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An Illustrative Example
• Given: a medical decision table
• Goal: cure people who have certain disease

3.1.1 A Medical Example

Doctors use symptoms to determine disease and cure disease by taking proper actions

that change abnormal symptoms to be normal. Table 4.2 is an example decision table

describing relationship between heart disease and some symptoms. The table consists

of 9 patients (rows) and 4 symptoms or attributes (columns). chol and bp stand

for cholesterol level and blood pressure, respectively. The first three attributes are

symptoms and the last column is the diagnosis of the heart disease. Symbols - and +

denote that a patient has heart disease and does not have heart disease, respectively.

Table 3.1: A decision table for medicine.

# sex chol bp result
o1 female medium normal +
o2 female medium normal -
o3 female low normal +
o4 female low normal -
o5 female low normal -
o6 female medium low +
o7 female high high -
o8 male high low -
o9 male low normal +

In the trisecting step, a doctor trisects the patients into three regions, in which

region R+ consists of people who are considered not to have heart disease, region R�

consists of people who are considered to have heart disease, and region R? consists

of people who cannot be determined based on their symptoms. o1 and o2 have the

same symptoms but have di↵erent diagnosis results, similar to o3, o4, and o5. This

means that we cannot correctly classify these patients based on their symptoms.

Based on di↵erent criteria, a doctor may get di↵erent trisections of patients. These

criteria could be to minimize risk (or cost) [120], minimize uncertainty [15], minimize

impurity [138], balance accuracy and coverage [104], or maximize some statistical
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An Illustrative Example (cont.)
• Three-way decisions (3WDs) [1] can be applied to the problem

standing for the positive, boundary, and negative regions, respectively. In military

Triage [43], they are named Urgent, Priority, and Routine, respectively. The second

step, called acting, adopts e↵ective strategies to process three regions. Actions can

be taken to enhance the e↵ectiveness or quality of the trisection [86, 87].

A set of objects OB

Region L

Actions for L

Region M

Actions for M

Region R

Actions for R

Trisecting

Acting

Figure 2.1: Trisecting-and-acting three-way decision model [110].

Ideas of dividing and processing the universe with three regions have been widely

used in many fields, such as medicine [34, 63, 80], social networks [68], recommender

system [132], investment [6], engineering and sciences [9, 24, 44, 51, 70, 78, 85, 88,

130, 134]. In some applications, the trisecting and acting are woven together as one

and cannot be easily separated. A good trisection depends on the acting strategies for

processing regions and reversely, e↵ective acting relies on an appropriate trisection.

2.1.1 Trisecting

With respect to trisecting, we may use evaluation-based methods [115] to divide

the universe OB into three pair-wise disjoint regions. An evaluation function e(·) :

OB �! V that maps each object in the universe to an evaluation status value (ESV)

in a totally ordered set (V,⌫). A pair of thresholds (↵, �) 2 V⇥ V with ↵ � � (i.e.,

15

[1] Y.Y. Yao. Three-way decision: an interpretation of rules in rough set theory. In Proceedings of the International Conference on Rough Sets and Knowledge 
Technology, pp. 642-649, 2009.
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An Illustrative Example (cont.)
• Trisecting (diagnosis)

• Acting (treatment)

Three-way Classification GTRS Conclusion

Medical Decision Making Example

•
(↵,�) = (1, 0)

accuracy =

15 + 14

15 + 14

= 1

coverage =

15 + 14

15 + 18 + 14

=

29

47

= 0.62

footline

Y. Zhang Three-way Classification with GTRS 6/16

or

Three-way Classification GTRS Conclusion

Medical Decision Making Example (cont.)

•
(↵,�) = (0.7, 0.2)

accuracy =

15 + 3 + 14 + 4

15 + 4 + 14 + 5

=

36

38

= 0.95

coverage =

15 + 4 + 14 + 5

15 + 18 + 14

=

38

47

= 0.81

footline

Y. Zhang Three-way Classification with GTRS 7/16

- region boundary + region - region

boundary

+ region

- region boundary + region
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Trisecting
• Trisecting: divide a universal set into three regions

• Three regions:

• Measurement of three regions:

• Interpretations of trisecting
• Cost [2], entropy [3], Gini index [4], and game [5] 

instances from a population, while regions L and R consist of, respectively, abnormal

or untypical instances. In other words, blood pressure of a healthy person is expected

to be fallen within a certain region, e.g., between 90 and 140 in systolic blood pressure.

An interesting question is how to interpret the intuitive notions of low, medium, and

high values used in three-way decisions based on concepts from statistics.

�

↵

ESVs of L ESVs of M ESVs of R

Figure 4.1: Division of (V,�).

In statistics, the concepts of median, mean, percentile, and standard deviation

are used to describe distributional characteristics of a population. To establish a

connection to three-way decisions, we may collect objects with ESVs around the

median or mean value to form region M. The percentile or standard deviation may be

used to calculate the positions of objects with ESVs away from the median or mean,

which in turn determine a pair of threshold values. Two special cases of V may be

considered. One is a set of non-numeric values and the other is a set of numeric

values.

When V is a set of non-numeric values, we can perform comparisons based on

the total order � and we may not carry out arithmetic operations such as addition

and multiplication. In other words, we can only consider the ranking of values in V

and the distribution of ESVs. The ordering enables us to locate median, that is, an

object in the middle point of a ranked list. In addition, we can also use the frequency

information to compute certain percentiles. Consequently, we use the median as the

middle point of region M and use two percentiles to determine the size of region M.

One percentile is used to calculate the left boundary of M, and the other percentile

is used to calculate the right boundary of M. Region L is a set of objects with ESVs

below the left boundary and region R is the set of objects with ESVs above the right

44
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mean, median, standard deviation, central tendency and dispersion, for constructing

and interpreting an evaluation function and a pair of thresholds required by three-way

decisions. Objects around the mean value form one region, and two tails form the

other two regions. In other words, we search for statistical interpretations of three-

way decisions that enable us to examine structures of data and to make inference

about data.

3.1 General Considerations

In many applications, we typically have statistical information about objects in OB.

For example, we may have frequencies of measurement values with respect to a partic-

ular feature of objects. Such information may be used to construct both an evaluation

function and a pair of thresholds. In the cases when an evaluation function is given,

we may use a distribution of the evaluation status values (ESVs) to find a pair of

thresholds.

In order for interpretation convenience, we use an ordering � on the set of eval-

uation status values (ESVs) V instead of the ordering ⌫ used in Chapter 2, and the

three regions are constructed as:

L(↵,�)(e) = {x 2 OB | e(x) � �},

M((↵,�)(e) = {x 2 OB | � � e(x) � ↵},

R((↵,�)(e) = {x 2 OB | e(x) ⌫ ↵}. (3.1)

According to Equation (3.1), we divide OB into three regions. As shown in Figure 3.1,

the region L consists of objects with low ESVs, the region M with medium ESVs,

and the region R with high ESVs. The example of blood pressure classification

in last chapter also implies that the middle region M consists of normal or typical

16

coat hypertension region, the dippers with ambulatory hypertension region, and the

nondippers with ambulatory hypertension region.

Generally, the goodness, quality, or cost of a trisection can be measured by an

objective function [24]:

Q(⇡) = w
L

Q(L) + w
M

Q(M) + w
R

Q(R), (2.2)

where Q(⇡) is the goodness (quality, cost, or other measurement) of the trisection

⇡ = (L,M,R), Q(L), Q(M), and Q(R) are qualities or goodness of the regions L,

M, and R, respectively, and w
L

, w
M

, and w
R

are weights associated to di↵erent

regions, representing their relative importances. Examples of objective functions are

cost [106], information entropy [15], Gini index [139], chi-square statistic [24], and

variance [4]. We have w
L

= w
M

= w
R

= 1, if the three regions are treated equally.

The optimal trisection is the one that maximizes or minimizes the objective func-

tion in Equation (2.2), according to criteria used in particular applications. For

example, the objective functions based on cost [106], information entropy [15], and

Gini index [139] are to be minimized and those based on chi-square statistic [24] and

variance [4] should be maximized.

2.1.2 Acting

In the acting step, strategies and actions for processing each region take a decision

maker’s advantage. These strategies and actions may be adopted to handle di↵erent

applications, such as description of concept, prediction of objects, and transference

objects. To fully understand three regions, descriptive rules can be constructed from

objects in three regions. Descriptive rules summarize the main features of each region

and each rule characterizes a portion of a specific region. We can also construct

predictive rules from the three regions to classify or cluster new instances. In some

17

Totally ordered set V

[2] Y.Y. Yao. Decision-theoretic rough set models. In Proceedings of the International Conference on Rough Sets and Knowledge Technology, pp. 1-12, 2007.
[3] X.F. Deng, Y.Y. Yao. A multifaceted analysis of probabilistic three-way decisions. Fundamenta Informaticae, 132(3): 291-313, 2014.
[4] Y. Zhang, J.T. Yao. Gini objective functions for three-way classifications. International Journal of Approximate Reasoning, 81: 103-114, 2017.
[5] J.T. Yao, J.P. Herbert. A game-theoretic perspective on rough set analysis. Journal of Chongqing University of Posts and Telecommunications, 20: 291-298, 
2008.
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Acting

• Acting: process objects in each region, e.g.,
• Description of concept
• Prediction of objects
• Transference of objects

• Transference of objects can improve the trisection quality
• But it was not investigated in 3WD.

7
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Motivations and Objectives

• Trisecting
• To statistically interpret trisecting.
• To find the optimal pair of thresholds.

• Acting
• To model an actionable three-way decision framework with 

different models.
• To further improve performance of these models.

8
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Three-way Decisions
(Yao, 2009)

Trisecting-and-acting model
(Yao, 2013)

Trisecting Acting

Statistical
Interpretations

Rough sets
(Pawlak, 1982)

Two statistical 
interpretations

(Yao and Gao,
2015)

Chi-square 
statistic

(Gao and Yao,
2016)

Divergence
(Azam and 
Yao, 2016)

DTRS
(Yao et al., 

1990)

GTRS
(JT Yao and 

Herbert , 
2008)

ITRS
(Deng and 
Yao, 2012)

GIRS
(Zhang, 
2013)

NBRS
(Yao and 

Zhou, 2010)

BRS
(Slezak and 

Ziarko, 
2002)

Three-way 
approximations 
of Fuzzy sets

(Yao et al., 2017)

Interval sets
(Yao, 1993)

Change-based Acting
(Gao and Yao, 2017)

A3WD
(Gao and Yao, 

2017)

Shadowed sets
(Pedrycz, 1998)

CTRS
(Greco et 
al., 2005)

VPRS
(Ziarko, 
1993)

Determination of a pair of thresholds  (↵,�)

Orthopairs
(Cuicci, 2011)
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Categorization of Three-way Decision Models

Ch. 4 Ch. 2

Ch. 3, 5, 6Ch. 4 Ch. 4
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Contributions

• Presented
• Two statistical interpretations
• A χ2 based method for determining the pair of thresholds

• Proposed 
• An A3WD framework with four models
• Four actionable rule mining algorithms for these models
• An R4 reduction framework for A3WD
• An Addition strategy algorithm schema for reduction
• A specific algorithm of this schema for attribute reduction and 

attribute-value pair reduction
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Statistical Interpretations of Trisecting

• General consideration

• Distributional characteristics in statistics
• Median and percentile
• Mean and standard deviation

• Two special cases of V
• A set of non-numeric values (consider ranking)
• A set of numeric values (arithmetic operations)

instances from a population, while regions L and R consist of, respectively, abnormal

or untypical instances. In other words, blood pressure of a healthy person is expected

to be fallen within a certain region, e.g., between 90 and 140 in systolic blood pressure.

An interesting question is how to interpret the intuitive notions of low, medium, and

high values used in three-way decisions based on concepts from statistics.

�

↵

ESVs of L ESVs of M ESVs of R

Figure 4.1: Division of (V,�).

In statistics, the concepts of median, mean, percentile, and standard deviation

are used to describe distributional characteristics of a population. To establish a

connection to three-way decisions, we may collect objects with ESVs around the

median or mean value to form region M. The percentile or standard deviation may be

used to calculate the positions of objects with ESVs away from the median or mean,

which in turn determine a pair of threshold values. Two special cases of V may be

considered. One is a set of non-numeric values and the other is a set of numeric

values.

When V is a set of non-numeric values, we can perform comparisons based on

the total order � and we may not carry out arithmetic operations such as addition

and multiplication. In other words, we can only consider the ranking of values in V

and the distribution of ESVs. The ordering enables us to locate median, that is, an

object in the middle point of a ranked list. In addition, we can also use the frequency

information to compute certain percentiles. Consequently, we use the median as the

middle point of region M and use two percentiles to determine the size of region M.

One percentile is used to calculate the left boundary of M, and the other percentile

is used to calculate the right boundary of M. Region L is a set of objects with ESVs

below the left boundary and region R is the set of objects with ESVs above the right

44

mediumlow high
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Statistical Interpretations of Trisecting (cont.)
• Interpretations through median and percentile

• V is a set of non‐numeric values, the ordering ≼ only allows us 
to arrange objects in OB into a ranked list according to their 
ESVs.

. . .

�

(lth percentile)

. . . . . .

↵

(hth percentile)

. . .

L M

median

R

Figure 4.2: Illustration of division on rank ordered list through median and percentile.

according to the ordering �. The object at the middle position 3 of this list is x4

and its value is large, i.e., the median is large. Suppose we want the region M to

include 60% of the objects and regions L and R each consists of 20% of the objects.

We use 20% for computing the position of the left threshold and 20% for computing

the position of the right threshold. The position of the left threshold is 1 with object

x2 and ESV smaller, and the position of the right threshold is 4 with object x3 and

ESV largest. That is, � = smaller and ↵ = largest. Therefore, the tripartition is

given L={x2}, M={x1, x4, x5} and R={x3}.

From the construction process of the example, we have an interpretation of three-

way decisions using the median and percentile, as depicted in Figure 4.2. The ESV of

the object denoted by the solid circle in the middle position is the median and (↵, �)

is a pair of thresholds based on the pair of percentiles.

The trisection of three-way decisions can be constructed as follows. Suppose that

the size of OB is n. Step 1: arrange the set of objects into a ranked list according to

their ESVs in ascending order, in which objects with the same ESV can be ranked in

any order. In this way, we have a list of ESVs, v1, v2, . . . , vn, where v1 is the smallest

value and v
n

is the largest value. Step 2: we search for ESVs at lth and hth percentiles

with l < 50 and h > 50, we can calculate the pair of thresholds by:

� = vbln/100c,

↵ = vdhn/100e, (4.2)

46
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Statistical Interpretations of Trisecting (cont.)
• Interpretations through median and percentile

• Three regions are constructed by:

• Example
• Boxplot (l =1st quartile, h =3rd quartile) [6]

where the floor operator bac gives the largest integer that is not greater than a and

the ceiling operator dae gives the smallest integer that is not less than a. The floor

and ceiling operators used in � and ↵, respectively, are needed because ln/100 and

hn/100 may not be integers. As a result, three regions are constructed by:

L(↵,�)(e) = {x 2 OB | e(x) � �}

= {x 2 OB | e(x) � vbln/100c},

M(↵,�)(e) = {x 2 OB | � � e(x) � ↵}

= {x 2 OB | vbln/100c � e(x) � vdhn/100e,

R(↵,�)(e) = {x 2 OB | e(x) ⌫ ↵}

= {x 2 OB | e(x) ⌫ vdhn/100e}. (4.3)

In order to have three pair-wise disjoint regions, we require that � � ↵, i.e., � and ↵

cannot be the same value in V. This requires that the two percentiles must be chosen

to satisfy the criterion.

Equation (4.3) provides an interpretation of three-way decisions using the median

and percentile. Such an interpretation has been widely used in many applications.

For example, in boxplots [78], the values of � and ↵ are obtained by first and third

quartiles, and the middle region M by interquartile range (IQR).

4.3 Interpretations through Mean and Standard

Deviation

When V consists of numeric values, statistical measures based on arithmetic oper-

ations such as the mean and standard deviation can be applied. For simplicity, we

assume that V is the set of real numbers. Suppose e(x1), e(x2), . . ., e(xn

) are the

ESVs of objects in OB, where n is the cardinality of OB. The mean and standard

47
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[6] P.J. Rousseeuw, I. Ruts, J. W. Tukey. The bagplot: a bivariate boxplot. The American Statistician, 53: 382-387, 1999. 
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Statistical Interpretations of Trisecting (cont.)
• Interpretations through mean and standard deviation

• V is a set of numeric values, statistical measures based on 
arithmetic operations such as mean and standard deviation can be 
applied.

Equation (4.5) makes no assumption of distribution of ESVs of objects. In many

real applications, it is common that the objects’ ESVs satisfy a certain distribution.

For example, Figure 4.3 and Figure 4.4 illustrate the trisection based on two kinds of

distributions. In Figure 4.3, the normal distribution shows a unimodal and symmetric

curve, in which the mean µ is the normal or typical point of the distribution. While

Figure 4.4 shows a monotonic curve, the region around the mean represents the

average area of the distribution, i.e., not too high and not too low.

�

↵

µ

k1� k2�

� < e(x) < ↵e(x)  � e(x) � ↵

ESVs of L ESVs of M ESVs of R

Figure 4.3: Illustration of three-way decisions on a normal distribution.

0 �

↵

µ

ESV of L ESV of M ESV of R

Figure 4.4: Illustration of three-way decisions on an exponential distribution.

There are many applications based on this model. For example, Pater [65] sug-

gested using k1 = k2 = 2 for blood pressure classifications. In other words, M(2,2)(e) =

{x 2 OB | µ � 2� < e(x) < µ + 2�} is the region of normal blood pressure, while

L(2,2)(e) = {x 2 OB | e(x)  µ � 2�} and R(2,2)(e) = {x 2 OB | e(x) � µ + 2�}

regions are abnormal, that is, the hypotension and hypertension regions, respectively.
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regions are abnormal, that is, the hypotension and hypertension regions, respectively.
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Statistical Interpretations of Trisecting (cont.)
• Interpretations through mean and standard deviation

• Three regions are constructed by:

• Examples
• Blood pressure (k1 = k2 = 2) [7]

• Intelligence Quotient (k1 = k2 = 2) [8]

deviation are calculated by:

µ =
1

n

nX

i=1

v(x
i
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n

nX

i=1

(e(x
i

)� µ)2
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As shown by Figure 4.3 and Figure 4.4, we may interpret µ as the ESV for representing

objects in M and � as a unit to measure the positions of the two thresholds � and

↵. Suppose two non-negative numbers k1 and k2 represent the distances of two

thresholds from the mean in terms of the number of the standard deviations. The

pair of thresholds can be constructed as follows:

� = µ� k1�, k1 � 0,

↵ = µ+ k2�, k2 � 0. (4.4)

Generally, k1 and k2 do not need to be equal. According to � and ↵, three regions

can be constructed by:

L(k1,k2)(e) = {x 2 OB | e(x)  �}

= {x 2 OB | e(x)  µ� k1�},

M(k1,k2)(e) = {x 2 OB | � < e(x) < ↵}

= {x 2 OB | µ� k1� < e(x) < µ+ k2�},

R(k1,k2)(e) = {x 2 OB | e(x) � ↵}

= {x 2 OB | e(x) � µ+ k2�}, (4.5)

where , <, and � are standard relations on a set V of numeric values. It is worth

noting that k1 and k2 are related to z-score. Thus, we can interpret three-way decisions

in terms of z-scores.

48

with

deviation are calculated by:

µ =
1

n

nX

i=1

v(x
i

),

� =

 
1

n

nX

i=1

(e(x
i

)� µ)2
! 1

2

.

As shown by Figure 4.3 and Figure 4.4, we may interpret µ as the ESV for representing

objects in M and � as a unit to measure the positions of the two thresholds � and

↵. Suppose two non-negative numbers k1 and k2 represent the distances of two

thresholds from the mean in terms of the number of the standard deviations. The

pair of thresholds can be constructed as follows:

� = µ� k1�, k1 � 0,

↵ = µ+ k2�, k2 � 0. (4.4)

Generally, k1 and k2 do not need to be equal. According to � and ↵, three regions

can be constructed by:

L(k1,k2)(e) = {x 2 OB | e(x)  �}

= {x 2 OB | e(x)  µ� k1�},

M(k1,k2)(e) = {x 2 OB | � < e(x) < ↵}

= {x 2 OB | µ� k1� < e(x) < µ+ k2�},

R(k1,k2)(e) = {x 2 OB | e(x) � ↵}

= {x 2 OB | e(x) � µ+ k2�}, (4.5)

where , <, and � are standard relations on a set V of numeric values. It is worth

noting that k1 and k2 are related to z-score. Thus, we can interpret three-way decisions

in terms of z-scores.

48

15

[7] C. Pater. The blood pressure “uncertainty range” - a pragmatic approach to overcome current diagnostic uncertainties (II). Current Controlled Trials in 
Cardiovascular Medicine, 6(1): 5, 2005. 
[8] J.M. Sattler. Assessment of Children’s Intelligence. W.B. Saunders Company, Philadelphia, 1975. 

Thursday, August 9, 18



Statistical Interpretations of Trisecting (cont.)
• Determining thresholds with χ2

• Contingency table

• Measurement of divergences between observation and expectation

• χ2 as objective function and maximize it for optimal trisection

e(x) = Pr(X|[x]), where X is a subset of OB. The conditional probability Pr(X|[x])

is the ESV of object x and all ESVs are real numbers between 0 and 1. The relation ⌫

is the “greater than or equal” relation �. Under the assumption 0  � < 0.5  ↵  1,

one easily obtains three probabilistic regions by Equation (4.6).

Di↵erent choices of thresholds lead to di↵erent three-way approximations. A good

approximation shows a strong association or correlation of ⇡(↵,�)(X) and {X,XC}.

In other words, ⇡(↵,�)(X) and {X,XC} are correlated or dependent. The chi-square

statistic is a measure of correlation and can be used as an objective function for

measuring the goodness of a trisection ⇡(↵,�)(X).

4.4.2 Contingency Table of Three-way Decisions

The connection of the actual classification {X,XC} and a three-way approximation

⇡(↵,�)(X) = (POS(↵,�)(X),BND(↵,�)(X),NEG(↵,�)(X)) of {X,XC} can be represented

by a contingency table [19] as shown in Table 4.1. The two factors, i.e., the class X

and the pair of thresholds (↵, �), form the rows and columns, respectively, are two

variables of the contingency table. A contingency table has two directions, i.e., row

and column; it is also called a cross-classification table.

Table 4.1: A contingency table of three-way decision.

POS(↵,�)(X) BND(↵,�)(X) NEG(↵,�)(X) Total

X n
XP

n
XB

n
XN

n
X·

XC n
X

C
P

n
X

C
B

n
X

C
N

n
X

C ·

Total n·P n·B n·N n

The numbers in the table such as n
XP

and n
X

C
N

represent the numbers of objects

in the corresponding category of a class and a region. Numbers with subscripts

having a dot such as n
X

C · and n·N are called marginal totals, denoting the numbers

of objects in the corresponding row or column. The number n is the grand total. It

is the number of all objects in the table, i.e., n = |OB|, where | · | is the cardinality

52

the chi-square statistic may be used as a measure of the goodness of a three-way

approximation ⇡(↵,�)(X).

We can demonstrate the appropriateness of chi-square statistics as an objective

function by relating it to the general formulation of objective function as given by

Equation (2.2). Each region occupies a column with two cells in the contingency

table. We may quantify the quality of each region as a sum of two cells’ divergences

of observed numbers from their expected numbers as follows:

Q(POS(↵,�)(X)) =
(n

XP

� n
X·n·P/n)2

n
X·n·P/n

+
(n

X

C
P

� n
X

C ·n·P/n)2

n
X

C ·n·P/n
,

Q(BND(↵,�)(X)) =
(n

XB

� n
X·n·B/n)2

n
X·n·B/n

+
(n

X

C
B

� n
X

C ·n·B/n)2

n
X

C ·n·B/n
,

Q(NEG(↵,�)(X)) =
(n

XN

� n
X·n·N/n)2

n
X·n·N/n

+
(n

X

C
N

� n
X

C ·n·N/n)2

n
X

C ·n·N/n
. (4.9)

By summing up the three quantities with w
P

= w
B

= w
N

= 1, we have:

Q(⇡(↵,�)(X)) = Q(POS(↵,�)(X)) +Q(BND(↵,�)(X)) +Q(NEG(↵,�)(X))

= �2
(↵,�). (4.10)

That is, the �2 statistic of contingency table of three-way decisions may be viewed as

a special case of a measure of the quality of a three-way approximation ⇡(↵,�)(X) as

defined by Equation (2.2).

If the �2 statistic is statistically significant, that means {X,XC} and ⇡(↵,�)(X)

are correlated or dependent; otherwise, they are independent. A larger �2 statistic

indicates a stronger correlation. Each pair of thresholds (↵, �) induces a trisection of

OB. We want to find a pair of thresholds that provides the strongest correlation. In

other words, we search for a pair of thresholds by maximizing the �2 statistic:

(↵⇤, �⇤) = argmax
(↵,�)

�2
(↵,�) (4.11)
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Change-based Acting
• Movements between regions

• Movement patterns

I II

: desirable

: indi↵erent

: undesirable

Figure 2: Six possible movements between two regions.

3. Two Illustrative Examples

In this section, we use two examples to illustrate ideas of actionable strategies in three-way decisions,105

one in medicine and the other in election. These two examples are not real data and just used to show the
idea of this paper, but the idea can be used in dealing with real data.

3.1. A Medical Example

Doctors use symptoms to determine a disease and to cure disease by taking proper actions that change
abnormal symptoms to be normal. Table 1 is an example decision table describing the relation between a110

heart disease and some symptoms. The table consists of 9 suspected patients (rows) and 4 symptoms or
attributes (columns). Chol and Bp stand for cholesterol level and blood pressure, respectively. The first
three attributes are symptoms and the last column is the diagnosis result of the heart disease. Symbols - and
+ denote that a suspect patient has the heart disease and does not have the heart disease, respectively. A
doctor may trisect the people into three regions R+ = {o1, o2, o6, o9}, R� = {o7, o8}, and R? = {o3, o4, o5}115

according to given criteria based on the symptoms, representing a group of people who are accepted not
having the heart disease, a group of people who are rejected not having the heart disease, and a group of
people who are between these decisions. In Example 1 of Section 4.3, we explain the construction of these
three regions.

Table 1: A decision table for medicine.
# Gender Chol Bp Result
o1 female medium normal +
o2 female medium normal -
o3 female low normal +
o4 female low normal -
o5 female low normal -
o6 female medium low +
o7 female high high -
o8 male high low -
o9 male low normal +

In the acting step, suppose we want to cure patients who have the heart disease. Figure 3 shows the120

desirable, undesirable, and indi↵erent movement patterns.
By analyzing o7 and o8 in R�, we construct two rules as follows:

r7 : Gender = female ^ Chol = high ^ Bp = high ) Result = �,

r8 : Gender = male ^ Chol = high ^ Bp = low ) Result = �.

A rule X ) Y indicates that if a patient has symptoms X then the patient has a diagnosis Y , where the left
part X consists of conjunction of attribute-value pairs for symptoms and the right part Y is the diagnosis
result. Similarly, we can construct rules for objects in R+:125

r1 : Gender = female ^ Chol = medium ^ Bp = normal ) Result = +,

4

+

?

-

Figure 3: Movement patterns of Table 1 based on user’s requirement.

r6 : Gender = female ^ Chol = medium ^ Bp = low ) Result = +,

r9 : Gender = male ^ Chol = low ^ Bp = normal ) Result = +.

We assume that patients have the same diagnosis result if they have the same symptoms. Then patients in
region R� can be cured if we can take some actions to change their attribute-value pairs to the ones in R+.
Generally, gender cannot be changed, while cholesterol level and blood pressure can be changed. Therefore,
we may adopt strategies and actions to change o7’s cholesterol level and blood pressure to be the same as
one from R+. There are o1 and o6 in R+ having the same gender with o7’s. Then o1 or o6 can be chosen as130

a reference to design actions. If o1 is chosen, the action may be designed as follows:

a1 : Reduce the cholesterol level from high to medium by taking 3 doses of medicine A and lower blood
pressure from high to normal by taking 4 doses of medicine B.

If o6 is chosen, the action may be:

a2 : Reduce the cholesterol level from high to medium by taking 3 doses of medicine A and lower blood135

pressure from high to low by taking 8 doses of medicine B.

We notice that o1 and o2 have the same symptoms but di↵erent diagnosis results, which means a patient
has about half a chance to be cured if a doctor chooses o1 as a reference to design actions. As for o6, there
is no such ambiguity. Therefore we believe that action a2 is more likely to cure o7. The strategies to cure
people in R? can be analyzed similarly.140

Taking any action may produce benefit and incur cost. In this example, the benefit of actions is that
patients may be cured and the cost may be money, time, and / or other types of resources that actions
require. To compare two acting solutions of treating o7, the benefits of two solutions are the same if o7 is
cured (or a2 has more benefit if we consider the probability). Generally, the costs of two solutions may be
di�cult to compare. Because di↵erent decision makers have di↵erent preferences and criteria. To make this145

problem easy to tackle, we consider that the action cost in this paper is the combined cost of all types of
resources used by actions.

3.2. An Election Example

Table 2 describes some voters in an opinion poll, where Hc denotes voter’s health care level and Fp denotes
the voter’s attitude toward the current foreign policies. Values of Fp, open, medium, and closed denote150

di↵erent levels that voter thinks the current foreign policies are open, medium, and closed, respectively. The
attribute Result means the voter’s decision, values +, -, and ? denote a voter supports a candidate, oppose
the candidate, and has not decided or is not willing to tell his / her decision.

Three regions are constructed based on the voters’ decisions: R+ = {o1, o6, o8}, R� = {o2, o3, o4, o9},
and R? = {o5, o7}. A candidate may win the election if he / she obtains at least 50% support from a poll,155

which means the candidate needs to transfer at least 2 voters from R� or R? to R+ to win the election. By
analyzing the attributes in the table, age is a stable attribute whose value cannot be easily changed and Hc
and Fp are flexible whose values can be changed by some actions.

5
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Actionable Rule

• Categorization of attributes to As and Af

• Classification rule

• Actionable rule (referred to as action) [9]

4. A General Framework of Actionable Three-way Decisions

In this section, we introduce the concepts of decision table, actionable rule, and sub-actionable rule.
Based on a cost-benefit analysis of actions, we suggest four models of actionable three-way decisions.

4.1. Actionable Rules175

We give a formal definition of decision table.

Definition 1. A decision table is the following tuple:

S = (OB, AT = As [ Af [ {d}, {Va | a 2 AT}, {Ia | a 2 AT})

where OB is a nonempty finite set of objects, AT is a finite nonempty set consisting of attributes composed
by three subsets, in which As stands for stable attributes, Af flexible attributes and d a decision

attribute, Va is a nonempty set of values for every attribute a 2 AT , and Ia : OB �! Va is a mapping.180

For every x 2 OB, an attribute a 2 AT , and a value v 2 Va, Ia(x) = v means that the object x has the
value v on attribute a.

In Definition 1, the entire set of attributes is classified into three subclasses. Stable attributes are attributes
that their values cannot be modified, such as age and gender, flexible attributes are attributes that their
values can be modified by actions, such as cholesterol level and blood pressure. All attributes in As [ Af185

are called condition attributes or features, while the attribute d is also called class label.
Given an object x 2 OB, [x] is the equivalence class of x based on values on attributes As [ Af :

[x] = {y 2 OB | Ia(y) = Ia(x), 8a 2 As [ Af}.

Given two objects with equivalence classes [x] and [y], we can get two classification rules:

r[x] :

 ^

s2A
s

s = Is(x)

�
^
 ^

f2A
f

f = If (x)

�
) d = Id(x),

r[y] :

 ^

s2A
s

s = Is(y)

�
^
 ^

f2A
f

f = If (y)

�
) d = Id(y).

Classification rules have X ) Y form that indicates if X then Y . The left hand side of the rule, X, is
a conjunction of all stable and flexible attribute-value pairs and the right hand side of the rule, Y , is the
decision attribute-value pair. Let ST (r[x]) be the stable attributes part in the left hand side of the rule r[x],190

FL(r[x]) be the flexible attributes part in the left hand side of the rule r[x], i.e.,

ST (r[x]) =

 ^

s2A
s

s = Is(x)

�
,

FL(r[x]) =

 ^

f2A
f

f = If (x)

�
. (3)

We use ST (r[y]) = ST (r[x]) to denote that [x] and [y] have the same values on each stable attribute. If
ST (r[y]) = ST (r[x]), then [x] and [y] can be changed to each other by changing the flexible attributes values
via actions. If a user wants to change [x] into [y], the action is to execute the following actionable rule:

r[x]  r[y] :
 ̂

f2A
f

If (x) If (y), subject to
^

s2A
s

Is(x) = Is(y), (4)

where If (x) If (y) means that the value of attribute f is changed from If (x) to If (y) and the symbol
 V

195

means all the flexible attributes’ values have to be changed.
Based on above concepts, the actionable rule can be defined as follows:
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Actionable Rule (cont.)

• Action(s) induce a new trisection

• Each action brings benefit and incurs cost
• Benefit: difference between          and 
• Cost: all resources required by action

⇡ action(s) ⇡0

transferring [x] to a di↵erent region.

An actionable rule is a guideline for action and strategy design. Given one action-

able rule, many actions may be designed, because there may exist many options to

change one flexible attribute’s value. For example, we may lower the blood pressure

by taking pills, controlling diet, or doing exercises. In this chapter, we consider the

simplest case, in which each actionable rule corresponds to one action. We analyze

benefit and cost from actionable rules instead of actions. Without ambiguity, we also

refer to an actionable rule as an action and a sub-actionable rule as a sub-action.

We assume that applying actions does not change the classification rules generated

in trisecting step.

4.3 Cost-benefit Analysis of Actions

Each action incurs cost and brings benefit. According to particular application, the

motivation of taking actions is to minimize or maximize the objective function in

Equation (2.2) by least cost. Suppose Q(⇡0) is the quality of a new trisection ⇡0 by

taking some actions on ⇡, then the benefit can be defined as the di↵erence of two

qualities:

B = Q(⇡0)�Q(⇡), (4.3)

or

B = Q(⇡)�Q(⇡0). (4.4)

Specifically, applications that their objective functions based on cost [83], information

entropy [11], and Gini index [109] use Equation (4.4) and those based on chi-square

statistic [18] and variance [3] use Equation (4.3). We use B
r[x] r[y]

to denote the

benefit of taking action r[x]  r[y].

There are many types of cost involved with changing attribute values, such as

39
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Quantification the Benefits and Costs of Actions

• Three assumptions
• (A1) Value changes among different attributes are independent.
• (A2) All actions are independent.
• (A3) After taking action                  , [x] will have the same structure 

of [y], i.e., Pr(X|[x])=Pr(X|[y]).

• Based on (A1) and (A2), the action cost can be calculated:

• Based on (A3), the action benefit can be proven:

(A3) After taking an action r[x]  r[y], the changed equivalence class [x] will have the same probability
with [y]’s, i.e., Pr(X 0|[x]) = Pr(X|[y]), where Pr(X|[y]) = |X \ [y]|/|[y]|.

The idea of this assumption can be explained by an example. Some people in Canada will change all season
tires to winter tires for their cars in winter due to safety. This assumption suggests that replacing to winter
tires will improve the safety level to the level of those cars using winter tires. Specifically, suppose there are255

three objects in [x] moved to [y], where [y] has 2/3 objects labeled + and 1/3 labeled -, then these three
objects will be transformed as two + and one -. Therefore, after taking action r[x]  r[y], b can be computed
by:

b = |X 0 \ [x]| = |[x]|Pr(X 0|[x]) = |[x]|Pr(X|[y]) = |[x]||X \ [y]|/|[y]|. (12)

Further, we have the following proposition:

Proposition 1. Taking action r[x]  r[y] to transfer objects from region V to W , the benefit is computed260

by:

Br[x] r[y]
= wW

⇥
� b�WP � (|[x]|� b)�WN

⇤
+ wV

⇥
a�VP + (|[x]|� a)�VN

⇤
, (13)

where V, W 2 {P, B, N}, in which P , B, and N represent positive, boundary, and negative regions, respec-
tively.

Proof. See appendix.
We show how to compute the cost and benefit by an example below.265

Example 1. We continue to use the example in Section 3.1. We define X = {x 2 OB | Id(x) = +}
representing the group of people who do not have the heart disease and we enlarge this group by transfer
people in other groups to it. We use the cost matrix in Table 5 to compute the quality of three regions. The

Table 5: Cost matrix.
POS BND NEG

X 2 4 8
XC 11 9 8

three regions to approximate X are constructed as follows:

POS(0.5,0.2)(X) = {x 2 OB | Pr(X|[x]) � 0.5} = {o1, o2, o6, o9},
BND(0.5,0.2)(X) = {x 2 OB | 0.2 < Pr(X|[x]) < 0.5} = {o3, o4, o5},
NEG(0.5,0.2)(X) = {x 2 OB | Pr(X|[x])  0.2} = {o7, o8},

where ↵ = 0.5 and � = 0.2 are two thresholds minimizing the Q(⇡).270

Table 6: Cost function C
Chol

.

low medium high
low 0 1 3

medium 2 0 1
high 4 1 0

Table 7: Cost function C
Bp

.

low normal high
low 0 1 2

normal 1 0 1
high 2 1 0

By using new notations, we have a1 = r[o7]  r[o1] and a2 = r[o7]  r[o6]. Suppose the cost functions
CChol and CBp are given in Table 6 and 7, respectively. According to Equation (8), the costs of action a1

and a2 can be computed as follows:

Cr[o7] r[o1]
= |[o7]|(CChol(high, medium) + CBp(high, normal)) = 2,

Cr[o7] r[o6]
= |[o7]|(CChol(high, medium) + CBp(high, low)) = 3,

10

Table 4: Misclassification cost matrix.
POS BND NEG

X �PP �BP �NP

XC �PN �BN �NN

Assumption (A1) allows us to calculate the cost of transferring one object by simply summing all sub-action
costs up. For example, the cost of transferring one object from [x] to [y] is:230

X

f2A
f

Cf (If (x), If (y)). (7)

Let Cr[x] r[y]
denote the cost of action r[x]  r[y] and it can be computed by:

Cr[x] r[y]
= |[x]|

X

f2A
f

Cf (If (x), If (y)), (8)

where | · | denote the cardinality of a set.
Assumption (A2) allows us to calculate and analyze the benefit and cost of any action independently.

Based on this assumption, given any two actions r[x]  r[y] and r[p]  r[q], the Br[x] r[y]
and Cr[x] r[y]

will
not be changed whether or not we take the action r[p]  r[q].235

4.3. Benefit in Classification Problem
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respectively. Let Pr(X|[x]) denote the conditional probability that an object is in X given that the object240

is in [x], which may be computed by
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|[x]| . (9)
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In this case, we want to minimize the cost, which means the Equation (6) will be used as benefit. The
Br[x] r[y]
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is easy to compute and we use an assumption to compute b:250

9
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Four Models in Different Situations

• Model (i) requires the maximum benefit 
solution without cost limitation.

• Model (ii) requires the minimum cost 
solution to obtain the maximum benefit.

• Model (iii) requires the maximum benefit 
solution with a limited action cost.

• Model (iv) requires the minimum action 
cost solution to obtain a desired benefit.

}Find bounds

Constrained 
optimization}
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Actionable Rule Mining

• Determining the bounds of benefit and cost (models (i) and (ii))
• By previous assumptions, the maximum benefit is:

• Time complexity: O(|DES||SOURCE||As∪Af|).

• It may be not unique.
• The set of aij with minimum cost is the solution of model (ii), it may 

be also not unique.

computed by following equation without considering cost:

B̄ =
X

[xi]2SOURCE

max
j=1,...,ni

{b
ij

}, (5.1)

However, the upper bound of the benefit may not be unique, because there may exist

many actions that have the same benefit to transfer [x
i

]. Therefore, there may be

many solutions of a
ij

that satisfy model (i). Among these solutions, the one with the

minimum cost is the solution for the model (ii). This can be achieved by choosing the

action with the maximum benefit to transfer each [x
i

] 2 SOURCE. If there are two

or more actions that have the same maximum benefit, then the action with minimum

cost among them is chosen.

We design the Algorithm 1 for the model (i) and the model (ii). The set of a
ij

found by Algorithm 1 is the actionable three-way solution to obtain the upper bound

of benefit B̄ and the upper bound of cost C̄. Based on Table 5.1, we have B̄ = 28

and C̄ = 14.

Algorithm 1: An algorithm to find the upper bounds of benefit and cost.
Input: DES with costs and benefits
Output: B̄, C̄, and action set a

ij

.

1 let B̄ = 0 and C̄ = 0;
2 compute SOURCE;
3 foreach [x

i

] 2 SOURCE do
4 find all [y1], · · · , [y

n

i

], where r[x
i

]  r[y
j

] 2 DES, j = 1, · · · , n

i

;

5 let c

ij

= C

r[x
i

] r[y
j

]
, b

ij

= B

r[x
i

] r[y
j

]
;

6 let all a

ij

= 0, j = 1, · · · , n

i

;
7 let p = 0, q = +1, and k = 1;
8 for j = 1 to n

i

do
9 if (b

ij

> p) or (b
ij

= p and c

ij

< q) then
10 let p = b

ij

, q = c

ij

;
11 let k = j;

12 endif

13 end
14 let a

ik

= 1;
15 let B̄ = B̄ + b

ik

;
16 let C̄ = C̄ + c

ik

;

17 end
18 return B̄, C̄, and all a

ij

.
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Actionable Rule Mining (cont.)

• Maximizing benefit with cost constraints (model (iii))
• Problem analysis

• Similar to multiple-choice knapsack problem (MCKP) [10], NP-Hard.
• An exhaustive search has exponential time complexity.

• Approximate solution
• Proposed Algorithm 2, time complexity: O(ncam).

[10] D. Pisinger. Algorithms for Knapsack Problems (Ph.D. thesis). University of Copenhagen, Department of Computer Science, 1995.
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Actionable Rule Mining (cont.)

• Minimizing action cost for a desired benefit (model (iv))
• Two algorithms are proposed

• Algorithm 3, time complexity:                  . 
• Algorithm 4, time complexity: O(nblm).

• Both algorithms find approximate solution.

table does not o↵er any benefit greater than 22. Therefore, we need more columns to

find such a benefit, but we do not know how many columns are needed for the table.

Fortunately, we know the maximum number of columns, that is the upper bound

of the cost dC̄e. Accordingly, we can make a slight modification to Algorithm 2 by

setting c
a

= dC̄e, then the left most cell in the bottom row of the table with benefit

greater than or equal to b
l

o↵ers the obtained benefit. The part 3 of the algorithm

deriving the set of actions starts from this cell. The summed cost of these derived

taken actions is the minimum cost required by model (iv). Such modified algorithm

is designed and shown in Algorithm 3.

Because the obtained benefit is underestimated by Algorithm 2, the action cost

needed to obtained a desired benefit by Algorithm 3 is overestimated. Suppose C 0

is the minimum action cost needed for the desired benefit b
l

, C is the approximate

action cost computed by Algorithm 3, they satisfy C 0  C < (C 0 + dC̄e). We may

use dk� c
ij

e instead of bk� c
ij

c in Algorithm 3, then we have (C 0 � dC̄e) < C  C 0,

it underestimates the cost. The time complexity of the second part is O(ndC̄em),

where m is the average of all n
i

. The amount of computation may be huge when

some c
ij

are large.

On the other hand, we can design a di↵erent algorithm for model (iv). We use

the same notations as the last section and introduce a new function g(i, k), which

denotes the minimum action cost with respect to the first i equivalence classes and

a desired benefit of k. Therefore, the objective is to compute g(n, b
l

) and to find the

associated set of a
ij

. Suppose we know all the values of g(i� 1, k), k = 0, . . . , b
l

when

we take the ith equivalence class, [x
i

], into account to calculate g(i, k). We have to

consider all [x
i

]’s actions and the g(i, k) will be computed from one of the following

n
i

+ 1 cases:

(0) g(i, k) = g(i� 1, k), if none of [x
i

]’s actions is taken;

(1) g(i, k) = g(i� 1, k � b
i1) + c

i1, if [xi

]’s first action is taken;

67
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An Overview of Actionable Rule Mining Algorithms

Algorithm 1 Model (i)

Model (ii)

Model (iii)

Model (iv)

Algorithm 2

Algorithm3

Algorithm 4

table does not o↵er any benefit greater than 22. Therefore, we need more columns to

find such a benefit, but we do not know how many columns are needed for the table.

Fortunately, we know the maximum number of columns, that is the upper bound

of the cost dC̄e. Accordingly, we can make a slight modification to Algorithm 2 by
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= dC̄e, then the left most cell in the bottom row of the table with benefit

greater than or equal to b
l

o↵ers the obtained benefit. The part 3 of the algorithm

deriving the set of actions starts from this cell. The summed cost of these derived

taken actions is the minimum cost required by model (iv). Such modified algorithm

is designed and shown in Algorithm 3.

Because the obtained benefit is underestimated by Algorithm 2, the action cost

needed to obtained a desired benefit by Algorithm 3 is overestimated. Suppose C 0
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l

, C is the approximate

action cost computed by Algorithm 3, they satisfy C 0  C < (C 0 + dC̄e). We may
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e instead of bk� c
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c in Algorithm 3, then we have (C 0 � dC̄e) < C  C 0,

it underestimates the cost. The time complexity of the second part is O(ndC̄em),

where m is the average of all n
i

. The amount of computation may be huge when

some c
ij

are large.

On the other hand, we can design a di↵erent algorithm for model (iv). We use

the same notations as the last section and introduce a new function g(i, k), which

denotes the minimum action cost with respect to the first i equivalence classes and

a desired benefit of k. Therefore, the objective is to compute g(n, b
l

) and to find the

associated set of a
ij

. Suppose we know all the values of g(i� 1, k), k = 0, . . . , b
l

when

we take the ith equivalence class, [x
i

], into account to calculate g(i, k). We have to

consider all [x
i

]’s actions and the g(i, k) will be computed from one of the following

n
i

+ 1 cases:

(0) g(i, k) = g(i� 1, k), if none of [x
i

]’s actions is taken;

(1) g(i, k) = g(i� 1, k � b
i1) + c

i1, if [xi

]’s first action is taken;
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Remove Redundancies to Improve A3WD Quality

• Motivations: 
• Increase benefit
• Decrease cost
• Transfer more objects
• Decrease computation time

(1) A decision table;  
(2) an objective concept;	
(3) movement patterns;	
(4) misclassification cost matrix;	
(5) cost functions.

Attribute reduction

A reduced decision table	
(a set of rules)

Attribute-value pair reduction

A set of  simplified rules

Rule reduction

A minimal set of simplified rules

Action reduction

A minimal set of actions

Search for solution

Solution

Figure 6.1: The acting procedure for actionable three-way decision making.

6.3 Attribute Reduction

An attribute reduct of a decision table is a minimal subset of A
s

[A
f

that keeps the

same performance as the whole condition attribute set. The Addition strategy for

attribute reduction constructs a reduct from an empty set and adds the attributes

to the set one at a time without ever deleting any attributes [23]. Other common

attribute reduction strategies, such as the Deletion strategy or the Addition-deletion

strategy requires a deletion phase. Since the Addition strategy allows the order of

the selection of attributes to be controlled by a heuristic selection function, it may
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The R4 Reductions
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Attribute Reduction in A3WD

• Redefine attribute reduct to remove irrelevant attributes 
without changing trisection.

to:

⌧ : OB �! T,

where U , F , and I indicate the unfavorable regions, favorable regions, and other

regions, respectively. For example, if x 2 OB is in an unfavorable region, i.e, x 2 S
U

,

then ⌧(x) = U . Then, we define a relative indiscernibility relation IND(A | ⌧) for a

subset of attributes A ✓ (A
s

[ A
f

) with respect to the mapping ⌧ :

IND(A | ⌧) = {(x, y) 2 OB ⇥OB | ⌧(x) 6= ⌧(y)}. (6.1)

Based on this definition, a relative attribute reduct is defined as follows.

Definition 6.1 An attribute set R ✓ (A
s

[ A
f

) from a decision table S is called

a relative attribute reduct of S with respect to the mapping ⌧ if R satisfies the

following two conditions:

(s1) IND(R | ⌧) = IND(A
s

[ A
f

| ⌧);

(n1) 8a 2 R, IND(R� {a} | ⌧) 6= IND(A
s

[ A
f

| ⌧).

Condition (s1), which is called the jointly su�cient condition, ensures that R has the

same trisecting power as the whole condition attribute set. Condition (n1), which

is called the individually necessary condition, ensures that every attribute in A is

necessary.

By adapting the idea of a discernibility matrix from rough sets research [91], we

construct a version of a discernibility matrix for the context of three-way decision

making:

Definition 6.2 Given a decision table S and a mapping ⌧ , the discernibility ma-

trix M = (m(x, y)) is an |OB| ⇥ |OB| matrix, in which the element m(x, y) for an

78
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Attribute-value Pair Reduction in A3WD

• Also called rule simplification.
• It simplifies the left-hand side of a classification rule by 

removing redundant attribute-value pairs without losing any 
classification power of the rule.

classification rule of row [o1] is:

r[o1] : chol = low ^ bp = normal ) diagnosis = +.

Consider each row of the decision matrix to be a discernibility matrix, and each

attribute-value pair in the row to be an attribute, all properties and theorems for the

discernibility matrix are also satisfied for each row of the decision matrix. We provide

the definition of a simplified rule in terms of the decision matrix as follows:

Definition 6.8 Given a row d([x], [y
i

]), i = 1, . . . , n of a decision matrix, let M =

{d([x], [y
i

])}, let AV =
S

i=1,...,n d([x], [yi]) be the set of all attribute-value pairs in this

row. R ✓ AV is an attribute-value pair reduct if it satisfies the following two

conditions:

(s3) 8d([x], [y
i

]) 2 M, R \ d([x], [y
i

]) 6= ;;

(n3) 8a 2 R, 9d([x], [z]) 2 M, (R� {a}) \ d([x], [z]) = ;.

The R in the above definition forms a simplified rule for each row of the decision

matrix. As with attribute reduction, the result of this form of attribute-value pair

reduction is not unique. A reduction method based on the algorithm schema of

Algorithm 5 can be applied to each row of the decision matrix for rule simplification

and the Algorithm 6 can be directly applied for attribute-value pair reduction. In this

case, the symbols in Algorithm 6 are replaced as follows: M is a row of the decision

matrix, CA is the set of all attribute-values pairs in the row, and Group
M

(a) is the

set of attribute-value pairs containing attribute-value pair a. Each row of a decision

matrix needs to perform the algorithm once to get an attribute-value pair reduction.

Similar to the attribute reduction, only the classification rules induced from fa-

vorable regions require simplification. We use Example 6.7 to demonstrate this pro-

cedure. If we simplify the rules in unfavorable regions, for example, the classification
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An Addition Strategy Reduction Schema
(1) A decision table;  
(2) an objective concept;	
(3) movement patterns;	
(4) misclassification cost matrix;	
(5) cost functions.

Attribute reduction

A reduced decision table	
(a set of rules)

Attribute-value pair reduction

A set of  simplified rules

Rule reduction

A minimal set of simplified rules

Action reduction

A minimal set of actions

Search for solution

Solution

Figure 6.1: The acting procedure for actionable three-way decision making.

6.3 Attribute Reduction

An attribute reduct of a decision table is a minimal subset of A
s

[A
f

that keeps the

same performance as the whole condition attribute set. The Addition strategy for

attribute reduction constructs a reduct from an empty set and adds the attributes

to the set one at a time without ever deleting any attributes [23]. Other common

attribute reduction strategies, such as the Deletion strategy or the Addition-deletion

strategy requires a deletion phase. Since the Addition strategy allows the order of

the selection of attributes to be controlled by a heuristic selection function, it may
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An Addition Strategy Reduction Schema (cont.)

• Advantages:
• Easier to understand.
• Adopts more heuristic information, can produce better reduct.
• More efficient than other methods when |AT| is large and |R| is 

small.
• Many algorithms can be designed based on it.

• An algorithm instance
• Proposed Algorithm 6, time complexity: O(|M|2|AT|).
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Rule Reduction in A3WD
• Rule reduct redefined as:

• The computation cost is very high, infeasible in practice.
• Special case: duplicated rule reduction

• Time complexity: O(n2), n is the number of rules.
• Algorithm is trivial and skipped in the thesis.

where M is a row of the decision matrix, b is an attribute-value pair, c(·) is as given

in Equation (6.10), and �
�

 0. A g with the smallest value of � will be chosen to

shrink M .

6.5 Rule Reduction

Rule reduction is used to remove redundant rules produced in rule simplifications. A

common approach, which is based on generality, is to search for a minimum subset of

rules that covers OB or all classifiable objects [30, 116]. For example, suppose there

are two rules: r1 : a = 1 ) d = + and r2 : b = 2 ) d = +. If m(a = 1) = {o1, o2}

and m(b = 2) = {o1, o2, o7}, i.e., the r2 is more general, then r1 can be removed.

In the context of actionable three-way decisions, cost is more important than

generality. A less general classification rule is not redundant if it promotes an action

with lower cost. Based on this idea, we provide a new definition of redundant rules

in Definition 6.9.

Definition 6.9 Given an equivalence class [x] ✓ S
F

, r[x] is a redundant rule if

for any desirable action r[yi]  r[x], [yi] ✓ S
U

, there exists a desirable action r[yi]  

r[z], [z] 6= [x], [z] ✓ S
F

, such that the benefit of r[yi]  r[z] is greater than or equal to

the benefit of r[yi]  r[x] and the cost of r[yi]  r[z] is less than or equal to the cost of

r[yi]  r[x].

According to the definition, any rule that may reduce the cost is not redundant.

Therefore, removing reduction rules will not a↵ect the benefit or cost of a solution.

Unfortunately, checking whether a rule is redundant requires the calculation of

all its actions with their costs. This may be infeasible in practice. A special case of

redundant rules is duplicate rules, which have both the same left hand side and right

hand side. Due to computational cost, we suggest only dealing with this special case
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Action Reduction in A3WD

• If an action a1 that transfers [x] has higher cost and less benefit than 
another action a2, then a1 is redundant:

• The Algorithm 7 is designed for action reduction
• Time complexity: O(|OB|3).

from S
U

to S
F

, but only one or none of them will be taken. Intuitively, actions with

low cost or high benefit are preferred, while actions with both relatively high cost

and low benefit may never been taken.

With respect to an equivalence class in S
U

, some of its actions are comparable and

redundant. For example, in Table 6.11, after the above three steps of reductions, [o5]

has two actions, i.e., r[o5]  r0[o1] and r[o5]  r0[o3]. Both have the same benefit, but

r[o5]  r0[o1] has a higher cost, which makes it redundant because it will never been

taken. However, if one action has both higher benefit and higher cost than another

action, then the two actions are incomparable. We provide a formal definition of a

redundant action in Definition 6.10.

Definition 6.10 Given an action r[x]  r[y] that transfers [x], its cost and benefit

are c and b, respectively. r[x]  r[y] is a redundant action if

9r[x]  r[yi], c � c
i

and b  b
i

, (6.14)

where c
i

and b
i

are the cost and benefit of r[x]  r[yi], respectively.

Algorithm 7 is designed for action reduction. The algorithm consists of three

nested loops that needs |SOURCE||A||R| comparisons, where 1  |R|  |A| 

|SOURCE|. In the worst case, |SOURCE| = |OB|, i.e., every equivalence class con-

tains one object. Therefore, the overall time complexity of the algorithm is O(|OB|3).

The e↵ect of action reduction is similar to rule reduction because it improves

computation time but does not improve the cost or benefit. Therefore, the search for

solutions of actionable models can be significantly accelerated. Let us continue using

the examples in above sections to demonstrate the idea of action reduction.

Example 6.9 Continuing from Example 6.8, we do action reduction for the DES

in Table 6.11. According to the definition of redundant action, actions r[o5]  r0[o1],
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Experimental Results
• Comparison between Algorithm 2 and random

magnitude of action cost during experiments. By using di↵erent values of scale, we are able to show the535

di↵erence between ceil and floor versions of Algorithm 3 and di↵erent computation times of Algorithm 3.

Table 13: Cost matrix for experiments.

POS BND NEG
X 2 3 6

XC 12 9 8

Based on this setting, the upper bounds B̄ = 711 and C̄ = 589 are easily found by Algorithm 1 when
scale = 1. Two experiments of Algorithm 2 are studied when scale = 1, one is to compare the performances
of our algorithm and random-action-select method, the other is to show the relation between cost and the
number of transferred objects. The experimental results are shown in Figure 7.540
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Figure 7: Results of two experiments of Algorithm 2.

In Figure 7(a), the solid line shows the maximum benefit obtained by Algorithm 2 under limited cost
and every dot shows the obtained benefit by randomly choosing actions under a limited cost. Obviously,
our algorithm has overwhelming outcomes. The algorithm reaches the maximum benefit 711 when cost is
589, while the random method requires almost twice the cost, about 1000 to obtain it. Figure 7(b) shows
the numbers of objects in three regions when we have di↵erent limited costs. In this figure, the black and545

blue lines indicate the numbers of objects in POS(X 0) and POS(X 0)[BND(X 0), respectively and the region
above the blue line in the figure is NEG(X 0). By increasing the cost, two lines climb high indicating that
objects are sequentially transferred from negative region and boundary region to positive region. When the
limited cost is about greater than 40, all objects in boundary region will be transferred into positive region.
That is, the two lines are combined as one. When the cost reaches the upper bound, three regions get to550

a stable status, no more object will be transferred. This is because the rest equivalence classes of objects
in negative region are non-actionable. In this status, the POS(X 0), BND(X 0), and NEG(X 0) regions have
282, 0, and 21 objects, respectively. Most objects in less favourable regions are transferred into favourable
region.

The third experiment shown in Figure 8(a) illustrates the di↵erence between floor and ceil operators on555

Algorithm 3. In this experiment, we use scale = 1.3527 for all cost functions of flexible attributes. The
number 1.3527 is randomly picked, it is one of many numbers that may scale action cost to a non-integer
value, such that the floor and ceil operators can produce di↵erent values. Obviously, for any desired benefit,
the cost produced by the floor version of Algorithm 3 is larger than that of ceil version and the di↵erence
between them gradually increases when the desired benefit increases. As shown in Figure 8(a), when the560

desired benefit is 600, the di↵erence of cost between two solutions is about 100. When scale = 1, the floor
and ceil operators have the same result, which means the two lines combine as one line.

The last experiment is to compare the computation times between Algorithm 3 and Algorithm 4. The
result is shown in Figure 8(b). In the figure, there are four red lines representing Algorithm 3 with di↵erent
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Experimental Results (cont.)
• Number of objects transferred under different cost

magnitude of action cost during experiments. By using di↵erent values of scale, we are able to show the535

di↵erence between ceil and floor versions of Algorithm 3 and di↵erent computation times of Algorithm 3.

Table 13: Cost matrix for experiments.

POS BND NEG
X 2 3 6

XC 12 9 8
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of our algorithm and random-action-select method, the other is to show the relation between cost and the
number of transferred objects. The experimental results are shown in Figure 7.540
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a stable status, no more object will be transferred. This is because the rest equivalence classes of objects
in negative region are non-actionable. In this status, the POS(X 0), BND(X 0), and NEG(X 0) regions have
282, 0, and 21 objects, respectively. Most objects in less favourable regions are transferred into favourable
region.

The third experiment shown in Figure 8(a) illustrates the di↵erence between floor and ceil operators on555

Algorithm 3. In this experiment, we use scale = 1.3527 for all cost functions of flexible attributes. The
number 1.3527 is randomly picked, it is one of many numbers that may scale action cost to a non-integer
value, such that the floor and ceil operators can produce di↵erent values. Obviously, for any desired benefit,
the cost produced by the floor version of Algorithm 3 is larger than that of ceil version and the di↵erence
between them gradually increases when the desired benefit increases. As shown in Figure 8(a), when the560

desired benefit is 600, the di↵erence of cost between two solutions is about 100. When scale = 1, the floor
and ceil operators have the same result, which means the two lines combine as one line.

The last experiment is to compare the computation times between Algorithm 3 and Algorithm 4. The
result is shown in Figure 8(b). In the figure, there are four red lines representing Algorithm 3 with di↵erent
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Experimental Results (cont.)
• Comparison before and after reductions (model (i) and (ii))

Table 7.2: Data sets information.
Data set Domain |OB| |A

s

[ A
f

| A
s

X Preprocessing

Hayes-Roth Social 160 4 {3} d = 1 The first attribute name is not used.

Heart Disease Life 303 13 {1, 2, 12} d = 0 Preprocessed according to [20].

Breast Cancer Life 699 9 {2, 3, 5} d = 2 The first attribute, i.e., Sample code number, is
not used. Missing attribute values are filled with
most frequent value of that attribute.

Acute Life 120 6 ; d1 =
no
and
d2 =
no

All attribute values of no and yes are replaced as
values 0 and 1, respectively. The first attribute
temperature are grouped as follows: 0-36.5, 36.6-
37.3, and 37.4+; they are reassigned to values 1 to
3.

CMC Life 1473 9 {1, 4, 5, 9} d = 1 Attribute age is categorized into 5 groups: 0-19,
20-39, 40-59, 60-79, and 80+, reassigned to values
1 to 5 respectively.

Haberman Life 306 6 {1, 3} d = 1 Attribute age and operation age are categorized
into 5 groups: 0-19, 20-39, 40-59, 60-79, and 80+;
they are reassigned to values 1 to 5 respectively.

Shuttle Physical 14500 9 ; d = 1 No preprocessing.

TAE Education 151 5 {1, 2} d = 3 Attribute class size is categorized into 4 groups:
0-15, 16-30, 31-45, and 46+, reassigned to values 1
to 4 respectively.

Car Business 1728 6 ; d =
vgood

For each condition attribute, its non-numerical val-
ues are replaced as integers starting from 1 accord-
ing to the appearance order in the data set de-
scription. Attribute values 5more and more are
replaced to value 5.

7.2.1 Evaluations of R4 on Model (I) and Model (II)

In the first experiment, we compare the results of model (i) and model (ii) before and

after R4 reductions. The results are shown in Table 7.3, where B̄0 and C̄ 0 represent the

upper bounds of benefit and cost, respectively computed before reductions, B̄ and C̄

are those computed after R4 reductions. Columns AVPs, Rules, RRules, Actions, and

RActions denote the average number of attribute-value pairs of rules induced from S
F

,

the number of rules in S
F

, the number of reduced rules, the number of actions, and

the number of reduced actions, respectively, and the last column examines whether

the upper bound of the benefit is increased or the upper bound of cost is decreased,

i.e., if B̄ > B̄0 or C̄ < C̄ 0, then the result is improved.

Table 7.3: Comparison before and after reductions on model (i) and model (ii).

Data set B̄

0
C̄

0
B̄ C̄ |R| AVPs Rules RRules Actions RActions Is improved

Hayes-Roth 525 154 525 137 3 3 12 0 49 131 Yes

Heart Disease 711 589 837 142 11 4.87 97 43 135 9876 Yes

Breast Cancer 138 374 1446 576 4 2.22 51 56 238 11900 Yes

Acute 540 241 540 109 2 2 1 0 11 0 Yes

CMC 5414 1988 5492 1178 9 4.16 245 154 541 36548 Yes

Haberman 142.02 42 178.13 49 3 2.05 35 2 12 1 Yes

Shuttle 18132 280545 18132 8152 4 1.92 686 4096 3022 2070070 Yes

TAE 608 494 608 165 5 2.38 23 3 60 600 Yes

Car 9978 6168 9978 6168 6 5.38 35 30 1663 56542 No
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Experimental Results (cont.)
• Comparison before and after reductions (model (iii) and (iv))
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(a) Results of model (iii).
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(c) Results of model (iv).

Figure 7.3: Experiments on actionable models (iii) and (iv) on the Heart Disease data
set.

can help to transfer more objects when there is a limit on cost. Additionally, because

some stable attributes are removed by reductions, all objects in unfavorable regions

in these two data sets can be transferred to favorable regions when cost is su�cient,

while without R4, some objects could not be transferred.

There is a general tendency for the number of transferred objects to increase as the

limited cost increases, but the tendency may not be monotonic. This di↵ers from the

tendency towards higher benefit, which is monotonic. We can confirm this property

by the solid line in Figure 7.3(b) when the value on x-axis fluctuates from 10 to 40.

We can explain this phenomenon by a simple example. Suppose we have two actions:

a1 with a cost of 10 and a benefit of 20, a2 with a cost of 5 and a benefit of 10. a1

and a2 can transfer 2 and 3 objects, respectively. When we have a limited cost of

8, we can only take a2 and transfer 3 objects. When the limited cost is increased to

10, we will take a2 instead of a1 due to a higher benefit, but only 2 objects can be
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Experimental Results (cont.)
• Comparison on computation time

(no action reduction), R3B uses attribute, attribute-value pair, and action reductions

(no rule reduction), and R4 uses all four reductions. The Figure 7.5(b) displays

the maximum benefit with a cost limit of 1000 and the Figure 7.5(c) displays the

minimum cost for the desired benefit of 5000. As shown in Figures 7.5(b) and 7.5(c),

the evaluations of model (iii) with di↵erent limited costs and model (iv) for di↵erent

desired benefits are similar.
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(a) Results on model (i) and model (ii).
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(b) Results on model (iii).
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(c) Results on model (iv).

Figure 7.5: Time spent on four actionable models on di↵erent sizes of the Shuttle
data set.

In Figure 7.5, we can see that the R4 requires the least computation time for

each actionable model. In the computation of model (i) and model (ii), R2 and R3B

require more time than R0 when the size of data set is larger than about 10000. In

the computation of model (iii) and model (iv), any experiment with reductions is

faster than R0. An interesting finding is that the R3A only requires a little more

computation time than R4, because rule reduction removes many classification rules,

which significantly reduces the time required to construct actions. This experiment
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Experimental Results (cont.)
• Comparison on different reduction methods

Table 7.4: Comparison between di↵erent methods on model (i) and model (ii).

# Method Hayes-Roth Heart Disease Breast Cancer Acute CMC Haberman Shuttle TAE Car

1 AA 525, 137 837, 142 1446, 576 540, 109 5492, 1178 178.13, 49 18132, 8152 608, 165 9978, 6168

2 AAd 525, 137 837, 154 1446, 742 540, 109 5492, 1196 171.02, 48 18132, 9719 608, 179 9978, 6168

3 AD 525, 137 837, 178 1446, 868 540, 109 5492, 1416 142.02, 42 18132, 10970 608, 217 9978, 6168

4 AdA 525, 137 837, 142 1446, 576 540, 109 5492, 1178 178.13, 49 18132, 11055 608, 165 9978, 6168

5 AdAd 525, 137 837, 154 1446, 742 540, 109 5492, 1196 171.02, 48 18132, 12059 608, 179 9978, 6168

6 AdD 525, 137 837, 178 1446, 868 540, 109 5492, 1416 142.02, 42 18132, 12271 608, 217 9978, 6168

7 DA 525, 137 837, 142 1446, 576 540, 109 5492, 1178 178.13, 49 18132, 11055 608, 165 9978, 6168

8 DAd 525, 137 837, 154 1446, 742 540, 109 5492, 1196 171.02, 48 18132, 12059 608, 179 9978, 6168

9 DD 525, 137 837, 178 1446, 868 540, 109 5492, 1416 142.02, 42 18132, 12271 608, 217 9978, 6168

10 LEM2 525, 137 837, 162 1446, 815 540, 139 5492, 1318 141.77, 43 18132, 21442 608, 403 9978, 6168
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Conclusions

• An A3WD framework
• Two statistical interpretations
• One χ2 based method for determining thresholds
• Four actionable models
• Four actionable rule mining algorithms

• A four-step reductions framework (R4)
• An Addition strategy algorithm schema
• A specific algorithm for attribute reduction and rule simplification
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Future Research Topics

• Correlation between actions and between sub-actions.
• Adapting decision tree for generating more general 

classification rules, hence more general action.
• Handling continuous attribute values for actionable rules.
• Adapting the A3WD to a sequential and dynamic scenario.
• Adapting the R4 framework to multi-objective problems.
• Applying utility theory to the actionable models (working).
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