A Granular Computing Paradigm for Concept Learning

Xiaofei Deng Ph.D. Candidate Department of Computer Science

Outline

- Concept learning
- Granular computing
- A model for concept learning
- Applications

What is concept learning?

- What is a concept?
 - Basic unit of human thought
 - The classical view: intension & extension
- A concept is a triplet:
 - (name, intension, extension),
 - (natural language, description, example)

(c, i(c), e(c)) or (g, i(g), e(g))

"intension" comes from logic, it indicates the internal content of a term or concept that constitutes its formal definition

The classical view of concepts

How do humans learn a concept?

- Two tasks of concept learning
 - Describe a concept by its intension
 - Derive relations between concepts
- An example:

Intension of known concept → Intension of new concept

http://www.shutterstock.com

How do machines learn a concept?

- Learn classification rules
- An example:

Weekend=Yes and Raining=No → Canoeing = Yes

Weekday=Yes \rightarrow Canoeing = No

000

A classification tree:

http://www.shutterstock.com

Granular computing

- Multi-level, multi-view granular structures
- Why do we need it?
 - Construct a set of granules
 with meaningful structures
 for learning effective rules

A model for concept learning

- Main idea: Using known concepts to approximate the unknown concept
- Three basic steps:
 - 1. Construct a family of known concepts
 - 2. Construct a good partition or covering for approximation
 - 3. For a known concept (c, i(c), e(c)) and an unknown concept (g, i(g), e(g)), if $e(c) \subseteq e(g)$ then $i(c) \Rightarrow i(g)$

How do machines learn a single concept?

A partition-based learning strategy

Fig. (1) Learning the unknown concept

Fig. (3) A partition with coaser granules

Fig. (2) A partition with finner granules

Fig. (4) The maximal general solution

A covering-based learning strategy

Fig. (1) Learning the unknown concept

Fig. (2) A covering with finner granules

Fig. (3) The maximal general solution

Applications

A dancing spider robot, University of Arizona

Cancer diagnosis, University of Wisconsin

http://pages.cs.wisc.edu/~olvi/uwmp/cancer.html

http://hplusmagazine.com/2010/02/15/can-he-make-dancing-hexapod-robot-happy/

Reference

- X.F. Deng, Yao, Y.Y. (2012) An information-theoretic interpretation of thresholds in probabilistic rough sets, RSKT'12.
- Yao, Y.Y., X.F. Deng. (2012). Granular Computing Paradigm for Concept Learning. In: Ramanna, S., Jain, L., Howlett, R.J. (Eds.), Emerging Paradigms in Machine Learning, Springer, London, pp. 307-326.
- Ross, B. H., Spalding, T. L. (1994). Concepts and Categories. Academic Press, New York.
- Yao, Y.Y. (2008). A unified framework of granular computing. In: Pedrycz W, Skowron A and reinovich V (eds.) Handbook of Granular Computing, pp. 401-410. Wiley, New York.

Thank you

Xiaofei Deng

Department of Computer Science

deng200x@cs.uregina.ca

Realize. It starts with you.