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On the Implication Problem for Probabilistic
Conditional Independency

S. K. M. Wong, C. J. Butz, and D. Wu

Abstract—The implication problem is to test whether a given
set of independencies logically implies another independency. This
problem is crucial in the design of a probabilistic reasoning system.
We advocate that Bayesian networks are ageneralizationof stan-
dard relational databases. On the contrary, it has been suggested
that Bayesian networks aredifferent from the relational databases
because the implication problem of these two systems does not co-
incide for someclasses of probabilistic independencies. This re-
mark, however, does not take into consideration one important
issue, namely, thesolvabilityof the implication problem.

In this comprehensive study of the implication problem for prob-
abilistic conditional independencies, it is emphasized that Bayesian
networks and relational databases coincide onsolvableclasses of
independencies. The present study suggests that the implication
problem for these two closely related systems differs only inun-
solvableclasses of independencies. This means there is noreal dif-
ference between Bayesian networks and relational databases, in
the sense that onlysolvableclasses of independencies are useful in
the design and implementation of these knowledge systems. More
importantly, perhaps, these results suggest that many current at-
tempts to generalizeBayesian networks can take full advantage of
the generalizations made to standard relational databases.

Index Terms—Bayesian networks, embedded multivalued
dependency, implication problem, probabilistic conditional
independence, relational databases.

I. INTRODUCTION

PROBABILITY theory provides a rigorous foundation for
the management of uncertain knowledge [16], [28], [31].

We may assume that knowledge is represented as a joint prob-
ability distribution. The probability of an event can be obtained
(in principle) by an appropriate marginalization of the joint dis-
tribution. Obviously, it may be impractical to obtain the joint
distribution directly: for example, one would have to specify
entries for a distribution over binary variables.Bayesian net-
works[31] provide a semantic modeling tool which greatly fa-
cilitate the acquisition of probabilistic knowledge. A Bayesian
network consists of a directed acyclic graph (DAG) and a corre-
sponding set of conditional probability distributions. The DAG
encodes probabilistic conditional independencies satisfied by
a particular joint distribution. To facilitate the computation of
marginal distributions, it is useful in practice to transform a
Bayesian network into a (decomposable) Markov network by
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sacrificing certain independency information. AMarkov net-
work [16] consists of anacyclic hypergraph[4], [5] and a cor-
responding set of marginal distributions. By definition, both
Bayesian and Markov networks encode the conditional indepen-
dencies in a graphical structure. A graphical structure is called
aperfect-map[4], [31] of a given set of conditional indepen-
dencies, if every conditional independency logically implied by

can be inferred from the graphical structure, and every con-
ditional independency that can be inferred from the graphical
structure is logically implied by . (We say logically implies

and write , if whenever any distribution that satisfies all
the conditional independencies in, then the distribution also
satisfies .) However, it is important to realize that some sets of
conditional independencies donot have a perfect-map. That is,
Bayesian and Markov networks are not constructed from arbi-
trary sets of conditional independencies. Instead these networks
only use special subclasses of probabilistic conditional indepen-
dency.

Before Bayesian networks were proposed, therelational
database model[9], [23] already established itself as the
basis for designing and implementing database systems. Data
dependencies,1 such as embedded multivalued dependency
(EMVD), (nonembedded) multivalued dependency (MVD),
and join dependency (JD), are used to provide an economical
representation of a universal relation. As in the study of
Bayesian networks, two of the most important results are the
ability to specify the universal relation as alosslessjoin of
several smaller relations, and the development of efficient
methods to only access the relevant portions of the database in
query processing. A culminating result [4] is that acyclic join
dependency (AJD) provides a basis for schema design as it
possesses many desirable properties in database applications.

Several researchers including [13], [21], [25], [40] have no-
ticed similarities between relational databases and Bayesian net-
works. Here we advocate that a Bayesian network is indeed
a generalized relational database. Ourunified approach [42],
[45] is to express the concepts used in Bayesian networks by
generalizing the corresponding concepts in relational databases.
The proposedprobabilistic relational database model, called
the Bayesian database model, demonstrates that there is a di-
rect correspondence between the operations and dependencies
(independencies) used in these two knowledge systems. More
specifically, a joint probability distribution can be viewed as a
probabilistic (generalized)relation. Theprojectionandnatural
join operations in relational databases are special cases of the

1Constraints are traditionally calleddependenciesin relational databases, but
are referred to asindependenciesin Bayesian networks. Henceforth, we will use
the termsdependencyandindependencyinterchangeably.
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marginalizationandmultiplicationoperations. Embedded mul-
tivalued dependency (EMVD) in the relational database model
is a special case of probabilistic conditional independency in
the Bayesian database model. Moreover, a Markov network is
in fact a generalization of an acyclic join dependency.

In the design and implementation of probabilistic reasoning
or database systems, acrucial issue to consider is theimpli-
cation problem. The implication problem has been extensively
studied in both relational databases, including [2], [3], [24],
[26], [27], and in Bayesian networks [13]–[15], [30], [33], [36].
[37], [41], [46]. The implication problem is to test whether a
given input set of independencies logically implies another
independency . Traditionally, axiomatizationwas studied in
an attempt to solve the implication problem for data and proba-
bilistic conditional independencies. In this approach, a finite set
of inference axioms are used to generate symbolic proofs for a
particular independency in a manner analogous to the proof pro-
cedures in mathematical logics.

In this paper, we use our Bayesian database model to present
a comprehensive study of the implication problem for proba-
bilistic conditional independencies. In particular, we examine
four classes of independencies, namely:

BEMVD

Conflict-free BEMVD

BMVD

Conflict-free BMVD

Class is thegeneralclass of probabilistic conditional inde-
pendencies called Bayesian embedded multivalued dependency
(BEMVD) in our unified model. It is important to realize that

, and arespecialsubclasses of . Subclass
contains those probabilistic conditional independen-

cies involving all variables, called Bayesian (nonembedded)
multivalued dependency (BMVD) in our approach. BMVD
is also known asfull probabilistic conditional independency
[26], or fixed contextprobabilistic conditional independency
[13]. Thus, is a subclass of probabilistic conditional
independency since may include a set containing the
mixture of embedded and nonembedded (full) probabilistic
conditional independencies, whereas can only include sets
of nonembedded (full) probabilistic conditional independen-
cies. Nonembedded probabilistic conditional independencies
are graphically represented by acyclic hypergraphs, while
the mixture of embedded and nonembedded probabilistic
conditional independencies are graphically represented by
DAGs. However, as already mentioned, there are some sets of
probabilistic conditional independencies which donot have a
perfect-map. Thus, we use the termconflict-freefor those sets
of conditional independencies which do have a perfect-map.
Consequently, class contains those sets of nonembedded
(full) probabilistic conditional independencies which can be
faithfully represented by asingleacyclic hypergraph. Similarly,
class contains those sets of embedded and nonembedded
probabilistic conditional independencies which can befaithfully
represented by asingleDAG. It is important to realize that
is a special subclass of , and that is a special subclass
of (and of course ). The subclass of conflict-free

BEMVDs is important since it is used in the construction of
Bayesian networks. That is, subclass allows a human
expert to indirectly specify a joint distribution as a product
of conditional probability distributions. The subclass of
conflict-free BMVDs is also important since it is used in the
construction of Markov networks.

Let denote an arbitrary set of probabilisticdependencies
(see Footnote 1) belonging to one of the above four classes,
and denote any dependency from the same class. We desire
a means to test whether logically implies , namely

(1)

In our approach, for any arbitrary setsand of probabilistic
dependencies, there arecorrespondingsets and of datade-
pendencies. More specifically, for each of the above four classes
of probabilistic dependencies, there is a corresponding class of
data dependencies in the relational database model:

EMVD

Conflict-free EMVD

MVD

Conflict-free MVD

as depicted in Fig. 1. Since we advocate that the Bayesian data-
base model is ageneralizationof the relational database model,
an immediate question to answer is:

Do the implication problems coincide in these two data-
base models?

That is, we would like to know whether the proposition

(2)

holds for the individual pairs , 1a), , 1b), , 2a), and
, 2b). For example, we wish to know whether proposition

(2) holds for the pair (BEMVD, EMVD), where is a set of
BEMVDs, is any BEMVD, and and are thecorresponding
EMVDs.

We will show that

BMVDs MVDs

holds for the pair (BMVD, BMVD). Since (conflict-free
BMVD, conflict-free MVD) are special classes of (BMVD,
BMVD), respectively, proposition (2) is obviously true for the
pair , 2b), namely:

CF BMVDs CF MVDs

where CF stands forconflict-free. It can also be shown that

CF BEMVDs CF EMVDs

holds for the pair (conflict-free BEMVD, conflict-free EMVD).
However, it is important to note that proposition (2) isnot true
for the pair (BEMVD, EMVD). That is, the implication problem
does not coincide for the general classes of probabilistic condi-
tional independency and embedded multivalued dependency. In
[37], it was pointed out that there exist cases where

BEMVDs EMVDs (3)
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Fig. 1. Four classes ofprobabilistic dependencies (BEMVD, conflict-free
BEMVD, BMVD, conflict-free BMVD) traditionally found in the Bayesian
database model are depicted on the left. The corresponding class ofdata
dependencies (EMVD, conflict-free EMVD, MVD, conflict-free MVD) in the
standard relational database model are depicted on the right.

and

BEMVDs EMVDs (4)

(A double solid arrow in Fig. 1 represents the fact that proposi-
tion (2) holds, while a double dashed arrow indicates that propo-
sition (2) does not hold.) Since the implication problems do not
coincide in the pair (BEMVD, EMVD), it was suggested in [37]
that Bayesian networks are intrinsicallydifferentfrom relational
databases. This remark, however, does not take into considera-
tion one important issue, namely, thesolvabilityof the implica-
tion problem for a particular class of dependencies.

The question naturally arises as to why the implication
problem coincides for some classes of dependencies but not for
others. One important result in relational databases is that the
implication problem for the general class of EMVDs isunsolv-
able[17]. (By solvability, we mean there exists a method which
in a finite number of steps can decide whether holds
for an arbitrary instance of the implication problem.)
Therefore, the observation in (3) is not too surprising, since
EMVD is an unsolvableclass of dependencies. Furthermore,
the implication problem for the BEMVD class of probabilistic
conditional independencies is alsounsolvable. One immediate
consequence of this result is the observation in (4). Therefore,
the fact that the implication problems in Bayesian networks
and relational databases do not coincide is based onunsolvable
classes of dependencies, as illustrated in Fig. 2. This supports
our argument that there is noreal difference between Bayesian
networks and standard relational databases in a practical sense,
since onlysolvableclasses of dependencies are useful in the
design and implementation of both knowledge systems.

This paper is organized as follows. Section II contains back-
ground knowledge including the traditional relational database
model, our Bayesian database model, and formal definitions
of the four classes of probabilistic conditional independencies
studied here. In Section III, we introduce the basic notions per-
taining to the implication problem. In Section IV, we present
an in-depth analysis of the implication problem for the BMVD

Fig. 2. Implication problems coincide on thesolvableclasses of dependencies.

class. In particular, we present thechasealgorithm as anonax-
iomaticmethod for testing the implication of this special class
of nonembeddedprobabilistic conditional independencies. In
Section V, we examine the implication problem forembedded
dependencies. The conclusion is presented in Section VI, in
which we emphasize that Bayesian networks are indeed a gen-
eral form of relational databases.

II. BACKGROUND KNOWLEDGE

In this section, we review pertinent notions including acyclic
hypergraphs, the standard relational database model, Bayesian
networks, and our Bayesian database model.

A. Acyclic Hypergraphs

Acyclic hypergraphs are useful for graphically representing
dependencies (independencies). Let , be
a finite set of attributes. Ahypergraph
is a family of subsets , namely, . We say that

has therunning intersection property, if there is a hypertree
construction ordering of such that there ex-
ists a branching function such that

, for . We call an
acyclic hypergraph, if and only if has the running intersection
property [4]. Given an ordering for an acyclic
hypergraph and a branching function for this ordering,
the set of J-keysfor is defined as

(5)

These J-keys are in fact independent of a particular hypertree
construction ordering, that is, an acyclic hypergraph has a
unique set of J-keys.

Example 1: Let and
, ,

, define the hyper-
graph in Fig. 3. It can be easily verified that is
a hypertree construction ordering for
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Thus, is an acyclic hypergraph. The setof J-keys for this
acyclic hypergraph is

In the probabilistic reasoning literature, the graphical struc-
ture of a (decomposable) Markov network [16], [31] is specified
with a jointree. However, it is important to realize that saying
that is an acyclic hypergraph is the same as saying thathas
a jointree [4]. (In fact, a given acyclic hypergraph may have a
number of jointrees.)

B. Relational Databases

To clarify the notations, we give a brief review of the stan-
dard relational database model [23]. The relational concepts pre-
sented here are generalized in Section II-D to express the prob-
abilistic network concepts in Section II-C.

A relation scheme is a finite set of
attributes(attribute names). Corresponding to each attribute
is a nonempty finite set , , called thedomain
of . Let . A relation on
the relation scheme , written , is a finite set of mappings

from to with the restriction that for each
mapping , must be in , , where
denotes the value obtained by restricting the mapping to. An
example of a relation on in general
is shown in Fig. 4. The mappings are calledtuplesand is
called the A-value of. We use in the obvious way and call
it the X-value of the tuple, where is an arbitrary set of
attributes.

Mappings are used in our exposition to avoid any explicit
ordering of the attributes in the relation scheme. To simplify
the notation, however, we will henceforth denote relations by
writing the attributes in a certain order and the tuples as lists
of values in the same order. The following conventions will be
adopted. Uppercase letters from the beginning of the
alphabet will be used to denote attributes. A relation scheme

is written as simply .
A relation on scheme is denoted by either or

. The singleton set is written as and the
concatenation is used to denote set union . For
example, a relation on is shown at the top
of Fig. 5, where the domain of each attribute inis .

Let be a relation on and a subset of . Theprojection
of onto , written , is defined as

(6)

The natural join of two relations and , written
, is defined as

and (7)

Let be subsets of such that . We say
relation satisfies the embedded multivalued dependency
(EMVD) in the context XYZ, if the projection

of satisfies the condition

Fig. 3. Graphical representation of the acyclic hypergraphR =
fR ;R ;R ;R g.

Fig. 4. Relationr on the schemeR = fA ;A ; � � � ; A g.

Fig. 5. Relationr(ABCD) satisfies the EMVDB !! AjC , since
� (r) = � (r) ./ � (r).

Example 2: Relation at the top of Fig. 5 satis-
fies the EMVD , since

.
In the special case when , we call

(nonembedded) multivalued dependency(MVD), or full MVD.
It is therefore clear that MVD is aspecial caseof the more
general EMVD class, as shown in Fig. 1. We write the MVD

as since the context is understood.
MVD can be equivalently defined as follows. Letbe a relation
scheme, and be subsets of , and . A relation

satisfies themultivalued dependency(MVD)
if, for any two tuples and in with , there
exists a tuple in with

and (8)

It is not necessary to assume thatand are disjoint since
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The MVD is anecessaryandsufficientcondition for
to be losslessly decomposed, namely

(9)

As indicated in Fig. 1, there is subclass of (nonembedded)
MVDs called conflict-free MVD. Unlike arbitrary sets of
MVDs, conflict-free MVDs can befaithfully represented by
a unique acyclic hypergraph. In these situations, the acyclic
hypergraph is called aperfect-map[4]. That is, every MVD
logically implied by the conflict-free set can be inferred from
the acyclic hypergraph, and every MVD inferred from the
acyclic hypergraph is logically implied by the conflict-free set.
The next example illustrates the notion of aperfect-map.

Example 3: Consider the following set of MVDs on
:

(10)

This set of MVDs can befaithfully represented by the acyclic
hypergraph in Fig. 3. According to the separation method
for inferring MVDs from an acyclic hypergraph, every MVD
in can be inferred from . Obviously, every MVD logically
implied by can then be inferred from , and every MVD
inferred from is logically implied by . Thus, the acyclic
hypergraph in Fig. 3 is aperfect-mapof the set of MVDs
in (10).

Note that the set of MVDs in (10) is conflict-free. It is
important to realize that there are some sets of MVDs which
cannot be faithfully represented by a single acyclic hypergraph.

Example 4: Consider the following set of MVDs on
:

(11)

There is nosingleacyclic hypergraph that can simultaneously
encode both MVDs in . For example, consider the acyclic
hypergraph . The MVD

in can be inferred from using the method
of separation. However, the MVD cannot be in-
ferred from using separation. On the other hand, the acyclic
hypergraph , represents the
MVD but not .

Example 4 indicates that the class ofconflict-freeMVDs is a
subclass of the MVD class. For example,in (11) is a member
of the MVD class, but is not a member of the conflict-free MVD
class.

C. Bayesian Networks

Before we introduce our Bayesian database model, let us first
review some basic notions in Bayesian networks [31].

Let denote a finite set of discrete
variables (attributes). Each variableis associated with a finite
domain . Let be the Cartesian product of the domains

, . A joint probability distribution[16], [28], [31]

on is a function on , . That is, this function
assigns to each tuple

a real number and is normalized, namely,
. For convenience, we write a joint proba-

bility distribution as over the set of
variables. In particular, we use to denote
a particular value of .
That is, denotes the probability value

of the function for a particular
instantiation of the variables . In general, a
potential[16] is a function on such that is a nonneg-
ative real number and is positive, i.e., at least one

.
We now introduce the fundamental notion ofprobabilistic

conditional independency. Let and be disjoint subsets
of variables in . Let , , and denote arbitrary values of

and , respectively. We say and areconditionally
independentgiven under the joint probability distribution,
denoted , if

(12)

whenever . This conditional independency
can be equivalently written as

(13)

We write as if the joint probability dis-
tribution is understood.

By the chain rule, a joint probability distribution
can always be written as

The above equation is anidentity. However, one can use condi-
tional independencies that hold in the problem domain to obtain
a simpler representation of a joint distribution.

Example 5: Consider a joint probability distribution
which satisfies the set of proba-

bilistic conditional independencies

(14)

Equivalently, we have
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Fig. 6. DAG representing all of the probabilistic conditional independencies
satisfied by the joint distribution defined by (15).

Utilizing the conditional independencies in, the joint distri-
bution can be expressed in a simpler
form

(15)

We can represent all of the probabilistic conditional indepen-
dencies satisfied by this joint distribution by the DAG shown
in Fig. 6. This DAG together with the conditional probability
distributions , , , ,

, and , define aBayesian network[31].
Example 5 demonstrates that Bayesian networks provide a

convenient semantic modeling tool which greatly facilitates the
acquisitionof probabilistic knowledge. That is, a human expert
can indirectly specify a joint distribution by specifying proba-
bility conditional independencies and the corresponding condi-
tional probability distributions.

To facilitate the computation of marginal distributions, it is
useful to transform a Bayesian network into a (decomposable)
Markov network. AMarkov network[16] consists of an acyclic
hypergraph and a corresponding set of marginal distributions.
The DAG of a given Bayesian network can be converted by
themoralizationandtriangulationprocedures [16], [31] into an
acyclic hypergraph. (An acyclic hypergraph in fact represents a
chordal undirected graph. Each maximal clique in the graph cor-
responds to a hyperedge in the acyclic hypergraph [4].) For ex-
ample, the DAG in Fig. 6 can be transformed into the acyclic hy-
pergraph depicted in Fig. 3.Local computationprocedures [45]
can be applied to transform the conditional probability distribu-
tions into marginal distributions defined over the acyclic hyper-
graph. The joint probability distribution in (15) can be rewritten,
in terms of marginal distributions over the acyclic hypergraph in
Fig. 3, as (16), shown at the bottom of the page. The Markov net-
work representation of probabilistic knowledge in (16) is typi-
cally used for inference in many practical applications.

D. A Bayesian Database Model

Here we review our Bayesian database model [42], [45]
which serves as a unified approach for both Bayesian networks
and relational databases.

A potential can be represented as aprobabilistic re-
lation , where the column labeled by stores the
probability value. The relation repre-
senting a potential contains tuples of the
form , as shown in Fig. 7. Let be the standard
database relation representing the tuples withpositiveproba-
bility, namely

The probabilistic relation representing the potential
is defined as

and

For convenience we will write as and say rela-
tion is on with the attribute understood by context. That
is, relations denoted by boldface represent probability distribu-
tions. For example, a potential is shown at the top
of Fig. 8. The traditional relation and the proba-
bilistic relation corresponding to are
shown at the bottom of Fig. 8.

Let be a relation and be a subset of . In our notation,
themarginalization of onto , written , is defined as

and

(17)

The relation represents the usualmarginal distribution
of onto . By definition of , does not

contain any tuples with zero probability.
Example 6: Given the relation at the top of

Fig. 9, the marginalization of onto is the relation
shown at the bottom.

(16)
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Fig. 7. Potentialq(R) expressed as aprobabilisticrelationr(R).

Fig. 8. Potentialq(A A A ) is shown at the top of the figure. The database
relationr(A A A ) and the probabilistic relationr(A A A ) corresponding
to q(A A A ) are shown at the bottom of the figure.

Theproduct joinof two relations and , written
, is defined as

and

That is, represents the potential
obtained by multiplying the two individual potentials and

.
Example 7: Let and represent poten-

tials and . The product join
of relations and is shown in

Fig. 10.
Probabilistic conditional independency is defined as

BayesianEMVD (BEMVD) in our Bayesian database model.
A probabilistic relation satisfies theBayesian
embedded multivalued dependency(BEMVD), ,
if

(18)

Fig. 9. Relationr(A A A ) representing a potentialq(A A A ) is shown at
the top. At the bottom is the marginalization� (r) of relationr(A A A )
ontoA A .

Fig. 10. Product joinr (A A ) � r (A A ) of relationsr (A A ) and
r (A A ).

where the relation is defined using as follows:

and

Note that this inverse relation is well defined because
by definition does not contain any tuples with zero prob-
ability. By introducing a binary operator calledMarkov join,
the right-hand side of (18) can be written as

Thus, in terms of this notation, we say that a relation
satisfies the BEMVD , if and only if

(19)

It is not necessary to assume that , and are disjoint since

Example 8: Relation at the top of Fig. 11 satisfies
the BEMVD , since the marginal can be
written as .

In the special case when , we call the BEMVD
nonembeddedBEMVD, full BEMVD, or simply

Bayesian multivalued dependency(BMVD). For notational con-
venience we write the BMVD as if

is understood by context.
It should be clear that stating the generalized rela-

tion , for a given joint probability distribution
, satisfies the BEMVD is equivalent
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Fig. 11. Relationr(ABCD) satisfies the BEMVDB )) AjC , since
� (r) = � (r) 
 � (r).

to stating that and are conditionally independent given
under in (13), namely

(20)

Thus, we can use the terms BEMVD and probabilistic condi-
tional independency interchangeably.

E. Terminology in the Bayesian and Relational Database
Models

Our goal here is to demonstrate that there is a direct corre-
spondence between the notions used in relational databases and
probabilistic networks.

As already mentioned, anypotential can be viewed
as a probabilistic relation in our Bayesian database
model. Obviously, the only difference between a probabilistic
relation and a standard relation is the additional
column labeled by for storing the probability value. As
shown in Fig. 12, in the Bayesian database model it is crucial
to count the duplicate tuples, whereas duplicate tuples are
ignored in the relational database model. The marginalization

and the product join in the Bayesian database model are
obviously generalizations of the projectionand the natural
join operators in the standard relational database model as
illustrated in Figs. 13 and 14.

In the relational database model, a relation has a
lossless decomposition:

Fig. 12. In the Bayesian database model it is crucial tocount the duplicate
tuples, as reflected by the probabilistic relationr(A A A ). On the other hand,
duplicate tuples areignoredin the relational database model, as reflected by the
standard relationr(A A A ).

Fig. 13. Relation� (r) is the marginalization ofr(A A A ) in Fig. 12,
and� (r) is the projection ofr(A A A ).

Fig. 14. Natural joinr(A A ) ./ r(A A ) of relationsr(A A ) and
r(A A ) (top). Product joinr(A A )� r(A A ) of relationsr(A A ) and
r(A A ) (bottom).

if and only if the MVD holds in . In parallel, a
probabilistic relation has a lossless decomposition:

if and only if the BMVD holds in , i.e., and
are conditionally independent given in the joint probability
distribution used to define . Since the
probabilistic relation does not contain any tuples

, the MVD is anecessarycondition
for to have a lossless decomposition.

The above discussion clearly indicates that a probabilistic rea-
soning system is a general form of the traditional relational data-
base model. The relationships between these two models are
summarized in Table I.
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TABLE I
CORRESPONDINGTERMINOLOGY IN THE

THREE MODELS

III. SUBCLASSES OFPROBABILISTIC CONDITIONAL

INDEPENDENCIES

In this section, we emphasize the fact that probabilistic
networks are constructed using specialconflict-freesubclasses
within the general class of probabilistic conditional indepen-
dencies. That is, Bayesian networks are not constructed using
arbitrary sets of probabilistic conditional independencies, just
as Markov networks are not constructed usingarbitrary sets of
nonembedded (full) probabilistic conditional independencies.

Probabilistic conditional independency is calledBayesian
embedded multivalued dependency(BEMVD) in our approach.
We define the general BEMVD class as follows:

BEMVD is a set of probabilistic

conditional independencies (21)

Bayesian networks are defined by a DAG and a corresponding
set of conditional probability distributions. Such a DAG encodes
probabilistic conditional independencies satisfied by a partic-
ular joint distribution. The method ofd-separation[31] is used
to infer conditional independencies from a DAG. For example,
the conditional independency of and given , i.e.,

, can be inferred from the DAG in Fig. 6
using the d-separation method. However, it is important to re-
alize that there are some sets of probabilistic conditional inde-
pendencies that cannot befaithfully encoded by a single DAG.

Example 9: Consider the following set of probabilistic
conditional independencies on :

(22)

There is nosingleDAG that can simultaneously encode the in-
dependencies in .

Example 9 clearly indicates that Bayesian networks are de-
fined only using a subclass of probabilistic conditional inde-
pendencies. In order to label this subclass of independencies,
we first recall the notion of perfect-map. A graphical structure
is called aperfect-map[4], [31] of a given set of probabilistic
conditional independencies, if every conditional independency

logically implied by can be inferred from the graphical struc-
ture, and every conditional independency that can be inferred
from the graphical structure is logically implied by. (We say

logically implies and write , if whenever any dis-
tribution that satisfies all the conditional independencies in,
then the distribution also satisfies.) A set of probabilistic
conditional independencies is calledconflict-freeif there exists
a DAG which is a perfect-map of .

We now can define theconflict-free BEMVDsubclass used
by Bayesian networks as follows:

Conflict-free BEMVD

there exists a DAG which is a

perfect map of (23)

It should be clear that a causal input list is acover[23] of a con-
flict-free set of conditional independencies. (Acausal input list
[32] or astratified protocol[39] over a set of
variables would contain precisely conditional independency
statements . For example, the set of conditional
independencies in (14) is an example of a causal input list since

precisely defines the DAG in Fig. 6. Since the conditional in-
dependency can be inferred from the DAG
in Fig. 6, is still a conflict-free set
but not a causal input list.)

As illustrated in Fig. 1, the main point is that the conflict-free
BEMVD class is a subclass within the BEMVD class. For ex-
ample, the set of conditional independencies in (22) belongs
to the general BEMVD class in (21) but does not belong to con-
flict-free BEMVD subclass in (23).

Another subclass within the general BEMVD class are
the nonembeddedprobabilistic conditional independencies.
Nonembedded probabilistic conditional independency is also
calledfull [26] or fixed context[13]. Nonembeddedconditional
independencies are those which involveall variables, i.e.,

where .
Example 10: Let . Consider the following

set of probabilistic conditional independencies:

The first independency is nonembedded(full)
since , but the second independency

is not full because .
The class of nonembedded probabilistic conditional indepen-

dencies is calledBayesian multivalued dependency(BMVD) in
our approach. We define the BMVD class as follows:

BMVD is a set ofnonembedded

probabilistic conditional independencies

(24)

Nonembedded (full) independencies are important since
Markov networks do not reflectembeddedconditional inde-
pendencies. For instance, the Bayesian distribution in (15)
satisfies the (embedded) probabilistic conditional independency

, while the Markov distribution in (16) does
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not. That is, Markov distributions only reflectnonembedded
probabilistic conditional independencies.

The separationmethod [4] is used to infer nonembedded
probabilistic conditional independencies from an acyclic
hypergraph. Let be an acyclic hypergraph on the setof
attributes and . The BMVD is inferred
from the acyclic hypergraph , if and only if is the union of
some disconnected components of the hypergraphwith the
set of nodes deleted.

Example 11: Consider the following acyclic hypergraph
on : ,

, . Deleting the node
, we obtain: , , ,

. The disconnected components in
are: . By definition, the
BMVDs , , , and

can be inferred from . On the other hand,
the BMVD is not inferred from since is not
equal to the union of some of the sets in .

Just as Bayesian networks are not constructed using arbitrary
sets of BEMVDs, Markov networks are not constructed using
arbitrary sets of BMVDs. That is, there are sets of nonem-
bedded independencies which cannot befaithfully encoded by a
single acyclic hypergraph.

Example 12: Consider the following set of nonembedded
probabilistic conditional independencies on :

(25)

There is nosingleacyclic hypergraph that can simultaneously
encode both nonembedded independencies in.

Example 12 clearly indicates that Markov networks are de-
fined only using a subclass of nonembedded probabilistic condi-
tional independencies. The notion of conflict-free is again used
to label this subclass. A set of nonembedded probabilistic
conditional independencies is calledconflict-freeif there exists
an acyclic hypergraph which is a perfect-map of.

We now can define theconflict-free BMVDsubclass used by
Markov networks as follows:

Conflict-free BMVD

there exists an acyclic

hypergraph which is aperfect map of (26)

As illustrated in Fig. 1 (left), the main point is that the con-
flict-free BMVD class is a subclass within the BMVD class. For
example, the set of nonembedded probabilistic conditional
independencies in (25) belongs to the BMVD class in (24) but
not to the conflict-free BMVD class in (26).

We conclude this section by pointing out another similarity
between relational databases and Bayesian networks. The no-
tion of conflict-free MVDs was originally proposed by Lien
[22] in the study of the relationship between various database
models. It has been shown [4] that a conflict-free setof MVDs
is equivalentto another data dependency calledacyclic join de-
pendency(AJD) (defined below). That is, whenever any relation
satisfies all of the MVDs in , then the relation also satisfies
a corresponding AJD, and vice versa. An AJD guarantees that

a relation can be decomposed losslessly into two or more pro-
jections (smaller relations). Let be an
acyclic hypergraph on the set of attributes

. We say that a relation satisfies theacyclic join
dependency(AJD), if:

(27)

That is, decomposes losslessly onto. We also write
as .

Example 13: Relation at the top of of Fig. 15 satisfies
the AJD, , where is the acyclic
hypergraph in Fig. 3. That is,

The conflict-free class of MVDs, namely, AJDs, play a major
role in database design since it exhibits many desirable proper-
ties in database applications [4]. In our unified model, a Markov
network can be easily seen as ageneralizedform of AJD.

Let be an acyclic hypergraph on the
set of attributes . We say aBayesian
acyclic join dependency(BAJD), written , is satisfied by a
relation , if

(28)

where the sequence is a hypertree construction
ordering for . Since the probabilistic relation does not
contain any tuples , the AJD, , is anecessary
condition for to satisfy the BAJD, .

Example 14: Recall the distribution defined by the Markov
network in (16), namely (29), shown at the bottom of the next
page, where , , is the
acyclic hypergraph in Fig. 3. Let be the
probabilistic relation representing in
(29). It can be seen that satisfies the BAJD

, namely

The relation at the bottom of Fig. 15 satisfies this BAJD
.

Example 14 clearly demonstrates that the representation of
knowledge in practice is thesamefor both relational and prob-
abilistic applications. An acyclic join dependency (AJD)

and a (decomposable) Markov network
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Fig. 15. Relationr(R) at the top satisfies the AJD,./ R. Relation
r(R) at the bottom satisfies the BAJD,
R. The acyclic hypergraph
R = fR ;R ;R ;R g is depicted in Fig. 3.

or in our terminology, the BAJD

are both defined over an acyclic hypergraph.
The discussion in Section II-E explicitly demonstrates that

there is adirect correspondence between the concepts used in
relational databases and Bayesian networks. The discussion
at the end of this section clearly indicates thatboth intelligent
systems represent their knowledge over acyclic hypergraphs
in practice. However, the relationship between relational
databases and Bayesian networks can be rigorously formalized
by studying theimplication problemsfor the four classes of
probabilistic conditional independencies defined in this section.

IV. THE IMPLICATION PROBLEM FORDIFFERENTCLASSES OF

DEPENDENCIES

Before we study the implication problem in detail, let us first
introduce some basic notions. Here we will use the termsre-
lation and joint probability distributioninterchangeably; simi-
larly, for the termsdependencyandindependency.

Let be a set of dependencies defined on a set of attributes.
By , we denote the set of all relations onthat satisfy
all of the dependencies in. We write as
when is understood, and for , where
is a single dependency. We saylogically implies , written

, if . In other words, is logically
implied by if every relation which satisfies also satisfies .
That is, there is no counter-example relation such that all of the
dependencies in are satisfied but is not.

The implication problemis to test whether a given set of
dependencies logically implies another dependency, namely

(30)

Clearly, the first question to answer is whether such a problem
is solvable, i.e., whether there exists some method to provide
a positive or negative answer for any given instance of the im-
plication problem. We consider two methods for answering this
question.

A method for testing implication is by axiomatization. An
inference axiomis a rule that states if a relation satisfies certain
dependencies, then it must satisfy certain other dependencies.
Given a set of dependencies and a set of inference axioms,
the closureof , written , is the smallest set containing
such that the inference axioms cannot be applied to the set to
yield a dependency not in the set. More specifically, the set
derivesa dependency, written , if is in . A set of
inference axioms issoundif whenever , then . A
set of inference axioms iscompleteif the converse holds, that
is, if , then . In other words, saying a set of axioms
are complete means that if logically implies the dependency

, then derives . A sequence of dependencies over is a
derivation sequenceon if every dependency in is either

1) a member of , or
2) follows from previous dependencies inby an appli-

cation of one of the given inference axioms.
Note that is the set of attributes which appear in. If the
axioms are complete, to solve the implication problem we can
simply compute and then test whether .

Another approach for testing implication is to use a nonax-
iomatic technique such as thechasealgorithm [23]. The chase
algorithm in relational database model is a powerful tool to ob-
tain many nontrivial results. We will show that the chase algo-
rithm can also be applied to the implication problem for a par-
ticular class of probabilistic conditional independencies. Com-
putational properties of both the chase algorithm and inference
axioms can be found in [12] and [23].

The rest of this paper is organized as follows. Since nonem-
bedded dependencies are best understood, we therefore choose
to analyze the pair (BMVD, MVD), and their subclasses (con-
flict-free BMVD, conflict-free MVD) before the others. Next
we consider the embedded dependencies. First we study the
pair of (conflict-free BEMVD, conflict-free EMVD). The con-
flict-free BEMVD class has been studied extensively as these
dependencies form the basis for the construction of Bayesian
networks. Finally, we analyze the pair (BEMVD, EMVD). This
pair subsumes all the other previously studied pairs. This pair
is particularly important to our discussion here, as its implica-
tion problems areunsolvablein contrast to the othersolvable
pairs such as (BMVD, MVD) and (conflict-free BEMVD, con-
flict-free EMVD).

V. NONEMBEDDED DEPENDENCY

In this section, we study the implication problem for the class
of nonembedded (full) probabilistic conditional independency,

(29)
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called BMVD in our Bayesian database model. One way to
demonstrate that the implication problem for BMVDs is solv-
able is to directly prove that a sound set of BMVD axioms are
alsocomplete. This is exactly the approach taken by Geiger and
Pearl [13]. Here we take a different approach. Instead of directly
demonstrating that the BMVD implication problem is solvable,
we do it by establishing a one-to-one relationship between the
implication problems of the pair (BMVD,MVD).

A. Nonembedded Multivalued Dependency

The MVD class of dependencies in the pair (BMVD,MVD)
has been extensively studied in the standard relational database
model. As mentioned before, MVD is the necessary and suffi-
cient conditions for a lossless (binary) decomposition of a data-
base relation. In this section, we reviewtwomethods for solving
the implication problem of MVDs, namely, theaxiomaticand
nonaxiomaticmethods.

1) Axiomatization: It is well known [3] that MVDs have a
finite complete axiomatization.

Theorem 1: The following inference axioms (M1)–(M7)
are both sound and complete for multivalued dependencies
(MVDs):

If then

If and then

If and then

If and then

If then

If and

then

If then

Axioms (M1)–(M7) are calledreflexivity, transitivity, union,
decomposition, augmentation, pseudotransitivity, andcomple-
mentation, respectively.

The usefulness of asoundaxiomatization lies in the ability to
derive new dependencies from a given set.

Example 15: Consider the following set of MVDs:

on the set of attributes . The following is a
derivation sequenceof the MVD :

(given)

(M1)

(M3) from and

(given)

(M2) from and

Since the above derivation sequence is
constructed based on sound axioms, this means thatlogically
implies , written:

The above example demonstrates that whenever a depen-
dency is derived using sound axioms, the inferred dependency
is logically implied by the given input set. However, if the
inference axioms arenot complete, then there is no guarantee
that the axioms will deriveall of the logically implied depen-
dencies. Thus, in this approach the main task in solving the
implication problem for a class of dependencies is to construct
a set of complete inference axioms.

2) A Nonaxiomatic method—the Chase:Here we want to
discuss an alternative method to solve the implication problem
for the MVD class of dependencies. The discussion presented
here follows closely the description given in [23].

We begin by examining what it means for a relation to de-
compose losslessly. Letbe a relation on , and

. We say relation decomposes losslesslyonto
a database scheme if

(31)

It can be easily verified that

holds for any decomposition. In other words, every tuple
will also appear in the expression

. Thereby, for lossless decomposition it is sufficient to
show

That is, to show thateverytuple in the natural join of the pro-
jections is also a tuple in.

The notion of lossless decomposition can be conveniently ex-
pressed by theproject-join mapping which is a function on
relations on defined by

The important point to notice is that saying a relation de-
composes losslessly onto schemeis the same as saying that

. Project-join mappings can be represented in tab-
ular form called tableaux.

A tableau is both a tabular means of representing a
project-join mapping and a template for a relationon .
Whereas a relation contains tuples of values, a tableau contains
rows of subscripted variables (symbols). Theand vari-
ables are calleddistinguishedandnondistinguishedvariables,
respectively. We restrict the variables in a tableau to appear
in only one column. We make the further restriction that at
most one distinguished variable may appear in any column. By
convention, if the scheme of a tableau is , then
the distinguished variable appearing in the-column will be

. For example, a tableau on scheme is
shown in Fig. 16. We obtain a relation from the tableau by
substituting domain values for variables. Letbe a tableau
and let denote the set of its
variables. Avaluation for is a mapping from to the
Cartesian product such that is in
when is a variable appearing in the -column. We extend
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the valuation from variables to rows and thence to the entire
tableau. If is a row in a tableau, we let

. We then let

is a row in

Example 16: Consider the following valuation:

(32)

The result of applying to the tableau in Fig. 16 is the relation
in Fig. 17.
Similar to a project-join mapping, a tableauon scheme

can be interpreted as a function on relations . In this in-
terpretation we require that have a distinguished variable in
every column. Let be the row of all distinguished variables.
That is, if , then . Row

is not necessarily in . If is a relation on scheme, we let

That is, if we find any valuation that maps every row in to
a tuple in , then is in .

It is always possible to find a tableau for representing a
project-join mapping defined by

where , and
. The tableau for is defined as follows. The scheme

for is . has rows, . Row has the
distinguished variable in the -column exactly when

. The remaining nondistinguished variables inare unique
and do not appear in any other row of . For example, let

and
be a hypertree construction for. The tableau for is
depicted in Fig. 18.

Lemma 1: [23] Let be a set of rela-
tion schemes, where . The project-join map-
ping and the tableau define the same function between
relations . That is, for all .

Lemma 1 indicates that saying that a relation decom-
poses losslessly onto scheme is the same as saying that

.
Example 17: Consider the relation , as shown

on the left side of Fig. 19. The valuation, defined as

indicates that is in . All of is depicted
on the right side of Fig. 19. It is easily verified that applying
the project-join mapping to the relation in Fig. 19
also produces the relation on the right side of Fig. 19. That is,

.

Fig. 16. TableauT on the schemeA A A A .

Fig. 17. Relationr obtained as the result of applying� in (32) to the tableau
T in Fig. 16.

Fig. 18. TableauT onR = A A A A .

The notion of what it means for two tableaux to be equivalent
is now described. Let and be tableaux on scheme. We
write if for all relations . Tableaux

and areequivalent, written , if and
. That is, if for every relation

. Let denote the set of relations that satisfy
all the constraints in . If and are tableaux on , then we
say iscontainedby on , written ,
if for every relation in . We say
and areequivalenton , written , if

and .
We now consider a method for modifying tableaux while

preserving equivalence. AM-rule for a set of AJDs is a
means to modify an arbitrary tableauto a tableau such that

. Let be a set of relation
schemes and let be a AJD on . Let be a tableau on
and let (not necessarily distinct) be rows of
that are joinable on with result . Applying the M-rule for

to tableau allows us to form the tableau

If we view the tableau as a relation, the generated rowcan
be expressed as

(33)

Example 18: Let and be the
tableau in Fig. 20. Rows and are joinable on . We can
then apply the M-rule for in to rows

and of to generate the
new row
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Fig. 19. Relationr(A A A A ) on the left. On the right, the relationT (r),
whereT is the tableau in Fig. 18.

Tableau in Fig. 21 is the result of this applica-
tion. Even though rows and
are joinable on , we cannot construct the new row
since no M-rule exists in which applies to attribute .

It is worth mentioning that M-rule is also applicable to MVDs
since MVD is a special case of AJD.

Theorem 2: [23] Let and be the
result of applying the M-rule for to tableau . Tableaux
and are equivalent on .

The chasealgorithm can now be described. Given and
, apply the M-rules associated with the AJDs in, until

no further change is possible. The resulting tableau, written
chase , is equivalent to on all relations in ,
i.e., chase , andchase considered as
a relation is in .

Theorem 3: [23] if and only if chase con-
tains the row of all distinguished variables.

Theorem 3 states that the chase algorithm is equivalent to
logical implication. We illustrate Theorem 3 with the following
example.

Example 19: Suppose we wish to test the implication
problem on scheme , where

, is a set of MVDs and
is an AJD. We construct the

initial tableau in Fig. 18 according to the database scheme
defined by . Rows and are joinable on . We

can then apply the M-rule for in to rows
and of to generate the

new row

Tableau is depicted in Fig. 21. Similarly, rows
and are joinable on . We can then apply the M-rule

for in to rows and
to generate the new row

as shown in Fig. 22. Row is the row of all distinguished
variables. By Theorem 3, logically implies . That is, any
relation that satisfies the MVDs in must also satisfy the AJD
.
It should be noted that the resulting tableau in the chase al-

gorithm isuniqueregardless of the order in which the M-rules
were applied.

Fig. 20. TableauT onR = A A A A .

Fig. 21. TableauT = T [fha a a b ig, whereT is the tableau in Fig. 20.

Fig. 22. SinceT satisfies the MVDA !! A in C , by definition, rows
w andw being joinable onA imply that roww = ha a a a i is also in
T .

Theorem 4: [23] The chase computation for a set of AJDs
is a finite Church-Rosserreplacement system. Therefore,
chase is always a singleton set.

This completes the review of the implication problem for re-
lational data dependencies.

B. Nonembedded Probabilistic Conditional Independency

We now turn our attention to the class of nonembedded
probabilistic conditional independency (BMVD) in the pair
(BMVD, MVD). As in the MVD case, we will consider both the
axiomatic and nonaxiomatic methods to solve the implication
problem for the BMVD class of probabilistic dependencies.
However, we first show an immediate relationship between the
inference of BMVDs and that of MVDs.

Lemma 2: Let be a set of BMVDs on and a single
BMVD on . Then

where is the set of MVDs
corresponding to the BMVDs in , and is the MVD corre-
sponding to the BMVD .

Proof: Suppose . We will prove the claim by con-
tradiction. That is, suppose that . By definition, there
exists a relation such that satisfies all of the MVDs
in , but does not satisfy the MVD. Let denote the
number of tuples in . We construct a probabilistic relation

from by appending the attribute . For each of the
tuples in , set . Thus, represents a

uniformdistribution. In the uniform case [25], [42], satis-
fies if and only if satisfies . Again using the uniform
case, does not satisfy since does not satisfy. By
definition, does not logically imply , namely, . A
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contradiction to the initial assumption that . Therefore,

With respect to the pair (BMVD,MVD) ofnonembeddedde-
pendencies, Lemma 2 indicates that the statement

is a tautology. We now consider ways to solve the implication
problem .

1) BMVD Axiomatization:It can be easily shown that the
following inference axioms for BMVDs aresound:

If then

If and then

If and then

If and then

If then

If and

then

If then

Axiom (BM1) holds trivially for any relation with
. We now show that axiom (BM2) is sound. Recall

that

Thus, without loss of generality, let , where
and are pairwise disjoint. By definition, the BMVDs

and mean

(34)

and

(35)

respectively. Computing the marginal distribution
from both (34) and (35), we respectively obtain

(36)

and

(37)

By (36) and (37) we have

(38)

By (38) and (35), we obtain

(39)

Equation (39) is the definition of the BMVD . The
other axioms can be shown sound in a similar fashion.

Note that there is a one-to-one correspondence between the
above inference rules for BMVDs and those MVD inference
axioms (M1)–(M7) in Theorem 1. Since the BMVD axioms
(BM1)–(BM7) aresound, it can immediately be shown that the
implication problems coincide in the pair (BMVD,MVD).

Theorem 5: Given thecompleteaxiomatization (M1)–(M7)
for the MVD class. Then

where is a set of BMVDs,
is the corresponding set of MVDs, andis the MVD corre-
sponding to a BMVD .

Proof: Holds by Lemma 2.
Let . By Theorem 1, implies that .

That is, there exists a derivation sequenceof the MVD by
applying the MVD axioms to the MVDs in . On the other
hand, each MVD axiom has a corresponding BMVD axiom.
This means there exists a derivation sequenceof the BMVD
using the BMVDs axioms on the BMVDs in, which parallels
the derivation sequenceof the MVD . That is, . Since
the BMVD axioms are sound, implies that

Theorem 5 indicates that the implication problems coincide
in the pair (BMVD,MVD), as indicated in Fig. 1. The following
result is an immediate consequence and is stated without proof.

Corollary 1: The axioms (BM1)–(BM7) are bothsoundand
completefor the class of nonembedded probabilistic conditional
independency.

By Corollary 1, it is not surprising then that Geiger and Pearl
[13] showed that their alternative complete axioms for BMVDs
were also complete for MVDs.

The main point of this section is to foster the notion that the
Bayesian database model is intrinsically related to the standard
relational database model. For example, by examining the im-
plication problem for BMVD in terms of MVD, it is clear and
immediate that the implication problems coincide in the pair
(BMVD,MVD).

2) A Nonaxiomatic Method:We now present anon-
axiomatic method for testing the implication problem for
nonembedded probabilistic conditional independencies. The
standard chase algorithm can be modified for such a purpose by
appropriately defining the manipulation of tableaux. However,
we will then demonstrate that such a generalization is not
necessary.

We briefly outline how a probabilistic chase can be for-
mulated. A more complete description is given in [41]. The
standard tableau on a set of attributes
is augmented with attribute . Each traditional row

is appended with probability symbol
. That is, a probabilistic tableau contains

rows . In testing whether , we construct
the initial tableau in the same fashion as in testing ,
where and are the corresponding MVDs, and is the
acyclic hypergraph corresponding to(and .

We now consider a method to modify probabilistic tableaux.
We generalize the notion of M-rule for a MVD as
follows. Let be a probabilistic tableau on , a



800 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 6, NOVEMBER 2000

BMVD in a given set of BMVDs, and be twojoinable
rows on . A B-rule rule for the BMVD is a means
to add the new row to , where is defined
in the usual sense according the M-rule for the corresponding
MVD , and the probability symbol is defined
as

(40)

Example 20: Let , and
consider the tableau at the top of Fig. 23. It can be seen that
rows

and

are joinable on . We can then apply the B-rule for
the BMVD in to generate a new row

, where by (40)

The new row is added to , as shown at the top of Fig. 24.
Similarly, rows

and

are joinable on . By (40), the B-rule for the BMVD
in can be applied to rows and to generate the new

row

The tableau is shown at the top of Fig. 24.
The probabilistic chase algorithm is now introduced. Given
and , apply the B-rules associated with the BMVDs in,

until no further change is possible. The resulting tableau, written
chase , is equivalent to on all relations in . That
is, chase , for every probabilistic relationsat-
isfying every BMVD in . Furthermore,chase consid-
ered as a relation is in . The next result indicates that
the probabilistic chase algorithm is anonaxiomaticmethod for
testing the implication problem for the BMVD class.

Theorem 6: Let be a set of BMVDs on ,
and be the BMVD on . Then

is a row inchase

where is the acyclic hypergraph corre-
sponding to , and is defined as

Proof: We first show that the row of all distin-
guished variables must appear
in chase . Given . By contradiction, suppose
that the row does not appear
in chase . This means that the B-rules corresponding
to the BMVDs in cannot be applied to the joinable rows

Fig. 23. Initial tableau T constructed according to the BAJD
c = 
fA A ;A A ;A A g is shown at the top of the figure. (The initial
tableauT constructed according to the AJDc =./ fA A ;A A ;A A g
is shown on the bottom.)

Fig. 24. Tableaux obtained by adding the new rowsw andw is shown on
the top of the figure. (The standard use of the corresponding M-rules is shown
on the bottom.)

to generate the row . This
implies that the M-rules corresponding to the MVDs in

cannot be applied to the
joinable rows in to generate the row of all
distinguished variables, whereis the MVD corresponding to
the BMVD . By Theorem 3, the row not ap-
pearing inchase means that , wherechase
is the result of chasing under . By Theorem 5,
implies that . A contradiction. Therefore, the row

must appear inchase .
We now show that can be factorized as de-

sired. By contradiction, suppose that

This means thatchase , considered as a probabilistic re-
lation, satisfies the BMVDs in but does not satisfy the BMVD
. By definition, . A contradiction. Therefore,

Given the row appears in
chase . This means that the B-rules corresponding to
the BMVDs in can be applied to to generate the row

. This implies that the M-rules
corresponding to the MVDs in

can be applied to the joinable rows in to generate the
row of all distinguished variables, whereis the
MVD corresponding to the BMVD . By Theorem 3, the row
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appearing inchase means that ,
wherechase is the result of chasingunder . By The-
orem 5, implies that

Theorem 6 indicates that if and only if the row
of all distinguished variables appears inchase , i.e.,

can always be factorized according to the
BMVD being tested.

As promised, we now show that developing a probabilistic
chase algorithm for the Bayesian network model is not neces-
sary because of the intrinsic relationship between the Bayesian
and relational database models.

Theorem 7: Let be a set of BMVDs on ,
and be a single BMVD on . Then

is a row inchase

where is the set of
MVDs corresponding to , is the MVD corresponding to,
andchase is the result of chasingunder .

Proof: By Theorem 5,

By Theorem 3,

is a row inchase

The claim follows immediately.
Theorem 7 indicates that the standard chase algorithm, de-

veloped for testing the implication ofdata dependencies, can
in fact be used to test the implication of nonembedded proba-
bilistic conditional independency.

C. Conflict-Free Nonembedded Dependency

In this section, we examine the pair (conflict-free BMVD,
conflict-free MVD). Recall that conflict-free BMVD is a
subclass within the BMVD class. Similarly, conflict-free
MVD is a subclass of MVD. Since we have already shown
that the implication problems coincide in the pair (BMVD,
MVD), obviously the implication problems coincide in the
pair (conflict-free BMVD, conflict-free MVD) as mentioned
in [26]. However, here we would like to take this opportunity
to show that every conflict-free set of BMVDs is equivalent
to a Bayesian acyclic-join dependency (BAJD), . That is,
whenever any probabilistic relation satisfies all the BMVDs in

, then it also satisfies the BAJD , and vice versa.
Theorem 8: Let denote a conflict-free set of BMVDs. Let

be the conflict-free set
of MVDs corresponding to . Then and have the same
perfect-map .

Proof: The same separation method is used to infer both
BMVDs and MVDs from acyclic hypergraphs. Therefore, for
any given acyclic hypergraph, the BMVD can be
inferred from if and only if the corresponding MVD

can be inferred from . Let be the acyclic hypergraph
which is a perfect-map of the conflict-free setof BMVDs.
Let the perfect-map of . We need to show that and
denote the same acyclic hypergraph. Since a conflict-free set of
MVDs has a unique perfect-map [4], it suffices to show that
is a perfect-map of the set of MVDs.

Suppose . By Theorem 5, if and only
if . Thus, . Since is a perfect-map

of , can be inferred from using the separation
method. By the above observation, this means that the MVD

can be inferred from .
Suppose the MVD can be inferred from using

the separation method. By the above observation, this means
that the BMVD can be inferred from . Since
is a perfect-map of , . By Theorem 5, this
implies that .

Theorem 8 indicates that every conflict-free set of nonem-
bedded probabilistic dependencies is equivalent to a Bayesian
acyclic join dependency.

VI. EMBEDDED DEPENDENCIES

We now examine the implication problem forembedded
dependencies. As shown in Fig. 1, the class of conflict-free
BEMVD is a subclass of BEMVD, and conflict-free EMVD
is a subclass of EMVD. We choose to first discuss the pair
(conflict-free BEMVD, conflict-free EMVD) since the im-
plication problems for these two classes aresolvable. We
then conclude our discussion by looking at the implication
problem for the pair (BEMVD, EMVD) which represent the
general classes of probabilistic conditional independency and
embedded multivalued dependency.

A. Conflict-Free Embedded Dependencies

Here we study the implication problem for the pair (con-
flict-free BEMVD, conflict-free EMVD). We begin with the
conflict-free BEMVD class.

The class of conflict-free BEMVDs plays a key role in the
design of Bayesian networks. Recall that a set of BEMVDs is
conflict-free if they can be faithfully represented by asingle
DAG. We can use thed-separationmethod [31] to infer BE-
MVDs from a DAG. One desirable property of the conflict-free
BEMVD class is that every conflict-free set of BEMVDs has a
DAG as itsperfect-map.

The class of conflict-free BEMVD is aspecial caseof the
general BEMVD class, as shown in Fig. 1. This special class of
probabilistic dependencies has a complete axiomatization.

Theorem 9: [31] The class ofconflict-free BEMVDhas a
completeaxiomatization. Let be pairwise disjoint
subsets of such that .

BE1 If then

BE2 If then

BE3 If then

BE4 If and then

The axioms (BE1)–(BE4) are respectively calledsymmetry, de-
composition, weak union, and contraction. Clearly, Theorem
9 indicates that the implication problem for the conflict-free
BEMVD class is solvable.

We now turn our attention to the other class of dependency in
the pair (conflict-free BEMVD, conflict-free EMVD), namely,
conflict-free EMVD. In order to solve the implication problem
for the class ofconflict-freeEMVD, we again use the method
of drawing a one-to-one correspondence between the classes of
conflict-free BEMVD and conflict-free EMVD.
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It is known that the following EMVD inference axioms are
sound [3], [38], where be pairwise disjoint subsets
of such that .

E1 If then

E2 If then

E3 If then

E4 If and then

Theorem 10:Given the complete axiomatization
(BE1)–(BE4) for the CF-BEMVD class. Then

where is a conflict-free set of EMVDs,
is the corresponding conflict-free set

of BEMVDs, and is the EMVD corresponding to the BEMVD
.

Proof: Suppose that . By Theorem 9, im-
plies that . That is, there exists a derivation sequence

of the BEMVD from the conflict-free set
of BEMVDs using the inference axioms (BE1)–(BE4). The

above discussion demonstrates that the corresponding inference
axioms (E1)–(E4) aresoundfor deriving new EMVDs. This
means that there is a derivation sequence
of the EMVD from the conflict-free set of EMVDs using
the inference axioms (E1)-(E4), such thatparallels . That is,

. We obtain our desired result since implies that

Theorem 10 indicates that

holds in the pair (conflict-free BEMVD, conflict-free EMVD).
Conversely, we want to know whether

is also true for this pair of dependencies. It was shown that there
exists a complete axiomatization for conflict-free EMVDs [31].

Theorem 11: [31] The axioms (E1)–(E4) arecompletefor the
class ofconflict-freeEMVD.

Based on this theorem, the following result is immediate.
Theorem 12:Given the complete axiomatization (E1)–(E4)

for the CF-EMVD class. Then

where is a conflict-free set of BEMVDs,
is the corresponding conflict-free set

of EMVDs, and is the BEMVD corresponding to the EMVD
.

Proof: The proof follows from a similar argument given
in the Proof of Theorem 10.

The important point to remember is that Theorems 10 and 12
together indicate that

(41)

holds for the pair (conflict-free BEMVD, conflict-free EMVD).
As already mentioned, the class of conflict-free BEMVDs is
the basis for constructing a Bayesian network. However, con-
flict-free EMVDs have traditionally been ignored in relational
databases. The above observation indicates that the special class

of conflict-freeEMVDs is equally useful in the design and im-
plementation of traditional database applications.

B. Embedded Dependencies in General

The last pair of dependencies we study is (BEMVD, EMVD).
All of the previously studied classes of probabilistic dependen-
cies are a subclass of BEMVD (probabilistic conditional inde-
pendency). Similarly, EMVD is the general class of multivalued
dependencies. Before we study BEMVDs, we first examine the
implication problem for EMVDs.

Theorem 13: [29], [34] The general EMVD class does not
have afinite complete axiomatization.

The chase algorithm also doesnot solve the implication
problem for the EMVD class. If , then the chase algo-
rithm can continue forever. The reason is that, by definition,
a M-rule for an EMVD in a given set of
EMVDs would only generate apartial new row. To modify the
chase algorithm for EMVDs, the partial row is padded out with
uniquenondistinguished variables in the remaining attributes.
Thus, in using an EMVD the chase adds a new row containing
new symbols. This enables further applications of EMVDs in

, which will add more new rows with new symbols, and this
process does not terminate and can continue forever. (With
MVDs, on the other hand, a new row consists only of existing
symbols meaning that eventually there are no new rows to
generate.)

The chase algorithm, however, is aproof procedurefor im-
plication of EMVDs [12]. This means that if , then the
row of all distinguished variables will eventually be generated.
The generation of the row of alls can be used as a stopping
criterion.

Example 21: Suppose we wish to verify that , where
, ,

and is the the EMVD . The initial tableau
is constructed according to, as shown in Fig. 25 (left). We can
apply the M-rule corresponding to the EMVD
in to joinable rows and
to generate the new row , as shown in Fig.
25 (right). Similarly, we can apply the M-rule corresponding
to the EMVD in to joinable rows

and to generate the new row
, as shown in Fig. 25 (right). Finally, we

can obtain the row of all distinguished variables
by applying the M-rule corresponding to the MVD

in to joinable rows and . Therefore, .
For over a decade, considerable effort was put forth in the

database research community to show that the implication
problem for EMVDs is in factunsolvable. Herrmann [17]
recently succeeded in showing this elusive result.

Theorem 14: [17] The implication problem for the general
EMVD class isunsolvable.

Theorem 14 is important since it indicates thatno method
exists for deciding the implication problem for the EMVD class.
This concludes our discussion on the EMVD class.

We now study the corresponding class of probabilistic depen-
dencies in the pair (BEMVD, EMVD), namely, the general class
of probabilistic conditional independency. Pearl [31] conjec-
tured that the semi-graphoid axioms (BE1)–(BE4) could solve
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Fig. 25. On the left, the initial tableauT constructed according to the
EMVD c defined asA A !! A . The rowha a a a i of all distinguished
variables appears inchase (T ) indicatingC j= c.

the implication problem for probabilistic conditional indepen-
dency (BEMVD) in general. This conjecture was refuted [37],
[46].

Theorem 15: [37], [46] BEMVDs do not have afinite com-
plete axiomatization.

Theorem 15 indicates that it is not possible to solve the im-
plication problem for the BEMVD class using a finite axioma-
tization. This result does not rule out the possibility that some
alternative method exists for solving this implication problem.

As with the other classes of probabilistic dependencies, we
now examine the relationship between and in
the pair (BEMVD,EMVD). The following two examples [37]
indicate that the implication problems for EMVD and BEMVD
do not coincide.

Example 22: Consider the set

of BEMVDs, and the single BEMVD . In
[36], Studeny showed that . Now consider the set

of EMVDs cor-
responding to the set of BEMVDs, and the single EMVD

corresponding to the BEMVD . Consider
the relation in Fig. 26. It can be verified that

satisfies all of the EMVDs in but does not
satisfy the EMVD . That is, .

Example 22 indicates that

(42)

Example 23: Consider the set
of EMVDs,

and let be the single EMVD . The
chase algorithm was used in Example 21 to show that

. Now consider the corresponding set of BEMVDs

and is the BMVD . It is easily verified that
relation in Fig. 27 satisfies all of the BEMVDs
in but does not satisfy the BEMVD. Therefore, .

Example 23 indicates that

(43)

In the next section, we attempt to answer why the implication
problems coincide for some classes but not for others.

C. The Role of Solvability

We have shown that

holds for the pairs (BMVD, MVD) in Theorem 5, (Conflict-free
BMVD, Conflict-free MVD) in Theorem 5, and (Conflict-free

Fig. 26. Relationr satisfies all of the EMVDs inC but does not satisfy the
EMVD c, whereC andc are defined in Example 22. Therefore,C 6j= c.

Fig. 27. Relationr satisfies all of the BEMVDs inC but does not the BEMVD
c, whereC andc are defined in Example 23. Therefore,C 6j= c.

BEMVD, Conflict-free EMVD) in (41). That is, the implication
problems coincide in these three pairs of classes. However, Ex-
amples 22 and 23 demonstrate that

for the pair (BEMVD, EMVD)

The implication problems for each class in the first three pairs
aresolvable. However, the implication problem for the general
EMVD class in the pair (BEMVD, EMVD) isunsolvable. These
observations lead us to make the following conjecture.

Conjecture 1: Consider any pair (BD-class, RD-class),
where BD-class is a class of probabilistic dependencies in the
Bayesian database model and RD-class is the corresponding
class of data dependencies in the relational database model.
Let be a set of probabilistic dependencies chosen from
BD-class, and a single dependency in BD-class. Letand
denote the corresponding set of data dependencies ofand ,
respectively, in RD-class.

(i) If the implication problem issolvable for the class
BD-class, then

(ii) If the implication problem issolvable for the class
RD-class, then

In [37], Studeny studied the relationship between the im-
plication problems in the pair (BEMVD, EMVD), namely,
probabilistic conditional independency (BEMVD) and em-
bedded multivalued dependency. Based on Conjecture 1(i), his
observation
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would indicate that the implication problem for the general class
of probabilistic conditional independency isunsolvable. Simi-
larly, based on Conjecture 1(ii), his observation

would indicate that the implication problem for the class of
EMVD is unsolvable.

A successful proof of this conjecture would provide a proof
that the implication problems for EMVD and BEMVD (proba-
bilistic conditional independency) are both unsolvable.

VII. CONCLUSION

The results of this paper and our previous work [42], [44],
[45], clearly indicate that there is adirect correspondence
between the notions used in the Bayesian database model and
the relational database model. The notions of distribution,
multiplication, and marginalization in Bayesian networks are
generalizationsof relation, natural join, and projection in
relational databases. Both models usenonembeddeddepen-
dencies in practice, i.e., the Markov network and acyclic join
dependency representations are both defined over the classes of
nonembedded dependencies. The same conclusions have been
reached regardingquery processingin acyclic hypergraphs
[4], [19], [35], and as to whether a set ofpairwise consistent
distributions (relations) are indeed marginal distributions from
the same joint probability distribution [4], [10]. Even the recent
attempts to generalize the standard Bayesian database model,
including horizontal independencies[6], [44], complex-values
[20], [44], anddistributedBayesian networks [7], [43], [47],
parallel the development ofhorizontal dependencies[11],
complex-values[1], [18], anddistributeddatabases [8] in the
relational database model. More importantly, the implication
problem for both models coincide with respect to two important
classes of independencies, the BMVD class [13] (used in the
construction of Markov networks) and the conflict-free sets
[31] (used in the construction of Bayesian networks).

Initially, we were quite surprised by the suggestion [37] that
the Bayesian database model and the relational database model
aredifferent. However, our study reveals that this observation
[37] was based on the analysis of the pair (BEMVD, EMVD),
namely, the general classes of probabilistic conditional indepen-
dencies andembeddedmultivalued dependencies. The implica-
tion problem for the general EMVD class isunsolvable[17], as
is the general class of probabilistic conditional independencies.
Obviously, onlysolvableclasses of independencies are useful
for the representation of and reasoning with probabilistic knowl-
edge. We therefore maintain that there is noreal difference be-
tween the Bayesian database model and the relational database
model in apractical sense. In fact, there exists aninherentre-
lationship between these two knowledge systems. We conclude
the present discussion by making the following conjecture:

Conjecture 2: The Bayesian database model generalizes the
relational database model onall solvable classes of dependen-
cies.

The truth of this conjecture would formally establish the
claim that the Bayesian database model and the relational

database model are thesamein practical terms; they differ only
in unsolvable classes of dependencies.
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