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Abstract

Probabilistic reasoning has become an ac-
cepted formulism for managing uncertainty
in Artificial Intelligence. The usual input to
a probabilistic model 1s a Bayesian network
containing both embedded and nonembed-
ded conditional independence information. A
Bayesian network comprises a qualitative and
a quantitative component, namely a directed
acyclic graph explicitly specifying the depen-
dency structure of the network, coupled with
a set of corresponding conditional probability
tables. To reduce the computational com-
plexity of probabilistic inference it is use-
ful to transform a Bayesian network into a
Markov network albeit sacrificing the embed-
ded conditional independency information.
Another method for constructing the depen-
dency structure of a Markov network is to
apply a learning algorithm to a repository
of observed data. In this paper, a method
is suggested for constructing the structure
of a Markov network from a given input
set of nonembedded conditional independen-
cies. This technique involves determining a
conflict-free cover of such independencies. A
unique Markov structure can then be sys-
tematically constructed from the cover. The
proposed approach takes full advantage of a
recent result that nonembedded conditional
independencies have a complete axiomatiza-
tion. This result provides a basis for con-
structing a dependency structure which is a
perfect map of the input set of nonembedded
conditional independencies. That is, every
nonembedded conditional independence logi-
cally implied by the input set can be inferred
from the dependency structure, and every
nonembedded conditional independence in-
ferred from the dependency structure is logi-
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cally implied by the input set. The problem
of constructing a Bayesian network given an
input set of both embedded and nonembedded
conditional independencies is currently being
investigated.

1 Introduction

Probabilistic reasoning has become an accepted for-
mulism for managing uncertainty in Artificial Intelli-
gence. The usual input to the probabilistic model of a
Bayesian network [11, 14, 15] contains both embedded
and nonembedded conditional independence informa-
tion. A Bayesian network comprises a qualitative and
a quantitative component, namely a directed acyclic
graph explicitly specifying the dependency structure
of the network, coupled with a set of corresponding
conditional probability tables. Such a network uti-
lizes conditional independencies to provide an equiv-
alent economical representation of a joint probability
distribution. To reduce the computational complex-
ity of probabilistic inference, it is useful to transform
a Bayesian network into a Markov network [9] albeit
sacrificing the embedded conditional independency in-
formation.

One approach to constructing a probabilistic network
is to first learn the qualitative component [10, 15, 19,
21, 23] and then elicit the quantitative component [6]
from the domain expert. The techniques for learn-
ing the qualitative component can be further clas-
sified into those which learn embedded conditional
independencies and those which learn nonembedded
conditional independencies. For nonembedded tech-
niques [21, 23], the dependency structure of a Markov
network is learned from observed data. This tech-
nique can be extended recursively to learn embedded
conditional independencies [10]. It is known that the
learned dependency structure is not necessarily a per-
fect map [15] as it has been shown that discovering
all the probabilistic conditional independencies in ob-



served data is a NP-hard problem [5]. Alternatively,
the dependency structure of a probabilistic network
can be constructed from an input set of conditional
independencies. Verma and Pearl [19] derived condi-
tions of equivalence and synthesis of dependency struc-
tures containing both embedded and nonembedded
conditional information from an input set of condi-
tional independencies. However, it has been proved
that there is no complete axiomatization of embed-
ded conditional independencies using a finite set of
inference rules [18, 22], contrary to Pearl’s [15] con-
jecture. Thus, even though a dependency structure
can be constructed which represents the embedded
conditional independencies in the input set, one can-
not be sure that the constructed dependency struc-
ture is a perfect map of the input set. That is, an
embedded conditional independence logically implied
by the input set may not be inferred from the depen-
dency structure. Recently, however, it has been shown
that nonembedded conditional independencies do in-
deed have a complete axiomatization [20]. This re-
sult provides us with a tool for constructing a depen-
dency structure which is a perfect map of the input
set of nonembedded conditional independencies. That
18, every nonembedded conditional independence logi-
cally implied by the input set can be inferred from the
dependency structure, and every nonembedded con-
ditional independence inferred from the dependency
structure is logically implied by the input set. As
in the first approach, once the dependency structure
has been constructed, whether embedded or nonem-
bedded, the quantitative component of the network 1s
then elicited from the domain expert [6].

In this paper we suggest a method for constructing
the dependency structure of a Markov network from
an input set of conditional independencies. A cover
representing exactly the probabilistic conditional in-
dependencies in the input set i1s constructed. All re-
dundant conditional independencies are removed de-
riving a minimum cover in the process of enforcing
conflict freedom [3]. A conflict-free cover has the de-
sirable property that every conditional independence
in the cover is used in the construction of the net-
work structure. In other words, the situation in which
the use of one conditional independency excludes the
use of another in the construction of the network does
not happen. Thus, the conditional independencies in
a conflict-free cover can be systematically applied to
construct a unique dependency structure. The discus-
sion in this paper can be seen as an extension of de-
signing a database schema in the relational database
theory given a set of multivalued dependencies [3] into
a probabilistic framework.

This paper is organized as follows. Section 2 con-

tains background knowledge. In Section 3, we describe
the proposed method for constructing the dependency
structure of a probabilistic network from an input set
of conditional independencies, and show that it is a
perfect map. The conclusion is presented in Section 4.

2 Background

2.1 Hypergraphs and Hypertrees

Let N be a finite set of variables {A, Aa,..., A} A
hypergraph, denoted H, is a family of subsets of vari-
ables in N, i.e., H C 2V, An element in H is called a
hyperedge.

We call an element ¢t € H, a twig, if there exists another
distinct element b € H, such that ¢t N (U(H — {t})) =
tNb. (By this definition, the hyperedge in a hypergraph
consisting of a single hyperedge is not a twig). This
means that the intersection of ¢ and the hypergraph is
contained in one hyperedge of the hypergraph. We call
any such b a branch for the twig ¢, and note that a twig
t may have many possible branches. A hypergraph is
called a hypertree (an acyclic hypergraph [3, 17]) if
its elements can be ordered, hy,hs, ..., h;, such that
h; 18 a twig in the sub-hypergraph hi, ks, ... h; for
t=1,...,n. We call any ordering satisfying this con-
dition a hypertree construction ordering for H. (A hy-
pertree construction ordering can also be represented
as a join tree [3].) The first hyperedge hy in the hy-
pertree construction ordering is called the root. Given
a particular hypertree construction ordering, we can
choose an integer b(7), for ¢ = 2,...,n, such that
1 < b(i) < i —1 and hyy is a branch for h; in
hi,ha, ..., hi. We call such a function b(7) satisfy-
ing this condition a branching function for H. Note
that a particular construction ordering may have many
branching functions.

Example 1

Consider the case where N = {A;, A, ..., Ag}. Let
7‘[ == {hl == {Al,Az,Ag}, h2 == {Al,Az,A4}, h3 =
{A1, Ay, A5}, ha = {A5, As}} denote the hypergraph
shown in Figure 1. Since we can define a hypertree
construction ordering hq, hs, hs, ha, this hypergraph
is a hypertree. One possible branching function for
this hypertree construction ordering hy, ho, hs, ha 1s

b(2) = 1,b(3) = 1,b(4) = 3.

Given a hypertree construction ordering hq, ha, ..., by
for a hypertree H, and a branching function b(¢) for
this ordering, we can construct the following set of
subsets: L = {hb(z) N hsa, hb(g) N hs,..., hb(n) N hy}
={ls,...,l,}. Thisset £ is in fact independent of the
hypertree construction ordering, i.e., £ is the same for
any tree construction ordering of a given hypertree.



Figure 1: A graphical representation of the hypergraph
7‘[ == {hl, hz, h3, h4}

We call £ the set of J-keys of the hypertree H. (L is
also called a d-sepset or intersection set in the litera-
ture.)

Let ‘H be a hypergraph. The graph of K, denoted
G(H), has the same nodes as H and an edge between
every pair of nodes that are in the same hyperedge of
H. Hence, the edges of G(#) are precisely the set of all
pairs (A;, A;) for which there is an hyperedge h € H
such that A;, A; € h.

A hypergraph is conformal [4] if for every clique V' in
G(#H) there is a hyperedge of H that contains V. Tt has
been shown [3] that # is an acyclic hypergraph if and
only if A 1s a chordal conformal hypergraph. As well,
if # is chordal then G(#) is chordal (triangulated).

2.2 Factored Probability Distributions

A joint probability distribution ¢(Ay, As, ..., Ap) can
be factorized into a product of several terms, called
potentials, as:

¢(A1aA2a"'aAm) :¢h1 '¢h2 ""'¢hna

where h; 1s a non-empty subset of variables in N =
{A1, Ay, ... An}, 1 < i< m, and ¢p, is a nonnegative
real valued function on h;. Thus, a joint probability
distribution can be written as:

¢(A1,A2a”'aAm): H¢ha (1)
heH

where #H = {hy, ha,..., hy} is a hypergraph. (Here
we assume that UH = UJ_ h; = N. In general, some
hyperedge h; € H may be a proper subset of another
hyperedge h; in H, i.e., h; C h;.)

2.3 Bayesian and Markov Distributions

Let N = {A1, A2, ..., An} be a set of vertices (vari-
ables), and E be a set of ordered pairs (A4;, 4;), i.e.,

(A;,A;) € N x N. The ordered pair (4;, A;) reflects
a directed edge from A; to A;. Let D = (N, E) be a
directed acyclic graph (DAG). The arcs in D reflect
the dependencies that hold amongst the variables. A
Bayesian network [11, 14, 15] is a pair (D, P) where P
is a set of conditional probabilities. The joint proba-
bility distribution ¢ can be written as:

m

Am) = ] ¢4 | pa(Ai)), (2)

i=1

$(A1, Aa, ...

where ¢(A; | pa(A4;)) € P, and pa(A;) is the parent
set of A; defined as pa(4;) = {4; | (4;,4i) € E}. We

i
refer to ¢ in Equation (2) as a Bayesian distribution.

Example 2 The DAG in Figure 2 depicts the factor-
ization of the joint probability distribution ¢, namely:

O(A1, Agy o As) = G(Ay) - o(Az | Ar) - o(As | Ay) -
¢(Aq | Ao, Az) - ¢(As | Ad). (3)
Aq
AZ.\ \ A3
Ag
oA

Figure 2: The directed acyclic graph (DAG) of the
Bayesian network defined by the factorized distribu-
tion of Equation (3).

Given the DAG of a Bayesian network, we know pre-
cisely what conditional probabilities are required to
construct the joint distribution. Thus, conditional in-
dependence assumptions provide a practical way to
define a joint distribution, particularly in a situation
where the number of variables involved is very large.
However, in practice, it may still take considerable
amount of time and space to compute the required
marginals of a factorized distribution. For this reason,
many efficient algorithms based on local computations
have been developed for computing the marginals of
a Markov networks [9]. (Note that this definition of
Markov network is different from that given in [15].)

A joint probability distribution ¢ on N =
{A1, Ay, ... A} is called a Markov distribution, if



¢ can be factorized on a hypertree H as:

_ Then "
Hleﬁ ¢u ’

where £ is the set of J-keys of H, and ¢%* denotes the
marginal distribution of ¢ onto the subset of variables

h[9, 14].

¢(A1aA2a .. aAm)

(4)

For example, the decomposition of the following dis-
tribution:

¢(A1 3 A2a A3a A4a A5)
¢~L{A17A27A3} .¢~L{A27A37A4} .¢~L{A47A5}
¢)~L{A2,A3} . ¢)~L{A4} ?

(5)

can be conveniently represented by a chordal undi-
rected graph depicting the dependency structure of the
Markov distribution as shown in Figure 3.

Aq

Figure 3: The chordal undirected graph depicting the
dependency structure of the Markov distribution de-
fined by equation (5).

It is evident that in this context Markov distributions
are less expressive than Bayesian distributions. For in-
stance, the conditional independence ¢(Az, As|A1) =
#(Az]|A1) - ¢(As]A1), embedded in Equation (3) is
lost in Equation (5). An embedded conditional in-
dependence 1s one which does not hold with respect
to the joint probability distribution defined on a set
of attributes N, but does hold with respect to some
marginal distribution defined on a proper subset of at-
tributes N C N. As the concept of nonembedded
conditional independence is important for our discus-
sion, we distinguish 1t from an embedded conditional
independence with the aid of an example.

Consider the joint probability distribution ¢ on N =
{A1, Ay, A3, As} as shown in Figure 4.

It can be verified that the conditional independence of

{As} and {43} given {A;} does not hold with respect

A1 A2 A3 A4 f¢

0 0 0 0 02

0 0 1 1 02

(A1, Ag, A3, A)= | 0 1 0 0 02
0 1 1 0 02

11 1 1 02

Figure 4: The joint probability distribution ¢ on N =
{Al 3 A2a A3a A4}

to ¢(N). That is,

¢¢{A17A2} . ¢~L{A1,A3,A4}

¢(A1aA2aA3aA4) # ¢)‘L{A1}

However, the conditional independence of {A5} and

{As} given {A;} holds in the marginal distribution

pHALAZ As) pamely:

¢~L{A17A27A3}

(¢¢{A17A2,A3})~L{A1,A2} . (¢~L{A1,A2,A3})~L{A1,A3}
(g/)i{AlyAmAa})l«{Al} ’

We call such an independency an embedded condi-
tional independency with respect to the distribution

¢(A1aA2a A3a A4)

Even without embedded conditional independencies, it
has been amply demonstrated that Markov distribu-
tions play an important role in the design of efficient
algorithms for probabilistic reasoning.

3 Construction of the Dependency
Structure

In this section we demonstrate a technique for con-
structing the dependency structure of a Markov dis-
tribution. The input to our procedure is a finite set of
conditional independencies. The first task is to com-
pute a logically equivalent cover which succinctly ex-
presses the dependency bases of the input set of condi-
tional independencies. All redundant conditional inde-
pendencies are removed from the cover in the process
of enforcing conflict freedom. The resulting conflict-
free cover is the minimum cover of the input set. Fi-
nally, an algorithm to construct a unique dependency
structure from the conflict-free cover is presented.

It has been proved [18, 22] that there is no complete
axiomatization of embedded conditional independen-
cies using a finite set of inference rules, contrary to
Pearl’s conjecture [15]. However, it has recently been
shown that nonembedded conditional independencies
do indeed have a complete axiomatization [20]. This
result provides us with a tool for constructing a de-
pendency structure which is a perfect map of the input



set of nonembedded conditional independencies. That
18, every nonembedded conditional independence log-
ically implied by the input set can be inferred from
the derived dependency structure, and every nonem-
bedded conditional independence inferred from the de-
pendency structure is logically implied by the input
set.

It should be noted that nonembedded conditional in-
dependence 1s termed generalized multivalued depen-
dency (GMVD) in the extended relational model [20].

Definition 1 [20] Let XY, Z C N. We say that a
distribution ¢ on N satisfies the generalized multival-
ued dependency (GMVD) X —o— YV if

GV glxX7Z

p(XYZ) = T,

where 7 = N — XY.

In the following discussion, the nonembedded condi-
tional independence of Y and Z given X, will hence-
forth be referred to as the GMVDs X —o— Y and
X —o— Z. The complete minimal set of inference rules

for GMVDs [20] are: for all subsets X, Y, Z, W C N,

M1: If X —o— Y, then X —o— N — XY,

M2: If Y C X, then X —o— Y,

M3: If ZCW and X —o— Y, then WX —o— 7Y,
M4: If X o= Y and Y o= Z, then X —o— 7 —Y.

The inference rules (M1), (M2), (M3), (M4) are called
complementation, reflexivity, augmentation and tran-
sitivity, respectively. From this minimal set, one can
derive additional rules that are particularly useful in
the completeness proof, namely:

M5: If X o> Y and X —o— 7, then X o= Y 7.
M6: If X —o— Y and X —o— Z, then
X—oaYNZ X—osY—Z and X o= 7 Y.

The inference rules (M5) and (M6) are called union
and decomposition, respectively. The usefulness of a
complete axiomatization lies in the ability to deter-
mine the equivalence of two sets of GMVDs. As a
consequence, given a set of GMVDs it is possible to de-
termine a logically equivalent minimum cover. Work-
ing with a minimum cover compared to the input set
1s more efficient as many algorithms have an order in
the size of the input.

Given a set of GMVDs on N, similar to the rela-
tional database theory [2, 7], the subset of GMVDs
having the same left side X can be expressed in terms
of a dependency basis DEP(X) = {W1,Wa,..., Wi},

namely:

X o Wy | Wa || Wi, 6)

where X NW, = @ for ¢ = 1,2,...,m and
{Wh, Wa, ..., Wy, } forms a partition of N — X.

We now present an algorithm to construct the de-
pendency basis for GMVDs. Beeri [1] was the first
to propose a polynomial time algorithm to compute
the dependency basis for a set of multivalued depen-
dencies in databases. (Faster algorithms have since
been proposed [16].) Here we extend Beeri’s algorithm
by replacing the complete axiomatization for multival-
ued dependencies with the complete axiomatization for

GMVDs [20].
Algorithm 1 [1]

procedure DEP-BASIS(X)
BASIS = {{A} | Ae{X}} U {N-X}
change = 1
% Compute closure under (M4)
while change do
{
change = 0
for each GMVD W —o— Z in G
{
Y=U{R | Re BASIS and RNW # 0}
7' =7Z-Y
if 72/ 40 and
is not equal to a union of elements of BASIS
{
change = 1
BASIS = basis of collection of sets from
BASIS U {Z'} under (M5),(M6)
}

1

}
return (BASIS)

end DEP-BASIS

Example 3 Consider a set of GMVDs {{A5} —o—
{As}, {A1, As} —o— {As}} on the set of variables
N = {Al,Az,Ag,A4,A5}. Then DEP({A5}) =
{{Az}, {Al, Ag, A4}} and DEP({Al,Ag,}) =
{{AZ}a {AS}a {A4}}

Given an input set M of GMVDs, let X denote the
family of left sides of the GMVDs in M; we call each
X € X a key. A logically equivalent cover of M can
be determined by applying Algorithm 1 to each key in
X. That 1s, for each key X € X, all redundancy on
the right side of the GMVDs X -o— Y7, ..., X o= Y,
is removed in computing the dependency basis X —o—
Wy | Wa|...| Wy, Inorder to construct the minimum
cover of the input set, conflicting GMVDs have to be
removed.

The notion of conflict-free multivalued dependencies



was originally introduced by Lien [13] in the study
of the relationship between various database models.
Here we extend this notion to GMVDs. Following
Lee’s argument [12], we show [20] that a modified
Lien’s decomposition algorithm generates a unique de-
pendency structure (an acyclic hypergraph) from a set

Example 4

Let N = {Al, Az, Ag, A4, A5, A6, A7, Ag, Ag} and let
({A1} {42}, {As} {A1, Ao}, {Ar, As}, {Az, As}) be a
p-ordering sequence of the keys in the conflict-free
cover of the following GMVDs:

of conflict-free GMVDs. {A1} —= {Ar} | {A2, A3, Ay, A5, Ag, Ag, Ao},
Let X € X and its dependency basis be defined by (Ao} o= {As} | {41, As, Ay, A5, A, A7, Ao},
equation (6). Suppose Y € X is another key. We 1Ast —o= {Ao} | {A1, Ao, Ay, A5, As, A7, As},
say Y is not split by X if Y C W;X for some 1 = {A1, A} —— {As} | {A7} | {As} | {As, As, As, Ao},
1,2,...,m. Wesay X is conflict-free if (A1, A3} —o—  {As} | {47} | {Ao} | {As, Ay, As, As),
{42, Az} —o— {Ag} | {As} [ {Ao} | {41, Aa, A5, A7}

(i) For any X, Y € X and Y € X, Y is not split by
X, and

(i) DEP(X)NDEP(Y)C DEP(XNY).

For example, if we add the (redundant) GMVD
{A1, Ay, A5} —o— {As} to the set of GMVDs in Ex-
ample 3, it is no longer conflict-free since the key

{A1, Ay, A5} is split by the key {As}.

The process of ensuring each pair in the set of keys X
are conflict-free removes all redundancy on the left side
of the keys. If the set X of keys in the remaining cover
is still not conflict-free, then the conflicting GMVDs
can be revised by the domain expert, and the process
repeated. Henceforth, we assume that the conflict-
free cover has been constructed for the input set of
GMYVDs. A conflict-free cover is a minimum cover of
the input set of GMVDs.

Let X denote the set of keys in the conflict-free
cover. The keys in X can be arranged in a se-
quence (X1, X, ..., X,) called a p-ordering sequence
such that X; C X; implies ¢ < j. The decomposition
algorithm for GMVDs can now be described.

Algorithm 2

Input: the conflict-free cover of the input set of GMVDs

over a set of attributes N,
a p-ordering sequence (X1, Xa,.. .,
keys in the conflict-free cover.
M= {N};
fori:=1top

{

X,) of the

while X; C h; and h; € Hi-1

{ o
Hi=H — ()

H o =H U{X; U (RN W) | We DEP(X;),

hy OW # OF;
}
}

Output: an acyclic hypergraph.

The intermediate schemas generated by the GMVD
decomposition algorithm are:

HY = {{A] A7} {AL Ay, As, Ay, As, Ag, As, Ao},

H* = {{A1, A7}, {42, As},
{A1, Ay, As, Ay, As, As, Ao},

H? = {{A1, Az}, {A2, As}, {As, Ao},
{A1, Ay, As, Ay, A5, Ag) ),

MY = {{A] A7} {Ag, Ag), {As, Ao}, {A1, As, Ay},
{A1, Ay, As, A5, As}),

M = {{A] A7}, {Ag, Ag), {As, Ao}, {A1, Ao, Ay},
{A1, A3, As}, {A1, Ay, As, Ag)),

HE = [{A] A7} {Ag, Ag), {As, Ao}, {A1, As, Ay},

{Al,A3a A5}’ {AZ, A3a A6}’ {Ala A?a A3}}

It can be casily verified that the output # = H® is
an acyclic hypergraph. A hypertree construction or-
dering of this schema is hy = {A;, Ay, A3}, ho =
{Ar, Ay, Ag), hs = {Ar, As, A5}, hy = {As, Ag, Ag},
hs = {A1, Az}, he = {A2Ag}, hy = {A3Aqs}. Thus,
the J-keys of H are:

ha N hb(z) = {Al,Az}, b(?) =1,
hs N hb(g) = {Al,Ag}, b(3) =1,
hy N hb(4) {Az, Ag} b(4) =1,
hs N hysy = { A1}, b(b) = 2,
hg N hb(6) = {Az}, b(6) =4,
hz O hyry = {As}, b(7) = 3.

Theorem 1 Let H be the constructed dependency
structure by applying Algorithm 2 to a conflict-free
cover of GMVDs defined on a set NV of attributes. Let
X be the set of keys in the conflict-free cover. Then
the set £ of J-keys of H is precisely the set of keys in
X.

Proof: We will prove this by induction on n in Al-
gorithm 2. Let the p-ordering sequence of the keys
in X be (X1,X5,...,X,). Basic step (n = 1):
The key X1 and DEP(Xl) = {Yll,Y12,...,Y1 }

m



are used to construct the acyclic hypergraph H' =
{h1,,h1,, ... k1, }, from H® = {N}, where hy, =
{V1,X,}, 1 <i < m and m is the number of disjoint
sets in DEP(X71). This means that hy, N hy, = X3
for all by, hy; € H'. Thus, X; is the only J-key in
H!, namely, £! = {X;}. Inductive step: Assume
that the set of J-keys of the acyclic hypergraph H*
is £ = {X1,X2,..., Xz} There exists only one hy-
peredge in H*, say hj, such that X311 C hjy; other-
wise there is some J-key X; € {X1, Xo,..., Xg} that
splits Xy 41 contradicting the assumption that the in-
put cover is conflict-free. According to Algorithm 2,
the key X1 and DEP(Xj41) are used to construct
the new hyperedges Apy1,,hrq1,,.--,hr41,. These
hyperedges are added to H* — {h;} to form H*+1.
Since hj = Ut_ hgq1,, the J-keys {X1, Xo,..., X} of
H* remain J-keys of #**'. By construction in Algo-
rithm 2, Xy 41 C hg4q,. Since each attribute A € h;
(A € Xjpy1) appears in a unique set in DEP(Xg41), it
appears in a unique hy4q,. Thus, mi':lhk;_l_ll = Xp41-
Thereby, the only J-key implied by replacing k; with
hit1,, Pkt1y, -5 hry1, 18 Xgg1. Thus, the set of J-
keys in H* ! is LR = (X, Xo, ..., Xp, Xgg1 ). D

Theorem 1 indicates that the set £ of J-keys in the
constructed dependency structure #H 1s precisely the
set X of keys in the conflict-free cover derived from
the input set of GMVDs.

In order to show that the constructed dependency
structure #H is a perfect map of the input set of
GMVDs, it must be demonstrated that the set of all
GMYVDs inferred from the dependency structure is log-
ically equivalent to the input set of GMVDs.

We can adopt the method in [8] to compute all the
GMVDs that are logically implied by an acyclic hy-
pergraph structure, as the following theorem suggests.

Theorem 2 Let ¢ be a distribution defined on an hy-
pergraph H. Suppose X and Y are disjoint sets of at-
tributes. Then the GMVD X —o— Y follows logically
from ¢ if and only if Y is the union of some connected
components of the hypergraph H with the set of nodes
X deleted.

The proof of Theorem 2 can be derived in a similar
fashion to the one in [8], and will be shown in a more
complete paper.

Theorem 2 implies that the set of all GMVDs that
can be logically inferred from an acyclic hypergraph
structure # is given by:

where L is the set of J-keys of H and the Y;’s are the
disconnected components of H obtained by deleting
the set of variables X. By Theorem 1, the set X of

keys in the conflict-free cover of an input set of GMVDs
is in fact equal to the set of J-keys of the constructed
acyclic hypergraph structure . We can immediately
conclude that H is a perfect map.

4 Conclusion

In this paper, a method for constructing the depen-
dency structure of a Markov distribution is proposed.
Our approach takes full advantage of a recent re-
sult showing nonembedded conditional independencies
have a complete axiomatization. This result provides
us with a tool for constructing a dependency structure
which is a perfect map of the input set of nonembed-
ded conditional independencies. That is, every nonem-
bedded conditional independence logically implied by
the input set can be inferred from the dependency
structure, and every nonembedded conditional inde-
pendence inferred from the dependency structure is
logically implied by the input set. This technique in-
volves determining a conflict-free cover of a given input
set of nonembedded conditional independencies.

The problem of constructing the dependency structure
of a Bayesian distribution given an input set of both
embedded and nonembedded conditional independen-
cies 1s currently being investigated.
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