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Abstract. Rough sets have traditionally been applied to decision (clas-
sification) problems. We suggest that rough sets are even better suited
for reasoning. It has already been shown that rough sets can be applied
for reasoning about knowledge. In this preliminary paper, we show how
rough sets provide a convenient framework for uncertainty reasoning.
This discussion not only presents a new topic for future research, but
further demonstrates the flexibility of rough sets.

1 Introduction

The theory of rough sets [4] generalizes traditional set theory by allowing a con-
cept to be described approximately by a lower and upper bound. Although rough
sets have been extensively studied, most of these investigations demonstrated
the usefulness of rough sets in decision (classification) problems. Wong [7] first
demonstrated that rough sets can also be applied for reasoning about knowledge.
This observation was also made later by Salonen and Nurmi [5].

In this preliminary paper, we extend the work in [5, 7] by demonstrating
that rough sets can also be applied for uncertainty management. In [5, 7], rough
sets are used as a framework to represent formulas such as “player 1 knows

φ”. By incorporating probability, we can now represent sentences such as “the
probability of φ, according to player 1, is at least α”, where φ is a formula and
α is a real number in [0, 1]. Thereby, not only does this discussion present a new
topic for future research, but it further demonstrates the flexibility of rough sets.

The remainder of this paper is organized as follows. Kripke semantics for
modal logic are given in Section 2. The key relationships between rough sets
and the Kripke semantics for modal logic are stated in Section 3. In Section 4,
probability is incorporated into the logical framework. In Section 5, we demon-
strate that rough sets are also a useful framework for uncertainty reasoning. The
conclusion is given in Section 6.

2 Kripke semantics for Modal Logic

Consider an ordered pair < W,R > consisting of a nonempty set W of possible
worlds and a binary relation R on W . Let Q denote the set of sentence letters



(primitive propositions). An evaluator function f :

f : W ×Q→ {⊤,⊥},

assigns a truth-value, ⊤ or ⊥, to each ordered pair (w, q), where w ∈ W is a
possible world, and q ∈ Q is a sentence letter. We call the triple M =< W,R, f >
a model (structure), and R a possibility (accessibility) relation.

The function of an evaluator is to determine which primitive proposition q is
to be true at which world w in a model. We write (M,w) |= q, if f(w, q) = ⊤. We
can now define what it means for a proposition (formula) to be true at a given
world in a model by assuming that |= has been defined for all its subformulas of
ϕ. That is, for all propositions ϕ and ψ,

(M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ,

(M,w) |= −ϕ iff (M,w) 6|= ϕ,

and

(M,w) |= 2ϕ iff (M,x) |= ϕ, for all x such that (w, x) ∈ R.

The above definition enables us to infer inductively the truth-value, i.e.,
(M, s) |= ϕ, of all other propositions from those of the primitive propositions.
We say “ϕ is true at (M, s)” or “ϕ holds at (M, s)” or “(M, s) satisfies ϕ”, if
(M, s) |= ϕ.

In order to establish a connection with rough set theory, we review the notion
of an incidence mapping [1], denoted by I. To every proposition ϕ, we can assign
a set of worlds I(ϕ) defined by:

I(ϕ) = {w ∈ W |(M,w) |= ϕ}.

This function is used in establishing the relationship between a Kripke structure
and an Auman structure in the recent work of Fagin et al. [2]. The important
point of this discussion is that the incidence mapping I provides a set-theoretic
interpretation of Kripke semantics.

3 Rough Sets versus Kripke semantics

The original motive of rough sets [4] was to characterize a particular concept

(represented by a subset of a finite universe W of interest) based on the infor-
mation (knowledge) on hand. This knowledge is represented by a binary relation
R on W . Rough sets can be viewed as an extension of ordinary sets, in which
a set A ⊆ W is described by a pair (A,A) of subsets of W . Note that A and
A are not necessarily distinct. For our exposition here, we may assume that R
is an equivalence relation. In this case, rough sets are defined by the following
knowledge operator K: for all A ⊆W

A = K(A) = {w ∈W | [w]R ⊆ A},



and

A = −K(−A) = {w ∈ W | [w]R ∩A 6= ∅},

where [w]R denotes the equivalence class of R containing the elements w ∈ W .
In the theory of rough sets, we call A the lower approximation and A the upper
approximation of A.

It was shown [6] that the Kripke semantic model is equivalent to the charac-
terization of modal propositions by a rough-set model. That is, each proposition
ϕ ∈ L can be represented by a subset of possible worlds and the modal operator
2 by the knowledge operator K defined above. The key relationships between
the Kripke semantic model and the rough-set model are summarized as follows:

(i) (M,w) |= ϕ iff w ∈ I(ϕ),

(ii) (M,w) |= 2ϕ iff w ∈ K(I(ϕ)).

The above results enable us to adopt rough sets for reasoning about knowledge
instead of using the framework based on modal logic as suggested by Fagin et
al. [2].

We conclude this section with an example [2] to illustrate how the rough-set
model is used in reasoning. Consider a deck of cards consisting of three cards
labeled X,Y and Z. Assume there are two players (agents), i.e., G = {1, 2}.
Players 1 and 2 each gets one of these cards. The third card is left face down.
We describe a possible world by the cards held by each player. Clearly, there
are six possible worlds, i.e., W = {(X,Y ), (X,Z), (Y,X), (Y, Z), (Z,X), (Z, Y )}
= {w1, w2, w3, w4, w5, w6}. For example, w2 = (X,Z) says that player 1 holds
card X and player 2 holds card Z. The third card Y is face down. We can
easily construct the two partitions π1 and π2 of W , which respectively represent
the knowledge of the two players. For example, w1 = (X,Y ) and w2 = (X,Z)
belong to the same block of π1 because in a world such as w1 = (X,Y ), player 1
considers two worlds possible, namely w1 = (X,Y ) itself and w2 = (X,Z). That
is, when player 1 holds card X , he considers it possible that player 2 holds card
Y or card Z. Similarly, in a world w1 = (X,Y ), player 2 considers the two worlds
w1 = (X,Y ) and w6 = (Z, Y ) possible, i.e., w1 and w6 belong to the same block
of π2. Based on this analysis, one can easily verify that:

π1 = {[w1, w2]1X , [w3, w4]1Y , [w5, w6]1Z},

π2 = {[w3, w5]2X , [w1, w6]2Y , [w2, w4]2Z}.

It is understood that in both worlds w1 and w2 of the block [w1, w2]1X in π1,
player 1 holds card X ; in both worlds w1 and w6 of the block [w1, w6]2Y , player
2 holds card Y , and so on. The corresponding equivalence relations R1 and R2

can be directly inferred from π1 and π2. In this example, we have six primitive
propositions: 1X denotes the statement “player 1 holds card X”, 1Y denotes the
statement “player 1 holds card Y ”, . . ., and 2Z denotes the statement “player



2 holds card Z”. Each of these propositions is represented by a set of possible
worlds. By the definition of the mapping I, we obtain:

I(1X) = {w1, w2}, I(1Y ) = {w3, w4}, I(1Z) = {w5, w6},

I(2X) = {w3, w5}, I(2Y ) = {w1, w6}, I(2Z) = {w2, w4}.

Using these primitive representations, the representations of more complex propo-
sitions can be easily derived from properties (i1) − (i5). For example,

I(1X ∧ 2Y ) = I(1X) ∩ I(2Y )

= {w1, w2} ∩ {w1, w6} = {w1},

I(2Y ∨ 2Z) = I(2Y ) ∪ I(2Z)

= {w1, w6} ∪ {w2, w4} = {w1, w2, w4, w6}.

More interesting is the following expression which indicates that if player 1 holds
card X , then he knows that player 2 holds card Y or card Z:

I(21(2Y ∨ 2Z)) = K1(I(2Y ∨ 2Z))

= {w | [w]π1⊓π2
⊆ I(2Y ∨ 2Z)}

= {w | [w]π1⊓π2
⊆ {w1, w2, w4, w6}}

= {w1, w2}.

4 Incorporating Probability

The discussion here draws from that given by Halpern [3]. The language is ex-
tended to allow formulas of the form Pi(φ) ≥ α, Pi(φ) ≤ α, and Pi(φ) = α,
where φ is a formula and α is a real number in the interval [0,1]. A formula such
as Pi(φ) ≥ α can be read “the probability of φ, according to player i, is at least
α”.

To give semantics to such formulas, we augment the Kripke structure with a
probability distribution. Assuming there is only one agent, a simple probability

structure M is a tuple (W, p, π), where p is a discrete probability distribution
on W . The distribution p maps worlds in W to real numbers in [0,1] such that∑

w∈W p(w) = 1.0. We extend p to subsets A of W by p(A) =
∑

w∈A p(w). We
can now define satisfiability in simple probability structures: the only interesting
case comes in dealing with formulas such as Pi(φ) ≥ α. Such a formula is true,
if:

(M,w) |= P (φ) ≥ α if p({w|(M,w) |= φ}) ≥ α.

That is, if the set of worlds where φ is true has probability at least α. The
treatment of Pi(φ) ≤ α, and Pi(φ) = α is analogous.



Simple probability structures implicitly assume that an agent’s (player’s)
probability distribution is independent of the state (world). We can generalize
simple probability structures with probabilistic Kripke structures by having p
depend on the world and allowing different agents to have different probability
distributions.

A probabilistic Kripke structure M is a tuple (W, p1, . . . , pn, π), where for
each agent i and world w, we take pi(w) to be a discrete probability distribution,
denoted pi,w, over W . To evaluate the truth of a statement such as Pi(φ) ≥ α
at world w we use the distribution pi,w:

(M,w) |= Pi(φ) ≥ α if pi,w({w|(M,w) |= φ}) ≥ α.

We now combine reasoning about knowledge with reasoning about probabil-
ity. A Kripke structure for knowledge and probability is a tuple (W,K1, . . . ,Kn,
p1, . . . , pn, π). This structure can give semantics to a language with both knowl-
edge and probability operators. A natural assumption in this case is that, in
world w, agent i only assigns probability to those worlds Ki(w) that he consid-
ers possible. (However, in some cases this may not be appropriate [3].)

We use the following example from [3] to illustrate a logical approach to
reasoning about uncertainty. Alice has two coins, one of which is fair while the
other is biased. The fair coin has equal likely hood of landing heads and tails,
while the biased coin is twice as likely to land heads as to land tails. Alice chooses
one of the coins (assume she can tell them apart by their weight and feel) and
is about to toss it. Bob is not given any indication as to which coin Alice chose.

There are four possible worlds:

W = {w1 = (F,H), w2 = (F, T ), w3 = (B,H), w4 = (B, T )}.

The world w1 = (F,H) says that the fair coin is chosen and it lands heads. We
can easily construct two partitions πAlice and πBob of W , which represent the
respective knowledge of Alice and Bob:

πAlice = {[w1, w2], [w3, w4]},

πBob = {[w1, w2, w3, w4]}.

The corresponding equivalence relations RAlice and RBob can be directly inferred
from πAlice and πBob. In this example, we consider the following four proposi-
tions: f - Alice chooses the fair coin; b - Alice chooses the biased coin; h - The
coin will land heads; t - The coin will land tails.

We first define a probability distribution pAlice,w, according to Alice, for each
of the worlds w ∈ W . In world w1 = (H,T ), pAlice,w1

(w1) = 1/2, pAlice,w1
(w2) =

1/2, pAlice,w1
(w3) = 0.0, pAlice,w1

(w4) = 0.0. For worldw3 = (B, T ), pAlice,w3
(w1)

= 0.0, pAlice,w3
(w2) = 0.0, pAlice,w3

(w3) = 2/3, pAlice,w3
(w4) = 1/3. These defi-

nitions are illustrated in Figure 1.
It can be verified that pAlice,w2

= pAlice,w1
and pAlice,w4

= pAlice,w3
. More-

over, Bob’s probability distributions are the same as Alice’s, namely,

pBob,wi
= pAlice,w1

, i = 1, 2, 3, 4.



Coin Lands pAlice,w1
pAlice,w3

w1 fair heads 1/2 0
w2 fair tails 1/2 0
w3 biased heads 0 2/3
w4 biased tails 0 1/3

Fig. 1. A knowledge system for Alice.

The truth evaluation function π maps π(h,w1) = true, π(h,w2) = true,
π(h,w3) = false, π(h,w4) = false. Thus, I(h) = {w1, w2}.

It can now be shown that

(M,w1) |= PAlice(h) = 1/2,

since pAlice,w1
({w1, w3}) = 1/2. Similarly,

(M,w2) |= PAlice(h) = 1/2.

This means that Alice knows the probability of heads is 1/2 in world w1:

(M,w1) |= 2Alice(PAlice(h) = 1/2),

since (M,w1) |= PAlice(h) = 1/2, (M,w2) |= PAlice(h) = 1/2, and [w1, w2] is an
equivalence class in RAlice.

The same is not true for Bob. Note that

(M,w1) |= PBob(h) = 1/2,

since pBob,w1
({w1, w3}) = 1/2. However,

(M,w3) 6|= PBob(h) = 1/2,

since pBob,w3
({w1, w3}) = 2/3. Therefore,

(M,w1) 6|= 2Bob(PBob(h) = 1/2),

since for instance (w1, w3) ∈ RBob. This says that Bob does not know that the
probability of heads is 1/2 in world w1.

5 Rough Sets for Uncertainty Reasoning

Recall that each proposition is represented by a set of possible worlds. The
proposition PAlice(h) = 1/2, for instance, is represented by

I(PAlice(h) = 1/2) = {w1, w2}.

Similarly, proposition PBob(h) = 1/2 is represented by

I(PBob(h) = 1/2) = {w1, w2}.



Recall the following results obtained in a previous section using a logical
framework:

(M,w1) |= 2Alice(PAlice(h) = 1/2),

(M,w2) |= 2Alice(PAlice(h) = 1/2).

This knowledge can be expressed using the following proposition in rough sets:

KAlice(PAlice(h) = 1/2).

By definition, this proposition is represented by the following worlds:

KAlice(I(PAlice(h) = 1/2)) = KAlice({w1, w2})

= {w ∈ W | [w]Alice ⊂ {w1, w2}}

= {w1, w2}. (1)

This result is consistent with our earlier result that:

I(2Alice(PAlice(h) = 1/2)) = {w1, w2}.

Even though Bob using the same probability distributions, he is still uncer-
tain as to when the fair coin is used:

(M,w1) 6|= 2Bob(PBob(h) = 1/2).

The same knowledge (or lack there of) can be expressed using rough sets as:

A = I(PBob(h) = 1/2) = {w1, w2}.

However,

A = K(A) = {w | [w]Bob ⊂ A} = ∅,

since

[w1]Bob = {w1, w2, w3, w4} = [w2]Bob = [w3]Bob = [w4]Bob.

Finally, let us determine when Alice knows that the coin is fair and also
knows that the probability of heads is 1/2. This sentence is represented in rough
sets as:

KAlice(f) ∧ KAlice(PAlice(h) = 1/2).

Now

I(KAlice(f)) = {w1, w2}.

By Equation (1),

KAlice(I(Alice(h) = 1/2)) = {w1, w2}.

By the definition of the incidence mapping:

I(KAlice(f) ∧KAlice(PAlice(h) = 1/2))

= I(KAlice(f)) ∩KAlice(I(Alice(h) = 1/2))

= {w1, w2} ∩ {w1, w2}

= {w1, w2}.



6 Conclusion

Rough sets have primarily been applied to classification problems. Recently, it
has been shown that rough sets can also be applied to reasoning about knowl-
edge [5, 7]. In this preliminary paper, we have added probability. This allows us
to represent formulas such as “the probability of φ, according to player 1, is at
least α”, where φ is a formula and α is a real number in [0, 1]. Thus, the only
extension to the work in [7] is to allow formulas involving probability.

On the other hand, our original objective was to introduce a probability
operator P in the same spirit as the knowledge operator K in [7]. Unfortunately,
while P behaves nicely with K, P does not always interact nicely with itself. We
are currently working to resolve these problems.
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