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Abstract. This paper analyzes images’ Lie group covariance features, based on the main
idea of [8], we propose LLDA (Lie group Linear Discriminant Analysis) algorithm for image
classification. The main idea of this algorithm is to apply LDA to images’ covariances,
which forms a Lie group manifold, and compute a one-parameter sub group determined
by a Lie algebra element and the intrinsic mean of image features. This one-parameter
sub group is a geodesic on the Lie group formed by original image set. By defining the
projection in Lie group, this geodesic can be calculated by the idea of LDA. Experimental
results on handwritten classification show that LLDA has significantly better classification
performance than some classic methods such as LDA (linear discriminant analysis).
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1 Introduction

Pattern recognition is one of the most important applications in image processing [4]. Image
features are extracted to compute similarity or dissimilarity among images. Most kinds of features
are in vector form. Therefore, based on vector geometry, it is easy to derive metrics such as
the Euclidean distance [5], Mahalanobis distance [10], Chebyshev distance [3], or Manhattan
distance [9]. Further, algorithms (e.g., K-nn) based on these distances will be adopted to do
recognition. However, some image features are not in vector form, they are even not distributed
in euclidean space, this means we cannot use common metrics to compute the similarity between
images.

Image’s covariance feature [15] is one of image features that is in matrix form. It has many
advantages such as easy to extract from images and with very few dimensions. Therefore, it is
widely used in pattern recognition [15], object tracing [12], and object detection [6]. However, the
space formed by this feature is not a euclidean space, even not linear space. Thus, the distance
between covariance matrices cannot be directly calculated by metrics derived in euclidean space.
Actually, the covariance features form a symmetric semi-positive matrix group [1], which is a
manifold space, more general than euclidean space and similarity formula between images has to
be derived in manifold.

By adding an operator to covariance matrices, this symmetric semi-positive matrix group
further constructs a Lie group [1]. Lie group is a special group since it is not only an algebraic
group but also a differential manifold. Therefore, it has differential geometric structure, and we
can also use algebriac method to manipulate it.
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The purpose of this paper is to make an analysis of covariance features and to propose an
pattern recognition algorithm. We first briefly review covariance image features and Lie group
theory, and based on the analysis of these fundamentals, then an algorithm called LLDA is
derived based on the principle of LDA. The rest content is organized as follows: Section 2 reviews
covariance features and Lie group theory. Section 3 introduces LLDA, the algorithm based on
LDA. Section 4 provides some experimental results of LLDA and some comparison with other
common algorithms are also given. Section 5 is conclusion.

2 Covariance Feature and Its Lie Group Space

In this section, an introduction of covariance feature is given and an analysis of some operations
in its formed Lie group manifold space are shown.

2.1 The Covariance Feature

A digital image with resolution M ×N , is a set of values I(u, v), in which u = 0, · · · , N − 1 and
v = 0, · · · ,M − 1 are coordinates, I(u, v) is the intensity at the coordinate row u and column v.
Some operations on image can be derived, such as first derivative images and second derivative
images. Covariance feature of image proposed by Tuzel et. al. is a statistics on a set of these
values. By given a set of vectors {φ(u, v)}u=0,··· ,M−1;v=0,··· ,N−1, the covariance matrix can be
calculated by:

CR =
1

M ∗N − 1

M−1∑
u=0

N−1∑
v=0

(φ(u, v)− µ)(φ(u, v)− µ)T , (1)

where µ is the mean of {φ(u, v)}u=0,··· ,M−1;v=0,··· ,N−1.

2.2 Distance and Mean of Covariance Feature

By extracting covariance feature, each image can be represented as a covariance matrix. Therefore,
pattern recognition can be done among covariance matrices with some operations.

First, any covariance matrix is a symmetric positive-semidefinite matrix and all covariance
matrices with the same dimension of k form a symmetric positive-semidefinite matrix group
Sym+(k) [2]. Pennec et. al. [11] provide a detail theoretic analysis of this group. Further, Arsigny
et. al. [1] proved that Sym+(k) will be a Lie group G = (Sym+(k),�,−1 ) by adding an operator
� as group multiplication operation defined in Equation (2) to this group:

∀z1, z2 ∈ Sym+(k), z1 � z2 = exp(log(z1) + log(z2)), (2)

where log(·) and exp(·) are matrix logarithm and exponential.
Based on Arsigny et. al.’s research [1], distance between any two covariance matrix z1 and z2

can be computed by d(z1, z2):

d(z1, z2) =‖ log(z−11 � z2) ‖F
=‖ log(z1)− log(z2) ‖F , (3)
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where ‖ · ‖F is Frobenius norm. The intrinsic mean of a set of covariance matrices can be
computed by:

µ = exp
( 1

n

n∑
i=1

log(zi)
)
. (4)

3 Lie Group Linear Discriminant Analysis for Pattern Recognition

Based on distance and mean in Lie group, we can adopt apply the main idea of LDA [7] to find
a geodesic in Lie group for classification.

3.1 Projection in Covariance Lie Group

The Fisher projection [7] tries to project a set of points to another space with less dimensions.
In the new space, the inter-class variance is minimized together with the intra-class variance is
maximized.

Because the space formed by covariance matrices is a Lie group manifold, which is not a linear
space, thus, we try to find a geodesic on this manifold to classify different categories of images
via their covariance features.

According to the Lie algebra g associated with Lie group G, in which g is the tangent space
on the identity element E ∈ G and by given a direction on this tangent space, i.e., v ∈ g, we
can generate a geodesic on G by going through this direction. In other words, a geodesic Hv is a
one-parameter subgroup of Lie group G via a one-parameter exponential mapping, R→ G:

Hv , {exp(tv) ∈ G, t ∈ R}, (5)

such that any point on this geodesic can be determined by a specific value t. To generalize the
concept of projection to manifold, we can find the projection of a point z ∈ G on the geodesic
Hv by calculating the t∗, which satisfies the following condition:

t∗ = arg min
t∈R

d(z, exp(tv)). (6)

Then, exp(t∗v) is the projection of z on Hv. The geometrical meaning is that z’s projection on
Hv is a point on this geodesic and the distance between z and its projection is the shortest.

According to the projection defined in Equation (6), a set of points {zi}i=1,··· ,n in Lie group
can be projected onto a geodesic and therefore transformed to a corresponding set of projections
{z̃i}i=1,··· ,n. However, we do not have to calculate the real value t for each instance in Lie group
since Lie algebra is a linear vector space, the projection of a given z ∈ G on direction v (||v||F = 1)
in Lie algebra can be computed by vT log(z), therefore the projection in G can be obtained by:

z̃ = exp(vT log(z)). (7)

Equation (7) eliminates the parameter t and is easier to compute the corresponding projection
point.
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3.2 Lie Group Linear Discriminant Analysis

As matrix Lie group, the inverse operation is the matrix inverse operation, i.e., the inverse of
an element in the group is its inverse matrix. This inverse operation can be used to remove one
element’s component from another element. In other words, if we want to get the difference of
two Lie group elements z1, z2 ∈ G, compute z−11 �z2, i.e., a matrix inverse operation and a matrix
multiplication operation. This is done by left translation Lz−1

1
(z2) = z−11 � z2. Therefore, Sb and

Sw in LDA can be computed from:

Sb =

c∑
i=1

ni log(µ−1 � µi) log(µ−1 � µi)
T

=

c∑
i=1

ni(log(µ−1) + log(µi))(log(µ−1) + log(µi))
T , (8)

Sw =

c∑
i=1

ni∑
j=1

log(µ−1i � zij) log(µ−1i � zij)
T

=

c∑
i=1

ni∑
j=1

(log(µ−1i ) + log(zij))(log(µ−1i ) + log(zij))
T . (9)

Therefore, the objective function turns to:

J(v) =
vT
∑c

i=1 nilog(µ−1 � µi)log(µ−1 � µi)
T v

vT
∑c

i=1

∑ni

j=1 log(µ−1i � zij)log(µ−1i � zij)T v
. (10)

According to LDA, v can be obtained by solving Sbv = λSwv, which is an eigenvalue decompo-
sition problem. When c = 2, the projective direction v can be obtained by:

v = S−1w log(µ−11 � µ2)

=

( 2∑
i=1

ni∑
j=1

log(µ−1i � zij)log(µ−1i � zij)
T

)−1
log(µ−11 � µ2)

=

( 2∑
i=1

ni∑
j=1

(log(zij)− log(µi))(log(zij)− log(µi))
T

)
· (log(µ2)− log(µ1)). (11)

Consequently, the Lie group Linear Discriminant Analysis algorithm can be easily devised in
Algorithm 1. The time complexity of Algorithm 1 is O(n).

3.3 Pattern Recognition based on LLDA

After projecting all instances on to a geodesic, instances belonging to different classes are easy
to classify. Given an unlabelled instance, we can first project it onto the geodesic found in Al-
gorithm 1, then compare the distances between this projection and each projection of classes’
means on this geodesic, the class label will be assigned to the label owned by the shortest mean
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Algorithm 1: The Lie group Linear Discriminant Analysis (LLDA) algorithm

input : A set of covariance feature of images {zij}i=1,··· ,c;j=1,··· ,ni , where zij is jth covariance
feature in ith class and there are c classes in total.

output: The projective direction v of geodesic Hv.

(1) Compute the the mean µ of whole set and means µi for each class, i = 1, · · · , c by
Equation (4);

(2) Compute the Sb and Sw by Equation (8) and (9);
(3) Obtain v by solving equation Sbv = λSwv or Equation (11);
(4) Return v.

to the instance’s projection. Formally, the class label can be computed by following equation:

i∗ = arg min
i=1,··· ,c

d(z̃, µ̃i)

= arg min
i=1,··· ,c

‖ vT (log(z)− log(µi)) ‖F . (12)

Intuitively, this equation tells us that we can first compute the vector from point µi to z, then
project this vector on geodesic Hv, finally compute the length of this vector.

4 Experimental Results

In this section, we show some experimental results of LLDA on MNIST handwritten data set [16].
The MNIST data set collects images of digital number from 0 to 9, each image has resolution of
28 × 28 and 256 grey levels. In the following experiments, we use following vectors to compute
the covariance feature for each image:

φ1(u, v) = (u, v, I(u, v), |∂I(u, v)/∂u|, |∂I(u, v)/∂v|) (13)

φ2(u, v) = (φ1(u, v), (|∂I(u, v)/∂u|2 + |∂I(u, v)/∂v|2)1/2) (14)

φ3(u, v) = (φ1(u, v), |∂2I(u, v)/∂u2|2, |∂2I(u, v)/∂v2|2) (15)

φ4(u, v) = (φ3(u, v), tan−1
(
|(∂I(u, v)/∂v)/(∂I(u, v)/∂u)|

)
) (16)

The first experiment is to distinguish numbers 3 and 5. To train the LLDA, it randomly
chooses 100 images from training set for number 3 and 5, respectively. To test the algorithm, it
randomly chooses 200 images from testing set for both classes. The experiment is run for 10 times
and the results are shown in Fig. 1, where algorithm LieMean assigns the class label whose mean
is closest to the testing instance and algorithm LDA is the classic linear discriminant analysis
method with the same classification criteria and linear operations (e.g., extrinsic mean) without
Lie group operations.

The second experiment is to distinguish numbers 1 and 9 and the same setting as previous is
used. The results are shown in Fig. 2, it is obvious that LLDA has the best performance in all cases
(with k = 5 to 8) and the performance has a slight growth when k increases. In distinguishing
1 and 9, LLDA has nearly 99% recognition rate. The LieMean is not stable in two experiments
due to the distribution of covariance feature in the manifold, while LDA is stabler than LieMean.
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Fig. 1. (a) - (d) are recognitions between handwritten numbers 3 and 5, k = 5 to 8 correspond to
Equation (13) to (16), respectively.

Experiments also show that although the covariance features are in Lie group, the formed space
is much linear due to LDA also has a good performance.

As for the computation time, LLDA has O(n) complexity as analyzed above and each iteration
in the experiment is finished within one second on an equipment of Intel i5 CPU with 2 cores at
2.4GHz, 8GB RAM, Mac OS X 10.9 and Matlab 2013a.

5 Conclusion

Pattern recognition algorithms play an important role in image processing. When the original
image set consists of different resolutions or in the real-time scenario, covariance feature will be
a good choice.

An important criterion in designing algorithm is to make the operation reasonable to the space
formed by the data. Based on the Lie group manifold space formed by covariance feature, we
derived LLDA according to the basic idea of linear discriminant analysis. Through experiments
on handwritten classification, results show that LLDA has obvious best performance among the
algorithms.

As future work, we will examine the performance of LLDA on multi-class recognition. Based
on the Lie group operation of covariance feature, other algorithm such as clustering may be
derived. Additionally, the motion data in computer vision such as affinity transforms are also Lie
group [14], the proposed method LLDA may be adopted in those applications.
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Fig. 2. (a) - (d) are recognitions between handwritten numbers 1 and 9, k = 5 to 8 are corresponding to
Equation (13) to (16), respectively.
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