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Abstract. Multiply sectioned Bayesian networks (MSBNs) were origi-
nally proposed as a modular representation of uncertain knowledge by
sectioning a large Bayesian network (BN) into smaller units. More re-
cently, hierarchical Markov networks (HMNs) were developed in part as
an hierarchical representation of the flat BN.

In this paper, we compare the MSBN and HMN representations. The
MSBN representation does not specify how to section a BN, nor is it a
faithful representation of BNs. On the contrary, a given BN has a unique
HMN representation, which encodes precisely those independencies en-
coded in the BN. More importantly, we show that failure to encode known
independencies can lead to unnecessary computation in the MSBN rep-
resentation. These results, in particular, suggest that HMNs may be a
more natural representation of BNs than MSBNs.

1 Introduction

Probabilistic reasoning with Bayesian networks (BNs) [5] has been an active
field of research over the past two decades. To facilitate the inference process,
a BN is represented as a secondary network, usually a (decomposable) Markov
network (MN) [5]. Several researchers, however, have suggested alternative repre-
sentations of BNs, including hierarchical Markov networks (HMNs) [10], multiply
sectioned Bayesian networks (MSBNSs) [12], multiple undirected graphs [6], nested
jointrees (2], and mazimal prime decompositions [4]. Our discussion here focuses
on the HMN and MSBN representations.

As the name suggests, the hierarchical Markov network (HMN) framework
represents a BN as a hierarchy of MNs. It was also shown in [10] that HMNs have
several advantages over the MN, multiple undirected graphs, and nested jointree
representations. Very recently, it was shown in [1] that the HMN representation
has the same advantages over the mazimal prime decomposition [4] represen-
tation. Hence, the HMN representation seems to be a favorable framework for
representing uncertain knowledge.

On the other hand, MSBNs were originally proposed as a modular repre-
sentation of a large and sparse BN. By sectioning one BN into several smaller
units, inference computation can be performed on one local network in a more
efficient manner than on one conventional MN. Xiang [11] showed that Srinivas’s



work in [7] was actually an application of a special case of MSBN to hierarchical
model-based diagnosis. The MSBN representation supports object-oriented in-
ference, as emphasized by Koller and Pfeffer [3]. As MSBNs seem to be another
desirable representation of uncertainty, it is natural to compare the HMN and
MSBN representations.

Despite its name, we first show in this paper that a MSBN is in fact a
two-level hierarchy of MNs. Although the HMN representation is guaranteed
to encode precisely those independencies in a BN [10], we next show that a
MSBN does not. This is a crucial difference as efficient probabilistic inference
is based on utilizing independencies. We explicitly demonstrate in Ex. 7 that
failure to represent known independencies leads to unnecessary computation.
Moreover, Xiang et al.[13] point out some limitations of sectioning a BN as a
MSBN. The MSBN technique makes the natural localization assumption. Hence,
localization does not dictate exactly what should be the boundary conditions
between different subnets [13]. In order to provide a coherent framework for
probabilistic inference, technical constraints are imposed. Xiang, Olesen and
Jensen [15] recently acknowledged that how to satisfy these technical constraints
may not be obvious to a practitioner. This means that the MSBN representation
itself does not indicate how the BN is to be sectioned, while the knowledge
engineer may not know how to satisfy the technical constraints required to make
a workable MSBN. On the other hand, our constructed HMN representation is
unique for a given BN [10]. This sectioning is defined solely by the structure of
the BN. It does not involve any technical constraints, nor does it require any
type of practitioner input. Our analysis then suggests that it is perhaps more
useful to represent a given BN as a HMN rather than as a MSBN.

This paper is organized as follows. In Section 2, we review BNs and MNs.
We outline the MSBN and HMN representations in Section 3. In Section 4, we
compare these two representations. The conclusion is given in Section 5.

2 Background Knowledge

Let U be a finite set of discrete random variables, each with a finite set of
mutually exclusive states. Obviously, it may be impractical to define a joint
distribution on U directly: for example, one would have to specify 2" entries for
a distribution over n binary variables. BNs utilize conditional independencies [9]
to facilitate the acquisition of probabilistic knowledge.

Let X,Y and Z be disjoint subsets of variables in R. Let z, y, and z denote
arbitrary values of X,Y and Z, respectively. We say Y and Z are condition-
ally independent given X under the joint probability distribution p, denoted
1Y, X,2), if

whenever p(x, z) > 0. I(Y, X, Z) can be equivalently written as

p(y,x) 'p(xaz)_ (2)

p(y,,2) = (@)



A Bayesian network (BN) [5] is a pair B = (D, C). In this pair, D is a directed
acyclic graph (DAG) on a set U of variables, and C = {p(a;|P;) | a; € D} is
the corresponding set of conditional probability tables (CPTs), where P; denotes
the parent set of variable a; in the DAG D. The family set of a variable a; € D,
denoted Fj, is defined as F; = {a;} UP;. The d-separation method [5] can be used
to read independencies from a DAG. For instance, I(d,b,e), I(c,0, f), I(h,g,1)
and I(defh,b,g) all hold by d-separation in the DAG D in Fig. 1.

Ezample 1. Consider the BN B = (D, C), where D is the DAG in Fig. 1 on
U={a,b,c,d,e, f,g,h,ijk} =abcdefghijk, and C is the corresponding set of
CPTs. The conditional independencies encoded in the DAG D indicate that the
product of the CPTs in C' defines a unique joint probability distribution p(U):

p(U) = pla) - p(b) - p(cla) - p(d[b) - p(elb) - p(f|d, e) - p(g|b) - p(hle, f) - p(ilg)
p(jlg, h,i) - p(k|h). (3)

Fig.1. A Bayesian network on variables U = {a, b, ¢, d, ¢, f, g, h,i,j, k}.

To facilitate probabilistic inference, a BN is usually transformed into a Markov
network (MN), which Pearl [5] calls a decomposable MN. A MN consists of a tri-
angulated (chordal) graph together with a potential defined over each maximal
clique of D' (defined below). Given a DAG D, the moralization D™ of D is the
undirected graph defined as

D™ ={(a,b) | a,b € F; for the family set F; of each variable a; € D}. (4)



If necessary, edges are added to D™ to obtain a triangulated graph D*. The
mazimal cliques (maximal complete subgraphs) of D! are organized as jointree
J. Finally, the CPTs of the BN are assigned to nodes of J.

Ezample 2. Consider the BN D = (D, C) above. The moralization D™ of D is
shown in Fig. 2. A minimum triangulation D can be obtained by adding the
two edges (b, f) and (f, g) to D™. The maximal cliques of the triangulated graph
Dt are bdef, bfg, fgh, cfh, ac, hk, and ghij. These cliques are organized as a
jointree J, as shown in Fig. 3.

=

Fig. 2. The moralization D™ of the DAG D in Fig. 1.

Ezample 3. Given the BN in Fig. 1, one possible MN is illustrated in Fig. 3.
This MN expresses the joint distribution in Ex. 1 as

_ plbdef) - p(bfg) - p(fgh) - p(ghij) - p(cfh) - plac) - p(hk)

p(U) 2(6f) - pF9) - plgh) - p(IR) - p() - p(h)

(5)

Although the MN representation facilitates the probabilistic inference pro-
cess, it may not represent all of the independencies in a BN. For instance, while
the BN in Ex. 1 encodes I(h, g, 1), this conditional independence of h and i given
g is not encoded in the MN in Ex. 3. This undesirable characteristic has lead to
the proposal of other representations of BNs [2,4,10], including the hierarchical
Markov network representation discussed in the next section.
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Fig. 3. One possible Markov network (MN) of the BN in Fig. 1.

3 The MSBN and HMN representations

Here we review two favorable representations of probabilistic knowledge, namely,
multiply sectioned Bayesian networks and hierarchical Markov networks.

3.1 Multiply Sectioned Bayesian networks

Multiply sectioned Bayesian networks (MSBNs) [12,13,15] were originally pro-
posed as a modular representation of a large and sparse BN.

Despite its name, a MSBN is a two-level hierarchy of MNs. There are only
two differences between a MSBN and a traditional MN. First, the root level MN
in a MSBN is not necessarily obtained via the moralization and triangulation
procedures. Second, each node in the root level MN has a local MN nested in it.
One technical constraint imposed on the root level MN is that, for any variable
appearing in more than one node, there exists a node containing its parent set.

Example 4. The BN in Fig. 1 can be represented by the MSBN in Fig. 4.
(The root level MN satisfies the MSBN restriction, since the parent set {a}
of ¢ is contained in the node {a, c}, the parent set {b} of ¢ is contained in the
node {b,c,d,e, f,g,h}, and the parent set {c, f} of h is contained in the node
{b,c,d,e, f,g,h}.) This MSBN encodes the following independency information:

plac) - p(bede fgh) - p(ghij) - p(hk)
p(c) - p(gh) - p(h) ’
plcfh) - p(def) - p(bde) - p(bg)
p(f) - p(de) - p(b) '

(6)

p(U) =

p(bedefgh) = (7)

It is perhaps worthwhile here to elaborate on the MSBN construction process.
Given the root MN J for a MSBN representation, an embedded MN Jx is
constructed for each node X of J by the following four steps:

(i) compute the subDAG Dx of DAG D onto the subset X of variables,
(i) apply the MSBN moralization to Dy giving the undirected graph DY,
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Fig. 4. One possible multiply sectioned Bayesian network (MSBN) of the BN in Fig. 1.

(iii) triangulate D}Ll if necessary,
(iv) construct a jointree Jx for the triangulated graph in (iii).

The new notions of subDAG and MSBN moralization are now defined. Given a
BN D on U, the subDAG Dx of D onto the subset X of U is defined as:

Dx ={(a,b) | (a,b) € D and a,b € X }.

Since the parent set of a node might not be contained in the same subDAG as
the node itself, the moralization procedure is modified as follows. The MSBN
moralization DY of a subDAG Dx means the moralization in Eq. (4) except
that the family set F; of variable a; is defined with respect to Dx.

Ezample 5. Consider the node X = bedefgh in the MSBN root MN in Fig. 4.
By definition, the subDAG Dy is:

Dx :{ (bad)a (b7 e),(b,g), (Ca h)a (da f)v(eaf)a (fa h) }

The MSBN moralization D}Ll is then:

DY ={ (b,d), (b.e), (b,g), (. f), (d.e), (d,f), (e f) }.

No additional edges have to be added to D“XIl, as it is already a triangulated
graph. The maximal cliques of D}Ll are cfh, def, bde, bg. There is only one
jointree Jx for these four cliques, namely, the one shown in Fig. 4.

On the other hand, consider the root jointree node ghij in Fig. 4. The sub-
DAG Dghij is

Dghij = { (gvl)v (gv.])v (h’aj)a (Z;]) };
and the MSBN moralization D™ .. is

ghtj

D;?;z/ij :{ (gah)v(gvi)v(gvj)v(hai)a (hvj)v(iaj) }



Not only is D;’};ij a triangulated graph, but it is in fact a complete graph, i.e.,

Dyj;; has only one maximal clique. By definition, the jointree Jx for Dg,iij has
only one node. Since any jointree defined by a single node does not encode any
independencies, the embedded jointree Jx for the root jointree node ghij is not
illustrated in Fig. 4. The important point is that the MSBN representation does
not encode any independencies for the root jointree node ghij. Similar remarks

hold for the root jointree nodes ac and hk in Fig. 4.

By sectioning one BN into several smaller subnets, inference computation
can be performed on one subnet at a time in a more efficient manner. Instead of
updating the entire MN as in a traditional approach to probabilistic inference,
the MSBN approach only updates the embedded MN for the node currently
under consideration in the root level MN.

The MSBN representation is quite robust as it can be applied to large diag-
nostic systems [15], in either a single agent or a multi-agent paradigm [12], and
supports object-oriented inference as emphasized in [3].

3.2 Hierarchical Markov networks

In [10], Wong et al. suggested that a BN be transformed into a hierarchical
Markov network (HMN). An HMN is a hierarchy of MNs (jointrees).

Due to space limitations, we use an example to illustrate HMNs, and re-
fer readers to [10] for a thorough discussion on the automated procedure for
constructing the unique HMN representation of a given BN.

Ezample 6. The BN in Fig. 1 can be represented by the unique HMN in Fig. 5.
This HMN encodes the following independency information:

plac) - p(cfh) - p(hk) - p(bde fgh) - p(ghij)

p(c) - p(h) - p(fh) - p(gh) ’
plef) =p(c) - p(f), 9)
_ p(fh) - p(def) - p(bde) - p(bg)

p(U) =

plbdefgh) p(f) - p(de) - p(b) ’ (o)
p(bde) = %, (11)
plghi) = LI HE) (12)

In [10], it was shown that HMNs have several advantages over the MN, mul-
tiple undirected graphs, and nested jointree representations. In particular, the
HMN can optimize queries using independencies that would go unnoticed in
other representations [10]. More recently, it was explicitly demonstrated in [1]
that HMNs possess several important characteristics, which the maximal prime
decomposition representation does not. In the next section, we bring the elegance
of the HMN representation down to bear on the MSBN representation.



Fig. 5. The hierarchical Markov network (HMN) for the DAG D in Fig. 1.

4 Comparing the MSBN and HMN representations

In this section, we present a comprehensive comparison of the HMN and MSBN
representations based on seven relevant factors.

(i) Assumptions: The MSBN representation makes the natural localization as-
sumption. Hence, localization does not dictate exactly what should be the bound-
ary conditions between different subnets [13]. The HMN representation does not
require any assumptions when sectioning a BN.

(ii) Technical constraints: In order to make a workable MSBN, technical
constraints such as the d-sepset condition need to be imposed [13]. The HMN
representation does not impose any technical constraints.

(iii) Practitioner input: The sectioning of a BN into a MSBN is performed by
a knowledge engineer. Xiang et al. [15] recently acknowledged that how to satisfy
these technical constraints may not be obvious to a practitioner. Constructing a
HMN from a BN is an automated procedure; it does not require any human input.

(iv) Restriction on the number of levels: By definition, the MSBN rep-
resentation always has precisely two levels. The number of levels in a HMN is
determined solely by the structure of a BN, and is not confined to two levels.
For instance, the HMN in Fig. 5 has three levels.

(v) Uniqueness: While there may be multiple MSBN representations for a
given BN, the constructed HMN representation is always unique [10].



(vi) Faithfulness: Given a BN, the HMN representation is guaranteed to be
equivalent [10], whereas the MSBN is not. In other words, the HMN encodes
those and only those independencies in the BN. In our running example, an
independence can be obtained from Eq. (3) if and only if it can be using Egs.
(8)-(12). For instance, the conditional independence I(h,g,i) of h and i given
g is encoded in the BN and it is encoded in the HMN (see Eq. (12)). However,
I(h,g,1) is not encoded in the MSBN of Fig. 4.

(vii) Probabilistic Inference: Both the HMN and MSBN representations can
perform local query processing. However, the MSBN approach to optimization
needs to be somewhat qualified, as the next example demonstrates.

Ezample 7. In the HMN and MSBN representations, let us process the query
p(e|lf = 0), assuming for simplicity that all variables are binary. By definition,

p(C,f = 0)
p(f=0)"

The MSBN can use its only embedded jointree as follows. Two additions are
required to compute p(c, f = 0) from the stored distribution p(c, f,h). One
more addition is required to derive p(f = 0) from p(c, f = 0). Two divisions are
needed to compute the desired result p(c|f = 0) using p(c, f = 0) and p(f = 0).
Thus, the MSBN approach requires three additions and two divisions to compute
p(e|lf = 0). On the contrary, the HMN approach requires zero additions and zero
divisions to compute p(c|f = 0). The reason is that the HMN encodes I(c, 0, f)
meaning that Eq. (13) can be rewritten as:

o ple, f=0)  ple) p(f=0)
Pelf=0="20 = =0

The marginal p(c) is already stored in the HMN representation.

ple| f=0)= (13)

= p(c). (14)

Query optimization means taking advantage of independencies during pro-
cessing. Our HMN encodes I(c,, f), which is given in the BN. Since ¢ and f
are unconditionally independent, p(c|f = 0) = p(c) as shown in Eq. (14). Since
p(c) is a marginal already stored in the HMN, the query p(c|f = 0) can be
answered without any additional computation. On the contrary, the MSBN sac-
rifices I(c, D, f). Failure to represent I(c,, f) leads to unnecessary work in the
MSBN computation of p(c|f = 0), as Ex. 7 demonstrates.

5 Conclusion

In this paper, we exposed the MSBN representation as a very limited hierarchical
representation; one that always consists of precisely two levels. More importantly,
we explicitly demonstrated that the MSBN may not represent all the indepen-
dencies encoded in a BN. This has important practical ramifications. As Ex. 7



explicitly shows, failure to represent known independencies results in unneces-
sary computation in the MSBN representation. Moreover, the MSBN approach
is not unique, makes assumptions, and imposes technical constraints. Xiang et

al.

[15] recently acknowledged that how to satisfy these technical constraints

may not be obvious to a practitioner. On the contrary, the HMN is a unique and
equivalent representation of BNs, which does not require assumptions, technical
constraints, and practitioner input. Our analysis then suggests that HMNs may
be a better representation of BNs than MSBNs.
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