The PRISM algorithm

Summary 00

A Covering-based Algorithm for Classification: PRISM

Instructor: Dr. Lisa Fan

Speaker: Xiaofei Deng

Department of Computer Science University of Regina Regina, Saskatchewan, Canada S4S 0A2 E-mail: deng200x@cs.uregina.ca

CS831: Knowledge Discovery in Databases

The PRISM algorithm

Outline

Background knowledge: ID3

2 Problem statement

- The problems of ID3
- What causes this problem in ID3? (the inherent weakness)
- 3

The PRISM algorithm

- An Information theoretic approach: PRISM
- The basic steps of PRISM
- An example for basic steps
- Results of the example
- Difference between ID3 and PRISM

The PRISM algorithm

The basic idea of ID3.

- Greedy Algorithm.
 - Select the attribute that contributes the maximum Information Gain.
- Inductive bias: prefers small trees over large trees.
 - A short tree but might be a wide tree.
- Its efficiency.
 - Been proved in theory by Quinlan.
 - Works well in chess endgames.

The PRISM algorithm

Summary 00

The problems of ID3

Disadvantages of the representation of rules.

Difficult to manipulate for expert systems.

Extract rules about a single classification

- Need to examine the whole tree.
- Partial solution: converting Decision Trees(DT) into a set of rules.
- Problems: There're rules can't easily be represented by DT.

Example: extract rules about C0 from a DT

- Rule1 : $b_1 \wedge d_1 \rightarrow C0$, Rule2 : $a_3 \wedge c_1 \rightarrow C0$.
- Assume only two rules about C0.
- Assume no attributes common to both Rules.

The PRISM algorithm

Summary

The problems of ID3

Cont. (Extracting rules about C0)

The PRISM algorithm

Summary

The problems of ID3

Cont. (Extracting rules about C0)

The PRISM algorithm

Summary

The problems of ID3

Cont. (Extracting rules about C0)

The PRISM algorithm

Summary

The problems of ID3

Cont. (Extracting rules about C0)

The PRISM algorithm

Summary

The problems of ID3

Cont. (Extracting rules about C0)

The PRISM algorithm

The problems of ID3

Cont. (Extracted rules)

Extracted Rules for Class C0 from DT

- Rule1 $a: a_1 \wedge b_1 \wedge d_1 \rightarrow C0.$
- Rule1 $b: a_2 \wedge c_2 \wedge b_1 \wedge d_1 \rightarrow C0.$
- *Rule*2 : $a_3 \wedge c_1 \rightarrow C0$.

Explored the whole decision tree when extracting

- Why *Rule1a*, 1*b*? Irrelevant attributes are added as a term to them.
- May cause serious problem, for example, a medical diagnose case which might requires an unnecessary surgery.

Background knowledge: ID3	Problem statement	The PRISM algorithm	Summa 00
What causes this problem in ID3? (th	e inherent weakness)		

Information Entropy in ID3

The problem: ID3 Prefers an attribute which minimizes the average Entropy.

The PRISM algorithm

Summary

What causes this problem in ID3? (the inherent weakness)

Why we say average Entropy?

Calculate the Entropy of a given set S.

Figure: The distribution of instances of S

 $H(S) = -p(C0)\log_2 p(C0) - p(C1)\log_2 p(C1) - p(C2)\log_2 p(C2).$

- Measures the uncertainty in Average.
 - We added them to calculate the uncertainty.
 - Using H(S), means consider all three, C0, C1, C2.

What causes this problem in ID3? (the inherent weakness)

What about the uncertainty after knowing an Attribute?

- ID3 chooses the attribute that contributed maximum information to lower the uncertainty.
- But, that information measures in average.

Information Gain

٩

$$\textit{Gain}(S, \textit{A}) = \textit{H}(S) - \sum_{i} rac{|S_{\textit{v}i}|}{|S|} \textit{H}(S_{\textit{v}i}) \textit{bits}$$

- Average entropy **Before After** (knowing *A*).
- the second part is the info. A contributed.
- The second part measures the average information of all the branches of *A*.

3

Problem statement

The PRISM algorithm

Summary

What causes this problem in ID3? (the inherent weakness)

Why the info. contributed by an attribute measures in average?

- **(**) When choose attribute A(Gain(S, A) has max. value).
- 2 A partitions S into three branches, S_{v1} , S_{v2} , S_{v3} .

Figure: The training set S is partitioned by A

$$\sum_{i} \frac{|S_{vi}|}{|S|} H(S_{vi}) bits = \frac{|S_{v1}|}{|S|} Entropy(Branch v1)$$
$$+ \frac{|S_{v2}|}{|S|} Entropy(Branch v2) + \frac{|S_{v3}|}{|S|} Entropy(Branch v3)$$

The PRISM algorithm

What causes this problem in ID3? (the inherent weakness)

Average dose not mean Good

An example: sometimes it would be worse for a branch

The average uncertainty of A is low.

$$\sum_{1}^{3} rac{|S_{vi}|}{|S|} H(S_{vi}) = 0.25$$
 bits

Uncertainty some branches of A is low, some rather high

- Branch *Hair* = *Blond* is 0.5. high
- Branch Hair = dark, Hair = red is 0.(low)

What causes this problem in ID3? (the inherent weakness)

A short summary of the inner weakness of ID3

ID3

- ID3 is attribute oriented.
- Selecting an attribute, then all the sub-branches are consider in average.
- ID3 measures the average information entropy.
- Average doesn't mean good to each rule.

ID3 doesn't consider following cases

- An attribute might be highly **relevant** to only one classification and **irrelevant** to the others.
- Sometimes only one value of the attribute is relevant.

The PRISM algorithm

Summary

An Information theoretic approach: PRISM

How does PRISM fix this problem?

The strategy of PRISM

- A branch could be considered as an attribute-value pair.
- Consider the relevance between an attribute-value pair and the specific classification.
- Choose the attribute-value pair that contributes maximum information as the term of a rule for one specific classification.

The PRISM algorithm

Summary

An Information theoretic approach: PRISM

An Information theoretic approach: PRISM

The task of PRISM.

Find the α_x that contributes maximum Information about *Ci*.

- An attribute-value pair, α_x .
- A specific classification, Ci.
- The amount of Information about occurrence of *Ci* given *α_x* is told:
 I(*Ci*, *α_x*)

 $= \log_2(\frac{\text{Probability of occurrence of Ci after knowing } \alpha_x}{\text{Probability of occurrence of Ci before knowing } \alpha_x}) bits$

 $= log_2(rac{p(Ci|lpha_x)}{p(Ci)})$ bits

The PRISM algorithm

Summary 00

An Information theoretic approach: PRISM

Cont.

$$I(Ci, \alpha_x) = \log_2(\frac{p(Ci|\alpha_x)}{p(Ci)}) bits$$
$$P(Ci|\alpha_x) = \frac{Number \ of \ instances \ labeled \ Ci}{|S_{\alpha_x}|}$$

- The After.
- The probability of occurrence of Ci in S_{α_x} .
- S_{α_x} is the subset of instances contain α_x .
- 3 $p(Ci) = \frac{Number of instances labeled Ci}{|S|}$
 - The Before.
 - The probability of occurrence of Ci in S.
 - For all the α_x , it's the same.
 - Thus, we only calculate the $p(Ci|\alpha_x)$.

The PRISM algorithm

Summary

The basic steps of PRISM

PRISM algorithm: the basic steps

Steps for generating rules about *Ci*, like *C*1.

Cont.(steps in detail)

- Calculate the probability of occurrence, $p(Ci|\alpha_x)$, of the classification *Ci* for each attribute-value pair.
- 2 Select the attribute-value pair α_x for which $p(Ci|\alpha_x)$ is maximum, and create a subset, S_{α_x} , that contains instances with α_x .
- Repeat step 1 and 2 for the subset, until it contains only instances for classification *Ci*. The induced rule is a conjunction of all the attribute-value pairs used in creating the subset.
- remove all instances covered by this rule from the training set S.
- Repeat Steps 1-4 until all instances of class *Ci* have been removed.

Background knowledge: ID3	Problem statement	The PRISM algorithm	Summary 00
The basic steps of PRISM			
Note. (For those steps)		

- $p(Ci|\alpha_x)$ measures the contribution of α_x .
- 2 Trying to find all rules about one specific classification *Ci*.

Rules about Class C1

• Rule1 : $b_1 \wedge d_1 \rightarrow C1$.

• Rule2 :
$$a_3 \wedge c_1 \rightarrow C1$$
.

A rule is the conjunction of attribute-value pairs.

Generating a rule about Class C1

• α_1 : *Hair* = *Blond*. (1st attribute-value pair, term)

•
$$\alpha_2$$
 : *Eyes* = *Blue*. (2nd pair, term)

• Rule1 : (Hair = Blond \land Eyes = Blue) \rightarrow C1

- $p(Ci|\alpha_x)$ measures the contribution of α_x .
- 2 Trying to find all rules about one specific classification *Ci*.

Rules about Class C1

• Rule1 : $b_1 \wedge d_1 \rightarrow C1$.

• Rule2 :
$$a_3 \wedge c_1 \rightarrow C1$$
.

Then *C*2,...

• Rule3 : $p_3 \land q_7 \rightarrow C2$.

• Rule4 :
$$k_2 \wedge t_5 \rightarrow C2$$
.

A rule is the conjunction of attribute-value pairs.

Generating a rule about Class C1

• α_1 : *Hair* = *Blond*. (1st attribute-value pair, term)

•
$$\alpha_2$$
 : *Eyes* = *Blue*. (2nd pair, term)

• Rule1 : (Hair = Blond \land Eyes = Blue) \rightarrow C1

The PRISM algorithm

Summary

An example for basic steps

An example for calculation

• Current training set $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Object	Height	Hair	Eyes	Class
01	short	blond	blue	C1
02	short	blond	brown	C2
O 3	tall	red	blue	C1
04	tall	dark	blue	C2
05	tall	dark	blue	C2
O 6	tall	blond	blue	C1
07	tall	dark	brown	C2
08	short	blond	brown	C2

Background	know	ledae.	ID3
Buokground	I I O W	louge.	100

The PRISM algorithm

Summary

An example for basic steps

Generate rules for C1

• Find 1st rule about $C1 (\rightarrow C1)$

The PRISM algorithm

An example for basic steps

Generate rules for C1

• Find 1st rule about $C1 (\rightarrow C1)$

2 Calculate all the $p(C1|\alpha_x)$ for all α_x

α_{x}	C1 (instances)	S_{α_x}	$p(C1 \alpha_x)$
Height=short	{1}	{1,2,8}	1/3=0.333
Height=tall	{3,6}	{3,4,5,6,7}	2/5=0.4
Hair=blond	{1,6}	{1,2,6,8}	2/4=0.5
Hair=red	<u>{3}</u>	<u>{3}</u>	<u>1/1=1</u>
Hair=dark	{}	{4,5,7}	0
Eyes=blue	{1,3,6}	{1,3,4,5,6}	3/5=0.6
Eyes=brown	{}	{2,7,8}	0

Figure: Probability of occurrence of C1 with each pair

The PRISM algorithm

Summary

An example for basic steps

Calculate p(C1|Hair = blond)

1 Probability of occurrence of C1 with α_x : Hair = blond.

The PRISM algorithm

Summary

An example for basic steps

Calculate p(C1|Hair = blond)

1 Probability of occurrence of C1 with α_x : Hair = blond.

Object	Height	Hair	Eyes	Class
01	short	blond	blue	C1
02	short	blond	brown	C2
O6	tall	blond	blue	C1
08	short	blond	brown	C2

2 $p(C1|\alpha_x) = p(C1|Hair = blond) = \frac{|\{1,6\}|}{|\{1,2,6,8\}|} = \frac{2}{4} = 0.5.$

Background knowledge: ID3	Problem statement	The PRISM algorithm	Summary 00
An example for basic steps			
Output the Rule1			

• Choose α_x : *Hair* = *red* as the first term for *Rule*1 : (*Hair* = *red*) \land (...) \rightarrow *C*1.

Background knowledge: ID3	Problem statement	The PRISM algorithm	Summary 00
An example for basic steps			
Output the Rule1			

- Choose α_x : *Hair* = *red* as the first term for *Rule*1 : (*Hair* = *red*) \land (...) \rightarrow *C*1.
- 2 Create subset $S_{\alpha_x} = S_{Hair=red} = \{3\}$

Background knowledge: ID3	Problem statement	The PRISM algorithm	Summary 00
An example for basic steps			
Output the <i>Bule</i> 1			

- Choose α_x : *Hair* = *red* as the first term for *Rule*1 : (*Hair* = *red*) \land (...) \rightarrow *C*1.
- 2 Create subset $S_{\alpha_x} = S_{Hair=red} = \{3\}$
- S_{Hair=red} = $\{3\}$ contains only instance *Object*3 labeled by *C*1.

Background knowledge: ID3	Problem statement	The PRISM algorithm	Summary 00
An example for basic steps			
Output the Bule1			

- Choose α_x : *Hair* = *red* as the first term for *Rule*1 : (*Hair* = *red*) \land (...) \rightarrow *C*1.
- 2 Create subset $S_{\alpha_x} = S_{Hair=red} = \{3\}$
- S_{Hair=red} = $\{3\}$ contains only instance *Object*3 labeled by *C*1.
- Output the *Rule*1 : (*Hair* = *red*) \rightarrow *C*1.

The PRISM algorithm

Summary 00

An example for basic steps

Delete *Object*3 from the training set

• Delete *Object*3 from *S*, thus $S = \{1, 2, 4, 5, 6, 7, 8\}$.

The PRISM algorithm

Summary 00

An example for basic steps

Delete Object3 from the training set

Delete *Object*3 from *S*, thus *S* = {1,2,4,5,6,7,8}.
Current training set *S* = {1,2,4,5,6,7,8}.

Object	Height	Hair	Eyes	Class
01	short	blond	blue	C1
O2	short	blond	brown	C2
03	tall	red	blue	C1
O4	tall	dark	blue	C2
05	tall	dark	blue	C2
O 6	tall	blond	blue	C1
07	tall	dark	brown	C2
08	short	blond	brown	C2

The PRISM algorithm

An example for basic steps

Repeat to find the Rule2 about C1

• Recalculate the $p(C1 \alpha_x)$ for all	$\alpha_{\mathbf{X}}$.
--	-------------------------

α_x	C1 (instances)	S_{α_x}	$p(C1 \mid \alpha_x)$
Height=short	{1}	{1,2,8}	1/3=0.333
Height=tall	{6}	{4,5,6,7}	1/4=0.25
Hair=blond	<u>{1,6}</u>	<u>{1,2,6,8}</u>	2/4=0.5
Hair=dark	8	{4,5,7}	0
Eyes=blue	<u>{1,6}</u>	<u>{1,4,5,6}</u>	2/4=0.5
Eyes=brown	{}	{2,7,8}	0

Figure: Selecting the first term of Rule2 about C1

Hair = blond, Eyes = blue have the equal value.
Choose Hair = blond as 1st term for Rule2.

The PRISM algorithm

An example for basic steps

The second term of Rule2 about C1

- Create the subset $S_{\alpha_x} = S_{Hair=blond} = \{1, 2, 6, 8\}$
- Object2 and Object8 are labeled with C2.
- 3 Take $S_{\alpha_x} = S_{Hair=blond} = \{1, 2, 6, 8\}$ as the current set. Trying to find second term.

Table The subset $S_{\alpha_x} = S_{Hair=blond}$

Object	Height	Hair	Eyes	Class
01	short	blond	blue	C1
02	short	blond	brown	C2
O6	tall	blond	blue	C1
08	short	blond	brown	C2

The PRISM algorithm

An example for basic steps

The second term of Rule2 about C1

- Create the subset $S_{\alpha_x} = S_{Hair=blond} = \{1, 2, 6, 8\}$
- Object2 and Object8 are labeled with C2.
- 3 Take $S_{\alpha_x} = S_{Hair=blond} = \{1, 2, 6, 8\}$ as the current set. Trying to find second term.

α_{x}	C1 (instances)	S_{α_x}	$p(C1 \alpha_x)$
Height=short	{1}	{1,2,8}	1/3=0.333
Height=tall	{1}	{1}	1/1=1
Eyes=blue	<u>{1,6}</u>	<u>{1,6}</u>	2/2=1
Eyes=brown	8	{2,8}	0

00

• Choose the *Eyes* = *blue* as the second term (consistent).

Background knowledge: ID3	Problem statement	The PRISM algorithm	Summary 00
An example for basic steps			
Cont.			

• Choose the *Eyes* = *blue* as the second term (consistent).

2 Create subset
$$S_{\alpha'_{\chi}} = S_{Hair=blond \land Eyes=blue} = \{1, 6\}.$$

Background knowledge: ID3	Problem statement	The PRISM algorithm ○○○○○○○○○○○●○○○	Summary 00
An example for basic steps			
Cont.			

- Choose the *Eyes* = *blue* as the second term (consistent).
- ② Create subset $S_{\alpha'_x} = S_{Hair=blond \land Eyes=blue} = \{1, 6\}.$
- $\{1,6\}$ are all labeled with C1, output Rule2.

Background knowledge: ID3	Problem statement	The PRISM algorithm ○○○○○○○○○○○○○○○○	Summary 00
An example for basic steps			
Cont.			

- Choose the *Eyes* = *blue* as the second term (consistent).
- ② Create subset $S_{\alpha'_{x}} = S_{Hair=blond \land Eyes=blue} = \{1, 6\}.$
- $\{1,6\}$ are all labeled with C1, output Rule2.
- Rule2 : (Hair = blond \land Eyes = blue) \rightarrow C1.

Background knowledge: ID3	Problem statement	The PRISM algorithm	Summary 00
An example for basic steps			
Cont.			

- Choose the Eyes = blue as the second term (consistent).
- ② Create subset $S_{\alpha'_x} = S_{Hair=blond ∧ Eyes=blue} = \{1, 6\}.$
- $\{1,6\}$ are all labeled with C1, output Rule2.
- Rule2 : (Hair = blond \land Eyes = blue) \rightarrow C1.
- Delete Object 1, 6 from current training set.

Background knowledge: ID3	Problem statement	The PRISM algorithm ○○○○○○○○○○○○	Summary 00
An example for basic steps			
Cont.			

- Choose the Eyes = blue as the second term (consistent).
- ② Create subset $S_{\alpha'_x} = S_{Hair=blond \land Eyes=blue} = \{1, 6\}.$
- $\{1,6\}$ are all labeled with C1, output Rule2.
- Rule2 : (Hair = blond \land Eyes = blue) \rightarrow C1.
- Delete Object 1, 6 from current training set.
- No others instances labeled with C1, stop.

Background knowledge: ID3	Problem statement	The PRISM algorithm	Summary 00
An example for basic steps			
Cont.			

- Choose the Eyes = blue as the second term (consistent).
- ② Create subset $S_{\alpha'_x} = S_{Hair=blond \land Eyes=blue} = \{1, 6\}.$
- $\{1,6\}$ are all labeled with C1, output Rule2.
- Rule2 : (Hair = blond \land Eyes = blue) \rightarrow C1.
- Delete Object 1, 6 from current training set.
- No others instances labeled with C1, stop.
- Repeat above steps for C2.

The PRISM algorithm

Results of the example

The results by PRISM and ID3

Results by PRISM

- (Hair = red) \rightarrow C1.
- (Hair = blond \land Eyes = blue) \rightarrow C1).
- (*Eyes* = *brown*) \rightarrow *C*2.

•
$$(Hair = dark) \rightarrow C2.$$

Results by ID3

•
$$(Hair = red) \rightarrow C1.$$

- (Hair = blond \land Eyes = blue) \rightarrow C1).
- (Hair = blond \land Eyes = brown) \rightarrow C2.
- (Hair = dark) \rightarrow C2.

The PRISM algorithm

Results of the example

Cont.

Decision Tree by ID3

Background knowledge: ID3	Problem statement	The PRISM algorithm	Summary ●○
Difference between ID3 and PRISM			
Summary			

ID3

- Greedy algorithm.
- Measures average information an attribute contributed.
- Attribute-oriented.
- Rules might contain irrelevant attributes.

PRISM

- Greedy algorithm.
- Measures the attribute-value pair in determination of the classification.
- Attribute-value-oriented.
- More general and less rules.

Background	knowledge:	ID3

The PRISM algorithm

Summary

Difference between ID3 and PRISM

Q.&A.

Any questions?