) @) © Ty, (1),

where H = {hy, ha, ..., hia} is an acyclic hypergraph.
The marginal distribution at site Sy satisfies the PAJD,

s (1) = (7, (1) © Thy (1) @ ) @ Thg (1), (11)

where the subscript Sy in g, (r) is an abbreviation for
the set of attributes at S;. Similarly, the marginal
distribution at site Sy satisfies the PAJD

s, (1) = ((Th, (1) @ Tg (¥)) @ .. ) @ Ty, (). (12)
Equations (11) and (12) indicate that condition (i)
is satisfied. Condition (ii) is also satisfied since the
marginal distribution on the intersection attributes sat-

isfies the PAJD

TA Az Ao (T) = (Ta,4,4,(F) © Taza,4,4,(r))
®TA5A7A8A9(I')~ (13)

Agents S7 and S can take advantage of the respective
PAJDs in equations (11) and (12) to optimize local pro-
cessing. Both agents can take advantage of the PAJD
in equation (13) to reduce the amount of data trans-
mitted in distributed processing.

The first cooperative, interpretive system which ap-
plies probabilistic techniques for managing uncertainty
in a distributed multi-agent environment was pro-
posed in [12]. That system, while innovative, exhibits
several undesirable characteristics including: (i) each
agent processes evidence and answers local probabilis-
tic queries serially; (ii) each agent’s knowledge base is
private. That is, the agents may share evidence enter-
ing their respective local sites, but they do not share
their knowledge bases. Consequently, each agent can
only answer [ocal queries. There is no concept of a dis-
tributed query; (iii) the entire system has to be brought
off-line periodically such that global consistency can be
restored. Although techniques were suggested to re-
duce this off-line time, shutting down the system even
for a relatively short time could be unacceptable to
many multi-agent systems; (iv) no provisions are made
for transaction or agent failure.

Aside from these undesirable characteristics, the
claim was made in [12] that the proposed system pro-
cesses evidence “asynchronously”. While the claim is
true, it should be somewhat qualified. Even though the
agents process evidence “asynchronously” with respect



Figure 6. A multi-agent system consisting of
two agents S; and S-.

to each other, each agent processes local evidence se-
rially. More importantly, each agent only updates the
local knowledge base and does not immediately share
evidence with the other agents. Thereby, knowledge in-
consistency of two agents having unique belief on com-
mon attributes 1s allowed to occur. Thus, processing
evidence in this “asynchronous” fashion avoids the fun-
damental problem of concurrent access to one knowl-
edge base, as well as leads to an inconsistent global
knowledge base.

Section 2.3 explicitly demonstrates that a prob-
abilistic network is simply a generalized relational
database. It immediately follows that relational
database techniques can be modified where necessary
for probabilistic reasoning purposes. In [10], two-phase
locking results were applied to ensure consistency at all
times. Maintaining global consistency permits the in-
troduction of distributed queries into the multi-agent
environment [10]. In this case, the semi-join operator
used in distributed databases can be applied to reduce
the amount of data transmitted between the agents in
answering this type of request. In this paper, the prob-
lems of transaction and agent failure are discussed.

3. Problems Managing Agent Failure and
Recovery

In this section, we use examples from [2] to demon-
strate the problems involved in managing agent failure
and recovery. (For convenience, we will use the terms
agent and site interchangeably.)

There 1s a simple method to manage replicated at-
tributes if agents never fail. Process Read(X) (or
R(X)) by reading any copy of rx(r) and process
Write(X) (or W(X)) by writing all copies of rx(r).
Asynchronous control is achieved by distributed two-
phase locking [3].

In practice, however, agents will fail and subse-

quently recover. Agent failure can be managed by ex-
tending the simple method as follows. Process R(X)
by reading any copy of 7x(r) at an “up” agent. Pro-
cess W(X) by updating all copies of 7x(r) at “up”
agents and ignoring copies at “down” agents. This sim-
ple method of managing agent failure is not necessarily
correct.
Example 3.1 Consider a distributed multi-agent en-
vironment representing distributions 7x (r) and 7y (r)
with copies 7x (r), 7x, (r), Ty, (r) and 7y, (r). Con-
sider two transactions [10] Ty and Ty, where T} reads
7x (r) then writes v (r) and T3 reads 7y (r) then writes
7x (r). The simple method allows the following execu-
tion:

Ry(Xs,), Ro(Ys, ), S1M, 840, Wi (Ys, ), Wa (X5, ).

where S;[1 denotes the failure of agent S;.

T1 and T3 each set a read-lock on the correspond-
ing copy and then perform their reads asynchronously.
Next agents S7 and Sy fail. Finally, 77 and 7% perform
their writes asynchronously. Ty writes 7y (r) by lock-
ing all copies at “up” agents, namely, Ty, (r). Note
that T1’s write-lock on 1y, (r) does not conflict with
Ty’s read-lock on Ty, (r) because TYs, (r) and TYs, (r)
are different copies at different agents. Th writes 7x(r)
similarly.

This execution 1s not correct since 75 does not read
the distribution 7y (v) written by 77, and 77 does not
read the distribution 7x (r) written by 72. One of these
two cases must occur In a serial execution of 77 and 15
in a single copy environment.

Managing agent recovery is slightly more complex.
Consider a distribution 7x (r) with copies TXs, (r) and
Txs,(r) at agents S and S, respectively. Suppose
agent S fails. Copy 7xg (r) may become outdated
while ) is down since copy Tx, (r) may be updated.
Copy Tx, (r) must be updated when agent S recovers
before users access it. A simple method to accomplish
this is to copy the value of 7x,_(r) into 7x (r). This



simple method of handling agent recovery is not neces-
sarily correct.

Example 3.2 Consider a distributed multi-agent en-
vironment with four agents S1,S55,53, and Si. Let
7x(r) and 7y (r) be distributions with copies TXs,
TXs,) TXs,, and Tyg, (r). Consider two transactions 7
and T, where T} writes 7x(r) and then reads v (r),
and T5 reads 7x (r) and then writes 7y (r). The simple
method for handling agent recovery allows the follow-
ing execution:

Wi (XSg,), Rin(XSl)a Win (X52), Wl(XSI)’ R2(X52)’
Ry (Y54)’ WZ(Y54)’

where Read;n(Xg,) and Write;n(Xg,) are issued by
agent Sy to update copy Txg(r).

Since agent Sy has failed when the execution begins,
Ty only updates copies Tx (r) and 7xg (r). How-
ever, S» recovers in parallel with 77 by reading the
outdated copy Txg, (r). Since Sy has recovered by the
time 75 starts, T subsequently reads the outdated copy
Txs, (1)

This execution is not correct since it is not equiva-
lent to a serial execution of 71 and 75 in a single copy
environment. In a serial execution where 77 1s exe-
cuted first, T» reads the distribution 7x (r) written by
Ty. However, T5 reads a prior value of rx(r) in the
above execution. A similar argument holds if 75 is ex-
ecuted first in a serial execution.

In the next section, recovery protocols are presented
which only produce correct executions.

4. Recovery Protocols in Multi-Agent
Probabilistic Reasoning Systems

In Section 2.3, we presented a generalized relational
data model as the basis for developing probabilistic
reasoning systems. It immediately follows that we
can take full advantage of the techniques already im-
plemented in existing database systems. While vast
amounts of distributed and currency control techniques
have been developed for relational databases, the ex-
position here draws from Bernstein et al. [2].

There are two correctness criteria for multi-agent
probabilistic environments, namely, replication control
and asynchronous control. Replication control states
that multiple copies of a distribution should behave as
a single copy as far as the user can tell. Asynchronous
control states that the asynchronous execution of trans-
actions must be equivalent to some serial execution of
those transactions. Executing transactions serially in
a single copy environment is the correctness criteria,
called I-serializability, for asynchronous access with

replicated attributes. Unlike the model in [12] (see Sec-
tion 2.4) which violates both correctness criteria, our
goal here is to define a multi-agent probabilistic rea-
soning system that exhibits 1-serializability.

We begin by defining some mathematical structures
pertinent to our discussion. A transaction is a mathe-
matical structure used to model asynchronous read and
write operations for one user. Asynchronous execution
of transactions are then modelled in a history.

An agent translates transaction 7”s read and write
operations on distributions into operations on the
replicated copies of those distributions. Hence, we
define a function h that maps R(X) into R(Xs),
where tx,(r) is a copy of tx(r); each W(X) into
W(Xs,), ..., W(Xs,) for some copies 7x (r), 0 < i <
q; each transaction commit into ¢;; and each transac-
tion abort into a;.

A complete replicated data (RD) history H over T' =
{T1,...,T,} is a partial order with ordering relation <
where

(i) H = h(U'_,T;) for some translation function h;

(i1) For each T; and all operations P;, Q; in T3, if P; <,
Qi, then every operation in h(P;) is related by <
to every operation in h(Q;);

(iii) For every R;(X4), there is at least one W;(X4) <
R;j(Xa);

(iv) All pairs of conflicting operations are related by
<, where two operations conflict if they operate
on the same copy and at least one of them is a
write operation; and

(v) T Wi(X) <; Ri(X) and A(R;(X)) = R;(X4) then
Wi(Xa) € h(W;(X)).

The nodes in a serialization graph (SG) [2] for an

RD history correspond to committed transactions in
the history, and there is an edge T; — T} if there are
conflicting operations P; in 7; and @; in 7} such that
P; < @;. Unfortunately, standard SGs for RD histories
are too weak for our purposes.
Example 4.1 Consider a multi-agent environment rep-
resenting distributions 7x(r) and 7y (r) with copies
Txs, (r), Txg, (r), Tys, (r), and 7y, (r). Suppose we
have three transactions 71,75 and T3: T} wants to up-
date 7x (r) and 7y (v); T2 wants to read 7x(r) then up-
date 1y (r); T5 wants to read 7y (r) then update rx (r).
If the agent uses two-phase locking and ignores failed
copies, history H; depicted in Figure 7 is allowed to
occur, where Xg,MM denotes the failure of copy 7x. (r).
(Here we find it convenient to speak of copies, rather
than agents, failing.)
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Figure 7. History H; models an incorrect exe-
cution even though SG(H,) is acyclic.

Transactions T3 and T3 begin by reading 7x, (r)
and 1y, (r). The copies that they read fail after they
complete their reads. The agent translates W5(Y)
into W5(Ys,) since 7y, (r) is the only available copy
of 1y (r). Similarly, the agent translates W3(X) into
W3(Xs,). The agent has no trouble locking each copy
that 75 and 75 access because no two operations of
these transactions access the same copy of any distri-
bution. The important point i1s that H; is not correct
since it is not l-serializable, namely, H; i1s not equiv-
alent to a serial history over {T3,7T2,T5} on a single
copy environment. A serial execution of 77,75, and
T3 on a single copy environment would have either 75
reading the value of 7x (r) written by 75, or T3 reading
the value of 7y (r) written by 75. However, standard
SGs are too weak for our purposes since it can be ver-
ified that SG(H;) is still acyelic. (Acyclicity in SGs is
regarded as a correctness criteria [2].)

Example 4.1 explicitly demonstrates that simply
translating R(X) into R(Xg) for some copy 7x,(r) and
W(X) into W(Xg) for all available copies 7x (r) may
lead to an incorrect execution even if failed copies never
recover. The problem here is that the logical conflict-
ing access of T3 and 75 on 7x(r) and 7y (r) was never
manifested into conflicting access on copies of x(r)
and 7y (r). The task now is to develop a method to
ensure that any two transactions that have conflicting
access to the same distribution also have conflicting
access to some copy of that distribution.

The available copies algorithm [2] handles repli-
cated attributes by using a validation protocol, in con-
junction with this read-any and write-all-available ap-
proach, to ensure correctness. The wvalidation protocol
consists of two steps:

(i) Missing writes validation: 7; makes sure that all
copies it was unable to write are still unavailable,
and

(i1) Access validation: T; makes sure that all copies it

read or wrote are still available.

This algorithm also assumes that the agent uses strict
two-phase locking. The following two examples illus-
trate how the available copies algorithm ensures 1-
serializability.

Let ¢; denote the moment when transaction 7; be-

gins its access validation step. By the available copies
algorithm, ¢; must follow all R;(X) and W;(X) as well
as the missing writes validation step (if present), and
must precede ¢;.
Example 4.2 Consider the incorrect history H; in
Figure 7 redrawn as history H{ in Figure 8. Since T5
read Tx (r), the failure of 7x; (r) must have occurred
after T, started its access validation. Otherwise, 75
would have found 7x (r) to be unavailable and would
therefore abort. Therefore, 15 < Xg, M and, similarly,
t3 < Yg,M. Since Tz wrote Tyg, (r) but not TYs, (r), it
must have carried out the missing writes validation and
found that 7y, (r) is still unavailable. Since 1y, (r)
had already been initialized, it must be that 7y, (r)
failed before the completion of 7;’s missing writes val-
idation and thus before the beginning of access valida-
tion. Hence Yg,M < 2. The precedence Xg, M < 13 is
justified on similar grounds. Given these precedences
we have a cycle in Hi: t5 < Xg, T < t3 < Yy, < ts.
This is impossible since H], being a history, is sup-
posed to be a partial order. This means that H; could
not have happened.

w(Xs) RiXs) HV"z(Yss)7 2 %
W(Xg) — \ / vs[
Wl(YSS) / \ n

X8y \

Wl(YS) 3(Y ) — W, (XSZ)H t34' C3

Figure 8. The incorrect history H; in Figure 7
redrawn as history Hj.

The next example illustrates the significance that
the agent uses strict two-phase locking.
Example 4.3 Let 77,75 and T3 be the same trans-
actions as in H; except where there is only one copy
Tys, (r) of ry(r). Consider history Hs in Figure 9 ig-
noring for the moment the broken arrow from ecs to
Wa(Ys,). Ha is not l-serializable since T does not
read the distribution 7x(r) written by T3, and T3
does not read the distribution 7y (r) written by Ts.
One of these two cases must occur in a serial single



copy environment. However, the validation protocol
in the available copies algorithm does not prevent H,
from occurring. Instead the assumption that the agent
uses two-phase locking prohibits history Hy from hap-
pening. Since T3 read Yg, before Th updated it, T3
must have locked Ty, (r) before Ty did. By strict
two-phase locking, 75 won’t lock 7y, (r) until after
T3 has committed. That i1s, we have the precedence
ez < Wa(Ys,). Given these precedences we have a cy-
clein Hy: 13 < ec3 < WZ(YS3) <ty < Xg, M < 13. This
is impossible since Hjy, being a history, is supposed to
be a partial order. This means that Ho could not have
happened.

Wl(XSl) RZ(XSl) Wz(Yss) —t = C

“
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Figure 9. History H; in Figure 7 with only one
copy of ry(r) redrawn as history H.

Theorem 4.1 [2] The available copies algorithm only
produces 1-serializable histories.

The model proposed in [12] for probabilistic reason-
ing in a multi-agent environment does not include pro-
visions for transaction or agent failure, nor exhibit 1-
serializability. In fact, it violates both correctness crite-
ria, namely, replication control and asynchronous con-
trol. On the other hand, Theorem 4.1 indicates that
our generalized relational data model will only produce
1-serializable histories even in light of transaction and
agent failure.

5. Conclusion

In this paper, we have shown that probabilistic net-
works are generalized relational databases. Our prob-
abilistic relational data model then serves as a basis
for developing multi-agent probabilistic reasoning sys-
tems. Since our model subsumes the traditional rela-
tional data model, 1t immediately follows that we can
take full advantage of the existing distributed and con-
currency control techniques to address the undesirable
characteristics exhibited by current multi-agent prob-
abilistic reasoning systems.

A rigorous generalization of the traditional rela-
tional model has important theoretical and practical

ramifications. In practice, one intelligent system can
be designed for both of these problems by including
the appropriate relational operators. On the theoreti-
cal side, a unified model provides the opportunity for
the cross-fertilization of techniques between Bayesian
networks and relational databases.
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