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On the Implication Problem for Probabilistic
Conditional Independency

S. K. M. Wong, C. J. Butz, and D. Wu

Abstract—The implication problemis to test whether a given sacrificing certain independency information. Markov net-
set oflnd.epend.enqes Ioglcf'illy implies anqt.he.r |ndependency. This work [16] consists of amcyclic hypergraph4], [5] and a cor-
problemis crucial in the design of a probabilistic reasoning system. responding set of marginal distributions. By definition, both

We advocate that Bayesian networks are generalizationof stan- B . d Mark twork deth diti lind
dard relational databases. On the contrary, it has been suggested ayesian and viarkov NEtworks €Ncoae e conaitionatindepen-

that Bayesian networks aredifferent from the relational databases dencies in a graphical structure. A graphical structure is called
because the implication problem of these two systems does not co-a perfect-mag4], [31] of a given set of conditional indepen-

incide for someclasses of probabilistic independencies. This re- dencies, if every conditional independency logically implied by
mark, however, does not take into consideration one important y» -5 pe inferred from the graphical structure, and every con-

issue, namely, thesolvability of the implication problem. - . . .
In this comprehensive study of the implication problem for prob- ditional independency that can be inferred from the graphical

abilistic conditional independencies, itis emphasized that Bayesian Structure is logically implied b{. (We say: logically implies
networks and relational databases coincide osolvableclasses of o and writeY: = o, if whenever any distribution that satisfies all
independencies. The present study suggests that the implicationthe conditional independencies i then the distribution also
problem for these two closely related systems differs only inin- gayisfiag; ) However, it is important to realize that some sets of
solvableclasses of independencies. This means there is real dif- diti lind d ies doth fect Thati
ference between Bayesian networks and relational databases, inconal |_ona iInaepenaencies ave a periect-map. Thatis, .
the sense that onlysolvableclasses of independencies are useful in Bayesian and Markov networks are not constructed from arbi-
the design and implementation of these knowledge systems. Moretrary sets of conditional independencies. Instead these networks
importantly, perhaps, these results suggest that many current at- only use special subclasses of probabilistic conditional indepen-
tempts to generalizeBayesian networks can take full advantage of dency.
the generalizations made to standard relational databases. ) . .
Before Bayesian networks were proposed, thktional
Index Terms—Bayesian networks, embedded multivalued database mode[9], [23] already established itself as the
dependency, implication problem, - probabilistic - conditional 45 for designing and implementing database systems. Data
independence, relational databases. - .
dependencies, such as embedded multivalued dependency
(EMVD), (nonembedded) multivalued dependency (MVD),
|. INTRODUCTION and join dependency (JD), are used to provide an economical
representation of a universal relation. As in the study of

ROBABILITY theory provides a rigorous foundation for ) .
ayesian networks, two of the most important results are the

the management of uncertain knowledge [16], [28], [31];, 7. . . ; -
We may assume that knowledge is represented as a joint pr B|_I|ty to specify the universal relation aslasslessjoin of

ability distribution. The probability of an event can be obtaine%leviratlj smallelr relatlonsr; anld the devglopm;anht Odf efftl)uent_
(in principle) by an appropriate marginalization of the joint dismethods to only access the relevant portions of the database in

tribution. Obviously, it may be impractical to obtain the joinf]uery processing. A culminating re_sult [4] is that acyc!ic join .
distribution directly: for example, one would have to speéify dependency (AJD) prowdes a ba§|s .for schema des!gn as it
entries for a distribution over binary variablesBayesian net- POSSESSes many deS|rque properties in database applications.
works[31] provide a semantic modeling tool which greatly fa-, Several researchers including [13], [21], [25], [40] have no-

cilitate the acquisition of probabilistic knowledge. A Bayesiaﬁced similarities between relational databases and Bayesian net-

network consists of a directed acyclic graph (DAG) and a corrd2"Ks: He_re we ad_vocate that a Baye_s_ian nework is indeed
yelic graph ( ) generalized relational database. @uified approach [42],

sponding set of conditional probability distributions. The DA is t th ‘ dinB X works b

encodes probabilistic conditional independencies satisfied lis l_o_exptLess € concagp S use Itn . ay?slan nledwtorbs y

a particular joint distribution. To facilitate the computation Oghnera 1Ing ec;)rg?lspt_on |Ingi_con<|:edp ts 'Q rela |on§1 | a a”ajes.

marginal distributions, it is useful in practice to transform eBpropqsecL)rct) S nstic re; lona tata atie tTr? el ca 3.

Bayesian network into a (decomposable) Markov network e Bayesian database moglelemonstra es that there 1S a di-
rect correspondence between the operations and dependencies
(independencies) used in these two knowledge systems. More

) . . ) sgecifically, a joint probability distribution can be viewed as a
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marginalizationandmultiplicationoperations. Embedded mul-BEMVDs is important since it is used in the construction of
tivalued dependency (EMVD) in the relational database mod@ayesian networks. That is, subcla@b) allows a human
is a special case of probabilistic conditional independency @xpert to indirectly specify a joint distribution as a product
the Bayesian database model. Moreover, a Markov networkofconditional probability distributions. The subcla@b) of

in fact a generalization of an acyclic join dependency. conflict-free BMVDs is also important since it is used in the
In the design and implementation of probabilistic reasoningpnstruction of Markov networks.
or database systems,caucial issue to consider is thienpli- Let C denote an arbitrary set of probabilisdependencies

cation problem The implication problem has been extensivelysee Footnote 1) belonging to one of the above four classes,
studied in both relational databases, including [2], [3], [24Bndc denote any dependency from the same class. We desire
[26], [27], and in Bayesian networks [13]-[15], [30], [33], [36].a means to test wheth€&F logically impliesc, namely

[37], [41], [46]. The implication problem is to test whether a

given input se® of independencies logically implies another Cke )

independencys. Traditionally, axiomatizationwas studied in In our approach, for any arbitrary sasandc of probabilistic

an attempt to solve the implication problem for data and prob Ependencies, there arerrespondingsetsC ande of datade-

bilistic conditional independencies. In this approach, a finite s L ndencies. More specifically, for each of the above four classes
of inference axioms are used to generate symbolic proofs fo

. . ) 1aprobabilistic dependencies, there is a corresponding class of
particular independency in a manner analogous to the proof P

. ; . ita dependencies in the relational database model:
cedures in mathematical logics.
In this paper, we use our Bayesian database model to present (1) EMVD;
a comprehensive study of the implication problem for proba- (1) Conflict-free EMVD;
bilistic conditional independencies. In particular, we examine ’
four classes of independencies, namely: (2a) MVD;
(2b) Conflict-free MVD.

(1a) BEMVD; _ o ) )
(1b) Conflict-free BEMVD, as depicted in Fig. 1. S_lnc_e we advocat_e that the Bayesian data-
base model is generalizatiorof the relational database model,
(2a) BMVD; an immediate question to answer is:
_ q
(2b) Conflict-free BMVD. Do the implication problems coincide in these two data-

Class(1a) is thegeneralclass of probabilistic conditional inde- pase models._ o
tis, we would like to know whether the proposition

pendencies called Bayesian embedded multivalued dependeﬂ&?
(BEMVD) in our unified model. It is important to realize that

(1b), (2a) and(2b) arespecialsubclasses dfla). Subclass CRee=CFe @)
(2a) contains those probabilistic conditional independetolds for the individual pairéla, 1a),(1b, 1b),(2a, 2a), and
cies involving all variables, called Bayesian (nonembedded®b, 2b). For example, we wish to know whether proposition
multivalued dependency (BMVD) in our approach. BMVD(2) holds for the pair (BEMVD, EMVD), wher€ is a set of

is also known adull probabilistic conditional independencyBEMVDs, cis any BEMVD, and” andc are thecorresponding
[26], or fixed contextprobabilistic conditional independencyEMVDs.

[13]. Thus, (2a) is a subclass of probabilistic conditional We will show that

independency sincéla) may include a set containing the

mixture of embedded and nonembedded (full) probabilistic {BMVDs} |= ¢ <= {MVDs} |= ¢

conditional independencies, wher¢&s) can only include sets holds for the pair (BMVD, BMVD). Since (conflict-free

of nonembedded (full) probabilistic conditional independen; - 4
cies. Nonembedded probabilistic conditional independencr%MVD’ conflict-free MVD) are special classes of (BMVD,

are graphically represented by acyclic hypergraphs, whi eR/IVD), respectively, proposition (2) is obviously true for the

the mixture of embedded and nonembedded probabilisﬁglr(Zb’ 2b), namely:

conditional independencies are graphically represented by {CF BMVDs} E ¢ < {CFMVDs} E ¢

DAGs. However, as already mentioned, there are some sets of ' o ' '

probabilistic conditional independencies which niat have a where CF stands faronflict-free It can also be shown that
perfect-map. Thus, we use the teconflict-freefor those sets u

of conditional independencies which do have a perfect-map. {CF BEMVDs} |= ¢ <= {CFEMVDs} [= ¢

Consequently, clasb) contains those sets of nonembeddegy|ys for the pair (conflict-free BEMVD, conflict-free EMVD).
(full) probabilistic conditional independencies which can bggever, it is important to note that proposition (2)ist true
faithfully represented by singleacyclic hypergraph. Similarly, for the pair (BEMVD, EMVD). Thatis, the implication problem
class(1b) contains those sets of embedded and nonembeddgfls not coincide for the general classes of probabilistic condi-
probabilistic conditional independencies which cafiséafully  tional independency and embedded multivalued dependency. In

represented bysingleDAG. It is important to realize thdflb) [37], it was pointed out that there exist cases where
is a special subclass ¢fa), and tha{2b) is a special subclass

of (2a) (and of courséla)). The subclasélb) of conflict-free {BEMVDs} = ¢ <= {EMVDs} = c, (3)
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Fig. 1. Four classes gbrobabilistic dependencies (BEMVD, conflict-free Fig.2. Implication problems coincide on thelvableclasses of dependencies.
BEMVD, BMVD, conflict-free BMVD) traditionally found in the Bayesian

database model are depicted on the left. The corresponding cladataf . .

dependencies (EMVD, conflict-free EMVD, MVD, conflict-free MVD) in the Class. In particular, we present tbieasealgorithm as anonax-

standard relational database model are depicted on the right. iomatic method for testing the implication of this special class
of nonembeddegrobabilistic conditional independencies. In
Section V, we examine the implication problem fmbedded
dependencies. The conclusion is presented in Section VI, in
which we emphasize that Bayesian networks are indeed a gen-
eral form of relational databases.

and

{BEMVDs} = ¢ » {EMVDs} = c. (4)

(A double solid arrow in Fig. 1 represents the fact that proposi-
tion (2) holds, while a double dashed arrow indicates that propo-
sition (2) does not hold.) Since the implication problems do not In this section, we review pertinent notions including acyclic
coincide in the pair (BEMVD, EMVD), it was suggested in [37hypergraphs, the standard relational database model, Bayesian
that Bayesian networks are intrinsicadlifferentfrom relational networks, and our Bayesian database model.

databases. This remark, however, does not take into considera-

tion one important issue, namely, thelvabilityof the implica- A. Acyclic Hypergraphs

tion problem for a particular class of dependencies. Acyclic hypergraphs are useful for graphically representing

The question naturally arises as to why the implicatiofependencies (independencies).Ret {A;, A, -+, A,,} be
problem coincides for some classes of dependencies but notdgite set of attributes. AypergraphR = {Ry,Ry,---, Ry}
others. One important result in relational databases is that {§& family of subset®; € R, namely,R C 2%. We say that
implication problem for the general class of EMVDslissolv- R has therunning intersection propertyif there is a hypertree
able[17]. (By solvability, we mean there exists a method whicBonstruction orderind?; , Ry, - - -, R,, of R such that there ex-
in a finite number of steps can decide whether= o holds ists a branching function(i) < ¢ such thatk; N (R; U
for an arbitrary instanc¢X, o) of the implication problem.) R, U ... U R;_;) C Ry, fori=2,3,---,n. We callR an
Therefore, the observation in (3) is not too surprising, sinegyclic hypergraphifand only if R has the running intersection
EMVD is an unsolvableclass of dependencies. Furthermorgroperty [4]. Given an ordering:, Rs, - - -, R,, for an acyclic
the implication problem for the BEMVD class of probabilistichypergraphR and a branching functioi(s) for this ordering,
conditional independencies is alansolvable One immediate the set7 of J-keysfor R is defined as
consequence of this result is the observation in (4). Therefore,
the fact that the implication problems in Bayesian networks J = {R2 N Ry(2),Rz N Ryay, -+, By N Rypy ). (5)
and relational databases do not coincide is basathsnlvable . ] )
classes of dependencies, as illustrated in Fig. 2. This suppdrf§Se J-keys are in fact independent of a particular hypertree
our argument that there is meal difference between Bayesianconstruction ordering, that is, an acyclic hypergraph has a
networks and standard relational databases in a practical seH8#Jue set of J-keys.
since onlysolvableclasses of dependencies are useful in the EXample 1:Let B = {A;, Ay, A3, Ay, A5, A6} and
design and implementation of both knowledge systems. R = {B = {A,A A4, Ry = .{A% As; A},

This paper is organized as follows. Section Il contains backs = 142,43, 45}, Ry = {A;, A¢}} define the hyper-
ground knowledge including the traditional relational databa§éaPh in Fig. 3. It can be easily verified th&t, Ry, s, Ry is
model, our Bayesian database model, and formal definitioRdlYPertree construction ordering f&r
of the four classes of probabilistic conditional independencies ) .
studied here. In Section I, we introduce the basic notions per- Bo 0 By ={Ay, A} C y;b(2) = 1
taining to the implication problem. In Section 1V, we present Rz N (R1 U Ry) ={A2, A3} C Ri;b(3) =1,
an in-depth analysis of the implication problem for the BMVD R, N (R; U Ry U R3) ={A45} C Rs;b(4) = 3.

Il. BACKGROUND KNOWLEDGE

2
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Thus,R is an acyclic hypergraph. The s&tof J-keys for this
acyclic hypergraplR is

In the probabilistic reasoning literature, the graphical struc-
ture of a (decomposable) Markov network [16], [31] is specified
with a jointree However, it is important to realize that saying
thatR is an acyclic hypergraph is the same as saying/&hhas
a jointree [4]. (In fact, a given acyclic hypergraph may have a
number of jointrees.)

Fig. 3. Graphical representation of the acyclic hypergraRh =

B. Relational Databases { Ry, Ro, s, Ra}

To clarify the notations, we give a brief review of the stan-

dard relational database model [23]. The relational concepts pre- . é; — éi ) S é,ln )
sented here are generalized in Section II-D to express the prob- 1A Aaz) ..o tlAm
; P P r(R) = ta(A1)  t2(A2) ... t2(Ap)

abilistic network concepts in Section II-C.

A relation schemek = {Ay, As,---, A, } is a finite set of : : : :
attributes(attribute names). Corresponding to each attribte ts(A1) ts(A2) ... ts(Am)
is a nonempty finite seD,,, 1 < ¢ < m, called thedomain
of A;. LetD = Dy, U Da,--- U Dy, . Arelationr on Fig. 4. Relation onthe schem® = {41, Az, -, A}
the relation schem&, written»(R), is a finite set of mappings
{t1,%2,---,ts} from R to D with the restriction that for each
mappingt € r, t(A;) mustbe inD.,,, 1 < ¢ < m, wheret(4;) r(ABCD) =
denotes the value obtained by restricting the mapping;té\n
example of a relatiom on R = {41, Az, - -, A, } in general
is shown in Fig. 4. The mappings are calteglesandt(A) is
called the A-value of. We uset( X)) in the obvious way and call
it the X-value of the tuple, whereX C Ris an arbitrary set of
attributes.

Mappings are used in our exposition to avoid any explicit
ordering of the attributes in the relation scheme. To simplify mapo(r) =
the notation, however, we will henceforth denote relations by
writing the attributes in a certain order and the tuples as lists
of values in the same order. The following conventions will be
adopted. Uppercase lettess B, C' from the beginning of the
alphabet will be used to denote attributes. A relation schergg, 5. Relation:(4BCD) satisfies the EMVDB —— A|C, since
R = {A;,As,---, A} is written as simplyA; As -+ A,,,. 7ase(r) = wap(r) < ape(r).

A relation » on schemeR is denoted by either(R) or
r(A1 Az - -+ A,,). The singleton sefA} is written asA and the
concatenationX'Y is used to denote set uniod U Y. For
example, a relation(R) on R = ABCD is shown at the top
of Fig. 5, where the domain of each attributefiris {0,1}.

Letr be arelation orz and X a subset of?. Theprojection
of r onto X, written 7 x (r), is defined as

== =0 O ok

—~o oo ool
— = o~ ool

il
== O
- o oy

X
= o oty
— ol

—= O O
= o o o oty
— = o= ol

Example 2: Relationr(ABCD) at the top of Fig. 5 satis-
fies the EMVDB —— A|C, SinCGWABc(T) = WAB(T) >
7ch(7’).

In the special case whekiYZ = R, we callX —— Y|Z
(nonembedded) multivalued dependefiy D), or full MVD.

It is therefore clear that MVD is apecial caseof the more
rx(r) = {{(X)[t € r}. (6) 9eneral EMVD class, as shown in Fig. 1. We write the MVD
X —— Y|Z asX —— Y since the context is understood.

The natural join of two relationsr; (X)) andr»(Y'), written  MVD can be equivalently defined as follows. LBtoe a relation

r1(X) i r2(Y), is defined as schemeX andY be subsets ok, andZ = R— XY. Arelation
r(R) satisfies themultivalued dependendVD) X —— Y
(X)) a2 (Y) if, for any two tuplest; andt, in » with ¢, (X) = ¢,(X), there

= {H{XY)[H(X) € r(X) andt(Y) € 2(Y)}. (7) exists a tuples in 7 with

Let X,Y, Z be subsets oR suchthatY N Z) C X. We say
relationr(R) satisfies the embedded multivalued dependency
(EMVD) X —— Y|Z in the context XYZ, if the projection
mxy z(r) of r(R) satisfies the condition

t3(XY) =t1(XY) and t3(Z2) =t(Z). (8)
It is not necessary to assume tatandY are disjoint since

nyz(T)I7Txy(7‘)l><17rxz(7‘). X—-——Y—=X—-—->Y-X.



WONG et al.: IMPLICATION PROBLEM FOR PROBABILISTIC CONDITIONAL INDEPENDENCY 789

The MVD X —— Y is anecessarandsufficientcondition for on D is a functionp on D, p: D — [0, 1]. That is, this function

r(R) to be losslessly decomposed, namely p assigns to each tuple= (t(A1),t(Az),---,t(An)) € D
a real numbe < p(t) < 1 andp is normalized, namely,
r(R) = nxy (r) <xmxz(r). (9) Xiep p(t) = 1. For convenience, we write a joint proba-
bility distribution p asp(A;, Az, -+, A,,) over the setR of
As indicated in Fig. 1, there is subclass of (nonembeddedhriables. In particular, we usg(ai,as,---,a,,) to denote

MVDs called conflict-free MVD. Unlike arbitrary sets of a particular value ofp(t) = p((t(A1),t(Az2), -, t(An))).
MVDs, conflict-free MVDs can bdaithfully represented by That is, p(a1,a2,---,a) denotes the probability value
a unique acyclic hypergraph. In these situations, the acyclig (t(A1),t(A2),---,t(A,,))) of the functionp for a particular
hypergraph is called aerfect-map[4]. That is, every MVD instantiation of the variablesA;, A;,---, A,,. In general, a
logically implied by the conflict-free set can be inferred fronpotential[16] is a functiong on D such that(t) is a nonneg-
the acyclic hypergraph, and every MVD inferred from thative real number anil;cp q(t) is positive, i.e., at least one
acyclic hypergraph is logically implied by the conflict-free setg(t) > 0.

The next example illustrates the notion gberfect-map We now introduce the fundamental notion friobabilistic
Example 3: Consider the following sef’ of MVDs on R = conditional independency.et X,Y andZ be disjoint subsets
A1 Ay A3 A A5 Ag: of variables inR. Let z, , and z denote arbitrary values of

X,Y and Z, respectively. We say” and Z are conditionally

C ={AA3 —— A1, Ag A3 —— Ay, Ax Az —— Az A, independengiven X under the joint probability distributiop,

Ay —— A1 AsAsAy, Ay —— Ag, AsAsAs —— Ar}. denoted, (Y, X, ), if
10
10 plylez) = plyle) (12)

This set of MVDs can béaithfully represented by the acyclic . . .
hypergraphR in Fig. 3. According to the separation methodVN€neverp(zz) > 0. This conditional independency
for inferring MVDs from an acyclic hypergraph, every MvDZ»(Y: X, Z) can be equivalently written as

in C can be inferred fronR. Obviously, every MVD logically

implied by C' can then be inferred frofR, and every MVD plyzz) = pyx) 'P(xz)_ (13)
inferred fromRR is logically implied byC. Thus, the acyclic p(z)

hypergraphR in Fig. 3 is aperfect-mapof the setC of MVDs ) _ o o
in (10). We write I,,(Y, X, Z) asI(Y, X, Z) if the joint probability dis-

Note that the se€’ of MVDs in (10) is conflict-free It is tribution p is understood. N S
important to realize that there are some sets of MVDs whichBY the chain rule, a joint probability —distribution

cannot be faithfully represented by a single acyclic hypergragh A1, Az, - -, An,) can always be written as
Example 4: Consider the following sef’ of MVDs on R =
A1 ArAg: p(Ar, Az, An) =p(A1) - p(A2|Ar) - p(As|Ar, Ag) - - -

. p(Arn|A17 A27 e 7Arnfl)~
C= {Al — AQ, Ag — AQ} (11)
The above equation is agentity. However, one can use condi-

There is nasingleacyclic hypergraph that can simultaneouslyional independencies that hold in the problem domain to obtain
encode both MVDs inC'. For example, consider the acyclicy simpler representation of a joint distribution.
hypergraphR = {R; = A;A; Ry = A1As}. The MVD  Example 5:Consider a joint probability distribution

A; —— As in C can be inferred fronR using the method p(Ay, Az, As, Ay, As, Ag) Which satisfies the sef of proba-
of separation. However, the MVl3 —— A, cannot be in- pjjistic conditional independencies

ferred fromR using separation. On the other hand, the acyclic
hypergraphiR’ = {R| = A, A3, R, = A; Az}, represents the C = {I(A1,0,0), I(As, Ar, 0), I(As, A, As)

MVD Ag —— As but not4d; —— A,.
Example 4 indicates that the classooiflict-freeMVDs is a 1(Ay, Ax Az, A1), I( A5, Ae Az, A1 Aa)

subclass of the MVD class. For exampi&in (11) is a member I(Ag, As, Ay Ay A3 Ay} (14)
of the MVD class, but is not a member of the conflict-free MVD

class. Equivalently, we have

C. Bayesian Networks (A1) =p(A1)

Before we introduce our Bayesian database model, let us first p(Az]|Ar) =p(Az|A41)
review some basic notions in Bayesian ngtyvorks [31].. p(As|A1, Az) = p(As|Ar)

Let R = {41, A2, -, A} denote a finite set of discrete (A4 As, As, As) = p(Ad| As, As)
variables (attributes). Each variableis associated with a finite Pl £2, £3) =Pl 3
domainD,,. Let D be the Cartesian product of the domains p(As5|Ar, Az, Az, Ay) =p(A5|A2, As)

D4,,1 <4< m.Ajoint probability distribution[16], [28], [31] p(Ag| A1, Az, As, A4, A5) =p(As|As).
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Ay D. A Bayesian Database Model
/ \ Here we review our Bayesian database model [42], [45]
which serves as a unified approach for both Bayesian networks

and relational databases.

A potential ¢(R) can be represented aspeobabilistic re-
lation r(R, Ay), where the column labeled hy, stores the
A probability value. The relatiom(A;, Ay, ---, A,,, A,) repre-

5 senting a potentiaf(A;, Az, - -, A,,) contains tuples of the
formt = (¢, ¢(¢)), as shown in Fig. 7. Let(R) be the standard
database relation representing the tuples \pitkitive proba-

A6 bility, namely

Fig. 6. DAG representing all of the probabilistic conditional independencies r(R) = {t(R)|q(t) > 0}.
satisfied by the joint distribution defined by (15).

I " ) i . The probabilistic relationr(R, A,) representing the potential
Utilizing the conditional independencies @, the joint distri- q(R) is defined as

butionp(A;, Az, Az, Ay, A5, Ag) can be expressed in a simpler

form H(B. Ay) = {(R A |HR) = H(R) € r(R)
p(Al,AQ,Ag,A4,A5,A6) and
= p(A1) - p(A2|A1) - p(As| A1) - p(A4| A2, A3z)
- p(As|Az, Az) - p(Ag|As). (15) t(Aq) = Q(t)}-

We can repre;ent all qf thg pro'bapilis.tic conditional indepe'a—or convenience we will write( R, A,) asr(R) and say rela-
dencies satisfied by this joint distribution by the DAG showfj,, . ig on i with the attributed, understood by context. That
in Fig. 6. This DAG together with the conditional probabilityis re|ations denoted by boldface represent probability distribu-
distributions p(A.), p(A2|A1)’_ p(A3|A1)’_ p(Asld2, 43), fions. For example, a potentig{ A; A» A3) is shown at the top
p(As|A2, 43), andp(As|A5), define aBayesian networf81]. Fig. 8. The traditional relatiom(A; A;A3) and the proba-

Example 5 demonstrates that Bayesian networks providgygsiic rejation (A4, A, As) corresponding ta(A, A>As) are
convenient semantic modeling tool which greatly facilitates thg, ;un at the bottom of Fig. 8.

acquisitionof probabilistic knowledge. That is, a human expert Letr(R) be arelation and be a subset a. In our notation

can indirectly specify a joint distribution by specifying probag,q marginalization ofr onto X, written rx (r), is defined as
bility conditional independencies and the corresponding condi-

tional probability distributions.
To facilitate the computation of marginal distributions, it is
useful to transform a Bayesian network into a (decomposable) Tx(r) = { (X Ayx))|b(X) € mx(r)
Markov network. AMarkov networl16] consists of an acyclic
hypergraph and a corresponding set of marginal distributions.
The DAG of a given Bayesian network can be converted kg
themoralizationandtriangulationprocedures [16], [31] into an
acyclic hypergraph. (An acyclic hypergraph in fact represents a
chordal undirected graph. Each maximal clique in the graph cor-

responds to a hyperedge in the acyclic hypergraph [4].) For ex- t(Ayx)) = Z t'(A,) Y. (17)
ample, the DAG in Fig. 6 can be transformed into the acyclic hy- tor,
pergraph depicted in Fig. Bocal computatioprocedures [45] t(X)=t(X)

can be applied to transform the conditional probability distribu-

tions into marginal distributions defined over the acyclic hypeffhe relationrx(r) represents the usualarginal distribution
graph. The joint probability distribution in (15) can be rewritteng(X) of ¢(R) onto X. By definition of r(R), 7x(r) does not
in terms of marginal distributions over the acyclic hypergraph icontain any tuples with zero probability.

Fig. 3, as (16), shown at the bottom of the page. The Markov net-Example 6: Given the relationr(A4; A, A3) at the top of
work representation of probabilistic knowledge in (16) is typiFig. 9, the marginalization of onto A; A, is the relation
cally used for inference in many practical applications. TA, A, (r) Shown at the bottom.

(A1, Az, Az) - p(Ag, Az, Ay) - p(Az, A3, A3) - p(As, As)

Ay, Ay, As, Ay, As, Ag) =
P(A; Az, Az Ay, 45, Ao) (A, A3) - p(A2, As) - p(A3)

(16)
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A Az Am Aq Ay Ay Az A
t(4)  t1(A2) t1(Am)  ti(4,) = q(t1) r(A1A2A3) = |0 0 0 01
t2(A1)  t2(42) t2(An)  t2(4y) = q(te) 0 0 1 02
: . : . 1 0 0 05
ts(A1)  ts(4s) ts(Am)  ts(Ag) = q(ts) AL Ay Ay
TA, A (r) = 0 0 0.3
Fig. 7. Potential;( R) expressed asrobabilisticrelationr(R). 1 0 0.5
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Fig.9. Relationr(A;A;A3) representing a potentigf A A> As) is shown at

/(1)1 14(1)2 1‘(1)3 Tt the top. At the bottom is the marginalization, 4, (r) of relationr(4; A, As)
’ onto A A,.
0 0 1 02
q(A1 A2 A3) 0 ) 1 o1 r1(A;As) x ro(A2A3)
1 0 0 00
1 0 1 00 A A Aql(AlAz) Ay  Aj qu(A2A3)
1 1 0 01 = 1 1 0.1 x [ 1 1 0.2
1 1 1 03 2 1 0.2 12 0.3
' 1 2 0.3 3 1 04
Al A2 A3
r(AAsAs) = [0 0 0 A Az A3 A ir)ae(Aedae)
0 0 1 =1 1 1 0.02
0o 1 1 1 1 2 0.03
1 1 0 2 1 1 0.04
1 1 1 2 1 2 0.06
A Ay Ay A Fig. 10. Product joinr, (A, Az) X rz(A2As5) of relationsr, (A, A4.) and
r{A; A2 As) = 0 0 0 o1 ra(AzAs).
0 0 1 02 _ . - .
0 1 1 01 where the relationy (r)~* is defined usingx (r) as follows:
1 1 0 01 X
1 1 1 03 Tx (1) 7F = {6(X Ay /p0x))[6(X) = t/(X) € 7x(r) and

t(A1/p0) = /8 (Ap) -
Fig. 8. Potentialy(A; A2 As) is shown at the top of the figure. The database
relationr(A, A, A3) and the probabilistic relation(4, 4, A5 ) corresponding  Note that this inverse relationy (r)~* is well defined because
10 (414245 are shown at the bottom of the figure. by definition7x (r) does not contain any tuples with zero prob-
ability. By introducing a binary operatad calledMarkov join
The product joinof two relationsr; (X) andr2(Y'), written  the right-hand side of (18) can be written as

r1(X) x r2(Y), is defined as )

Txy(r) X sz(r) X Tx(r)_ = Txy(r) X sz(r).

ry (&) x ra(Y) Thus, in terms of this notation, we say that a relati¢X Y %)
= {t(XY Ay, (x).¢.(0")|[E(XY) € mx(r1) M7y (r2) and  satisfies the BEMVDX == Y'|Z, if and only if

t(Ag, (x)-0.(v))

= t(Ag ) - t(Agy )} (19)

Txyz(r) = Txy(r) ® sz(r).

Itis not necessary to assume tBatY’, andZ are disjoint since
Thatis,r1 (X) x ro(Y") represents the potentigl(X) - g2(Y")
obtained by multiplying the two individual potentiajs(.X ) and
3@ (Y).

Example 7: Let ri(A; A>) andra( Az A3) represent poten-  Example 8: Relationr( ABC D) at the top of Fig. 11 satisfies
tials g1 (A1 A2) andgz(AzAs). The product joinr;(A; A2) x  the BEMVD B == A|C, since the marginat,sgc(r) can be
I‘Q(AQAg) of relationSrl(AlAg) and I‘Q(AQA;),) is shown in written aSTABc(I‘) = TAB(I‘) ® TBc(I‘).

Fig. 10. In the special case whekY Z = R, we call the BEMVD

Probabilistic conditional independency is defined aX == Y|Z nonembeddeBEMVD, full BEMVD, or simply
BayesianEMVD (BEMVD) in our Bayesian database modelBayesian multivalued dependerfBMVD). For notational con-

A probabilistic relationr(XY ZW) satisfies theBayesian venience we write the BMVIX == Y|Z asX == Y if

embedded multivalued dependefBEMVD), X == Y|Z, Z = R — XY isunderstood by context.

if It should be clear that stating the generalized rela-
tion r(XYZW), for a given joint probability distribution

-1 (18) p(XYZW), satisfies the BEMVDX == Y|Z is equivalent

X=>=2YZesX=2= Y -X)|(Z2-X).

Txyz(r) = Txy(r) X sz(r) X Tx(r)
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A B C D Ap(ABCD) Al A2 A3 Ap
0 O 0 0 01 r(A1A2A3) = 0 0 0 01
r(ABCD) = 0 0 0 1 0.1 0 0 1 0.6
0 0 1 1 0.2 1 0 0 03
1 0 0 O 0.1
1 0 1 0 0.1 Ay Ay As
1 1 1 1 0.4 T(A1A2A3) = 0 0 0
0 0 1
A B C Ajang 1 0 0
Tapc(r) = 0 0 0 0.2
0 0 1 0.2 Fig. 12. In the Bayesian database model it is cruciatdontthe duplicate
1 0 0 0.1 tuples, as reflected by the probabilistic relatigat; A, A5 ). On the other hand,
1 0 1 0.1 duplicate tuples arignoredin the relational database model, as reflected by the
1 1 1 0.4 standard relatiom( A; A5 A3).
A B AEQXB) B C Ap(BC) Al A2 Ap(AlAz
= [0 0 04 |®[0 0 03 Taa() = [ 0 0 :
1 0 0.2 0 1 0.3 1 0 0.3
1 1 0.4 1 1 0.4
Ay Ay
A B (C ApgAB)p(Bc) TALAs (r) = 0 0
0 0 0 (04)(03)/(06) =02 LY
= 0 0 1 (04)0. 3)/(0 6) =02
1 0 0 (0.2)(0.3)/(0.6)=0.1 Fig. 13. Relatiorr, a, (r) is the marginalization af(4; A2 As) in Fig. 12,
1 0 1 (0 2)(0 3)/(0 6) =01 and7r_41‘42(r) is the projection Of‘(AIA.zflg).
1 1 1 (04)(04)/(04)=04
A1 Az Az A3 Al A2 AS
Fig. 11. Relationr(ABCD) satisfies the BEMVDB == A|C, since ; Lyxil =11 1 L
Tapo(r) = Tap(r) @ 7ec(r). 1 1 2 1 1 2
1 2 3 1 2 1 1
2 1 2
to stating that” and Z are conditionally independent given
underp in (13), namely A A Apaan Ay Az A4y
1 1 X 1 1
2 1 04 1 2 0.5
X=>=Y 2= I(Y,X,Z). (20) 1 9 0.4 3 1 0.3
Thus, we can use thg terms BEMVD and probabilistic condi- A A Az Ay aine)plAsds)
tional independency interchangeably. 1 1 1 0.04
=]1 1 2 0.10
E. Terminology in the Bayesian and Relational Database 2 1 1 0.08

Our goal here is to demonstrate that there is a direct corre
4 Natural joinr(A;Az) s r(A2A;z) of relationsr(A;A;) and

spondence between the notions used in relational databasesr@% 11,) (top). Product join:(A; A3) x r(A,A,) of relationsr(A; A5) and
probabilistic networks. r(A;As) (bottom).

As already mentioned, angotential ¢(R) can be viewed
as a probabilistic relation r(R) in our Bayesian databaseif and only if the MVD X —— Y holds inr. In parallel, a
model. Obviously, the only difference between a probabilistisrobabilistic relation-(XY Z) has a lossless decomposition:
relation r(R) and a standard relationR) is the additional
column labeled byA, for storing the probability value. As r(XY Z) = 7xy(r) ® 7x 2(r)
shown in Fig. 12, in the Bayesian database model it is crucial
to count the duplicate tuples, whereas duplicate tuples ageand only if the BMVD X == Y holds inr, i.e.,Y andZ
ignoredin the relational database model. The marginalizatiogre conditionally independent givet in the joint probability
= and the product joinx in the Bayesian database model argjstribution p(XY Z) used to definer(XY Z). Since the
obviously generalizations of the projectianand the natural propabilistic relationr(XY Z) does not contain any tuples
join  operators in the standard relational database modelt@g (xvz)) = 0, the MVD X —— Y is anecessargondition

illustrated in Figs. 13 and 14. _ for r to have a lossless decomposition.
In the relational database model, a relatiqiX'y’ Z) has a  The above discussion clearly indicates that a probabilistic rea-
lossless decomposition: soning system is a general form of the traditional relational data-

base model. The relationships between these two models are
r(XYZ) =naxy(r) =<nxz(r) summarized in Table I.
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TABLE | logically implied byC can be inferred from the graphical struc-
CORRESPON?L“;‘EET\;‘C“)"S\‘ECE;OGY IN THE ture, and every conditional independency that can be inferred
from the graphical structure is logically implied &Y. (We say
Relational Bayesian Bayesian C logically impliesc and writeC = c, if whenever any dis-
Database Network Database tribution that satisfies all the conditional independencie€in
relation distribution relation then the distribution also satisfies) A set C of probabilistic
r(R) p(R) r(R) conditional independencies is callednflict-freeif there exists
o i ] a DAG which is a perfect-map oF.
projection  marginal marginal We now can define theonflict-free BEMVDsubclass used
mx(r) p(X) 7x(r) by Bayesian networks as follows:
natural join multiplication product join
¥ . x (1b) Conflict-free BEMVD
ditional = {C| there exists a DAG which is a
conailtiona.
EMVD independency BEMVD - perfect — map of Cj. (23)
X +-Y|Z IV, X,Z) X=>=Y(Z

It should be clear that a causal input list isaver[23] of a con-
flict-free set of conditional independencies. ¢ausal input list
[32] or astratified protoco[39] over a seft = A; As - - - A, of

lll. SUBCLASSES OFPROBABILISTIC CONDITIONAL variables would contain precisely conditional independency

INDEPENDENCIES statementd (X, Y, Z). For example, the sef of conditional
In this section, we emphasize the fact that probabilistifdependencies in (14) is an example of a causal input list since

networks are constructed using specahflict-freesubclasses C precisely defines the DAG in Fig. 6. Since the conditional in-
within the general class of probabilistic conditional indeperlependency(A;, A;AsA,, A1) can be inferred from the DAG
dencies. That is, Bayesian networks are not constructed usiigigd- 6,C U {1(A;, A9 Az Ay, A1)} is still a conflict-free set
arbitrary sets of probabilistic conditional independencies, jufut not a causal input list.)
as Markov networks are not constructed umgitrary sets of As illustrated in F|g 1, the main pOint is that the conflict-free

nonembedded (full) probabilistic conditional independenciesBEMVD class is a subclass within the BEMVD class. For ex-
Probabilistic conditional independency is callBayesian ample, the se€ of conditional independencies in (22) belongs

embedded multivalued depende(BEMVD) in our approach_ to the general BEMVD class in (21) but does not belong to con-

We define the general BEMVD class as follows: flict-free BEMVD subclass in (23).
Another subclass within the general BEMVD class are
(1a) BEMVD = {C|C is a set of probabilistic the nonembeddedorobabilistic conditional independencies.

Nonembedded probabilistic conditional independency is also
calledfull [26] or fixed contexf13]. Nonembeddedonditional

. , i i h hich invol iabl ie.
Bayesian networks are defined by a DAG and a correspondllfrl]deg(eng)e Cvcr:zfe;rli Zt ZSZ which invola# variables, i.e.,

set of conditional probability distributions. Such a DAG encodée Example 10: Let R = {A. B, C, D}. Consider the following
probabilistic conditional independencies satisfied by a partic- L .

ular joint distribution. The method af-separatior{31] is used SetC of probabilistic conditional independencies:
to infer conditional independencies from a DAG. For example, _

the conditional independency df, andA; given A, A3 Ay, i.e., C =1{I(4, BC, D), I{A, B, C)}.

I(4;, 424344, Ay), can be inferred from the DAG in Fig. 6 independency (A, BC, D) is nonembeddedfull)

using the d-separation method. However, it is important to e e {A,B,C.D} = R, but the second independency

alize that there are some sets of probabilistic conditional indjé—

pendencies that cannot sthfully encoded by a single DAG. (éhfé:l?slsso??\tofﬁgrgsgzgng;c%iﬁisCtif (;onditional indepen-
Example 9: Consider the following se€ of probabilistic P P

" . . . dencies is calleBayesian multivalued dependen®MVD) in
conditional independencies dul, B, C', D}: our approach. We define the BMVD class as follows:

conditional independencigs  (21)

C={I(4,B,0),I(4,C, B), I{AB, €, D)} (22) (2a) BMVD = {C|C is a set ofnonembedded

There is nesingleDAG that can simultaneously encode the in- probabilistic conditional independencles

dependencies . (24)
Example 9 clearly indicates that Bayesian networks are de-

fined only using a subclass of probabilistic conditional indeNonembedded (full) independencies are important since

pendencies. In order to label this subclass of independenciésrkov networks do not refleatmbeddedtonditional inde-

we first recall the notion of perfect-map. A graphical structurpendencies. For instance, the Bayesian distribution in (15)

is called gperfect-mag4], [31] of a given selC of probabilistic  satisfies the (embedded) probabilistic conditional independency

conditional independencies, if every conditional independenéyAs;, A, A;), while the Markov distribution in (16) does
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not. That is, Markov distributions only reflectonembedded a relation can be decomposed losslessly into two or more pro-

probabilistic conditional independencies. jections (smaller relations). L& = {Ry, R»,---,R,} be an
The separationmethod [4] is used to infer nonembeddedcyclic hypergraph on the set of attributes— R, U Ry U

probabilistic conditional independencies from an acyclic - U R,,. We say that a relation( R) satisfies thecyclic join

hypergraph. LefR be an acyclic hypergraph on the setof dependencyAJD),» {Ry, Ra, -, R, } If:

attributes andX,Y C R. The BMVD X == Y is inferred

from the acyclic hypergrapR, if and only if Y is the union of r(R) = 7R, (r) b mr,(r) - 7R, (r).  (27)

some disconnected components of the hypergfaphith the ) .

set of nodesy deleted. That is, » decomposes losslessly onf®. We also write

Example 11: Consider the following acyclic hypergra Ry, Ry, -, Ry} aspa R. ) o
on R :pABCDEFGH' R = {R, g: A%B R, yi gcgh Example 13: Relationr(R) at the top of of Fig. 15 satisfies

Rs = DE, Ry = DFG,R; — DFH). Deleting the node thhe AJD’”?} R, Whereﬁ = {B1, Ry, R, By} is the acyclic
D, we obtainR’ = {R, = AB, R, = BC, R, = g, nypergraphinFig.3. Thatis,

" = FG,R, = FH}. The disconnected componentsAri

4 ) 45 (A1 As As Ay As Ag) =4, a,a. (T
are:S; = ABC,S, = FE,S3 = FGH. By definition, the (A dxAsdy 6) = Tz 43 (1) PO Ttz s, ()
BMVDs D == ABC, D == E, D == FGH, and DT 4 A5 (1) DT 4 (1)
D == ABCEFE can be inferred fronfik. On the other hand,

the BMVD D == BC is notinferred fromR sinceBC'is not The conflict-free class of MVDs, namely, AJDs, play a major

equal to the union of some of the sets{ifi, S, Ss1. role in database design since it exhibits many desirable proper-

. . . ties in database applications [4]. In our unified model, a Markov
Just as Bayesian networks are not constructed using arbit PP [4]

rar : .
sets of BEMVDs, Markov networks are not constructed usinﬁge)lf_vg?;lg c:a? }?f z&;S{I}/.s;fan}e;)gea;ﬁr:g;gﬁfcorr]r;pzfrg\;gh on the

arbitrary sets of BMVDs. That is, there are sets of nonem:- . - .
bedded independencies which cannotaihfully encoded by a setof attributedt = fty U &y U -+ U It,. We say dayesian

. : acyclic join dependenc{BAJD), written®R, is satisfied by a
single acyclic hypergraph.

Example 12: Consider the following se€ of nonembedded relationr(f), if
probabilistic conditional independencies pa, B, C'}: r(R) = (- (7R, (¥) ® T8, (r)) @ TR, (r)) - - ) ® T, (L),

C = {I(A,B,0),I(A,C, B)}. (25) (28)

. . . . where the sequende,, R, - - -, R,, is a hypertree construction
There is nosingleacyclic hypergraph that can SImUItameOUSI%rdering for7§. Since th; probabilistic r%a?atioﬂR) does not

encode both nonembedded independenci&€s.in contain any tuples(4,) = 0, the AJD,sa R, is anecessar
Example 12 clearly indicates that Markov networks are de- .. y tp b/ ' ' y

, . e ondition forr(R) to satisfy the BAJD@R.

fined only using a subclass of nonembedded probabilistic conal— i S .

. . . X i . ; Example 14: Recall the distribution defined by the Markov

tional independencies. The notion of conflict-free is again us%%twork in (16), namely (29). shown at the bottom of the next

to label this subclass. A s€ of nonembedded probabilistic ' y ’

i, . . K . . . page, wherék = {AlAQAg, AsAs Ay, AxAsAs, A;)A(;} is the
conditional independencies is callednflict-freeif there exists : o
an acyclic hypergraph which is a perfect-mapGaf acyclic hypergraph in Fig. 3. Lat(A; A, A5 4445 ) be the

We now can define theonflict-free BMVDsubclass used by probabilistic relation representipgAs, Ay, As, A4, 4;, Ag) in
. (29). It can be seen thafA; A; A3 A4 A5 Ag) satisfies the BAID
Markov networks as follows:

® R, namely
(2b) Conflict-free BMVD r( A1 As Az A As Ag)
= {C| there exists an acyclic
{ | L. y = (((TAlAzAs (I‘) ® TA2A3A4(r)) @ Ta;A345 (I‘))
hypergraph which is @erfect — map of C}. (26) © Ty ay (1)
1A
As illustrated in Fig. 1 (left), the main point is that the con- = 7414245 (£) X Ty gy (B) X Ty (1)1
flict-free BMVD class is a subclass within the BMVD class. For X Tayas45(T) X Ta,a,(0)7F X 74,4, (1) X 74, (r) 7!

example, the se€ of nonembedded probabilistic conditional
independencies in (25) belongs to the BMVD class in (24) biif'e relationr(k) at the bottom of Fig. 15 satisfies this BAJD
not to the conflict-free BMVD class in (26). OR.

We conclude this section by pointing out another similarity Example 14 clearly demonstrates that the representation of
between relational databases and Bayesian networks. The F¥wledge in practice is theamefor both relational and prob-
tion of conflict-free MVDs was originally proposed by Lienabilistic applications. An acyclic join dependency (AJD)

[22] in the study of the relationship between various database

models. It has been shown [4] that a conflict-free@ef MVDs r(R) =pa {Ry, Ry, -, R}

is equivalento another data depende_ncy calyclic join de—_ and a (decomposable) Markov network
pendencyAJD) (defined below). That is, whenever any relation

satisfies all of the MVDs in”, then the relation also satisfies p(R1) p(Ra) - p(R,)

a corresponding AJD, and vice versa. An AJD guarantees that p(R) = p(Ry N Ry)----- p(R._1 N R,)
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A Ay A3 Ay As  Ag Clearly, the first question to answer is whether such a problem
B)=0 0 0 o0 1 0 is solvable i.e., whether there exists some method to provide
o 0 0 1 1 0 a positive or negative answer for any given instance of the im-
1o 1 1 0 1 plication problem. We consider two methods for answering this
1 1 0 1 1 0 question.
A method for testing implication is by axiomatization. An
A, A, A; A, A; As A, . - : : o .
r(R)=[0 0 0 0 1 0 04 inference axionis a ru_le that states if a relz_;mon satisfies certain
0 o0 o0 1 1 0 02 dependencies, then it must satisfy certain other dependencies.
1 0 1 1 0 1 02 Given a sett of dependencies and a set of inference axioms,
1 1 0 1 1 0 02 the closureof 3, written 7T, is the smallest set containirigy

such that the inference axioms cannot be applied to the set to
Fig. 15. Relationr(R) at the top satisfies the AJDx R. Relation yield a dependency not in the set. More specifically, the¥set
r(R) at the bottom satisfies the BAJDPR. The acyclic hypergraph derivesa dependency, writtenX |- o, if o isin ©*. A set of

R = {R:, R, Rs, R} is depicted in Fig. 3. inference axioms isoundif wheneverX: - o, thenX |= o. A

set of inference axioms isompleteif the converse holds, that

is, if ¥ = o, thenX I- o. In other words, saying a set of axioms
are complete means that)if logically implies the dependency

o, thenX derivess. A sequence of dependencies ovek is a

or in our terminology, the BAJD

r(R) = ©{R1, By, -+, B} derivation sequencen X if every dependency in is either
_ _ 1) a member obZ, or
are both defined over an acyclic hypergraph. 2) follows from previous dependenciesarby an appli-
The discussion in Section II-E explicitly demonstrates that cation of one of the given inference axioms.

there is adirect correspondence between the concepts usednidte thatRz is the set of attributes which appeardh If the
relational databases and Bayesian networks. The discussi®ibms are complete, to solve the implication problem we can
at the end of this section clearly indicates thath intelligent simply computeZ* and then test whether € S+ .
systems represent their knowledge over acyclic hypergraphs\nother approach for testing implication is to use a nonax-
in practice. However, the relationship between relationgimatic technique such as ticeasealgorithm [23]. The chase
databases and Bayesian networks can be rigorously formalizggbrithm in relational database model is a powerful tool to ob-
by studying theimplication problemsfor the four classes of ain many nontrivial results. We will show that the chase algo-
probabilistic conditional independencies defined in this sectiofghm can also be applied to the implication problem for a par-
ticular class of probabilistic conditional independencies. Com-
putational properties of both the chase algorithm and inference
axioms can be found in [12] and [23].

The rest of this paper is organized as follows. Since nonem-

Before we study the implication problem in detail, let us firspedded dependencies are best understood, we therefore choose
introduce some basic notions. Here we will use the temrs to analyze the pair (BMVD, MVD), and their subclasses (con-
lation andjoint probability distributioninterchangeably; simi- flict-free BMVD, conflict-free MVD) before the others. Next
larly, for the termsdependencgndindependency we consider the embedded dependencies. First we study the

Let be a set of dependencies defined on a set of attriliitespair of (conflict-free BEMVD, conflict-free EMVD). The con-
By SATR(X), we denote the set of all relations éthat satisfy flict-free BEMVD class has been studied extensively as these
all of the dependencies i. We write S ATr(X) asSAT(X)  dependencies form the basis for the construction of Bayesian
when R is understood, and AT(o) for SAT({c}), wheres  networks. Finally, we analyze the pair (BEMVD, EMVD). This
is a single dependency. We saylogically implieso, written  pajr subsumes all the other previously studied pairs. This pair
Y o, if SAT(X) C SAT (o). In other wordsg is logically s particularly important to our discussion here, as its implica-
implied by if every relation which satisfies also satisfies.  tion problems arainsolvablein contrast to the othesolvable
That is, there is no counter-example relation such that all of thirs such as (BMVD, MVD) and (conflict-free BEMVD, con-

IV. THE IMPLICATION PROBLEM FORDIFFERENT CLASSES OF
DEPENDENCIES

dependencies ilu are satisfied but is not. flict-free EMVD).
Theimplication problemis to test whether a given skt of
dependencies logically implies another dependenayamely V. NONEMBEDDED DEPENDENCY

In this section, we study the implication problem for the class
Z o (30) of nonembedded (full) probabilistic conditional independency,

p(Ay, Az, Az) - p(Ag, Az, Ay) - p(Az, Az, As) - p(As, As)

p(Az, Az) - p(Ag, A3) - p(As) 7 (29)

p(A17 A27 A37A47A57 AG) =
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called BMVD in our Bayesian database model. One way to The above example demonstrates that whenever a depen-
demonstrate that the implication problem for BMVDs is solvdency is derived using sound axioms, the inferred dependency
able is to directly prove that a sound set of BMVD axioms arie logically implied by the given input set. However, if the
alsocompleteThis is exactly the approach taken by Geiger anidference axioms areot complete, then there is no guarantee
Pearl [13]. Here we take a different approach. Instead of directlyat the axioms will derivall of the logically implied depen-
demonstrating that the BMVD implication problem is solvablejencies. Thus, in this approach the main task in solving the
we do it by establishing a one-to-one relationship between timeplication problem for a class of dependencies is to construct

implication problems of the pair (BMVD,MVD). a set of complete inference axioms.
) 2) A Nonaxiomatic method—the Chasdere we want to
A. Nonembedded Multivalued Dependency discuss an alternative method to solve the implication problem

The MVD class of dependencies in the pair (BMVD,MVD)for the MVD class of dependencies. The discussion presented
has been extensively studied in the standard relational databa@ee follows closely the description given in [23].
model. As mentioned before, MVD is the necessary and suffi- We begin by examining what it means for a relation to de-
cient conditions for a lossless (binary) decomposition of a dagempose losslessly. Letbe a relation o, andR; U Ry U
base relation. In this section, we reviemo methods for solving --- U R, = R. We say relation decomposes losslessigto
the implication problem of MVDs, namely, trexiomaticand a database scherfie = {Ry, Ry, - -+, R, } if
nonaxiomatianethods.

1) Axiomatization: It is well known [3] that MVDs have a 7 =mpR, (1) AR, (1) b TR, (7). (31)
finite complete axiomatization.

Theorem 1:The following inference axioms (M1)—(M7) It can be easily verified that
are both sound and complete for multivalued dependencies

(MVDs): 7 SR, (r) b mR, (1) > wg, (1)
(M1) fY CX, thenX —— Y. hqlds for any dec_:omposition. Ir_1 other words, every tupter
(M2) If X ==Y andY —— Z, thenX —— Z — Y. will also appear in the expressiarg, () > 7wg, (1) b -+ - >
’ 7w, (). Thereby, for lossless decomposition it is sufficient to
(M3) f X -—Y, andX —-— Z, thenX —— Y Z. show
(M4) f X »—YandX —— Z, thenX -—Y N Z,
X sy _27 r 2 wR (r) TR, (r) - A TR, (7).
(M5) If X -—Y, thenXZ -—Y. That is, to show tha¢verytuple in the natural join of the pro-
(M6) If X -— Y andYW —— Z, jections is also a tuple in.
then X W —— Z — (YW) The notion of lossless decomposition can be conveniently ex-

pressed by thproject-join mappingnx which is a function on

(M7) If X =Y, thenX —— R—(XY). relations onR defined by

Axioms (M1)—(M7) are calledeflexivity, transitivity, union,
decompositionaugmentationpseudotransitivityandcomple-
mentation respectively.

The usefulness of soundaxiomatization lies in the ability to
derive new dependencies from a given set.

Example 15: Consider the following set’ of MVDs:

mpr(r) =7ng,(r) X< wg,(r) .- xmg, (7).

The important point to notice is that saying a relatigi®®) de-
composes losslessly onto schefés the same as saying that
mg(r) = r. Project-join mappings can be represented in tab-
ular form called tableaux.
A tableau 7T is both a tabular means of representing a
project-join mapping and a template for a relatioron R.
on the set of attribute® = ABDEFG. The following is a Whereas a relat'ion contqins tuples of values, a tableau c_ontains
rows of subscripted variables (symbols). Theand b vari-
ables are calledlistinguishedand nondistinguishedariables,
s1. AB —— D (given) respectively. We restrict the variables in a tableau to appear
in only one column. We make the further restriction that at
$2. AB —— B (M1) - . . .
most one distinguished variable may appear in any column. By

C={AB —— D,AF —— F,BD —— G},

derivation sequencef the MVD AB —— G

s3. AB —— BD (M3) from s; ands; convention, if the scheme of a tableaudsAs, - - - A,,, then
s4. BD —— G (given) the distinguished variable appearing in the-column will be
s5. AB —— G (M2) from s3 ands.. a;. For example, a tabledli on schemeR = A; A;A3A, is

shown in Fig. 16. We obtain a relation from the tableau by
Since the above derivation sequence: (s, so, 53, 54, 53) IS substituting domain values for variables. LEtbe a tableau
constructed based on sound axioms, this meangthagically and letV = {ai,a2,---,am,b1,b2,---} denote the set of its
impliesAB —— @, written: variables. Avaluation p for 7" is a mapping fromV" to the
Cartesian produdd; x Dy x --- x D,, such thap(v) isin D;
{AB -— D,AEF —-— F,BD -— G} E AB —— G. whenw is a variable appearing in the&;-column. We extend
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the valuation from variables to rows and thence to the ent
tableau. Ifw = (viv2---v,,) iS a row in a tableau, we let

p(w) = (p(v1)p(ve) - - - p(vy)). We then let
o(T) = {p(w)|wis arowinT}.

Example 16: Consider the following valuatiop:

plar) =1,p(a2) =3, plas) =5, plas) =7
p(b1) =4, p(b2) =8, p(b3)=2, p(b)=7
p(bs) =4. (32)

The result of applying to the tablead” in Fig. 16 is the relation
7 in Fig. 17.

Similar to a project-join mapping, a tabled@uon schemeRk
can be interpreted as a function on relatied®). In this in-
terpretation we require thdt have a distinguished variable in
every column. Letv, be the row of all distinguished variables
Thatis, ifR = AjAs--- A, thenwy = {a1as - - an). Row
wy IS not necessarily iff. If » is a relation on schemg, we let

T(r) = {p(wa)|p(T) C r}.

That is, if we find any valuatiop that maps every row iff" to
a tuple inr, thenp(wy) is in T'(r).

It is always possible to find a table&t; for representing a
project-join mappingnr defined by

mpr(r)=mgr, (r) <R, (r) < - 7R, (1)

whereR = {R;, Rs,---,R,},andR=R; U R U --- U
R,,. The tableal’z for m is defined as follows. The schem
for T’ is R. Tr hasn rows,ws,ws, -+, wy,. ROWw; has the
distinguished variable; in the A;-column exactly whem; €
R;. The remaining nondistinguished variables:inare unique
and do not appear in any other row ¥%. For example, let
R = {Rl = AlAQ, Ry = AQAg, Rg = A3A4} ande, RQ, Rg
be a hypertree construction f&. The tablealil’r for mx% is
depicted in Fig. 18.

Lemma 1:[23] LetR = {Ry, Ry, ---, R, } be a set of rela-
tion schemes, wherB = R; R, - - - R,,. The project-join map-

ping mz and the tablealf’z define the same function between

relationsr(R). That is,mg (r) = Tr(r) for all (R).
Lemma 1 indicates that saying that a relatigi®) decom-

poses losslessly onto scherfi is the same as saying thatb

TR(7) =T
Example 17: Consider the relation(4; A> A3 A4), as shown
on the left side of Fig. 19. The valuatign defined as

p(al) =1, p(a2) =3, p(a?)) =6, p(a4) =38,
p(bl) =5, p(bQ) =1, p(b3) =2, p(b4) =38,
p(bs) =2, p(bs) =3

indicates that{(1368) is in Tr(r). All of Tr(r) is depicted

on the right side of Fig. 19. It is easily verified that applying

the project-join mappingnx to the relationr(R) in Fig. 19
also produces the relation on the right side of Fig. 19. That
Tr(r) = mg(r).
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ire A Ay A3 Ay
T = ay b1 as b2
b3 as as b4
a1 bs az a4
Fig. 16. Tablead" on the schemel; A, Az A,.
A Ay As Ay
r = 1 4 5 8
2 3 5 7
1 4 5 7
Fig. 17. Relation- obtained as the result of applyipgn (32) to the tableau
T in Fig. 16.
A A Az Ay
T=|a a b b
by az a3 by
) bs bs a3 a4

Fig. 18. Tableal’ onR = A; A Az A,.

The notion of what it means for two tableaux to be equivalent
is now described. Lef; and7Z; be tableaux on schente. We
write 73 T T if T1(r) C To(r) for all relations(R). Tableaux
Ty andT, areequivalent written7} = 13, if 73 € 1, and
T, C Ty. Thatis, 71 = T if T1(r) = T»(r) for every relation
r(R). Let SAT(C) denote the set of relationg ) that satisfy
all the constraints id'. If 77 andT; are tableaux o, then we
say1} is containedoy 7> on SAT(C), written7: Csar(cy 12,
if T1(r) C Tsx(r) for every relationr in SAT(C). We sayl;
andZ; areequivalenton SAT(C), writtenl} =g ar(c) 12, if

®T1 Csur(e) T2 andTs Csarey Ti

We now consider a method for modifying tableaux while
preserving equivalence. M-rule for a setC of AJDs is a
means to modify an arbitrary table@duto a tablead” such that
T =sarc) 1’ LetR = {Ry, Ry, -+, Ry} be aset of relation
schemes and lett R be a AJD onZ. LetT be a tableau o
and letwy, wo, - - -, wy (NOt necessarily distinct) be rows @f
that are joinable orR with resultw. Applying the M-rule for
> R to tableaul” allows us to form the tableau

T =T U {w}

If we view the tablead’ as a relation, the generated rasncan
e expressed as

Example 18:Let C = {p< {4; Ay, Ax A3A4}} andT be the
tableau in Fig. 20. Rows; andw, are joinable om,. We can
then apply the M-rule foex {A4; A, AsA3A4} in C to rows
w1 = {a1az2b1b2) andws = (bzazazbs) of T to generate the
new row

w =wy (AlAQ) > WQ(A2A3A4)
= (a1a2> <1 (a2a3b4>

= <a1a2a3b4>.

is,
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A Ay A3 Ay Al Ay A3 Ay A1 A As A
1 3 5 7 1 3 5 7 T= ay as b] bg
1 4 5 7 1 3 6 8 bs ax a3z by
2 3 6 8 1 4 5 7 b5 be as Qa4
2 3 5 7
2 3 6 8 Fig. 20. Tablead onR = A;A; Az A,.
Fig. 19. _ Relatiorr(AlAzAgAhiy) on the left. On the right, the relatidfi(r), A, A, A; A,
whereT is the tableau in Fig. 18. T = 2 2 5 5
1 2 1 2
b3 ay a3 by
TableauI” =T U {w} in Fig. 21 is the result of this applica- bs bs az aq
tion. Even though rows) = {ajasa3bs) andws = (bzbgazaa) a1 ay a3 by
are joinable oM, we cannot construct the new rdw asaza,)
since no M-rule exists i€’ which applies to attributels. Fig.21. Tablead” =T U{{a1asasbs)}, wherel is the tableau in Fig. 20.
Itis worth mentioning that M-rule is also applicable to MVDs
since MVD is a special case of AJD. A Ay, Az A
Theorem 2:[23] Let R = {Ry,Ry,---,R,} andT” be the Tr=|a a b b
result of applying the M-rule fax R to tableaul’. Tableaux?” by az a3 by
and7” are equivalent o AT (>a R). bs  bs as a4
The chasealgorithm can now be described. Givéhand Zi Zz Zz Zj

C, apply the M-rules associated with the AJDs dh until
no further C.hange. IS pOSSIblé'he reSUItln.g tab.leau’ written Fig. 22. Sincel'y satisfies the MVDA; —— A, in C, by definition, rows
chasec(T), is equivalent tol’ on all relations iNSAT(C), ., andws, being joinable ond, imply that roww, = (ayazasa,) is also in
i.e, T =sar) chasec(T), andchasec(T’) considered as Tx.
a relation is inSAT(C).
Theorem 3:[23] C |=>< R if and only if chasec(T=) cON- Theorem 4:[23] The chase computation for a set of AJDs
tains the row of all distinguished variables. _ is a finite Church-Rosserreplacement system. Therefore,
Theorem 3 states that the chase algorithm is equwalentgpaseC(TR) is always a singleton set.

logical implication. We illustrate Theorem 3 with the following  This completes the review of the implication problem for re-

example. lational data dependencies.
Example 19: Suppose we wish to test the implication
problem C' = ¢ on schemeR = A;A4>A3A44, where B. Nonembedded Probabilistic Conditional Independency

C = {4y —-— Ay, A3 —— A,}is a set of MVDs and
¢ =1 {A;1 Az, AxAs, A3A4} is an AIJD. We construct the
initial tableauZ’s in Fig. 18 according to the database sche
‘R defined byec. Rows w; and ws are joinable ond,. We
can then apply the M-rule fod; —— A; in C to rows
w1 = {a1a2b1bs) andws = (bzasasbs) of Tz to generate the
new row

We now turn our attention to the class of nonembedded
robabilistic conditional independency (BMVD) in the pair
MVD, MVD). As in the MVD case, we will consider both the
axiomatic and nonaxiomatic methods to solve the implication
problem for the BMVD class of probabilistic dependencies.
However, we first show an immediate relationship between the
inference of BMVDs and that of MVDs.
Lemma 2: Let C be a set of BMVDs onk andc a single
ws =wi(Ardz) s wp(Ar AsA) BMVD on R. Then °
= <CL1 a2a3b4>.

: o . Cre=Ckg
TableauTr U {w4} is depicted in Fig. 21. Similarly, rows
w4 andws are joinable onds. We can then apply the M-rule whereC = {X —— Y|X == Y € C} is the set of MVDs

for A3 —— Ay in C 1o rowswy = (arazashy) andws = corresponding to the BMVDs i€, ande¢ is the MVD corre-
(bsbsazas) to generate the new row sponding to the BMVD.
Proof: SupposeC | ¢. We will prove the claim by con-
wg =wa(ArAg Ag) pawz(AzAy) tradiction. That is, suppose thét = c. By definition, there
= (a1a2a3a4) exists a relation(R) such that-(R) satisfies all of the MVDs
in C, butr(R) does not satisfy the MVD. Let k& denote the
as shown in Fig. 22. Row, is the row of all distinguished number of tuples in-(R). We construct a probabilistic relation
variables. By Theorem 37 logically impliesc. That is, any r(R) fromr(R) by appending the attributé,,. For each of the
relation that satisfies the MVDs ii must also satisfy the AJD £ tuples inr(R), sett(4,) = 1/k. Thus,r(R) represents a
c. uniformdistribution. In the uniform case [25], [42}( R) satis-
It should be noted that the resulting tableau in the chase fié&s C if and only if »( R) satisfiesC'. Again using the uniform
gorithm isuniqueregardless of the order in which the M-rulesaser(R) does not satisfy sincer(R) does not satisfy. By
were applied. definition, C does not logically implyc, namely,C [~ c. A
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contradiction to the initial assumption thé@t |= c. Therefore, Equation (39) is the definition of the BMVIX == Z. The

CEe m other axioms can be shown sound in a similar fashion.
With respect to the pair (BMVD,MVD) ohonembeddede- Note that there is a one-to-one correspondence between the
pendencies, Lemma 2 indicates that the statement above inference rules for BMVDs and those MVD inference
axioms (M1)—-(M7) in Theorem 1. Since the BMVD axioms
Ckrec=Clc (BM1)—(BM7) aresound it can immediately be shown that the

implication problems coincide in the pair (BMVD,MVD).
is atautology We now consider ways to solve the implication Theorem 5: Given thecompleteaxiomatization (M1)—(M7)
problemC [E c. for the MVD class. Then
1) BMVD Axiomatization:It can be easily shown that the
Ckrc—=CkEc

following inference axioms for BMVDs arsound
whereCisasetof BMVDs(C = {X —— Y|X ==Y € C}

(BM1) IfY C X, thenX ==Y is the corresponding set of MVDs, anrds the MVD corre-
(BM2) If X ==Y andY == Z, thenX == 7 -Y. sponding to a BMVDc.
(BM3) If X ==Y, andX == Z, thenX == YZ. ( P)r00f50(2|>) Holds Ey LemmaCZ'.: o thatc |
<) LetC |= ¢. By Theorem 1 cimplies that c.

(BM4) If X ==Y andX == 7, thenX ==V n 7, That is, there exists a derivation sequenaa the MVD ¢ by

X==Y-Z applying the MVD axioms to the MVDs i. On the other
(BM5) If X ==Y, thenXZ =>=Y. hand, each MVD axiom has a corresponding BMVD axiom.
(BM6) If X ==Y andYW == Z, This means there exists a derivation sequamfedhe BMVD ¢

using the BMVDs axioms on the BMVDs &, which parallels
thenXW == Z - (YW). the derivation sequenceof the MVD ¢. That is,C F ¢. Since

(BM7) If X ==Y, thenX == R— (XY). the BMVD axioms are sound; - c impliesthatC =c. =

) o ) ) Theorem 5 indicates that the implication problems coincide

Axiom (BM1) holds trivially for any relationr(R) with i, the pair (BMVD,MVD), as indicated in Fig. 1. The following

XY € R. We now show that axiom (BM2) is sound. Recallegyjt is an immediate consequence and is stated without proof.
that Corollary 1: The axioms (BM1)—(BM7) are bothoundand
completdor the class of nonembedded probabilistic conditional
independency.
Thus, without loss of generality, leR = XY ZW, where By Corollary 1, it is not surprising then that Geiger and Pearl
X,Y, Z andW are pairwise disjoint. By definition, the BMVDs [13] showed that their alternative complete axioms for BMVDs

X=2=2Y«—= X==Y - X.

X == Y andY == Z mean were also complete for MVDs.
The main point of this section is to foster the notion that the
p(XY ZW) = p(XY) - p(XZW) (34) Bayesian database model is intrinsically related to the standard
p(X) relational database model. For example, by examining the im-
plication problem for BMVD in terms of MVD, it is clear and
and immediate that the implication problems coincide in the pair
YZ) p(XYW (BMVD,MVD).
p(XYZW) = o )p(z;() ) (35) 2) A Nonaxiomatic MethodWe now present anon-

_ _ _ o axiomatic method for testing the implication problem for
respectively. Computing the marginal distributig.XY'Z) nonembedded probabilistic conditional independencies. The
from both (34) and (35), we respectively obtain standard chase algorithm can be modified for such a purpose by

appropriately defining the manipulation of tableaux. However,
_ pXY) - p(XZ)

p(XY Z) (36) Wwe will then demonstrate that such a generalization is not
p(X) necessary.
and We briefly outline how a probabilistic chase can be for-
mulated. A more complete description is given in [41]. The
WXYZ) = p(YZ) 'P(XY)' (37) standard tablead” on a set of attribute® = A;Ay--- A,,
p(Y) is augmented with attributed,. Each traditional row
w = {ajaz---a,,) IS appended with probability symbol
By (36) and (37) we have plaq, a2,<- S Q) Tr>1at is, a probabilistic tabled®' contains
p(XZ) p(YZ) rowsw = {(w, p(w)). !n testing whethep = ¢, we construct
(X)) (38) the initial tableauT'z in the same fashion as in testify}= c,

where C and ¢ are the corresponding MVDs, ard is the
By (38) and (35), we obtain acyclic hypergraph correspondingddandc).

We now consider a method to modify probabilistic tableaux.
We generalize the notion of M-rule fora MVIX —— Y as

p(XZ) - p(XYW)
’ follows. LetT be a probabilistic tableau 0¥Y 7, X == Y a

PXYZW) = %)

(39)
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BMVD in a given setC of BMVDs, andw, w» be twojoinable A Ay A3 Ay Ap
rows onX. A B-rulerule for the BMVD X == Y is a means Tr = [a1 a2 b b plarazbiby)
to add the new rowv = (w, p(w)) to T, wherew is defined by az az by p(bsazashy)
in the usual sense according the M-rule for the corresponding bs b a3 as  p(bsbeasas)
MVD X —— Y/, and the probability symbagl(w) is defined
A Ay A; Ay
as
Tr = a) az b b2
XY)) - XZ b b
plw) = p(wi(XY)) PEW( ) (40) b o Zs b
p(wl (A )) 5 6 3 1

Example 20:Let C = {A; == A, A3 == As} and Fig. 23. Initial tableau Tr constructed according to the BAJD

consider the tabledli'z at the top of Fig. 23. It can be seenthat = ©{A,A., A.A;, A;A,} is shown at the top of the figure. (The initial
tableauT’; constructed according to the AdD=p« {A; A5, As A3z, Az As}

rows :
is shown on the bottom.)
w1 = {a1a2b1b2p(a1az01bo
< ( i A A A A i
and Wi ai as bl bz p(alagblbg)
we | b3 az a3 by p(bsazazby)
W2 = (bsazasbsp(bsasaszhy)) ws | bs bs az a4 p(bsbsazay)
o W, a a a b plaraz)p(azasbs)
are joinable onA,. We can then apply the B-rule for fpt T | plaran)phees) pasas)
the BMVD 4, == A; in C to generate a new row Ws | M1 G 43 G4 plaz)plas)

Wy = <a17 az, as, b47p(a17 a2, as, b4)>’ where by (40) A, A, A; As

play, as, a, by) = plaraz) ~p(a2agb4). w (o @ b0 b
p(az) wy | bs @ ag by
The new roww , is added tdl'z, as shown at the top of Fig. 24. ws | b5 b a3 ag

weg | G1 a3 as by
ws | 01 a2 ag a4

Similarly, rows

W3 = (b3b5a3a4p(b3b5a3a4)> and

wa = { arasasb plaia2)p(azazbs) Fig. 24. Tableaux obtained by adding the new rewsandw s is shown on
4 1528304 p(a2) the top of the figure. (The standard use of the corresponding M-rules is shown

are joinable o3 By (40), the B-rule for the BMVDA3 == " the bottom.)
A4 in C can be applied to rowe’; andw to generate the new

oW Fo generate the row{aias ~~~amp(a1,la2,~~~,am)>. This _
plaras)p(azas)p(asas) implies that the M-rules corresponding to the MVDs in
Wy = <a1a2a3a4 > C ={V —-— W|V == W e C} cannot be applied to the
plaz)p(as) joinable rows inT’z to generate the rowaas - - - a,,) of all

Thetableall'r U {w,} U {w5} is shown atthe top of Fig. 24. gistinguished variables, wherseis the MVD corresponding to
The probabilistic chase algorithm is now introduced. Giverthe BMVD c. By Theorem 3, the rowayas - - - a,,,) not ap-

T andC, apply the B-rules associated with the BMVDs@  pearing inchasec(Tr) means tha€ j= ¢, wherechase o (Tr)

until no further change is possibl€he resulting tableau, written js the result of chasing under C. By Theorem 5 K oc

chasec(T), is equivalenttd on allrelations IS AT°(C). That  implies thatC [~ c. A contradiction. Therefore, the row

is, T(r) = chasec(T)(r), for every probabilistic relation sat- (ayas - - amplay, as, - -, ay,)) Must appear inhasec(Tr).

isfying every BMVD in C. Furthermorechasec(T) consid- We now show thap(ay, as, - - - , a,,) can be factorized as de-

ered as a relation is i AT(C). The next result indicates thatsjred. By contradiction, suppose that

the probabilistic chase algorithm ismvanaxiomatianethod for play) - plaz)

testing the implication problem for the BMVD class. play,az, -, am) # ()

Theorem 6: LetC be asetof BMVDs o = A; Ay -+ - Ay, ) . _
andec be the BMVDX == Y on R. Then This means thathase o (TR ), considered as a probabilistic re-
) ) lation, satisfies the BMVDs i€ but does not satisfy the BMVD
C ke wyisarowinchasec(Tr) c. By definition, C = c. A contradiction. Therefore,
where_R = {XY, XZ} ie the acyclic hypergraph corre- plxy) - p(zz)
sponding toc, andwy, is defined as pla, a2, -, am) = W-

p(zy) 'p(xz)> ) (<) Given the row{a1as - - - amp(az, a2, - -, an)) appears in
p(z) chasec(Tr). This means that the B-rules corresponding to
Proof: (=) We first show that the row of all distin- the BMVDs in C can be applied t'z to generate the row

guished variable$aas - - - amp(ay, az, - - -, ay)) Must appear {(ajas - - - a,plai, ag, - - -, ay,)). This implies that the M-rules

in chasec(Txr). Given C = c. By contradiction, suppose corresponding to the MVDs i = {V —— W |V == W ¢

that the row(aias - -~ amp(ai,az, -, ay,)) does not appear C} can be applied to the joinable rows T to generate the

in chasec(Tr). This means that the B-rules correspondingpw {a;as - - - a,,) of all distinguished variables, wherss the

to the BMVDs in C cannot be applied to the joinable rowsMVD corresponding to the BMVL:. By Theorem 3, the row

W = <CL1(L2 te arnp(alv ag, -, arn) =
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{aras - - -a,,) appearing inchase(Tr) means that” = ¢, of C, X == Y can be inferred fronR; using the separation
wherechase~(Tr) is the result of chasingunderC'. By The- method. By the above observation, this means that the MVD
orem 5,C' = cimplies thatC = c. m X —— Y can be inferred fronR;.

Theorem 6 indicates thaf = c if and only if the row Suppose the MVIX —— Y can be inferred frork, using
of all distinguished variables appears éhasec(Tr), i.e., the separation method. By the above observation, this means
play,ae,---,ay) can always be factorized according to thé¢hat the BMVDX == Y can be inferred fronR,. SinceR;
BMVD being tested. is a perfect-map oz, C = X == Y. By Theorem 5, this

As promised, we now show that developing a probabilistimplies thatC' = X —— Y. u.
chase algorithm for the Bayesian network model is not neces-Theorem 8 indicates that every conflict-free set of nonem-
sary because of the intrinsic relationship between the Bayeskmdded probabilistic dependencies is equivalent to a Bayesian

and relational database models. acyclic join dependency.
Theorem 7: LetC be asetof BMVDs ot = A1 Az --- A,
andc be a single BMVD onk. Then VI. EMBEDDED DEPENDENCIES
CEc < (amaz-am)isarowinchasec(Ir), We now examine the implication problem fembedded

whereC = {X —— Y|X == Y ¢ Cj} is the set of dependencies. As shown in Fig. 1, the class of conflict-free
MVDs corresponding taC, ¢ is the MVD corresponding te, BEMVD is a subclass of BEMVD, and conflict-free EMVD

andchase(Tr) is the result of chasingunderC. is a subclass of EMVD. We choose to first discuss the pair
Proof: By Theorem 5, (conflict-free BEMVD, conflict-free EMVD) since the im-
CheeChe plication problems fc_)r thes_,e two clas_ses amﬂvaple We _

then conclude our discussion by looking at the implication

By Theorem 3, problem for the pair (BEMVD, EMVD) which represent the
Cl=c<= (a1as---ay) isarowinchasec(Tr). general classes of probabilistic conditional independency and
. . . embedded multivalued dependency.
The claim follows immediately. [ |

Theorem 7 indicates that the standard chase algorithm, %e—
veloped for testing the implication afata dependencies, can” ~ I _
in fact be used to test the implication of nonembedded proba-Here we study the implication problem for the pair (con-

Conflict-Free Embedded Dependencies

bilistic conditional independency. flict-free BEMVD, conflict-free EMVD). We begin with the
conflict-free BEMVD class.
C. Conflict-Free Nonembedded Dependency The class of conflict-free BEMVDs plays a key role in the

conflict-free MVD). Recall that conflict-free BMVD is a conflict-freeif they can be faithfully represented bysingle
subclass within the BMVD class. Similarly, conflict-freePAG. We can use the-separationmethod [31] to infer BE-
MVD is a subclass of MVD. Since we have already showMVDs from a DAG. One desirable property of the conflict-free
that the implication problems coincide in the pair (BMVDBEMVD .class is that every conflict-free set of BEMVDs has a
MVD), obviously the implication problems coincide in thePAG as itsperfect-map _ _
pair (conflict-free BMVD, conflict-free MVD) as mentioned The class of conflict-free BEMVD is apecial caseof the
in [26]. However, here we would like to take this opportunit@eneral BEMVD class, as shown in Fig. 1. This special class of
to show that every conflict-free s€t of BMVDs is equivalent probabilistic dependencies has a complete axiomatization.
to a Bayesian acyclic-join dependency (BAJB)R. Thatis, ~ Theorem 9:[31] The class ofconflict-free BEMVDhas a
whenever any probabilistic relation satisfies all the BMVDs ifompleteaxiomatization. LetX, Y, Z, W be pairwise disjoint
C, then it also satisfies the BAJBR, and vice versa. subsets of? such thatYY ZW = R.

Theorem 8: Let C denote a conflict-free set of BMVDs. Let . .
C ={X -— Y|X == Y € C} be the conflict-free set (BED) If X ==Y thenX == ZW,
of MVDs corresponding taC. ThenC andC' have the same (BE2) If X == YW|Z, thenX == Y|Z,
perfect-mapR. (BE3) If X ==YZ, thenXZ ==Y,

Proof: The same separation method is used to infer botl*(BE4) If X == Y|ZandXZ ==Y, thenX == Y.

BMVDs and MVDs from acyclic hypergraphs. Therefore, for
any given acyclic hypergrapR, the BMVD X == Y can be The axioms (BE1)-(BE4) are respectively calgunmetryde-
inferred fromR if and only if the corresponding MVDX ——  composition weak union and contraction Clearly, Theorem
Y can be inferred fromR. Let R; be the acyclic hypergraph 9 indicates that the implication problem for the conflict-free
which is a perfect-map of the conflict-free g8tof BMVDs. BEMVD class is solvable.
Let R, the perfect-map of’. We need to show th&k; andR» We now turn our attention to the other class of dependency in
denote the same acyclic hypergraph. Since a conflict-free sethod pair (conflict-free BEMVD, conflict-free EMVD), namely,
MVDs has a unique perfect-map [4], it suffices to show tRat conflict-free EMVD. In order to solve the implication problem
is a perfect-map of the sét of MVDs. for the class otonflict-freeEMVD, we again use the method

Suppose&” = X —— Y. By Theorem 5C |= cifand only of drawing a one-to-one correspondence between the classes of
if C = ¢ Thus,C = X == Y. SinceR, is a perfect-map conflict-free BEMVD and conflict-free EMVD.
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It is known that the following EMVD inference axioms areof conflict-freeEMVDs is equally useful in the design and im-
sound [3], [38], whereX, Y, Z, W be pairwise disjoint subsetsplementation of traditional database applications.

of R such thatXYZW = R.
B. Embedded Dependencies in General

(B HX =7, thenX == 21, The last pair of dependenci tudy is (BEMVD, EMVD)
. . e last pair of dependencies we study is , .

(E2) If X ——YW|Z, thenX —— Y|Z, All of the previously studied classes of probabilistic dependen-
(E3) If X -—=YZ thenXZ ——Y, cies are a subclass of BEMVD (probabilistic conditional inde-
(B4 If X »—=Y|ZandXZ —-—Y, thenX —— Y. pendency). Similarly, EMVD is the general class of multivalued
dependencies. Before we study BEMVDs, we first examine the
implication problem for EMVDs.

Theorem 13:[29], [34] The general EMVD class does not

CEc=CEc have dfinite complete axiomatization.

where C is a conflict-free set of EMVDs(C = {X —— The chase algorithm also doe®t solve the implication

Y|Z|X ==Y |Z € C} is the corresponding conflict-free setProblem for the EMVD class. IU /= c, then the chase algo-

of BEMVDs, andc is the EMVD corresponding to the BEMVD rithm can continue forever. The reason is that, by definition,
c ' a M-rule for an EMVD X —— Y|Z in a given setC' of

Proof: Suppose tha€ = c. By Theorem 9C = ¢ im- EMVDs would only generate partial new row. To modify the

plies thatC F c. That is, there exists a derivation sequencq'ase algorithm for EMVDs, the partial row is padded out with
s = (s1,50,- - -, ) of the BEMVD c from the conflict-free set uniquenondistinguished variables in the remaining attributes.

C of BEMVDs using the inference axioms (BE1)—(BE4). Thé[hus, in using an EMVD the chase adds a hew row containing

above discussion demonstrates that the corresponding inferépcd symbols. This enables further applications of EMVDs in

axioms (E1)—(E4) arsoundfor deriving new EMVDs. This C, which will add more new rows with new symbols, and this
means that there is a derivation sequesce (si,ss,---,c) PrOCESS does not terminate and can continue forever. (With

of the EMVD ¢ from the conflict-free se€’ of EMVDs using MVDs, on the other hand, a new row consists only of existing

the inference axioms (E1)-(E4), such thatarallelss. That is, symbols meaning that eventually there are no new rows to

C F ¢. We obtain our desired result sin€ét ¢ implies that generate.) ) . .
Ok e . The chase algorithm, however, igpeoof procedurefor im-

plication of EMVDs [12]. This means that & = ¢, then the
row of all distinguished variables will eventually be generated.

Theorem 10:Given the complete axiomatization
(BE1)-(BE4) for the CF-BEMVD class. Then

Theorem 10 indicates that

Crc=CFkc The generation of the row of alls can be used as a stopping
holds in the pair (conflict-free BEMVD, conflict-free EMVD). Criterion. . .
Conversely, we want to know whether Example 21: Suppose we wish to verify th&t = ¢, where
C = {41 —— A3]|A4, Ay —— A3|Ay, A3Ay —— Ai|As}
Crc=C[c andc is the the EMVDA; A» —— As. The initial tableaudl’;

is also true for this pair of dependencies. It was shown that thég&onstructed according tg as shown in Fig. 25 (left). We can
exists a complete axiomatization for conflict-free EMVDs [31]aPply the M-rule corresponding to the EMVE, —— As|A4
Theorem 11:[31] The axioms (E1)—(E4) a@mpletdor the N C to joinable rowsw; = (aiasazb1) andws = (aiazbzas)
class ofconflict-freeEMVD. to generate the new rows = (a;bsazas), as shown in Fig.
Based on this theorem, the following result is immediate. 25 (right). Similarly, we can apply the M-rule corresponding
Theorem 12:Given the complete axiomatization (E1)—(E4J0 the EMVD A> —— A3[A4 in C to joinable rowsw; =
for the CF-EMVD class. Then (arazasb;) andw, = (a1a2b2a4) t0 generate the new row
wy = (bsazazas), as shown in Fig. 25 (right). Finally, we
Cree=Ckc can obtain the rowa;azazas) of all distinguished variables
whereC is a conflict-free set of BEMVDsC = {X == by applying the M-rule corresponding to the MV A, ——
Y|Z|X —— Y|Z € C} is the corresponding conflict-free setA:| Az in C to joinable rowsws andw,. Therefore(' = c.
of EMVDs, andc is the BEMVD corresponding to the EMVD  For over a decade, considerable effort was put forth in the
c. database research community to show that the implication
Proof: The proof follows from a similar argument givenproblem for EMVDs is in factunsolvable Herrmann [17]
in the Proof of Theorem 10. m recently succeeded in showing this elusive result.
The important point to remember is that Theorems 10 and 12Theorem 14:[17] The implication problem for the general
together indicate that EMVD class isunsolvable
Theorem 14 is important since it indicates timat method
Cree=CEc (41) exists for deciding the implication problem for the EMVD class.
holds for the pair (conflict-free BEMVD, conflict-free EMVD). This concludes our discussion on the EMVD class.
As already mentioned, the class of conflict-free BEMVDs is We now study the corresponding class of probabilistic depen-
the basis for constructing a Bayesian network. However, catlencies in the pair (BEMVD, EMVD), namely, the general class
flict-free EMVDs have traditionally been ignored in relationabf probabilistic conditional independency. Pearl [31] conjec-
databases. The above observation indicates that the special diassl that the semi-graphoid axioms (BE1)—(BE4) could solve
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A Ay A3 Ay A Ay A3 Ay 1 Ay Az Ay
a; az as b1 w1 ay ag as b1 T(A1A2A3A4) =
ar ay by aq wy | ay az by ay

ws a1 by a3 a4
Wy b4 as as a4
Ws ay as as a4

[N e ==

— O = OO
_0 O O O O

OO O

Fig. 25. On the left, the initial tableaif’z constructed according to the

EMVD c defined asd; A, —— As. The row(aiazasa4) of all distinguished  Fig. 26.  Relation satisfies all of the EMVDs irC' but does not satisfy the
variables appears ithasec(1'=) indicatingC = c. EMVD ¢, whereC andc are defined in Example 22. Therefo(®, |~ c.

the implication problem for probabilistic conditional indepen-
dency (BEMVD) in general. This conjecture was refuted [37],

[46] Al A2 A3 A4 A.p

Theorem 15:[37], [46] BEMVDs do not have #inite com- r(A1dz24544) = 00 0 0 D2
plete axiomatization. 8 8 (1) (1) g'g

Theorem 15 indicates that it is not possible to solve the im- O 0 1 1 01
plication problem for the BEMVD class using a finite axioma- 0 1 1 1 01
tization. This result does not rule out the possibility that some 1 0 1 1 0.1
alternative method exists for solving this implication problem. 1 1 1 1 01

As with the other classes of probabilistic dependencies, we
now examine the relationship betwe€hl= c andC = cin  Fig.27. Relation satisfies all of the BEMVDs it but does not the BEMVD
the pair (BEMVD,EMVD). The following two examples [37] ¢, whereC andc are defined in Example 23. Therefof@, [~ c.
indicate that the implication problems for EMVD and BEMVD
do not coincide.

Example 22:Consider the setC = {4344y ==
A1|A2,A1 =>= A3|A4,A2 =>= A3|A4,® == A1|A2}
of BEMVDs, andc the single BEMVD# == A3|A4. In
[36], Studeny showed thaf® |= c¢. Now consider the set
¢ ={X —-—= Y|Z]X == Y|Z € C} of EMVDs cor- C = ¢ #= C [ cfor the pair (BEMVD, EMVD)
responding to the sdf of BEMVDs, and the single EMVD
) —— Asz|A4 corresponding to the BEMVL:. Consider The implication problems for each class in the first three pairs
the relationr(A; Ay A3 A,) in Fig. 26. It can be verified that aresolvable However, the implication problem for the general
r(A1As A3 Ay) satisfies all of the EMVDs inC' but does not EMVD class in the pair (BEMVD, EMVD) isinsolvableThese

BEMVD, Conflict-free EMVD) in (41). Thatis, the implication
problems coincide in these three pairs of classes. However, Ex-
amples 22 and 23 demonstrate that

satisfy the EMVDc. That is,C [~ c. observations lead us to make the following conjecture.
Example 22 indicates that Conjecture 1:Consider any pair (BD-class, RD-class),
where BD-class is a class of probabilistic dependencies in the
Cre#=Ckc (42) Bayesian database model and RD-class is the corresponding
Example 23:Consider the setC = {4, —— class of data dependencies in the relational database model.

Asz|Ag, Ay —— Az|Ay, A3Ay —— Aj|As} of EMVDs, Let C be a set of probabilistic dependencies chosen from
and let ¢ be the single EMVDA; 4, —— As. The BD-class, and a single dependency in BD-class. @&tandc
chase algorithm was used in Example 21 to show th@gnote the corresponding set of data dependenci€sasfdc,

C k= ¢ Now consider the corresponding set of BEMVDgespectively, in RD-class.

C = {4 == A3]A4, Ay == Aj|Ay, AsAy == Ay|As} () If the implication problem issolvable for the class
andc is the BMVD A; A, == Aj. It is easily verified that BD-class, then

relationr(4; A3 A3 A4) in Fig. 27 satisfies all of the BEMVDs

in C but does not satisfy the BEMVB. ThereforeC | c. Crke=Ckec

Example 23 indicates that . o )
(ii) If the implication problem issolvable for the class

Ckrc#=ClEec (43) RD-class, then

In the next section, we attempt to answer why the implication ClhceCEec
problems coincide for some classes but not for others. )
In [37], Studeny studied the relationship between the im-

C. The Role of Solvability plication problems in the pair (BEMVD, EMVD), namely,

We have shown that probabilistic conditional independency (BEMVD) and em-
Chces Okc bedded multivalued dependency. Based on Conjecture 1(i), his
observation

holds for the pairs (BMVD, MVD) in Theorem 5, (Conflict-free
BMVD, Conflict-free MVD) in Theorem 5, and (Conflict-free CEcx=CkEc
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would indicate that the implication problem for the general clasitabase model are tiamein practical terms; they differ only
of probabilistic conditional independencyussolvable Simi- in unsolvable classes of dependencies.
larly, based on Conjecture 1(ii), his observation

CEce&=CEc
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