
A Method for Constructing the Dependency Structure of aProbabilistic NetworkS.K.M. Wong C.J. ButzDepartment of Computer Science Department of Computer ScienceUniversity of Regina University of ReginaRegina, Saskatchewan, Canada, S4S 0A2 Regina, Saskatchewan, Canada, S4S 0A2wong@cs.uregina.ca butz@cs.uregina.caAbstractProbabilistic reasoning has become an ac-cepted formulism for managing uncertaintyin Arti�cial Intelligence. The usual input toa probabilistic model is a Bayesian networkcontaining both embedded and nonembed-ded conditional independence information. ABayesian network comprises a qualitative anda quantitative component, namely a directedacyclic graph explicitly specifying the depen-dency structure of the network, coupled witha set of corresponding conditional probabilitytables. To reduce the computational com-plexity of probabilistic inference it is use-ful to transform a Bayesian network into aMarkov network albeit sacri�cing the embed-ded conditional independency information.Another method for constructing the depen-dency structure of a Markov network is toapply a learning algorithm to a repositoryof observed data. In this paper, a methodis suggested for constructing the structureof a Markov network from a given inputset of nonembedded conditional independen-cies. This technique involves determining aconict-free cover of such independencies. Aunique Markov structure can then be sys-tematically constructed from the cover. Theproposed approach takes full advantage of arecent result that nonembedded conditionalindependencies have a complete axiomatiza-tion. This result provides a basis for con-structing a dependency structure which is aperfect map of the input set of nonembeddedconditional independencies. That is, everynonembedded conditional independence logi-cally implied by the input set can be inferredfrom the dependency structure, and everynonembedded conditional independence in-ferred from the dependency structure is logi-

cally implied by the input set. The problemof constructing a Bayesian network given aninput set of both embedded and nonembeddedconditional independencies is currently beinginvestigated.1 IntroductionProbabilistic reasoning has become an accepted for-mulism for managing uncertainty in Arti�cial Intelli-gence. The usual input to the probabilistic model of aBayesian network [11, 14, 15] contains both embeddedand nonembedded conditional independence informa-tion. A Bayesian network comprises a qualitative anda quantitative component, namely a directed acyclicgraph explicitly specifying the dependency structureof the network, coupled with a set of correspondingconditional probability tables. Such a network uti-lizes conditional independencies to provide an equiv-alent economical representation of a joint probabilitydistribution. To reduce the computational complex-ity of probabilistic inference, it is useful to transforma Bayesian network into a Markov network [9] albeitsacri�cing the embedded conditional independency in-formation.One approach to constructing a probabilistic networkis to �rst learn the qualitative component [10, 15, 19,21, 23] and then elicit the quantitative component [6]from the domain expert. The techniques for learn-ing the qualitative component can be further clas-si�ed into those which learn embedded conditionalindependencies and those which learn nonembeddedconditional independencies. For nonembedded tech-niques [21, 23], the dependency structure of a Markovnetwork is learned from observed data. This tech-nique can be extended recursively to learn embeddedconditional independencies [10]. It is known that thelearned dependency structure is not necessarily a per-fect map [15] as it has been shown that discoveringall the probabilistic conditional independencies in ob-



served data is a NP-hard problem [5]. Alternatively,the dependency structure of a probabilistic networkcan be constructed from an input set of conditionalindependencies. Verma and Pearl [19] derived condi-tions of equivalence and synthesis of dependency struc-tures containing both embedded and nonembeddedconditional information from an input set of condi-tional independencies. However, it has been provedthat there is no complete axiomatization of embed-ded conditional independencies using a �nite set ofinference rules [18, 22], contrary to Pearl's [15] con-jecture. Thus, even though a dependency structurecan be constructed which represents the embeddedconditional independencies in the input set, one can-not be sure that the constructed dependency struc-ture is a perfect map of the input set. That is, anembedded conditional independence logically impliedby the input set may not be inferred from the depen-dency structure. Recently, however, it has been shownthat nonembedded conditional independencies do in-deed have a complete axiomatization [20]. This re-sult provides us with a tool for constructing a depen-dency structure which is a perfect map of the inputset of nonembedded conditional independencies. Thatis, every nonembedded conditional independence logi-cally implied by the input set can be inferred from thedependency structure, and every nonembedded con-ditional independence inferred from the dependencystructure is logically implied by the input set. Asin the �rst approach, once the dependency structurehas been constructed, whether embedded or nonem-bedded, the quantitative component of the network isthen elicited from the domain expert [6].In this paper we suggest a method for constructingthe dependency structure of a Markov network froman input set of conditional independencies. A coverrepresenting exactly the probabilistic conditional in-dependencies in the input set is constructed. All re-dundant conditional independencies are removed de-riving a minimum cover in the process of enforcingconict freedom [3]. A conict-free cover has the de-sirable property that every conditional independencein the cover is used in the construction of the net-work structure. In other words, the situation in whichthe use of one conditional independency excludes theuse of another in the construction of the network doesnot happen. Thus, the conditional independencies ina conict-free cover can be systematically applied toconstruct a unique dependency structure. The discus-sion in this paper can be seen as an extension of de-signing a database schema in the relational databasetheory given a set of multivalued dependencies [3] intoa probabilistic framework.This paper is organized as follows. Section 2 con-

tains background knowledge. In Section 3, we describethe proposed method for constructing the dependencystructure of a probabilistic network from an input setof conditional independencies, and show that it is aperfect map. The conclusion is presented in Section 4.2 Background2.1 Hypergraphs and HypertreesLet N be a �nite set of variables fA1; A2; : : : ; Amg. Ahypergraph, denoted H, is a family of subsets of vari-ables in N , i.e., H � 2N . An element in H is called ahyperedge.We call an element t 2 H, a twig, if there exists anotherdistinct element b 2 H, such that t \ ([(H � ftg)) =t\b. (By this de�nition, the hyperedge in a hypergraphconsisting of a single hyperedge is not a twig). Thismeans that the intersection of t and the hypergraph iscontained in one hyperedge of the hypergraph. We callany such b a branch for the twig t, and note that a twigt may have many possible branches. A hypergraph iscalled a hypertree (an acyclic hypergraph [3, 17]) ifits elements can be ordered, h1; h2; : : : ; hi, such thathi is a twig in the sub-hypergraph h1; h2; : : : ; hi fori = 1; : : : ; n. We call any ordering satisfying this con-dition a hypertree construction ordering for H. (A hy-pertree construction ordering can also be representedas a join tree [3].) The �rst hyperedge h1 in the hy-pertree construction ordering is called the root. Givena particular hypertree construction ordering, we canchoose an integer b(i), for i = 2; : : : ; n, such that1 � b(i) � i � 1 and hb(i) is a branch for hi inh1; h2; : : : ; hi. We call such a function b(i) satisfy-ing this condition a branching function for H. Notethat a particular construction ordering may have manybranching functions.Example 1Consider the case where N = fA1; A2; : : : ; A6g. LetH = fh1 = fA1; A2; A3g, h2 = fA1; A2; A4g, h3 =fA1; A2; A5g, h4 = fA5; A6gg denote the hypergraphshown in Figure 1. Since we can de�ne a hypertreeconstruction ordering h1; h2; h3; h4, this hypergraphis a hypertree. One possible branching function forthis hypertree construction ordering h1; h2; h3; h4 isb(2) = 1; b(3) = 1; b(4) = 3.Given a hypertree construction ordering h1; h2; : : : ; hnfor a hypertree H, and a branching function b(i) forthis ordering, we can construct the following set ofsubsets: L = fhb(2) \ h2; hb(3) \ h3; : : : ; hb(n) \ hng= fl2; : : : ; lng. This set L is in fact independent of thehypertree construction ordering, i.e., L is the same forany tree construction ordering of a given hypertree.
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4 3Figure 1: A graphical representation of the hypergraphH = fh1; h2; h3; h4g.We call L the set of J-keys of the hypertree H. (L isalso called a d-sepset or intersection set in the litera-ture.)Let H be a hypergraph. The graph of H, denotedG(H), has the same nodes as H and an edge betweenevery pair of nodes that are in the same hyperedge ofH. Hence, the edges ofG(H) are precisely the set of allpairs (Ai; Aj) for which there is an hyperedge h 2 Hsuch that Ai; Aj 2 h.A hypergraph is conformal [4] if for every clique V inG(H) there is a hyperedge ofH that contains V . It hasbeen shown [3] that H is an acyclic hypergraph if andonly if H is a chordal conformal hypergraph. As well,if H is chordal then G(H) is chordal (triangulated).2.2 Factored Probability DistributionsA joint probability distribution �(A1; A2; : : : ; Am) canbe factorized into a product of several terms, calledpotentials, as:�(A1; A2; : : : ; Am) = �h1 � �h2 � : : : � �hn ;where hi is a non-empty subset of variables in N =fA1; A2; : : : ; Amg, 1 � i � m, and �hi is a nonnegativereal valued function on hi. Thus, a joint probabilitydistribution can be written as:�(A1; A2; : : : ; Am) = Yh2H �h; (1)where H = fh1; h2; : : : ; hng is a hypergraph. (Herewe assume that [H = [ni=1hi = N . In general, somehyperedge hi 2 H may be a proper subset of anotherhyperedge hj in H, i.e., hi � hj .)2.3 Bayesian and Markov DistributionsLet N = fA1; A2; : : : ; Amg be a set of vertices (vari-ables), and E be a set of ordered pairs (Ai; Aj), i.e.,

(Ai; Aj) 2 N � N . The ordered pair (Ai; Aj) reectsa directed edge from Ai to Aj. Let D = (N;E) be adirected acyclic graph (DAG). The arcs in D reectthe dependencies that hold amongst the variables. ABayesian network [11, 14, 15] is a pair (D;P ) where Pis a set of conditional probabilities. The joint proba-bility distribution � can be written as:�(A1; A2; : : : ; Am) = mYi=1�(Ai j pa(Ai)); (2)where �(Ai j pa(Ai)) 2 P , and pa(Ai) is the parentset of Ai de�ned as pa(Ai) = fAj j (Aj ; Ai) 2 Eg. Werefer to � in Equation (2) as a Bayesian distribution.Example 2 The DAG in Figure 2 depicts the factor-ization of the joint probability distribution �, namely:�(A1; A2; : : : ; A5) = �(A1) � �(A2 j A1) � �(A3 j A1) ��(A4 j A2; A3) � �(A5 j A4): (3)
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2Figure 2: The directed acyclic graph (DAG) of theBayesian network de�ned by the factorized distribu-tion of Equation (3).Given the DAG of a Bayesian network, we know pre-cisely what conditional probabilities are required toconstruct the joint distribution. Thus, conditional in-dependence assumptions provide a practical way tode�ne a joint distribution, particularly in a situationwhere the number of variables involved is very large.However, in practice, it may still take considerableamount of time and space to compute the requiredmarginals of a factorized distribution. For this reason,many e�cient algorithms based on local computationshave been developed for computing the marginals ofa Markov networks [9]. (Note that this de�nition ofMarkov network is di�erent from that given in [15].)A joint probability distribution � on N =fA1; A2; : : : ; Amg is called a Markov distribution, if



� can be factorized on a hypertree H as:�(A1; A2; : : : ; Am) = Qh2H �#hQl2L �#l ; (4)where L is the set of J-keys of H, and �#h denotes themarginal distribution of � onto the subset of variablesh [9, 14].For example, the decomposition of the following dis-tribution: �(A1; A2; A3; A4; A5)= �#fA1;A2;A3g � �#fA2;A3;A4g � �#fA4;A5g�#fA2;A3g � �#fA4g ; (5)can be conveniently represented by a chordal undi-rected graph depicting the dependency structure of theMarkov distribution as shown in Figure 3.
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Figure 3: The chordal undirected graph depicting thedependency structure of the Markov distribution de-�ned by equation (5).It is evident that in this context Markov distributionsare less expressive than Bayesian distributions. For in-stance, the conditional independence �(A2; A3jA1) =�(A2jA1) � �(A3jA1), embedded in Equation (3) islost in Equation (5). An embedded conditional in-dependence is one which does not hold with respectto the joint probability distribution de�ned on a setof attributes N , but does hold with respect to somemarginal distribution de�ned on a proper subset of at-tributes N 0 � N . As the concept of nonembeddedconditional independence is important for our discus-sion, we distinguish it from an embedded conditionalindependence with the aid of an example.Consider the joint probability distribution � on N =fA1; A2; A3; A4g as shown in Figure 4.It can be veri�ed that the conditional independence offA2g and fA3g given fA1g does not hold with respect

A1 A2 A3 A4 f�0 0 0 0 0:20 0 1 1 0:2�(A1; A2; A3; A4) = 0 1 0 0 0:20 1 1 0 0:21 1 1 1 0:2Figure 4: The joint probability distribution � on N =fA1; A2; A3; A4g.to �(N ). That is,�(A1; A2; A3; A4) 6= �#fA1;A2g � �#fA1;A3;A4g�#fA1g :However, the conditional independence of fA2g andfA3g given fA1g holds in the marginal distribution�#fA1;A2;A3g, namely:�#fA1;A2;A3g= (�#fA1;A2;A3g)#fA1;A2g � (�#fA1;A2;A3g)#fA1;A3g(�#fA1;A2;A3g)#fA1g :We call such an independency an embedded condi-tional independency with respect to the distribution�(A1; A2; A3; A4).Even without embedded conditional independencies, ithas been amply demonstrated that Markov distribu-tions play an important role in the design of e�cientalgorithms for probabilistic reasoning.3 Construction of the DependencyStructureIn this section we demonstrate a technique for con-structing the dependency structure of a Markov dis-tribution. The input to our procedure is a �nite set ofconditional independencies. The �rst task is to com-pute a logically equivalent cover which succinctly ex-presses the dependency bases of the input set of condi-tional independencies. All redundant conditional inde-pendencies are removed from the cover in the processof enforcing conict freedom. The resulting conict-free cover is the minimum cover of the input set. Fi-nally, an algorithm to construct a unique dependencystructure from the conict-free cover is presented.It has been proved [18, 22] that there is no completeaxiomatization of embedded conditional independen-cies using a �nite set of inference rules, contrary toPearl's conjecture [15]. However, it has recently beenshown that nonembedded conditional independenciesdo indeed have a complete axiomatization [20]. Thisresult provides us with a tool for constructing a de-pendency structure which is a perfect map of the input



set of nonembedded conditional independencies. Thatis, every nonembedded conditional independence log-ically implied by the input set can be inferred fromthe derived dependency structure, and every nonem-bedded conditional independence inferred from the de-pendency structure is logically implied by the inputset.It should be noted that nonembedded conditional in-dependence is termed generalized multivalued depen-dency (GMVD) in the extended relational model [20].De�nition 1 [20] Let X;Y; Z � N . We say that adistribution � on N satis�es the generalized multival-ued dependency (GMVD) X ��! Y if�(XY Z) = �#XY � �#XZ�#X ;where Z = N �XY .In the following discussion, the nonembedded condi-tional independence of Y and Z given X, will hence-forth be referred to as the GMVDs X ��! Y andX ��! Z. The complete minimal set of inference rulesfor GMVDs [20] are: for all subsets X;Y; Z;W � N ,M1: If X ��! Y , then X ��! N �XY ,M2: If Y � X, then X ��! Y ,M3: If Z � W and X ��! Y , then WX ��! ZY ,M4: If X ��! Y and Y ��! Z, then X ��! Z � Y .The inference rules (M1); (M2); (M3); (M4) are calledcomplementation, reexivity, augmentation and tran-sitivity, respectively. From this minimal set, one canderive additional rules that are particularly useful inthe completeness proof, namely:M5: If X ��! Y and X ��! Z, then X ��! Y Z.M6: If X ��! Y and X ��! Z, thenX ��! Y \ Z, X ��! Y � Z, and X ��! Z � Y .The inference rules (M5) and (M6) are called unionand decomposition, respectively. The usefulness of acomplete axiomatization lies in the ability to deter-mine the equivalence of two sets of GMVDs. As aconsequence, given a set of GMVDs it is possible to de-termine a logically equivalent minimum cover. Work-ing with a minimum cover compared to the input setis more e�cient as many algorithms have an order inthe size of the input.Given a set of GMVDs on N , similar to the rela-tional database theory [2, 7], the subset of GMVDshaving the same left side X can be expressed in termsof a dependency basis DEP (X) = fW1;W2; : : : ;Wmg,namely: X ��!W1 j W2 j : : : j Wm; (6)

where X \ Wi = � for i = 1; 2; : : : ;m andfW1;W2; : : : ;Wmg forms a partition of N �X.We now present an algorithm to construct the de-pendency basis for GMVDs. Beeri [1] was the �rstto propose a polynomial time algorithm to computethe dependency basis for a set of multivalued depen-dencies in databases. (Faster algorithms have sincebeen proposed [16].) Here we extend Beeri's algorithmby replacing the complete axiomatization for multival-ued dependencies with the complete axiomatization forGMVDs [20].Algorithm 1 [1]procedure DEP-BASIS(X)BASIS = ffAg j A 2 fXgg [ fN �Xgchange = 1% Compute closure under (M4)while change dof change = 0for each GMVD W ��! Z in Gf Y = [ fR j R 2 BASIS and R \W 6= ;gZ 0 = Z � Yif Z0 6= ; andis not equal to a union of elements of BASISf change = 1BASIS = basis of collection of sets fromBASIS [ fZ0g under (M5),(M6)gggreturn (BASIS)end DEP-BASISExample 3 Consider a set of GMVDs ffA5g ��!fA2g; fA1; A5g ��! fA3gg on the set of variablesN = fA1; A2; A3; A4; A5g. Then DEP (fA5g) =ffA2g; fA1; A3; A4gg and DEP (fA1; A5g) =ffA2g; fA3g; fA4gg.Given an input set M of GMVDs, let X denote thefamily of left sides of the GMVDs in M ; we call eachX 2 X a key. A logically equivalent cover of M canbe determined by applying Algorithm 1 to each key inX. That is, for each key X 2 X, all redundancy onthe right side of the GMVDs X��! Y1, : : :, X��! Ynis removed in computing the dependency basis X ��!W1 jW2 j : : : jWm. In order to construct the minimumcover of the input set, conicting GMVDs have to beremoved.The notion of conict-free multivalued dependencies



was originally introduced by Lien [13] in the studyof the relationship between various database models.Here we extend this notion to GMVDs. FollowingLee's argument [12], we show [20] that a modi�edLien's decomposition algorithm generates a unique de-pendency structure (an acyclic hypergraph) from a setof conict-free GMVDs.Let X 2 X and its dependency basis be de�ned byequation (6). Suppose Y 6� X is another key. Wesay Y is not split by X if Y � WiX for some i =1; 2; : : : ;m. We say X is conict-free if(i) For any X;Y 2 X and Y 6� X, Y is not split byX, and(ii) DEP (X) \DEP (Y ) � DEP (X \ Y ).For example, if we add the (redundant) GMVDfA1; A2; A5g ��! fA3g to the set of GMVDs in Ex-ample 3, it is no longer conict-free since the keyfA1; A2; A5g is split by the key fA5g.The process of ensuring each pair in the set of keys Xare conict-free removes all redundancy on the left sideof the keys. If the set X of keys in the remaining coveris still not conict-free, then the conicting GMVDscan be revised by the domain expert, and the processrepeated. Henceforth, we assume that the conict-free cover has been constructed for the input set ofGMVDs. A conict-free cover is a minimum cover ofthe input set of GMVDs.Let X denote the set of keys in the conict-freecover. The keys in X can be arranged in a se-quence (X1; X2; : : : ; Xp) called a p-ordering sequencesuch that Xi � Xj implies i � j. The decompositionalgorithm for GMVDs can now be described.Algorithm 2Input: the conict-free cover of the input set of GMVDsover a set of attributes N ,a p-ordering sequence (X1; X2; : : : ; Xp) of thekeys in the conict-free cover.H0 := fNg;for i := 1 to pf while Xi � hj and hj 2 Hi�1f Hi := Hi�1 � fhjg;Hi := Hi [ fXi [ (hj \W ) j W 2 DEP (Xi);hj \W 6= �g;ggOutput: an acyclic hypergraph.

Example 4Let N = fA1; A2; A3; A4; A5; A6; A7; A8; A9g and let(fA1g; fA2g; fA3g; fA1; A2g; fA1; A3g; fA2; A3g) be ap-ordering sequence of the keys in the conict-freecover of the following GMVDs:fA1g ��! fA7g j fA2; A3; A4; A5; A6; A8; A9g;fA2g ��! fA8g j fA1; A3; A4; A5; A6; A7; A9g;fA3g ��! fA9g j fA1; A2; A4; A5; A6; A7; A8g;fA1; A2g ��! fA4g j fA7g j fA8g j fA3; A5; A6; A9g;fA1; A3g ��! fA5g j fA7g j fA9g j fA2; A4; A6; A8g;fA2; A3g ��! fA6g j fA8g j fA9g j fA1; A4; A5; A7g:The intermediate schemas generated by the GMVDdecomposition algorithm are:H1 = ffA1; A7g; fA1; A2; A3; A4; A5; A6; A8; A9gg;H2 = ffA1; A7g; fA2; A8g;fA1; A2; A3; A4; A5; A6; A9gg;H3 = ffA1; A7g; fA2; A8g; fA3; A9g;fA1; A2; A3; A4; A5; A6gg;H4 = ffA1; A7g; fA2; A8g; fA3; A9g; fA1; A2; A4g;fA1; A2; A3; A5; A6gg;H5 = ffA1; A7g; fA2; A8g; fA3; A9g; fA1; A2; A4g;fA1; A3; A5g; fA1; A2; A3; A6gg;H6 = ffA1; A7g; fA2; A8g; fA3; A9g; fA1; A2; A4g;fA1; A3; A5g; fA2; A3; A6g; fA1; A2; A3gg:It can be easily veri�ed that the output H = H6 isan acyclic hypergraph. A hypertree construction or-dering of this schema is h1 = fA1; A2; A3g, h2 =fA1; A2; A4g, h3 = fA1; A3; A5g, h4 = fA2; A3; A6g,h5 = fA1; A7g, h6 = fA2A8g, h7 = fA3A9g. Thus,the J-keys of H are:h2 \ hb(2) = fA1; A2g; b(2) = 1;h3 \ hb(3) = fA1; A3g; b(3) = 1;h4 \ hb(4) = fA2; A3g; b(4) = 1;h5 \ hb(5) = fA1g; b(5) = 2;h6 \ hb(6) = fA2g; b(6) = 4;h7 \ hb(7) = fA3g; b(7) = 3:Theorem 1 Let H be the constructed dependencystructure by applying Algorithm 2 to a conict-freecover of GMVDs de�ned on a set N of attributes. LetX be the set of keys in the conict-free cover. Thenthe set L of J-keys of H is precisely the set of keys inX.Proof: We will prove this by induction on n in Al-gorithm 2. Let the p-ordering sequence of the keysin X be (X1; X2; : : : ; Xp). Basic step (n = 1):The key X1 and DEP (X1) = fY11; Y12 ; : : : ; Y1mg



are used to construct the acyclic hypergraph H1 =fh11; h12 ; : : : ; h1mg, from H0 = fNg, where h1i =fY1iX1g, 1 � i � m and m is the number of disjointsets in DEP (X1). This means that h1i \ h1j = X1for all h1i; h1j 2 H1. Thus, X1 is the only J-key inH1, namely, L1 = fX1g. Inductive step: Assumethat the set of J-keys of the acyclic hypergraph Hkis Lk = fX1; X2; : : : ; Xkg. There exists only one hy-peredge in Hk, say hj , such that Xk+1 � hj; other-wise there is some J-key Xi 2 fX1; X2; : : : ; Xkg thatsplits Xk+1 contradicting the assumption that the in-put cover is conict-free. According to Algorithm 2,the key Xk+1 and DEP (Xk+1) are used to constructthe new hyperedges hk+11 ; hk+12 ; : : : ; hk+1l . Thesehyperedges are added to Hk � fhjg to form Hk+1.Since hj = [li=1hk+1i , the J-keys fX1; X2; : : : ; Xkg ofHk remain J-keys of Hk+1. By construction in Algo-rithm 2, Xk+1 � hk+1i . Since each attribute A 2 hj(A 62 Xk+1) appears in a unique set in DEP (Xk+1), itappears in a unique hk+1i . Thus, \li=1hk+1i = Xk+1.Thereby, the only J-key implied by replacing hj withhk+11 ; hk+12 ; : : : ; hk+1l is Xk+1. Thus, the set of J-keys in Hk+1 is Lk+1 = fX1; X2; : : : ; Xk; Xk+1g. 2Theorem 1 indicates that the set L of J-keys in theconstructed dependency structure H is precisely theset X of keys in the conict-free cover derived fromthe input set of GMVDs.In order to show that the constructed dependencystructure H is a perfect map of the input set ofGMVDs, it must be demonstrated that the set of allGMVDs inferred from the dependency structure is log-ically equivalent to the input set of GMVDs.We can adopt the method in [8] to compute all theGMVDs that are logically implied by an acyclic hy-pergraph structure, as the following theorem suggests.Theorem 2 Let � be a distribution de�ned on an hy-pergraph H. Suppose X and Y are disjoint sets of at-tributes. Then the GMVD X ��! Y follows logicallyfrom � if and only if Y is the union of some connectedcomponents of the hypergraph H with the set of nodesX deleted.The proof of Theorem 2 can be derived in a similarfashion to the one in [8], and will be shown in a morecomplete paper.Theorem 2 implies that the set of all GMVDs thatcan be logically inferred from an acyclic hypergraphstructure H is given by:fX ��! Y1 j Y2 j:::jYm j X 2 Lg;where L is the set of J-keys of H and the Yi's are thedisconnected components of H obtained by deletingthe set of variables X. By Theorem 1, the set X of
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