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Abstract The maximal prime decomposition (MPD) of a
Bayesian network is a hierarchical structure, which repre-
sents conditional independency information. The MPD rep-
resentation has shown to facilitate probabilistic inference
in uncertainty management. One method for building the
MPD involves applying the moralization and triangulation
procedures to the given Bayesian network. An alternative
method constructs the MPD using certain independencies
encoded in a Bayesian network.

In this paper, we analyze these two methods with respect
to the construction and representation of the root level in
the MPD. Our comparison reveals that the latter method
can be seen as only requiring the moralization procedure. A
second difference is that the former method represents the
root level of the MPD as a jointree, while the later repre-
sents it as an acyclic hypergraph. Finally, our investigation
of these two different approaches to the construction of the
MPD yields the introduction of a new hybrid construction
algorithm.

1 Introduction

Probability theory is attractive for the management of
uncertain knowledge due to its sound mathematical founda-
tion. A Bayesian network[2] consists of adirected acyclic
graph (DAG) and a corresponding set of conditional prob-
ability distributions. Theprobabilistic conditional indepen-
dencies[3] encoded in the DAG indicate that the product
of the conditional distributions is a unique joint probabil-
ity distribution. In practice, probabilistic inference iscar-
ried out on a secondary representation of a Bayesian net-
work. Traditionally, Algorithm 1 is applied to transform a
Bayesian network into ajointree[2]. More specifically, the
moralizationand triangulation procedures [2] are applied
to the DAG creating anacyclic hypergraph(achordalundi-
rected graph) [4].

More recently, however, two works [1, 5] have suggested
methods (see Algorithms 2 and 3) for themaximal prime
decomposition(MPD) of Bayesian networks. The MPD has
been shown to facilitate probabilistic inference.

In this paper, we analyze these two methods with respect
to the construction and representation of the root level in the

MPD. Our comparison reveals that the latter method can be
seen as only requiring the moralization procedure; the trian-
gulation procedure is ignored. A second difference is that
the former method represents the root level of the MPD as
a jointree, while the later represents it as an acyclic hyper-
graph. Experimental results have shown that the acyclic hy-
pergraph representation is more desirable for probabilistic
inference than the jointree representation. Finally, our anal-
ysis of the two construction methods (Algorithms 2 and 3)
leads to the introduction of a new construction method (Al-
gorithm 4). This hybrid approach involves the first part of
Algorithm 2 and the latter part of Algorithm 3.

This paper is organized as follows. Section 2 contains a
review of Bayesian networks. In Section 3, we review the
MPD construction method suggested in [1], while in Sec-
tion 4 we do the same for the method given in [5]. In Sec-
tion 5, the comparison of these two methods leads to the
introduction of a third method for constructing the MPD
representation. The conclusion is presented in Section 6.

2 Bayesian Networks

Let X, Y, Z be pairwise disjoint subsets ofU . The
conditional independence[3] of Y andZ given X is de-
noted I(Y, X, Z). The conditional independencies en-
coded in theBayesian network[4] in Fig. 1 on U =
{a, b, c, d, e, f, g, h, i, j, k} indicate that the joint probabil-
ity distributionp(U) can be written as

p(U) = p(a) · p(b) · p(c|a) · p(d|b) · p(e|b) · p(f |d, e) ·

p(g|b) · p(h|c, f) · p(i|g) · p(j|g, h, i) · p(k|h).

Henceforth, the terms Bayesian network and DAG will be
used interchangeably. Algorithm 1 will transform a DAG
into a jointree.

Algorithm 1 .
1. MoralizeD to obtain the undirected graphDm.
2. TriangulateDm to obtainDt.
3. Identify the maximal cliquesh1, h2, . . . , hn of Dt to ob-
tain the acyclic hypergraphH = {h1, h2, . . . , hn}.
4. OrganizeH as a jointreeJ .
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Figure 1. A Bayesian networkD.

Example 1 Consider the Bayesian network in Figure 1. By
step (1), the moralizationDm of D is shown in Figure 2.
SinceDm is not triangulated, i.e.,Dm is not a chordal
undirected graph, edges need to be added to make it so.
By step (2), a minimum triangulationDt of Dm can be ob-
tained by adding the two edges(b, f) and(f, g), as shown
by the dashed lines in Figure 3. The maximal cliques of the
triangulated graphDt are bdef , bfg, fgh, cfh, ac, hk,
andghij. These cliques are organized as a jointreeJ , as
illustrated in Figure 4.

3 Maximal Prime Decomposition of Bayesian
Networks

Olesen and Madsen [1] proposed that a given Bayesian
network be represented by its uniquemaximal prime de-
composition(MPD). Although the MPD is an hierarchical
structure, our focus here is only on the root level. The root
network is a jointree.

Algorithm 2 will construct a jointree representing the
root level of the MPD representation of a given Bayesian
networkD.

Algorithm 2 [1]
1. Construct a conventional jointreeJ using a minimal tri-
angulation.
2. Aggregate any two cliquesC1 andC2 where the separa-
tor S is not complete in the moralization ofD.

Example 2 Consider the Bayesian networkD in Figure 1.
A conventional jointreeJ constructed by step (1) is shown
in Figure 4. The separatorsbf and fh in J are each not
complete in the moralization ofD. Hence, the jointree con-
structed by step (2) is illustrated in Figure 5.
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Figure 2. The moralizationDm of the Bayesian
network D in Figure 1.

4 An Alternative MPD Method

In this section, we review a second method [5] for con-
structing the root level of the MPD of Bayesian networks.

Pearl states that in the strictest sense Bayesian networks
are hypergraphs (see page 125 in [2]). TheBayesian hyper-
graphDh defined by a given Bayesian networkD is:

Dh = {aiPi | ai is a variable in D},

wherePi is theparent set[2] of variableai in D. By defini-
tion, a given Bayesian networkD defines auniqueBayesian
hypergraphDh.

TheBayesian hypergraphDh, defined by the DAGD in
Figure 1, is illustrated in Figure 6.

The separationmethod [5] can infer CIs encoded in an
undirected graph. The set of CIs encoded in a hypergraph
H is denotedCI(H). For example, the following CIs

I(a, c, bdefghijk), I(k, h, abcdefgij),

I(j, ghi, abcdefk), I(ij, gh, abcdefk),

I(bde, fg, achijk), I(ac, fh, bdegijk)

can be inferred from the hypergraphDh in Figure 6.
We are primarily interested in a special subset ofCI(H).

GivenI(Y, X, Z) in CI(H), we callX aLien sepset, if the
following two conditions are both satisfied:

(i) X is contained by a hyperedge inH , and
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Figure 3. A triangulated graph Dt for the
Bayesian network D in Figure 1; Dt is ob-
tained from the undirected graph of Dm in
Figure 2 by adding the two undirected edges
(b, f) and (f, g),

(ii) I(Y X1, X2, Z) is not inCI(H),

whereX1X2 = X , X1 6= ∅, andX2 6= ∅. TheLien inde-
pendenciesof a hypergraphH , denotedLI(H), are defined
as:

LI(H) = {I(Y, X, Z) | I(Y, X, Z) is in CI(H)

and X is a Lien sepset}.

For instance,I(bde, fg, chij) is in CI(H) but notLI(H),
sincefg is notcontained by any hyperedge inH .

Algorithm 3 will construct an acyclic hypergraph repre-
senting the root level of the MPD representation of a given
Bayesian networkD.

Algorithm 3 [5]
1. Compute the Bayesian hypergraphDh.
2. Build the acyclic hypergraph usingLI(Hh).

Example 3 Consider the Bayesian network in Figure 1.
The Bayesian hypergraphDh is shown in Figure 6. The
Lien independencies ofDh are

LI(Dh) = {I(a, c, bdefghijk), I(k, h, abcdefgij),

I(ack, fh, bdegij), I(ij, gh, abcdefk)}.

The setLI(Dh) of independencies define the Lien hyper-
graph in Figure 7.
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Figure 4. A traditional jointree J for the
Bayesian network D in Figure 1.
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Figure 5. The root level of the MPD of the
Bayesian network in Figure 1.

5 Comparing the Construction Methods

We begin by contrasting these two methods. The simi-
larities between the methods suggest a hybrid approach for
constructing the MPD representation of Bayesian networks.

Olesen and Madsen [1] suggest that the root level of the
MPD be a fixed jointree. On the contrary, Wong et al. [5]
propose that the root level of the MPD be an acyclic hyper-
graph. Experimental results, including [6], have shown that
fixing a jointree requires extra computation for processing
some probabilistic queries. On the other hand, an acyclic
hypergraph can always be pruned to remove the irrelevant
variables with respect to a given query.

The similarities we now present between the methods
in [1] and [5] lead to the introduction of a hybrid ap-
proach to constructing the maximal prime decomposition
of Bayesian networks. Our method is based on graphical
procedures and also on inferred independency information.
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Figure 6. The Bayesian hypergraphDh defined
by the DAG in Figure 1.
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Figure 7. The root level of the MPD of the
Bayesian network in Figure 1.

Lemma 1 Let D be a Bayesian network andDh the
Bayesian hypergraph. Then the graphG(Dh) of Dh is the
moralizationDm of D.

Lemma 2 Let H be a hypergraph andG(H) be its undi-
rected graph. ThenCI(H) = CI(G(H)).

Given the moralizationDm of D, LI(Dm) is defined as
the setI(Y, X, Z), whereI(Y, X, Z) is in CI(Dm), X is
a subset of some family setFi for some variableai in D,
I(Y X1, X2, Z) is not inCI(Dm), X1X2 = X , X1 6= ∅,
andX2 6= ∅. For instance,I(bde, fg, chij) is in CI(Dm)
but notLI(Dm) asfg is not a subset of a family set ofD.

Algorithm 4 will construct an acyclic hypergraph repre-
senting the root level of the MPD representation of a given
Bayesian networkD.

Algorithm 4 .
1. Compute the moralizationDm of D.
2. Build the acyclic hypergraph usingLI(Dm).

Example 4 Consider the Bayesian networkD in Figure 1
and its moralizationDm in Figure 2. The Lien independen-
cies ofDm are

LI(Dm) = {I(a, c, bdefghijk), I(k, h, abcdefgij),

I(ack, fh, bdegij), I(ij, gh, abcdefk)}.

The main algorithm in [4] will construct the acyclic hyper-
graph in Figure 7 from the setLI(Dm) of conditional inde-
pendencies.

6 Conclusion

Two works [1, 5] have recently suggested that Bayesian
networks be represented in a hierarchical fashion. The root
level of [1] is a fixed jointree, while that of [5] is an acyclic
hypergraph. Experimental results [6] have demonstrated
that the acyclic hypergraph representation is more desir-
able than a jointree for processing probabilistic queries.
Our analysis of the two construction methods (Algorithms 2
and 3) lead to the introduction of a new construction method
(Algorithm 4). This hybrid approach involves the first part
of Algorithm 2 and the latter part of Algorithm 3.
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