Actionable Three-way Decisions (A3WDs)

Cong Gao
gao266@cs.uregina.ca

Department of Computer Science
University of Regina

Outline

- Introduction
- An illustrative example
- Motivations and objectives
- An A3WD framework
- Trisecting
- Acting
- The R4 reduction framework for A3WDs
- Experimental results
- Conclusions and future works

An Illustrative Example

- Given: a medical decision table
- Goal: cure people who have certain disease

Table 3.1: A decision table for medicine.

$\#$	sex	chol	bp	result
o_{1}	female	medium	normal	+
o_{2}	female	medium	normal	-
o_{3}	female	low	normal	+
o_{4}	female	low	normal	-
o_{5}	female	low	normal	-
o_{6}	female	medium	low	+
o_{7}	female	high	high	-
o_{8}	male	high	low	-
o_{9}	male	low	normal	+

An Illustrative Example

- Given: a medical decision table
- Goal: cure people who have certain disease

Table 3.1: A decision table for medicine.

$\#$	sex	chol	bp	result
o_{1}	female	medium	normal	+
o_{2}	female	medium	normal	-
O_{3}	femaie	low	normal	+
o_{4}	female	low	normal	-
σ_{5}	female	low	normal	-
o_{6}	female	medium	low	+
o_{7}	female	high	high	-
o_{8}	male	high	low	-
o_{9}	male	low	normal	+

An Illustrative Example (cont.)

- Three-way decisions (3WDs) [1] can be applied to the problem

An Illustrative Example (cont.)

- Trisecting (diagnosis)
-region boundary +region

- Acting (treatment)

Trisecting

- Trisecting: divide a universal set into three regions

Totally ordered set V

- Three regions:

$$
\begin{aligned}
\mathrm{L}_{(\alpha, \beta)}(e) & =\{x \in O B \mid e(x) \preceq \beta\}, \\
\mathrm{M}_{((\alpha, \beta)}(e) & =\{x \in O B \mid \beta \prec e(x) \prec \alpha\}, \\
\mathrm{R}_{((\alpha, \beta)}(e) & =\{x \in O B \mid e(x) \succeq \alpha\} .
\end{aligned}
$$

- Measurement of three regions:

$$
Q(\pi)=w_{L} Q(\mathrm{~L})+w_{M} Q(\mathrm{M})+w_{R} Q(\mathrm{R})
$$

- Interpretations of trisecting
- Cost [2], entropy [3], Gini index [4], and game [5]

Acting

- Acting: process objects in each region, e.g.,
- Description of concept
- Prediction of objects
- Transference of objects
- Transference of objects can improve the trisection quality
- But it was not investigated in 3WD.

Motivations and Objectives

- Trisecting
- To statistically interpret trisecting.
- To find the optimal pair of thresholds.
- Acting
- To model an actionable three-way decision framework with different models.
- To further improve performance of these models.

Categorization of Three-way Decision Models

Contributions

- Presented
- Two statistical interpretations
- A χ^{2} based method for determining the pair of thresholds
- Proposed
- An A3WD framework with four models
- Four actionable rule mining algorithms for these models
- An R4 reduction framework for A3WD
- An Addition strategy algorithm schema for reduction
- A specific algorithm of this schema for attribute reduction and attribute-value pair reduction

Statistical Interpretations of Trisecting

- General consideration

- Distributional characteristics in statistics
- Median and percentile
- Mean and standard deviation
- Two special cases of V
- A set of non-numeric values (consider ranking)
- A set of numeric values (arithmetic operations)

Statistical Interpretations of Trisecting (cont.)

- Interpretations through median and percentile
- \boldsymbol{V} is a set of non-numeric values, the ordering \leqslant only allows us to arrange objects in $O B$ into a ranked list according to their ESVs.

Figure 4.2: Illustration of division on rank ordered list through median and percentile.

Statistical Interpretations of Trisecting (cont.)

- Interpretations through median and percentile
- Three regions are constructed by:

$$
\begin{aligned}
& \mathrm{L}_{(\alpha, \beta)}(e)=\{x \in O B \mid e(x) \preceq \beta\} \\
& =\left\{x \in O B \mid e(x) \preceq v_{\lfloor\lfloor n / 100\rfloor}\right\}, \\
& \mathrm{M}_{(\alpha, \beta)}(e)=\{x \in O B \mid \beta \prec e(x) \prec \alpha\} \\
& =\left\{x \in O B \mid v_{\lfloor\lfloor n / 100\rfloor} \prec e(x) \prec v_{\lceil h n / 100\rceil},\right. \\
& \text { with } \\
& \beta=v_{\lfloor\lfloor n / 100\rfloor}, \\
& \alpha=v_{\lceil h n / 100\rceil}, \\
& \mathrm{R}_{(\alpha, \beta)}(e)=\{x \in O B \mid e(x) \succeq \alpha\} \\
& =\left\{x \in O B \mid e(x) \succeq v_{\lceil h n / 100\rceil}\right\} .
\end{aligned}
$$

- Example
- Boxplot ($l=1^{\text {st }}$ quartile, $h=3^{r d}$ quartile) [6]

Statistical Interpretations of Trisecting (cont.)

- Interpretations through mean and standard deviation
- $\quad V$ is a set of numeric values, statistical measures based on arithmetic operations such as mean and standard deviation can be applied.

Statistical Interpretations of Trisecting (cont.)

- Interpretations through mean and standard deviation
- Three regions are constructed by:

$$
\begin{aligned}
\mathrm{L}_{\left(k_{1}, k_{2}\right)}(e) & =\{x \in O B \mid e(x) \leq \beta\} \\
& =\left\{x \in O B \mid e(x) \leq \mu-k_{1} \sigma\right\}, \\
\mathrm{M}_{\left(k_{1}, k_{2}\right)}(e) & =\{x \in O B \mid \beta<e(x)<\alpha\} \quad \text { with } \quad \begin{array}{r}
\beta=\mu-k_{1} \sigma, \quad k_{1} \geq 0, \\
\\
\end{array}=\left\{x \in O B \mid \mu-k_{1} \sigma<e(x)<\mu+k_{2} \sigma\right\}, \quad r+k_{2} \sigma, \quad k_{2} \geq 0 . \\
\mathrm{R}_{\left(k_{1}, k_{2}\right)}(e) & =\{x \in O B \mid e(x) \geq \alpha\} \\
& =\left\{x \in O B \mid e(x) \geq \mu+k_{2} \sigma\right\},
\end{aligned}
$$

- Examples
- Blood pressure ($k_{1}=k_{2}=2$) [7]
- Intelligence Quotient ($k_{1}=k_{2}=2$) [8]

Statistical Interpretations of Trisecting (cont.)

- Determining thresholds with χ^{2}
- Contingency table

Table 4.1: A contingency table of three-way decision.

	$\operatorname{POS}_{(\alpha, \beta)}(X)$	$\mathrm{BND}_{(\alpha, \beta)}(X)$	$\mathrm{NEG}_{(\alpha, \beta)}(X)$	Total
X	$n_{X P}$	$n_{X B}$	$n_{X N}$	$n_{X \cdot}$
X^{C}	$n_{X^{C} P}$	$n_{X^{C_{B}}}$	$n_{X^{C_{N}}}$	$n_{X^{C} .}$
Total	$n_{\cdot P}$	$n_{\cdot B}$	$n_{\cdot N}$	n

- Measurement of divergences between observation and expectation

$$
\begin{aligned}
& Q\left(\operatorname{POS}_{(\alpha, \beta)}(X)\right)=\frac{\left(n_{X P}-n_{X \cdot n \cdot P} / n\right)^{2}}{n_{X \cdot n \cdot P} / n}+\frac{\left(n_{X^{C_{P}}}-n_{X^{C} \cdot n \cdot P} / n\right)^{2}}{n_{X^{C} \cdot n \cdot P} / n}, \\
& Q\left(\operatorname{BND}_{(\alpha, \beta)}(X)\right)=\frac{\left(n_{X B}-n_{X} \cdot n \cdot{ }^{2} / n\right)^{2}}{n_{X \cdot n \cdot B} / n}+\frac{\left(n_{X^{C_{B}}}-n_{X^{C} \cdot n \cdot B} / n\right)^{2}}{n_{X^{C} \cdot n \cdot B} / n}, \\
& Q\left(\operatorname{NEG}_{(\alpha, \beta)}(X)\right)=\frac{\left(n_{X N}-n_{X \cdot n \cdot N} / n\right)^{2}}{n_{X \cdot n \cdot N} / n}+\frac{\left(n_{X^{C_{N}}}-n_{X^{C} \cdot n \cdot N} / n\right)^{2}}{n_{X^{C} \cdot n_{\cdot N}} / n} .
\end{aligned}
$$

- χ^{2} as objective function and maximize it for optimal trisection

$$
\begin{aligned}
Q\left(\pi_{(\alpha, \beta)}(X)\right) & =Q\left(\operatorname{POS}_{(\alpha, \beta)}(X)\right)+Q\left(\operatorname{BND}_{(\alpha, \beta)}(X)\right)+Q\left(\operatorname{NEG}_{(\alpha, \beta)}(X)\right) \\
& =\chi_{(\alpha, \beta)}^{2}
\end{aligned}
$$

Change-based Acting

- Movements between regions

\longrightarrow : desirable
- - - > : indifferent
\longrightarrow : undesirable

- Movement patterns

Actionable Rule

- Categorization of attributes to A_{s} and A_{f}
- Classification rule

$$
\begin{aligned}
& r_{[x]}:\left[\bigwedge_{s \in A_{s}} s=I_{s}(x)\right] \wedge\left[\bigwedge_{f \in A_{f}} f=I_{f}(x)\right] \Rightarrow d=I_{d}(x), \\
& r_{[y]}:\left[\bigwedge_{s \in A_{s}} s=I_{s}(y)\right] \wedge\left[\bigwedge_{f \in A_{f}} f=I_{f}(y)\right] \Rightarrow d=I_{d}(y) .
\end{aligned}
$$

- Actionable rule (referred to as action) [9]

$$
r_{[x]} \rightsquigarrow r_{[y]}: \bigwedge_{f \in A_{f}}^{\rightsquigarrow} I_{f}(x) \rightsquigarrow I_{f}(y), \text { subject to } \bigwedge_{s \in A_{s}} I_{s}(x)=I_{s}(y)
$$

Actionable Rule (cont.)

- Action(s) induce a new trisection

- Each action brings benefit and incurs cost
- Benefit: difference between $Q(\pi)$ and $Q\left(\pi^{\prime}\right)$
- Cost: all resources required by action

Quantification the Benefits and Costs of Actions

- Three assumptions
- (A1) Value changes among different attributes are independent.
- (A2) All actions are independent.
- (A3) After taking action $r_{[x]} \rightsquigarrow r_{[y]}$, $[x]$ will have the same structure of $[y]$, i.e., $\operatorname{Pr}(X \mid[x])=\operatorname{Pr}(X \mid[y])$.
- Based on (A1) and (A2), the action cost can be calculated:

$$
C_{r_{[x]}^{\sim \sim r_{[y]}}}=|[x]| \sum_{f \in A_{f}} C_{f}\left(I_{f}(x), I_{f}(y)\right)
$$

- Based on (A3), the action benefit can be proven:

$$
B_{r_{[x]} \rightsquigarrow r_{[y]}}=w_{W}\left[-b \lambda_{W P}-(|[x]|-b) \lambda_{W N}\right]+w_{V}\left[a \lambda_{V P}+(|[x]|-a) \lambda_{V N}\right]
$$

Four Models in Different Situations

- Model (i) requires the maximum benefit solution without cost limitation.
- Model (ii) requires the minimum cost solution to obtain the maximum benefit.
- Model (iii) requires the maximum benefit solution with a limited action cost.
- Model (iv) requires the minimum action cost solution to obtain a desired benefit.

Illustration of Four Models

Relations of Models

Actionable Rule Mining

- Determining the bounds of benefit and cost (models (i) and (ii))
- By previous assumptions, the maximum benefit is:

$$
\bar{B}=\sum_{\left[x_{i}\right] \in \text { SOURCE }^{j}} \max _{j=1, \ldots, n_{i}}\left\{b_{i j}\right\}
$$

- Time complexity: $O\left(|\mathrm{DES}||\mathrm{SOURCE}|\left|A_{s} \cup A_{f}\right|\right)$.
- It may be not unique.
- The set of $a_{i j}$ with minimum cost is the solution of model (ii), it may be also not unique.

Actionable Rule Mining (cont.)

- Maximizing benefit with cost constraints (model (iii))
- Problem analysis
- Similar to multiple-choice knapsack problem (MCKP) [10], NP-Hard.
- An exhaustive search has exponential time complexity.
- Approximate solution
- Proposed Algorithm 2, time complexity: $O\left(n c_{a} m\right)$.

Actionable Rule Mining (cont.)

- Minimizing action cost for a desired benefit (model (iv))
- Two algorithms are proposed
- Algorithm 3, time complexity: $O(n\lceil\bar{C}\rceil m)$.
- Algorithm 4, time complexity: $O\left(n b_{l} m\right)$.
- Both algorithms find approximate solution.

An Overview of Actionable Rule Mining Algorithms

Remove Redundancies to Improve A3WD Quality

- Motivations:
- Increase benefit
- Decrease cost
- Transfer more objects
- Decrease computation time

Figure 6.1: The acting procedure for actionable three-way decision making.

The R4 Reductions

The R4 Reductions

The R4 Reductions

The R4 Reductions

The R4 Reductions

(I) A decision table;
(2) an objective concept;
(3) movement patterns;
(4) misclassification cost matrix;
(5) cost functions.

Attribute Reduction in A3WD

- Redefine attribute reduct to remove irrelevant attributes without changing trisection.

Definition 6.1 An attribute set $R \subseteq\left(A_{s} \cup A_{f}\right)$ from a decision table S is called a relative attribute reduct of S with respect to the mapping τ if R satisfies the following two conditions:

$$
\begin{aligned}
& \text { (s1) } \quad \operatorname{IND}(R \mid \tau)=\operatorname{IND}\left(A_{s} \cup A_{f} \mid \tau\right) \\
& \text { (n1) } \forall a \in R, \operatorname{IND}(R-\{a\} \mid \tau) \neq \operatorname{IND}\left(A_{s} \cup A_{f} \mid \tau\right)
\end{aligned}
$$

Attribute-value Pair Reduction in A3WD

- Also called rule simplification.
- It simplifies the left-hand side of a classification rule by removing redundant attribute-value pairs without losing any classification power of the rule.

Definition 6.8 Given a row $d\left([x],\left[y_{i}\right]\right), i=1, \ldots, n$ of a decision matrix, let $M=$ $\left\{d\left([x],\left[y_{i}\right]\right)\right\}$, let $A V=\bigcup_{i=1, \ldots, n} d\left([x],\left[y_{i}\right]\right)$ be the set of all attribute-value pairs in this row. $R \subseteq A V$ is an attribute-value pair reduct if it satisfies the following two conditions:

$$
\begin{aligned}
& \text { (s3) } \forall d\left([x],\left[y_{i}\right]\right) \in M, R \cap d\left([x],\left[y_{i}\right]\right) \neq \emptyset \\
& \text { (n3) } \forall a \in R, \exists d([x],[z]) \in M, \quad(R-\{a\}) \cap d([x],[z])=\emptyset
\end{aligned}
$$

An Addition Strategy Reduction Schema

[11] Y.Y. Yao, Y. Zhao. Discernibility matrix simplification for constructing attribute reducts. Information Sciences, 179: 867-882, 2009.
[12] A. Skowron, C. Rauszer. The discernibility matrices and functions in information systems. Intelligent Decision Support, 11: 331-362, 1992. [13] W. Ziarko, N. Shan. A method for computing all maximally general rules in attribute-value systems. Computational Intelligence, $12(2)$: $223-234,1996$.

An Addition Strategy Reduction Schema

[11] Y.Y. Yao, Y. Zhao. Discernibility matrix simplification for constructing attribute reducts. Information Sciences, 179: 867-882, 2009.
[12] A. Skowron, C. Rauszer. The discernibility matrices and functions in information systems. Intelligent Decision Support, 11: 331-362, 1992.
[13] W. Ziarko, N. Shan. A method for computing all maximally general rules in attribute-value systems. Computational Intelligence, $12(2)$: $223-234,1996$.

An Addition Strategy Reduction Schema

[11] Y.Y. Yao, Y. Zhao. Discernibility matrix simplification for constructing attribute reducts. Information Sciences, 179: 867-882, 2009.
[12] A. Skowron, C. Rauszer. The discernibility matrices and functions in information systems. Intelligent Decision Support, 11: 331-362, 1992.
[13] W. Ziarko, N. Shan. A method for computing all maximally general rules in attribute-value systems. Computational Intelligence, $12(2)$: $223-234,1996$.

An Addition Strategy Reduction Schema

[11] Y.Y. Yao, Y. Zhao. Discernibility matrix simplification for constructing attribute reducts. Information Sciences, 179: 867-882, 2009.
[12] A. Skowron, C. Rauszer. The discernibility matrices and functions in information systems. Intelligent Decision Support, 11: 331-362, 1992.
[13] W. Ziarko, N. Shan. A method for computing all maximally general rules in attribute-value systems. Computational Intelligence, 12(2): 223-234, 1996.

An Addition Strategy Reduction Schema

An Addition Strategy Reduction Schema

[11] Y.Y. Yao, Y. Zhao. Discernibility matrix simplification for constructing attribute reducts. Information Sciences, 179: 867-882, 2009.
[12] A. Skowron, C. Rauszer. The discernibility matrices and functions in information systems. Intelligent Decision Support, 11: 331-362, 1992.
[13] W. Ziarko, N. Shan. A method for computing all maximally general rules in attribute-value systems. Computational Intelligence, 12(2): 223-234, 1996.

An Addition Strategy Reduction Schema (cont.)

- Advantages:
- Easier to understand.
- Adopts more heuristic information, can produce better reduct.
- More efficient than other methods when $|A T|$ is large and $|R|$ is small.
- Many algorithms can be designed based on it.
- An algorithm instance
- Proposed Algorithm 6, time complexity: $O\left(|M|^{2}|A T|\right)$.

Rule Reduction in A3WD

- Rule reduct redefined as:

Definition 6.9 Given an equivalence class $[x] \subseteq S_{F}, r_{[x]}$ is a redundant rule if for any desirable action $r_{\left[y_{i}\right]} \rightsquigarrow r_{[x]},\left[y_{i}\right] \subseteq S_{U}$, there exists a desirable action $r_{\left[y_{i}\right]} \rightsquigarrow$ $r_{[z]},[z] \neq[x],[z] \subseteq S_{F}$, such that the benefit of $r_{\left[y_{i}\right]} \rightsquigarrow r_{[z]}$ is greater than or equal to the benefit of $r_{[y]} \rightsquigarrow r_{[x]}$ and the cost of $r_{\left[y_{i}\right]} \rightsquigarrow r_{[z]}$ is less than or equal to the cost of $r_{\left[y_{i}\right]} \rightsquigarrow r_{[x]}$.

- The computation cost is very high, infeasible in practice.
- Special case: duplicated rule reduction
- Time complexity: $O\left(n^{2}\right), n$ is the number of rules.
- Algorithm is trivial and skipped in the thesis.

Action Reduction in A3WD

- If an action a_{1} that transfers $[x]$ has higher cost and less benefit than another action a_{2}, then a_{1} is redundant:

Definition 6.10 Given an action $r_{[x]} \rightsquigarrow r_{[y]}$ that transfers $[x]$, its cost and benefit are c and b, respectively. $r_{[x]} \rightsquigarrow r_{[y]}$ is a redundant action if

$$
\begin{equation*}
\exists r_{[x]} \rightsquigarrow r_{\left[y_{i}\right]}, c \geq c_{i} \text { and } b \leq b_{i} \tag{6.14}
\end{equation*}
$$

where c_{i} and b_{i} are the cost and benefit of $r_{[x]} \rightsquigarrow r_{\left[y_{i}\right]}$, respectively.

- The Algorithm 7 is designed for action reduction
- Time complexity: $O\left(|O B|^{3}\right)$.

Experimental Results

- Comparison between Algorithm 2 and random

Experimental Results (cont.)

- Number of objects transferred under different cost

Experimental Results (cont.)

- Comparison before and after reductions (model (i) and (ii))

Table 7.3: Comparison before and after reductions on model (i) and model (ii).

Data set	\bar{B}^{\prime}	\bar{C}^{\prime}	\bar{B}	\bar{C}	$\|R\|$	AVPs	Rules	RRules	Actions	RActions	Is improved
Hayes-Roth	525	154	525	$\mathbf{1 3 7}$	3	3	12	0	49	131	Yes
Heart Disease	711	589	$\mathbf{8 3 7}$	$\mathbf{1 4 2}$	11	4.87	97	43	135	9876	Yes
Breast Cancer	138	374	$\mathbf{1 4 4 6}$	$\mathbf{5 7 6}$	4	2.22	51	56	238	11900	Yes
Acute	540	241	540	$\mathbf{1 0 9}$	2	2	1	0	11	0	Yes
CMC	5414	1988	$\mathbf{5 4 9 2}$	$\mathbf{1 1 7 8}$	9	4.16	245	154	541	36548	Yes
Haberman	142.02	42	$\mathbf{1 7 8 . 1 3}$	$\mathbf{4 9}$	3	2.05	35	2	12	1	Yes
Shuttle	18132	280545	18132	$\mathbf{8 1 5 2}$	4	1.92	686	4096	3022	2070070	Yes
TAE	608	494	608	$\mathbf{1 6 5}$	5	2.38	23	3	60	600	Yes
Car	9978	6168	9978	6168	6	5.38	35	30	1663	56542	No

Experimental Results (cont.)

- Comparison before and after reductions (model (iii) and (iv))

Figure 7.3: Experiments on actionable models (iii) and (iv) on the Heart Disease data set.

Experimental Results (cont.)

- Comparison on computation time

Figure 7.5: Time spent on four actionable models on different sizes of the Shuttle data set.

Experimental Results (cont.)

- Comparison on different reduction methods

Table 7.4: Comparison between different methods on model (i) and model (ii).

| $\#$ | Method | Hayes-Roth | Heart Disease | Breast Cancer | Acute | CMC | Haberman | Shuttle | TAE | Car |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | AA | 525,137 | 837,142 | 1446,576 | 540,109 | 5492,1178 | $178.13,49$ | 18132,8152 | 608,165 | 9978,6168 |
| 2 | AAd | 525,137 | 837,154 | 1446,742 | 540,109 | 5492,1196 | $171.02,48$ | 18132,9719 | 608,179 | 9978,6168 |
| 3 | AD | 525,137 | 837,178 | 1446,868 | 540,109 | 5492,1416 | $142.02,42$ | 18132,10970 | 608,217 | 9978,6168 |
| 4 | AdA | 525,137 | 837,142 | 1446,576 | 540,109 | 5492,1178 | $178.13,49$ | 18132,11055 | 608,165 | 9978,6168 |
| 5 | AdAd | 525,137 | 837,154 | 1446,742 | 540,109 | 5492,1196 | $171.02,48$ | 18132,12059 | 608,179 | 9978,6168 |
| 6 | AdD | 525,137 | 837,178 | 1446,868 | 540,109 | 5492,1416 | $142.02,42$ | 18132,12271 | 608,217 | 9978,6168 |
| 7 | DA | 525,137 | 837,142 | 1446,576 | 540,109 | 5492,1178 | $178.13,49$ | 18132,11055 | 608,165 | 9978,6168 |
| 8 | DAd | 525,137 | 837,154 | 1446,742 | 540,109 | 5492,1196 | $171.02,48$ | 18132,12059 | 608,179 | 9978,6168 |
| 9 | DD | 525,137 | 837,178 | 1446,868 | 540,109 | 5492,1416 | $142.02,42$ | 18132,12271 | 608,217 | 9978,6168 |
| 10 | LEM2 | 525,137 | 837,162 | 1446,815 | 540,139 | 5492,1318 | $141.77,43$ | 18132,21442 | 608,403 | 9978,6168 |

Conclusions

- An A3WD framework
- Two statistical interpretations
- One χ^{2} based method for determining thresholds
- Four actionable models
- Four actionable rule mining algorithms
- A four-step reductions framework (R4)
- An Addition strategy algorithm schema
- A specific algorithm for attribute reduction and rule simplification

Future Research Topics

- Correlation between actions and between sub-actions.
- Adapting decision tree for generating more general classification rules, hence more general action.
- Handling continuous attribute values for actionable rules.
- Adapting the A3WD to a sequential and dynamic scenario.
- Adapting the R4 framework to multi-objective problems.
- Applying utility theory to the actionable models (working).

Acknowledgement

- My supervisor, advisor, and financial supporters
- Dr. Howard J. Hamilton and Dr. Y.Y. Yao.
- My Ph.D. thesis defense committee members and chair
- Dr. Shaun M. Fallat, Dr. Howard J. Hamilton, Dr. Daryl H. Hepting, Dr. Xue-dong Yang, and Dr. Kathleen McNutt.
- Scholarships
- Gerhard Herzberg Fellowship, Sampson J. Goodfellow Scholarship, Edgar A. Wahn Scholarship, John Spencer Middleton \& Jack Spencer Gordon Middleton Scholarship, Saskatchewan Innovation and Opportunity Graduate Scholarship, Academic Assistants Union Cupe 2419 Bursary, Giving Tuesday Graduate Bursary, Computer Science Travel Award, Faculty of Graduate Studies and Research Graduate Scholarship (GSS), Faculty of Graduate Studies and Research Graduate Teaching Assistantship (GTA), Graduate Students' Association (GSA) Graduate Student Travel Award, and International Experience Travel Fund.

Thanks

