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ABSTRACT

In this thesis, we analyze both the trisecting and acting aspects of three-way decisions.

In an evaluation based model of three-way decisions, there are two steps: trisecting

and acting. The trisecting step constructs three regions based on an evaluation func-

tion and a pair of thresholds. The acting step adopts proper strategies to deal with

objects in these regions.

For the trisecting step, this thesis examines statistical interpretations for the con-

struction of three regions. The interpretations rely on an understanding that the

middle region consists of normal or typical instances in a population, while two side

regions consist of, abnormal or atypical instances. By using statistical information

such as median, mean, percentiles, and standard deviation, two interpretations are

discussed. One is based on non-numeric values and the other is based on numeric

values. For non-numeric values, median and percentiles are used to construct three

pair-wise disjoint regions. For numeric values, mean and standard deviation are used.

The interpretations provide a solid statistical basis of three-way decisions for appli-

cations.

This thesis analyzes a chi-square statistic as a measure for searching for the optimal

pair of thresholds for trisecting. An optimization based method for determining the

pair of thresholds is to minimize or maximize an objective function that quantifies

the quality, cost, or benefit of a trisection. We use the chi-square statistic to interpret

and establish an objective function in the context of classification. The maximization
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of the chi-square statistic searches for a strong correlation between the trisection and

the classification.

For the acting step, this thesis introduces actionable strategies to three-way de-

cision. We present a general framework of actionable three-way decisions with four

change-based actionable models according to action benefit and action cost. Two of

the four models provide the bounds of the cost and benefit and the other two models

quantify the maximum benefit under limited cost and the minimum cost for a desired

benefit, respectively. We design and analyze algorithms for these models.

To reduce action cost and increase benefit, we introduce the R4 reduction frame-

work for actionable three-way decision. The framework consists of reductions of

attributes, attribute-value pairs, classification rules, and actions for creating more

benefit and reducing cost. The first three types of reductions are redefined for the

context of three-way decisions and the action reduction is proposed. Attribute reduc-

tion removes some attributes from all classification rules to reduce the action cost.

Attribute-value pair reduction shortens the left hand side of a rule to reduce the ac-

tion cost without sacrificing any classification power or action benefit. Rule reduction

and action reduction remove redundant classification rules and actions, respectively,

to reduce computational cost. The Addition strategy for reduction is adapted and

its correctness is proven. Based on this strategy, an algorithm for attribute and

attribute-value pair reductions is designed.

Finally, we report experimental results to support the proposed four actionable

three-way decision models and the R4 reduction framework.
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Chapter 1

INTRODUCTION

The purpose of this chapter is to provide the background and overall picture of the

present study of three-way decisions. We give our motivations with a brief intro-

duction of related works. We also highlight our contributions and provide the thesis

structure.

1.1 State of the Art of Three-way Decisions

The concept of three-way decisions was first introduced by Yao [116] in 2009. The

basic idea of three-way decisions is to divide a whole into three parts and pro-

cess the three parts. This idea is commonly used in human problem solving [21,

109, 115, 117]. In recent years, the interest in both the theory and application

of three-way decisions has rapidly increased. For example, there are multiple ar-

eas of study which can be categorized as: three-way decisions space [33, 34], three-

way classifications [14, 53, 141], three-way clustering [131, 130, 132, 134], three-way

concept analysis [35, 48, 72, 76, 77, 91, 110], three-way decisions with game the-

ory [1, 3, 5, 106], three-way recommender systems [2, 136, 137], three-way decision

support systems [13, 105], three-way approximations of fuzzy sets [120], three-way ap-

proximations of many-valued logic [86], three-way email spam filtering [40, 144], three-
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way government decisions [54], three-way financial decisions [6], sequential three-way

decisions [31, 45, 46, 103, 109], dynamic three-way decisions [104, 139], and many oth-

ers [29, 38, 39, 47, 49, 50, 55, 84, 114, 133, 143]. These results open up new avenues

of research on three-way decisions.

The theory of three-way decisions was originally introduced to interpret three

types of rules, known as acceptance, rejection, and non-commitment rules, in the

rough set theory proposed by Pawlak [65]. Rough sets use a pair of sets, called

lower and upper approximations of a set that represents a class or concept X. The

lower approximation is the largest set whose objects belong to X, and the upper

approximation is the smallest set that contains the objects of X. When the data is

consistent, the two approximations are the same and equal to X. When the data is

inconsistent, i.e., some objects have the same attribute values but belong to different

classes, then the two approximations are different, and the difference between the

two approximation sets is called the boundary of the class X. Based on the pair of

approximations, three regions POS(X), NEG(X), and BND(X), called the positive,

negative, and boundary regions, can be constructed to approximate X. The POS(X),

NEG(X), and BND(X) consist of objects that belong to X, do not belong to X, and

are difficult to classify, respectively. The classic Pawlak rough sets do not tolerate

any impurity in positive and negative regions. This makes the boundary region big

and we can only make decisions for objects in POS(X) and NEG(X). To relax this

constraint, some initial ideas of the probabilistic rough sets [67] were introduced.

They generalized the Pawlak rough sets by allowing impurities existing to exit in the

positive and negative regions.

A full and comprehensive, as well as semantically sound, probabilistic rough set

model was developed under the name of decision-theoretic rough sets [122] (DTRS),

which controls the level of impurity in the three regions by a pair of thresholds (α, β).

DTRS introduces the Bayesian Decision Theory to rough sets to compute the pair of
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thresholds in order to make the decisions with minimal risk or minimal cost. After

the introduction of the DTRS model, many other instances of probabilistic rough sets

were proposed for obtaining the optimal three regions based on the computation of

the pair of thresholds. These approaches adopted different measures from machine

learning and data mining to quantify the three regions. For example, the information-

theoretic rough sets (ITRS) [15] use information gain as a measure, the Gini index

rough sets (GIRS) [141] use Gini index. Other measures such as the chi-square statis-

tic [24], and divergence [4] were also adapted for computing the three regions. The

game-theoretic rough sets (GTRS) [106] was introduced to balance two measures such

as accuracy and coverage. Other examples of rough sets are confirmation-theoretic

rough sets (CTRS) [27], Naive Bayesian rough sets (NBRS) [128], variable precision

rough set (VPRS) [145], and Bayesian rough set (BRS) [93]. These approaches gen-

eralized rough sets in view of three-way decisions. The idea of three-way decisions

can also be applied to other models, such as the shadowed set [68] and the three-way

approximations of fuzzy sets [120].

Most of the set-based three-way decision models focus on how to obtain three

regions, and do not pay enough attention to dealing with objects in the three re-

gions. DTRS can generate decision rules based on the three regions for processing

the objects:

(P) If P (X|[x]) ≥ α, then decide POS(X);

(N) If β < P (X|[x]) < α, then decide NEG(X);

(B) If P (X|[x]) ≤ β, then decide BND(X),

where the P (X|[x]) is the conditional probability that an object is in X given that the

object is in [x], i.e., equivalence class of x. However, these decision rules only process

objects in the corresponding regions, DTRS does not provide a general framework for

processing.
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The trisecting-and-acting model [114, 117] for three-way decisions is a general

framework for three-way decision. This model has two steps, i.e., trisecting and

acting. The trisecting step divides a universal set of objects into three pair-wise

disjoint regions and the acting step adopts strategies and actions to deal with objects

in different regions. Such an idea of dividing and processing is widely used in many

applications [6, 9, 26, 36, 45, 52, 63, 70, 72, 80, 82, 88, 91, 134, 138, 136]. For the

trisecting step, some statistical interpretations and threshold determination methods

were proposed. For example, Yao and Gao [119] interpreted the trisecting of numeric

values and non-numeric values by mean, standard deviation, median, and percentile,

Azam and Yao [4] used mean and variance to measure a divergence for three regions,

and Gao and Yao [24] explained the chi-square statistic as a measure of correlation

between three regions and a pair of thresholds. Under the framework of this trisecting-

and-acting model, the aforementioned publications focused mainly on the trisecting

step and there are a few studies for the acting step. Gao and Yao [22] introduced

the concept of change-based acting that is able to construct actionable rules from

three regions to promote object movement between regions for benefit. Based on

the concept of change-based acting, a general actionable three-way decision (A3WD)

framework [22] is formed.

We use Figure 1.1 to give a categorization of these different three-way decision

models under the trisecting-and-acting model, where the major contributions of this

thesis are highlighted in bold font. As we can see, most of the studies are under the

branch of trisecting. The majority of the trisecting methods are set-based, including

the rough sets, fuzzy sets, shadowed sets, interval sets, and orthopairs. Under the

statistical interpretations for three-way decisions, two statistics based interpretations

and two statistics based methods were proposed. The majority of the trisecting

methods were focused on determining a pair of thresholds to create the optimal three

regions. Under the acting branch, the concept of change-based acting was newly
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Monday, August 20, 18

Figure 1.1: A categorization of three-way decision models.

introduced in 2017. Under this change-based acting, the A3WD framework provides

the detailed actionable models and algorithms. In the following sections we give our

motivations. The details of our contributions are given in following chapters: the two

statistical interpretations and the chi-square statistic method for determining the pair

of thresholds are introduced in Chapter 4, the change-based acting framework and

A3WD models are introduced in Chapter 3, the A3WD algorithms are provided in

Chapters 5 and 6.

1.2 Motivations and Related Works

In this section, we give the motivations and objectives of the thesis. Specifically, the

motivations are the needs for and the potential values of the statistical interpretations

of three-way decisions and actionable three-way decision making.
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1.2.1 Trisecting in Three-way Decisions

The basic idea of three-way decisions may be explained in terms of the division and

processing of a universal set of objects by using three regions [123]. A two-step

trisecting-and-acting model has been proposed [114]. In the first step, one divides

the universe into three pair-wise disjoint regions, that is, a trisection of the universe.

In the second step, one designs the most effective strategies to process these three

regions. The idea of dividing and processing the universe using three regions has been

widely used in many fields, such as medicine [36, 63, 82], business [6], engineering and

science [26, 144]. Examples of the three-way decision model include rough sets [65],

interval sets [111], shadowed sets [69], three-way approximation of fuzzy sets [16],

three-way classification [144], three-way clustering [132], orthopairs [11], and many

more [14, 45, 54, 56, 70, 80, 134, 136, 138]. By integrating the results from these

fields and exemplar models, a theory of three-way decisions has been proposed to

study domain independent ways for fast and effective decision making and information

processing [107].

Motivation and Objective 1: To Statistically Interpret Trisecting

Typically, a trisection of a universe is based on an evaluation function and a pair of

thresholds. The evaluation function assigns each object in the universe an evaluation

status value (ESV). The three regions are constructed by collecting, respectively, the

set of objects whose ESVs are equal or greater than one threshold, the set of objects

whose ESVs are equal or less than another threshold, and the set of objects whose

ESVs are between the two thresholds. Therefore, the interpretation and determi-

nation of an evaluation function and a pair of thresholds is a fundamental issue for

three-way decisions.

A variety of methods have been proposed to interpret and determine a pair of

thresholds for trisecting. By generalizing Pawlak rough sets [65], Yao et al. [122]
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proposed a decision-theoretic rough set (DTRS) model by using probability as an

evaluation function and a pair of thresholds on probability to derive three regions

known as the probabilistic positive, negative and boundary regions. The pair of

thresholds is determined and interpreted by Bayesian decision theory. Yao and Her-

bert [106] proposed a game-theoretic rough set (GTRS) model, in which the pair of

thresholds is determined by designing a game. Deng and Yao [15] and Zhang [140]

investigated information entropy and the Gini index in rough sets, respectively, and

the pair of thresholds is determined by maximizing the information gain or purity

of the three regions. These probabilistic models of rough sets can be considered as

specific examples of three-way decisions.

Some studies exploring statistical information and methods have bridged the gap

between statistics and three-way decisions. For example, the sequential hypothesis

testing framework introduced by Wald [96] influenced three-way decisions. If a test

strongly supports a hypothesis, one accepts the hypothesis; if the test is strongly

against the hypothesis, one rejects the hypothesis; otherwise, one performs further

tests. Based on these further tests, the original hypothesis will be accepted or rejected.

Due to the sequential nature of Wald’s method, one can either accept or reject some

hypotheses without the need for further testing. This sequential processing has the

benefits of efficiency and effectiveness. Yao [109] adopted this idea to sequential three-

way decisions and granular computing [69, 112]. Azam and Yao [4] used the variance

and the mean to interpret the quality of a trisection, and therefore to find an optimal

pair of thresholds that has best quality of three regions. These studies combining

statistics and three-way decisions have provided a solid research foundation.

The first motivation of this thesis is that we further examine a general statistical

interpretation of three-way decisions. We use statistical notions, such as mean, me-

dian, standard deviation, central tendency and dispersion, to interpret and determine

the pair of thresholds for trisecting. Objects around the mean form one region, and
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regions on either side of mean form the other two regions. In particular, when V is

a set of non-numeric values, some statistics such as median and mode, together with

measures such as percentile and quartile can be used to trisect the OB. When V is a

set of numeric values, some statistics such as mean, standard deviation, and moment

can be used to trisect the OB. In other words, we search for statistical interpretations

of three-way decisions that enable us to examine the structures of the data and to

make inferences about that data.

Motivation and Objective 2: To Find the Optimal Pair of Thresholds for

Trisecting

The problem of finding the optimal pair of thresholds that produces the optimal

trisection is one of the central problem in three-way decisions. The evaluation-based

three-way decision model [119] uses an evaluation function e(·) to map all objects

into a totally ordered set (V,�), and according to a pair of thresholds (α, β) ∈ V×V

with α � β (i.e., α � β and ¬(β � α)), a universal set of objects can be divided into

three regions: a region consists of objects whose values are at or above one threshold,

a region of objects whose values are at or below the other threshold, and a region of

objects whose values are between the two thresholds. To determine the optimal pair

of thresholds, one method is to construct a meaningful objective function measuring

the quality of trisections; the required pair of thresholds maximizes or minimizes the

objective function. Examples of qualitative measures of a trisection are cost [121],

Gini index [140], and information entropy [16].

The optimal trisection obtained by a pair of thresholds can be considered as

the best approximation of a classification [24, 114]. Consider a classification prob-

lem in which all objects in OB are classified into one of two categories {X,XC},

where X is a set of objects belonging to the given class and XC is the set of ob-

jects not belonging to the given class. A fundamental task is to construct rules or a
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description function to achieve such a classification. Two-way classification models

are typically used for such a task. However, these models may not produce desirable

results with acceptable classification errors. In three-way classification [114], a tri-

section π(α,β)(X) = (POS(α,β)(X),BND(α,β)(X),NEG(α,β)(X)) as an approximation of

{X,XC} is obtained by a pair of thresholds (α, β) on an evaluation function. Different

choices of thresholds lead to different three-way approximations. A good approxima-

tion shows a strong association or correlation between π(α,β)(X) and {X,XC}. In

other words, π(α,β)(X) and {X,XC} are correlated or dependent. The chi-square

statistic is a measure of correlation and can be used as an objective function for mea-

suring the goodness of a trisection [24]. The maximization of the chi-square statistic

suggests the strongest correlation between a trisection and {X,XC}. Therefore, the

optimal pair of thresholds can be determined by maximizing the chi-square statistic.

1.2.2 Acting in Three-way Decisions

In a set-theoretical setting, three-way decisions can be formulated as a two-step pro-

cess within a trisecting-and-acting model [117]. The trisecting step divides a universal

set of objects into three pair-wise disjoint regions. The acting step adopts strategies

to process objects in the three regions. We use elections as an example to illustrate

the main ideas of the trisecting-and-acting model of three-way decisions. Based on an

opinion poll, one typically divides a set of voters into three groups: voters who sup-

port the candidate, voters who oppose the candidate, and voters who are undecided

or unwilling disclose their decisions. According to the poll results, the candidate may

act to retain the group of supporters, to persuade the undecided voters, and to gain

support from voters who oppose him / her.
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Motivation and Objective 3: To Model an Actionable Three-way Decision

Framework

Existing studies on three-way decisions focus mainly on the trisecting step [4, 15, 16,

24, 106, 141]. There is relatively little investigation into the acting step for devising

actionable strategies. In this thesis, we combine ideas from actionable rule mining and

three-way decisions to build a model of actionable strategies in three-way decisions.

Drawing from the election example, we look at a framework in which actionable

strategies facilitate the movement of voters from unfavorable regions to favorable

regions. We represent and interpret actionable strategies in terms of the notation of

actionable rules and action rules in machine learning and data mining [74, 75, 89, 90,

98, 102].

Silberschatz and Tuzhilin [89] introduced the concept of actionability that a user

can react to realize his or her advantage. Ras and Wieczorkowska [75] adopted action

rules to mine profitable patterns for banks. Yang et al. [102] introduced a postprocess-

ing decision tree method to find beneficial actions. Su et al. [94] searched actionable

behavioral rules with a high utility. Many studies on actionable rules cover topics in

data mining and machine learning, such as association rule mining [51, 87], classfica-

tion [18, 74, 75, 101, 102], clustering [41, 62, 135], and outlier detection [10, 44]. To

calculate action cost or measure the actionability of rules, attributes are categorized

into two types [74, 75, 102]: attributes whose values are changeable or unchange-

able, which we call flexible or stable attributes, respectively. Rules constructed from

flexible attributes are actionable and those constructed from stable attributes are

non-actionable. Issues of actionable rules such as comparative study are discussed in

literature [43]. In the context of three-way decisions, we adopt actionable rules for

moving objects from unfavorable regions to favorable regions to produce benefit or

create value.

Based on the analysis of benefits and costs of actionable rules, an actionable
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three-way decision framework is required for different situations in practice. For

example, a company may require an advertising solution for a product which obtains

the maximum profit with a limited budget, or a candidate in an election demands an

actionable solution (e.g., issue some polices) with the lowest cost to win an election.

These problems are common constraint optimization problems which exist in many

areas of our daily lives. With an actionable three-way decision framework, we can

design four actionable models to deal with each type of problem. The first two models

find the upper bounds of benefit and cost, the third model finds the maximum benefit

under limited cost, and the last model finds the minimum cost for obtaining a desired

benefit.

Motivation and Objective 4: To Decrease Cost and Increase Benefit for

Actionable Three-way Decision Models

There are redundant attributes, attribute-value pairs, rules, and actions when build-

ing the actionable three-way decision framework. We can decrease the action cost,

increase benefit, and speed up the computation of the four actionable models by

removing these redundancies. In the actionable three-way decision framework, the

cost of action is strongly related to the number of attributes whose values need to be

changed in order to transfer objects. If some redundant attributes can be removed,

the cost may decrease or the benefit may increase. Furthermore, the computation

time of the four actionable models depends on the size of solution space, the fewer

the number of classification rules and actions, the faster the computation.

In this thesis, the proposed R4 reduction framework removes the redundant at-

tributes, attribute-value pairs, rules, and actions. On the one hand, removing redun-

dant stable attributes may increase the number of possible actions which may increase

the benefit because more objects can be transferred. On the other hand, removing

redundant flexible attributes can decrease the action cost because it is not necessary
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to change the removed attributes’ values. Removing redundant attribute-value pairs

for each rule, which is also called rule simplification, shortens a rule and requires fewer

attributes changes, such that the action cost can also be reduced. The removing of

rules and actions will not change the cost or benefit, however, it will reduce the size

of the solution space, and that can reduce the computation time.

1.3 Contributions

In this thesis, we analyze three-way decision theory on concerning trisecting and

acting, and propose an actionable three-way decision (A3WD) framework. With

regard to three-way decisions, the contributions of this thesis are as follows:

For the trisecting of A3WD, we present: (1) two statistical interpretations; and

(2) one chi-square statistic based method for determining the pair of thresholds.

For acting of A3WD, we propose: (1) four actionable three-way decision models;

(2) four actionable rule mining algorithms for these models; (3) the R4 reduction

framework, a comprehensive, four-step approach for improving the performance of

actionable three-way decision models; (4) an Addition algorithm schema for the first

two steps of the R4 framework and proof of its correctness; (5) specific instances of

this schema for both attribute reduction and attribute-value pair reduction (i.e., rule

simplification).

1.4 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 reviews the trisecting-

and-acting three-way decision model. Based on two illustrative examples, Chapter 3

introduces the actionable three-way decision framework and its four models. In this

framework, some assumptions are discussed and a cost-benefit analysis of actions

is given. Chapter 4 presents two statistical interpretations for trisecting and a chi-
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square statistic based method for determining the values of the pair of thresholds.

Chapter 5 proposes four algorithms for mining actions for the four models introduced

in the Chapter 3. Chapter 6 introduces the R4 reduction framework that consists of

four steps of reduction for decreasing action costs and increasing benefits. In the R4

framework, an Addition algorithm schema for attribute reduction and attribute-value

pair reduction is proposed and its correctness is proven. Chapter 7 experimentally

evaluates the effectiveness of the four proposed actionable models and the R4 frame-

work. The last chapter concludes the thesis and presents some future works. All

proofs of property, proposition, lemma, and theorem are given in the appendix.
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Chapter 2

A TRISECTING-AND-ACTING

MODEL OF THREE-WAY

DECISIONS

This chapter overviews the trisecting-and-acting three-way decision models, intro-

duces basic notions and formal setting used throughout the thesis, and provides gen-

eral ideas of statistical interpretations of trisecting and change-based acting.

2.1 An Overview of Three-way Decisions

The basic ideas of three-way decisions can be explained in terms of the division and

processing of a universal set of objects in three regions [114, 117, 119]. Figure 2.1

shows a two-step, trisecting-and-acting three-way decision model. The first step,

called trisecting, divides a universal set OB into three pair-wise disjoint regions,

called region L, region M, and region R, respectively, which may be viewed as the

left, middle, and right regions in an evaluation based three-way decision model [114].

The names of three regions may vary from application to application. For example,

in decision-theoretic rough sets [108], three regions are named POS, BND, and NEG,
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standing for the positive, boundary, and negative regions, respectively. The second

step, called acting, adopts effective strategies to process three regions. Actions can

be taken to enhance the effectiveness or quality of the trisection [89, 90].

A set of objects OB

Region L

Actions for L

Region M

Actions for M

Region R

Actions for R

Trisecting

Acting

Figure 2.1: Trisecting-and-acting three-way decision model [114].

Ideas of dividing and processing the universe with three regions have been widely

used in many fields, such as medicine [36, 63, 82], social networks [70], recommender

systems [136], investment [6], and engineering and sciences [9, 26, 45, 52, 72, 80, 88, 91,

134, 138]. In some applications, the trisecting and acting are woven together as one

and cannot be easily separated. A good trisection depends on the acting strategies for

processing regions and conversely, effective acting relies on an appropriate trisection.

2.1.1 Trisecting

With respect to trisecting, we may use evaluation-based methods [119] to divide

the universe OB into three pair-wise disjoint regions. An evaluation function e(·) :

OB −→ V that maps each object in the universe to an evaluation status value (ESV)

in a totally ordered set (V,�). A pair of thresholds (α, β) ∈ V× V with α � β (i.e.,

α � β ∧ ¬(β � α)) trisects the ESVs into three sections. Objects are divided into
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three pair-wise disjoint regions according to their ESVs:

L(α,β)(e) = {x ∈ OB | e(x) � α},

M(α,β)(e) = {x ∈ OB | β ≺ e(x) ≺ α},

R(α,β)(e) = {x ∈ OB | e(x) � β}, (2.1)

where the e(x) � β means ¬(e(x) � β). The region L consists of objects with ESVs

greater than or equal to one threshold, region R consists of objects with ESVs less

than or equal to the other threshold, and region M consists of objects with ESVs

between the two thresholds. In real applications, many evaluation functions can be

designed, such as probability functions [65], fuzzy membership functions [16], and the

Stanford-Binet test of IQ [81].

For example, because the human body is sensitive to changes in blood pressure,

we may use blood pressure to predict health. In the classification of people’s systolic

blood pressure (sbp), OB is a set of people, e(·) is a measure of people’s sbp in

millimeters of mercury, V is a set of integers denoting sbp readings, and the order

� is relational operator ≥. Generally, people with high blood pressure may have

or be more likely to have certain diseases, people with low blood pressure may have

or be more likely to have other health problems. Therefore, people can be trisected

into three groups, called the hypotension, normal, and hypertension regions, via a

pair of thresholds, e.g., (α = 140, β = 90) [63]. That is, people x ∈ OB with

e(x) ≥ 140, 90 < e(x) < 140, and e(x) ≤ 90 is considered to have high blood pressure,

normal blood pressure, and low blood pressure, respectively. With respect to different

clinical cases, the pair of thresholds may be determined differently. Trisecting can

be applied again for any of these regions if needed. For example, in ambulatory

blood pressure analysis [95], the hypertension region is again trisected into the white

coat hypertension region, the dippers with ambulatory hypertension region, and the
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nondippers with ambulatory hypertension region.

Generally, the goodness, quality, or cost of a trisection can be measured by an

objective function [24]:

Q(π) = wLQ(L) + wMQ(M) + wRQ(R), (2.2)

where Q(π) is the goodness (quality, cost, or other measurement) of the trisection

π = (L,M,R), Q(L), Q(M), and Q(R) are qualities or goodness of the regions L,

M, and R, respectively, and wL, wM , and wR are weights associated to different

regions, representing their relative importances. Examples of objective functions are

cost [108], information entropy [15], Gini index [141], chi-square statistic [24], and

variance [4]. We have wL = wM = wR = 1, if the three regions are treated equally.

The optimal trisection is the one that maximizes or minimizes the objective func-

tion in Equation (2.2), according to criteria used in particular applications. For

example, the objective functions based on cost [108], information entropy [15], and

Gini index [141] are to be minimized and those based on chi-square statistic [24] and

variance [4] should be maximized.

2.1.2 Acting

In the acting step, strategies and actions for processing each region take a decision

maker’s advantage. These strategies and actions may be adopted to handle different

applications, such as description of concept, prediction of objects, and transference of

objects. To fully understand these three regions, descriptive rules can be constructed

from objects in the three regions. Descriptive rules summarize the main features of

each region and each rule characterizes a portion of a specific region. We can also

construct predictive rules from the three regions to classify or cluster new instances.

In some situations, the decision maker desires to transfer objects between regions. We
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can use actionable rules to achieve this purpose. Take classification as an example, the

trisecting step obtains three regions with respect to an objective class X, i.e., POS,

BND, and NEG, representing the regions of objects that are classified in X, not in

X, and difficult to classify, respectively. The acting step may construct classification

rules for POS and use these classification rules to classify unseen objects. In three-

way concept analysis, the acting step constructs descriptive rules for a concept to

describe and summarize the properties of the concept.

By acting, the quality or effectiveness of trisection can be improved or the cost

can be reduced. We give some examples to show this idea. In military triage [36],

victims are divided into three categories: those who are likely to survive regardless

of what care they receive, those who are unlikely to survive regardless of what care

they receive, and those for whom immediate care might make a positive difference in

outcome. A decision maker may adopt strategy of giving treatment priority to the

last category in order to cure the most victims when the medical supply is limited.

In a loan application, a bank may categorize the applicants into three groups with

respect to their credit rating, one group consists of applicants whose credit ratings

are high, one group consists of applicants whose credit ratings are medium, and the

last group consists of the clients whose credit ratings are low. In order to make profit,

the bank may adopt different acting strategies for these groups of clients: approve

the loan applications from the first group, carefully review and approve a portion of

applications from the second group, and reject the applications from the last group.

In making a governmental decision, a government may categorize citizens into three

groups with respect to their health conditions, one group consists of healthy people,

one group consists of relatively healthy but sometime having health problems, the last

group consists of people who have bad health problems. In order to more effectively

spend government budget, in the acting step, the governor may take different actions

for different groups: do nothing for the first group, improve the living environment
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for the second group of people to avoid deterioration of their health conditions, offer

periodical medical examination for the third group and treat them. In business, a

company produces a product and people are categorized into three groups: people

who will probably buy the product, people who probably will not, and people who

are ignorant of or indifferent towards the product. In order to create profit from the

product, the company may do nothing to the first group, but advertise on TV and

Internet for the second and third group.

2.2 Statistical Analysis for Trisecting

From a statistical point of view, a good trisecting step aims to obtain a trisection

that has good statistical properties such as central tendency, distribution, or other

aspects implied in OB. The statistical analysis for trisecting is to analyze trisecting

and generate three regions through statistical methods.

There is some research on the statistical analysis of trisecting. For example,

Wald [96] used a sequential hypothesis testing in three-way decision problems. If a

test strongly supports a hypothesis, one accepts the hypothesis; if the test is strongly

against the hypothesis, one rejects the hypothesis; otherwise, one performs further

tests. Based on further tests, the original hypothesis will either be accepted or re-

jected. Yao [109] adapted these ideas of sequential processing to three-way deci-

sion and granular computing [69, 112]. Yao and Gao [119] statistically analyzed the

evaluation-based trisecting step when the set of ESVs, i.e., V is a set of non-numeric

values and numeric values. When V is a set of non-numeric values, statistics such

as median and mode, together with percentiles and quartiles can be used to trisect

the OB. When V is a set of numeric values, statistics such as mean and standard

deviation can be used to trisect the OB. In order to determining the values of a pair

of thresholds, Gao and Yao [24] suggested to maximize the chi-square statistic, and
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Azam and Yao [4] used a divergence that is constructed based on variance and mean.

2.3 Change-based Acting

A change-based strategy facilitates transference of objects between regions. Such a

strategy analyzes similarity and dissimilarity between the objects in different regions,

in order to design strategies of action so that objects in one region may be transferred

to another region. In the election example, a candidate may want to persuade some

voters who are undecided to be supporters by addressing specific relevant issues.

The change-based acting promotes movements of objects among regions by chang-

ing objects’ attribute values. According to the decision maker’s needs, we can cat-

egorize these directions of movements into two main types: (1) possible and (2)

impossible, in which possible (or impossible) direction means the movement of this

direction is possible (or impossible). Additionally, the possible movements consist

of three sub-types: (1) desirable, (2) undesirable, and (3) indifferent, respectively,

indicating that the decision maker wants the movement to happen, does not want

the movement to happen, and does not care. Given two regions, we show all possible

movements in Figure 2.2. The three types of possible movements are shown in differ-

ent types of lines. The solid lines, dashed lines, and solid lines with slashes represent

desirable, indifferent, and undesirable movements, respectively. Accordingly, actions

can be classified into corresponding types, i.e., desirable actions, indifferent actions,

and undesirable actions, respectively. Generally, there is one and only one possible

movement from one region to another.
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: desirable
: indifferent
: undesirable

Figure 2.2: Six possible movements between two regions.
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Chapter 3

AN ACTIONABLE THREE-WAY

DECISION FRAMEWORK

This chapter introduces actionable rules to the trisecting-and-acting three-way deci-

sion model and proposes an actionable three-way decision framework, or A3WD for

short. In this framework, four change-based A3WD models are proposed based on

the analysis of action cost and benefit. Two of the four models provide the bounds of

the cost and benefit and the other two models quantify the maximum benefit under

cost constraint and the minimum cost for a desired benefit.

3.1 Two Illustrative Examples

This section illustrates the main ideas of A3WD by two examples, one for medicine

and the other for election. The two examples are not based on real data, but the

method can be used for dealing with real data.
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3.1.1 A Medical Example

Doctors use symptoms to determine disease and cure disease by taking proper actions

that change abnormal symptoms to be normal. Table 3.1 is an example decision table

describing relationship between heart disease and some symptoms. The table consists

of 9 patients (rows) and 4 symptoms or attributes (columns). chol and bp stand

for cholesterol level and blood pressure, respectively. The first three attributes are

symptoms and the last column is the diagnosis of the heart disease. Symbols - and +

denote that a patient has heart disease and does not have heart disease, respectively.

Table 3.1: A decision table for medicine.

# sex chol bp result
o1 female medium normal +
o2 female medium normal -
o3 female low normal +
o4 female low normal -
o5 female low normal -
o6 female medium low +
o7 female high high -
o8 male high low -
o9 male low normal +

In the trisecting step, a doctor trisects the patients into three regions, in which

region R+ consists of people who are considered not to have heart disease, region R−

consists of people who are considered to have heart disease, and region R? consists

of people who cannot be determined based on their symptoms. o1 and o2 have the

same symptoms but have different diagnosis results, similar to o3, o4, and o5. This

means that we cannot correctly classify these patients based on their symptoms.

Based on different criteria, a doctor may get different trisections of patients. These

criteria could be to minimize risk (or cost) [122], minimize uncertainty [15], minimize

impurity [140], balance accuracy and coverage [106], or maximize some statistical
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measures [4, 24]. In the next chapter, we analyze some statistical information from the

data and propose a method to classify these patients into three regions with maximum

correlation to the diagnosis results. For convenience, we suppose that a doctor trisects

these patients into three regions R+ = {o1, o2, o6, o9}, R− = {o7, o8}, and R? =

{o3, o4, o5}. The construction of these three regions is illustrated in Example 3.1 in

Section 3.4.

In the acting step, suppose we want to cure patients who have heart disease.

Figure 3.1 shows the desirable, undesirable, and indifferent movement patterns. It

should be noted that movement from R− to R? could be desirable.

+

?

-

Figure 3.1: Movement patterns of Table 3.1 based on user’s requirement.

By analyzing o7 and o8 in R−, we construct two rules as follows:

r7 : sex = female ∧ chol = high ∧ bp = high⇒ result = −,

r8 : sex = male ∧ chol = high ∧ bp = low ⇒ result = −.

A rule X ⇒ Y indicates that if a patient has symptoms X then the patient has a

diagnosis Y , where the left part X consists of conjunction of attribute-value pairs for

symptoms and the right part Y is the diagnosis result. Similarly, we can construct

rules for objects in R+:

r1 : sex = female ∧ chol = medium ∧ bp = normal⇒ result = +,

r6 : sex = female ∧ chol = medium ∧ bp = low ⇒ result = +,
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r9 : sex = male ∧ chol = low ∧ bp = normal⇒ result = +.

We assume that patients will have the same diagnosis results if they have the same

symptoms. Then patients in region R− can be cured if we can take actions to change

their attribute-value pairs to look like the ones in R+. Generally, sex cannot be

changed, while cholesterol level and blood pressure can be changed. Therefore, we

may adopt actions to change o7’s cholesterol level and blood pressure to be the same

as that of a patient from R+. Patients o1 and o6 in R+ have the same sex as o7. As

a result, o1 or o6 can be chosen as a reference to design actions. If o1 is chosen, the

action may be designed as follows:

a1 : Reduce the cholesterol level from high to medium by taking 3 doses of medicine A

and lower blood pressure from high to normal by taking 4 doses of medicine B.

If o6 is chosen, the action may be:

a2 : Reduce the cholesterol level from high to medium by taking 3 doses of medicine

A and lower blood pressure from high to low by taking 8 doses of medicine B.

We notice that o1 and o2 have the same symptoms but different diagnosis results,

which means a patient has about a 50% chance to be cured if a doctor chooses o1

as a reference to design actions. As for o6, there is no such ambiguity. Therefore we

believe that action a2 is more likely to cure o7. The strategies to cure people in R?

can be analyzed similarly.

Taking any action may produce benefit and incur cost. In this example, the

benefit is that patients may be cured and the cost may be money, time, and / or

other resources that the actions require. For treating o7, actions a1 and a2 have the

same benefit if o7 is cured (or a2 is more likely to cure o7). Generally, the costs of two

solutions may be difficult to compare. Because different decision makers may have

different preferences and criteria. For simplicity, we may consider that the action cost

is a combined cost of all types of resources demanded by actions.
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3.1.2 An Election Example

Table 3.2 describes some voters in an opinion poll, where hc denotes voter’s health

care level and fp denotes the voter’s attitude towards the nation’s foreign policies.

Values of hc can be high, medium, and low. Values of fp can be open, neutral, and

closed. The attribute result means the voter’s decision, values +, -, and ? denote

a voter supports the candidate, oppose the candidate, and has not decided or is not

willing to divulge his / her decision.

Table 3.2: A decision table of poll.

# age hc fp result
o1 18-29 high neutral +
o2 30-49 medium closed -
o3 50-64 low open -
o4 65+ low open -
o5 18-29 medium neutral ?
o6 65+ high closed +
o7 50-64 low closed ?
o8 30-49 high open +
o9 18-29 medium open -

Three regions are constructed based on the voters’ decisions: R+ = {o1, o6, o8},

R− = {o2, o3, o4, o9}, and R? = {o5, o7}. A candidate may win the election if he /

she obtains at least 50% support from a poll, which means the candidate needs to

transfer at least 2 voters from R− or R? to R+ to win the election. By analyzing the

attributes in the table, we can determine that age is a stable attribute whose value

cannot be easily changed and hc and fp are flexible attributes whose values can be

changed by taking some actions.

The candidate wants to retain voters in region R+, move voters from R− and R?

to R+, and avoid moving voters from R− to R?. The movement patterns are shown

in Figure 3.2.
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We first construct rules from region R+:

r1 : age = 18-29 ∧ hc = high ∧ fp = neutral⇒ result = +,

r6 : age = 65 + ∧hc = high ∧ fp = closed⇒ result = +,

r8 : age = 30-49 ∧ hc = high ∧ fp = open⇒ result = +.

+

?

-

Figure 3.2: Movement patterns for the election poll.

There are four voters in R− or R? whose ages are the same as some objects in

R+. For example, o2’s age is the same as o8. Therefore, a rule for action can be

constructed:

r2  r8 : hc : medium high ∧ fp : closed open⇒ result : − +,

where r2 and r8 are two rules constructed based on o2 and o8, expression X  Y

means thatX is changed to Y , and r2  r8 is a rule which indicates that the attribute-

value pairs are changed from r2 to r8, accordingly. The rule r2  r8 denotes that if

we take some actions for the voters in the 30-49 age group to improve their health

care level from medium to high and their attitude towards the current foreign policies

from closed to open, then they may change their mind to support the candidate.

Similarly, we can get the following rules for o4, o5, and o9:

r4  r6 : hc : low  high ∧ fp : open closed⇒ result : − +,
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r5  r1 : hc : medium high ∧ fp : neutral neutral⇒ result :? +,

r9  r1 : hc : medium high ∧ fp : open neutral⇒ result : − +.

Now, we have four rules, each transfers one non-supporter to be a supporter. The

candidate may choose two of them with minimum costs to achieve 50% of support.

3.2 Actionable Rules

We give a formal definition of decision table.

Definition 3.1 A decision table is a tuple

S = (OB, AT = As ∪ Af ∪ {d}, {Va | a ∈ AT}, {Ia | a ∈ AT})

where OB is a nonempty finite set of objects, AT is a finite nonempty set consisting

of attributes composed by three subsets, in which As are stable attributes, Af are

flexible attributes and d is a decision attribute, Va is a nonempty set of values

for every attribute a ∈ AT , and Ia : OB −→ Va is a mapping. For every x ∈ OB,

attribute a ∈ AT , and value v ∈ Va, Ia(x) = v means that the object x has the value

v for attribute a.

In Definition 3.1, the entire set of attributes is categorized into three subclasses.

Stable attributes are attributes, such as age and sex, whose values cannot be modified,

flexible attributes are attributes, such as cholesterol level and blood pressure, whose

values can be modified by actions. All attributes in As ∪ Af are called condition

attributes or features, while the attribute d is also called class label.

Given an object x ∈ OB, [x]As∪Af is the equivalence class of x based on the values

of attributes As ∪ Af :

[x]As∪Af = {y ∈ OB | Ia(y) = Ia(x),∀a ∈ As ∪ Af}.
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In the remainder of this thesis, we use [x] instead of [x]As∪Af if there is no ambiguity.

Given two objects with equivalence classes [x] and [y], we can get two classification

rules:

r[x] :

[ ∧

s∈As

s = Is(x)

]
∧
[ ∧

f∈Af

f = If (x)

]
⇒ d = Id(x),

r[y] :

[ ∧

s∈As

s = Is(y)

]
∧
[ ∧

f∈Af

f = If (y)

]
⇒ d = Id(y).

Classification rules have X ⇒ Y form that indicates if X then Y . The left hand

side of the rule, X, is a conjunction of all stable and flexible attribute-value pairs and

the right hand side of the rule, Y , is the decision attribute-value pair. Let ST (r[x]) be

the stable attributes part in the left hand side of the rule r[x], FL(r[x]) be the flexible

attributes part in the left hand side of the rule r[x], i.e.,

ST (r[x]) =

[ ∧

s∈As

s = Is(x)

]
,

FL(r[x]) =

[ ∧

f∈Af

f = If (x)

]
. (3.1)

Let ST (r[y]) = ST (r[x]) denote that [x] and [y] have the same values on each stable

attribute. If ST (r[y]) = ST (r[x]), then [x] and [y] can be changed to each other by

changing the flexible attributes values via actions. If a user wants to change [x] into

[y], the action is to execute the following actionable rule [75]:

r[x]  r[y] :
 ∧

f∈Af

If (x) If (y), subject to
∧

s∈As

Is(x) = Is(y), (3.2)

where If (x)  If (y) means that the value of attribute f is changed from If (x) to

If (y) and the symbol
 ∧

means all the flexible attributes’ values have to be changed.

Based on above concepts, the formal definition of an actionable rule is given in
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Definition 3.2.

Definition 3.2 An equivalence class [x] ⊆ OB is called actionable if ∃[y] ⊆ OB, [y] 6=

[x], such that ST (r[x]) = ST (r[y]). A rule r[x]  r[y] is called an actionable

rule for changing [x] into [y] and each clause If (x)  If (y) for f ∈ Af is called

a sub-actionable rule. [x] is called non-actionable if @[y] ⊆ OB satisfying

ST (r[x]) = ST (r[y]).

In Definition 3.2, equivalence classes [x] and [y] can be from different regions or the

same region. If [x] is non-actionable, then we cannot find any actionable rule for

transferring [x] to a different region.

An actionable rule can serve a guideline for action and strategy design. Given one

actionable rule, many actions can be designed, because there may exist many options

to change a flexible attribute value. For example, we may lower the blood pressure

by taking pills, controlling diet, or doing exercises. In this thesis, we consider the

simplest case, in which each actionable rule corresponds to one action. We analyze

the benefits and costs from actionable rules instead of those of actions. Without

ambiguity, we also refer to an actionable rule as an action and a sub-actionable rule

as a sub-action. We assume that applying actions does not change the classification

rules. We also assume that any action that is applied causes the stated transfer to

occur.

3.3 Cost-benefit Analysis of Actions

Each action incurs a cost and brings a beneficial effect. Depending on a particular

application, the motivation of taking actions is to minimize or maximize the objective

function in Equation (2.2) with the lowest cost. Suppose Q(π′) is the quality of a new

trisection π′ by acting on π, then the benefit can be defined as the difference between
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two qualities:

B = Q(π′)−Q(π), (3.3)

or

B = Q(π)−Q(π′). (3.4)

Specifically, applications whose objective functions are based on cost [108], informa-

tion entropy [15], or Gini index [141] use Equation (3.4) and those based on chi-square

statistic [24] or variance [4] use Equation (3.3). We use Br[x] r[y]
to denote the benefit

of taking action r[x]  r[y].

There are many types of cost involved with changing attribute values, such as

money, time, and other resources. We suppose that all kinds of cost associated with

a sub-action If (x) If (y) can be synthesized as one cost defined by a function Cf :

Cf : Vf × Vf −→ <, ∀f ∈ Af .

For each f ∈ Af , Cf (v1, v2) denotes the cost of changing the value of attribute f from

v1 to v2. If |Vf | is limited, then the Cf can be presented by a table shown in Table 3.3,

where Vf = {v1, v2, · · · , vn}. Commonly, Cf (vi, vi) = 0, i = 1, · · · , n, because we do

not have to take a sub-action to change its value. Generally, Cf (v1, v2) does not have

to be equal to Cf (v2, v1) and the cost functions {Cf | f ∈ Af} are given by domain

experts.

Table 3.3: Cost function Cf .

v1 v2 · · · vn
v1 Cf (v1, v1) Cf (v1, v2) · · · Cf (v1, vn)
v2 Cf (v2, v1) Cf (v2, v2) · · · Cf (v2, vn)
· · · · · · · · · · · · · · ·
vn Cf (vn, v1) Cf (vn, v2) · · · Cf (vn, vn)

We use two assumptions for computing action cost.
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(A1) All attribute values are independent, which means that one value change will

not affect any other values.

(A2) All actions are independent, which means that any action will only affect two

equivalence classes, all other equivalence classes will not be affected.

Assumption (A1) allows us to calculate the cost of transferring one object by simply

summing up the costs of all sub-actions. For example, the cost of transferring one

object from [x] to [y] is:
∑

f∈Af

Cf (If (x), If (y)). (3.5)

Let Cr[x] r[y]
denote the cost of action r[x]  r[y] and it can be computed by:

Cr[x] r[y]
= |[x]|

∑

f∈Af

Cf (If (x), If (y)), (3.6)

where | · | denote the cardinality of a set.

Assumption (A2) allows us to calculate and analyze the benefit and cost of any

action independently. Based on the assumption (A2), given any two actions r[x]  r[y]

and r[p]  r[q], the Br[x] r[y]
and Cr[x] r[y]

will not be changed whether or not we take

the action r[p]  r[q].

3.4 Benefit in Classification Problems

In three-way approximation of a concept [114], three regions are named as POS, BND,

and NEG, representing positive, boundary, and negative regions to approximate a

subset X ⊆ OB denoting a concept or class. Objects in POS, NEG, and BND are

considered in class X, not in X, and difficult to classify, respectively. Let Pr(X|[x])

denote the conditional probability that an object is in X given that the object is in
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Table 3.4: Misclassification cost matrix.

POS BND NEG
X λPP λBP λNP
XC λPN λBN λNN

[x], which may be computed by a rough membership function [100]:

Pr(X|[x]) =
|[x] ∩X|
|[x]| . (3.7)

Given a pair of thresholds (α, β) with 0 ≤ β < α ≤ 1, the three regions are constructed

by the DTRS model [121]:

POS(α,β)(X) = {x ∈ OB | Pr(X|[x]) ≥ α},

BND(α,β)(X) = {x ∈ OB | β < Pr(X|[x]) < α},

NEG(α,β)(X) = {x ∈ OB | Pr(X|[x]) ≤ β}. (3.8)

We may use a misclassification cost matrix shown in Table 3.4 to measure the

quality of three regions. In Table 3.4, λPP , λBP , λNP indicate the costs of classifying

an object in X into the positive, boundary, and negative regions, respectively, and

XC = OB − X. Others are explained similarly. Therefore, the qualities of three

regions can be computed by:

Q(POS(α,β)(X)) = |X ∩ POS(α,β)(X)|λPP + |XC ∩ POS(α,β)(X)|λPN ,

Q(BND(α,β)(X)) = |X ∩ BND(α,β)(X)|λBP + |XC ∩ BND(α,β)(X)|λBN ,

Q(NEG(α,β)(X)) = |X ∩ NEG(α,β)(X)|λNP + |XC ∩ NEG(α,β)(X)|λNN .

In this setting, the Equation (3.4) is used for benefit. The Br[x] r[y]
can be analyzed

as follows. Let a denote the number of objects in [x] belonging to class X and b the
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number of objects from [x] belonging to class X ′ after taking action:

a = |X ∩ [x]|,

b = |X ′ ∩ [x]|, (3.9)

where X ′ is a new set of objects obtained by changing [x] according to [y], representing

the same concept as X. a is easy to compute and we use an assumption to compute

b:

(A3) After taking an action r[x]  r[y], the changed equivalence class [x] will have

the same probability with [y]’s, i.e., Pr(X ′|[x]) = Pr(X|[y]), where Pr(X|[y]) =

|X ∩ [y]|/|[y]|.

The idea of this assumption can be explained by an example. Some people in Canada

believe that changing their vehicle’s all season tires to winter tires will make their

vehicle safer to drive in winter. This assumption suggests that switching to winter

tires will improve their vehicle’s safety to the level of those vehicles using winter tires.

Specifically, suppose there are three objects in [x] moved to [y], where [y] has 2/3

objects labeled + and 1/3 labeled -, then these three objects will be transformed into

two + and one -. Therefore, after taking action r[x]  r[y], b can be computed by:

b = |X ′ ∩ [x]| = |[x]|Pr(X ′|[x]) = |[x]|Pr(X|[y]) = |[x]||X ∩ [y]|/|[y]|. (3.10)

Further, we have the following proposition:

Proposition 3.1 Taking action r[x]  r[y] to transfer objects from region V to W ,

the benefit is computed by:

Br[x] r[y]
= wW

[
− bλWP − (|[x]| − b)λWN

]
+ wV

[
aλVP + (|[x]| − a)λVN

]
, (3.11)

where V,W ∈ {P,B,N}, in which P , B, and N represent positive, boundary, and
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negative regions, respectively.

Proof. See Appendix A.1.

We show how to compute the cost and benefit by an example below.

Example 3.1 We continue to use the example in Section 3.1.1. We define X =

{x ∈ OB | Id(x) = +} representing the group of people who do not have heart disease

and we enlarge this group by transferring people in other groups to it. We use the

cost matrix in Table 3.5 to compute the quality of three regions. The three regions to

Table 3.5: Cost matrix.

POS BND NEG
X 2 4 8
XC 11 9 8

approximate X are constructed as follows:

POS(0.5,0.2)(X) = {x ∈ OB | Pr(X|[x]) ≥ 0.5} = {o1, o2, o6, o9},

BND(0.5,0.2)(X) = {x ∈ OB | 0.2 < Pr(X|[x]) < 0.5} = {o3, o4, o5},

NEG(0.5,0.2)(X) = {x ∈ OB | Pr(X|[x]) ≤ 0.2} = {o7, o8},

where α = 0.5 and β = 0.2 are two thresholds minimizing the Q(π).

Table 3.6: Cost function Cchol.

low medium high
low 0 1 3
medium 2 0 1
high 4 1 0

Table 3.7: Cost function Cbp.

low normal high
low 0 1 2
normal 1 0 1
high 2 1 0

Using notation of actionable rule, we have a1 = r[o7]  r[o1] and a2 = r[o7]  r[o6].

Suppose the cost functions Cchol and Cbp are given in Table 3.6 and 3.7, respectively.
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According to Equation (3.6), the costs of action a1 and a2 can be computed as follows:

Cr[o7] r[o1]
= |[o7]|(Cchol(high,medium) + Cbp(high, normal)) = 2,

Cr[o7] r[o6]
= |[o7]|(Cchol(high,medium) + Cbp(high, low)) = 3.

Now, we compute the benefit of the two actions. According to Equation (3.11) and

using wP = wB = wN = 1, we get:

Br[o7] r[o1]
= wP

[
− bλPP − (|[o7]| − b)λPN

]
+ wN

[
aλNP + (|[o7]| − a)λNN

]

= −0.5 ∗ 2− (1− 0.5) ∗ 11 + 0 ∗ 8 + (1− 0) ∗ 8 = 1.5,

Br[o7] r[o6]
= wP

[
− bλPP − (|[o7]| − b)λPN

]
+ wN

[
aλNP + (|[o7]| − a)λNN

]

= −1 ∗ 2− (1− 1) ∗ 11 + 0 ∗ 8 + (1− 0) ∗ 8 = 6.

Obviously, action r[o7]  r[o1] has a lower cost and a smaller benefit, while r[o7]  r[o6]

has a higher cost and a larger benefit.

3.5 Four Actionable Three-way Decision Models

Generally, to obtain greater benefits require higher costs and lower costs receive lim-

ited benefits. We propose the following four models for dealing with different situa-

tions.

(i) One requires the maximum benefit solution without cost limitation.

(ii) One requires the minimum cost solution to obtain the maximum benefit.

(iii) One requires the maximum benefit solution under a limited action cost.

(iv) One requires the minimum action cost solution to obtain a desired benefit.
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The first two models provide the bounds of the cost and benefit and models

(iii) and (iv) are constrained optimization problems representing a wide range of

applications.

Consider an example in business, a company produces a product and wants to

obtain the maximum benefit from it. With respect to the product, people are cate-

gorized into three groups, in which the first group consists of people who are likely

to buy the product, the second group consists of people who are unlikely to buy the

product, and the third group consists of people who are indifferent to the product or

do not know the product. People in these three groups might be called buyers, poten-

tial buyers, and non-buyers, respectively. The company may have a limited budget

to attract new buyers and retain existing clients. They may choose any combination

of actions, such as extending the product’s warranty period, advertising on TV, and

/ or reducing accessories’ prices, etc. Each different action will consume different cost

from the budget. Model (iii) is used to find a set of actions that will produce the

maximum profit for the company when the budget is limited. Similarly in military

triage, model (iii) can help to save most lives when medical supplies are limited.

Consider the election example in Section 3.1.2 again. The candidate acts to retain

existing supporters and gain additional supporters to win the election. Suppose there

are four actions a1, a2, a3, and a4 available and taking {a1, a3} will help the candidate

to win the election. Therefore, any super-set of {a1, a3} will not change the result,

but consumes more cost. Model (iv) is used to find a set of actions to obtain the

desired benefit at the minimal cost.

These four models are independent from movement patterns and can be combined

with any movement pattern, such as the one in Figure 3.1 or Figure 3.2. To formalize

the four models, we define some concepts as follows:

Definition 3.3 Given movement patterns, an action r[x]  r[y] is called a desir-

able action if [x] and [y] are from unfavorable and favorable regions, respectively.
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Similarly, we can define undesirable action and indifferent action.

We construct three sets of actions DES, UND, and IDF, representing the set of

desirable actions, undesirable actions, and indifferent actions, respectively:

DES = {r[x]  r[y] | r[x]  r[y] is desirable},

UND = {r[x]  r[y] | r[x]  r[y] is undesirable},

IDF = {r[x]  r[y] | r[x]  r[y] is indifferent}.

Once a trisection and movement patterns are given, the DES, UND, and IDF can be

easily found.

We are interested in the desirable actions because they can improve the quality

of trisection and produce benefit. We further define:

SOURCE = {[x] | ∃[y], r[x]  r[y] ∈ DES}, (3.12)

where each [x] ∈ SOURCE is desirable to be transferred to another region. SOURCE

is a source providing all these equivalence classes for a decision maker to chose. For

[xi] ∈ SOURCE, i = 1, . . . , |SOURCE|, there may exist many equivalence classes

[y1], · · · , [yni ] that r[xi]  r[yj ] ∈ DES, j = 1, . . . , ni, where ni is the number of

desirable actions that transfer [xi]. We use cij and bij to denote the cost and benefit

of [xi]’s j
th action, i.e., r[xi]  r[yj ], j = 1, . . . , ni and use aij ∈ {0, 1} to indicate

taking or not taking [xi]’s j
th action. For example, c23 denotes the cost of [x2]’s 3rd

action, b35 denotes the benefit of [x3]’s 5th action, a24 = 1 indicates that [x2]’s 4th

action is taken, and a21 = 0 indicates that [x2]’s 1st action is not taken. For all actions

transferring [xi], we may take none or one of them. In other words, given [xi], all aij

satisfy
∑ni

j=1 aij ≤ 1, aij ∈ {0, 1}.

By using these notations, the model (i), (ii), (iii), and (iv) are formalized in
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Definition 3.4, 3.5, 3.6, and 3.7, respectively.

Definition 3.4 Given a trisection of a universe π = (L,M,R), sets DES and SOURCE,

where |SOURCE| = n, [xi] ⊆ SOURCE has ni actions, and the cost and benefit of

[xi]’s j
th action are denoted as cij and bij, respectively, j = 1, . . . , ni. The solution

that produces the maximum benefit is a set of aij that

max
n∑

i=1

ni∑

j=1

aijbij,

where
ni∑
j=1

aij ≤ 1, aij ∈ {0, 1}, i = 1, . . . , n.

Definition 3.5 Given a trisection of a universe π = (L,M,R), sets DES and SOURCE,

where |SOURCE| = n, [xi] ⊆ SOURCE has ni actions, and the cost and benefit of

[xi]’s j
th action are denoted as cij and bij, respectively, j = 1, . . . , ni. The solution

that requires the minimum action cost when benefit is maximized is a set of aij that

min
n∑

i=1

ni∑

j=1

aijcij, subject to
n∑

i=1

ni∑

j=1

aijbij = B̄,

where
ni∑
j=1

aij ≤ 1, aij ∈ {0, 1}, i = 1, . . . , n, and B̄ is the maximum benefit satisfying

Definition 3.4.

Definition 3.6 Given a trisection of a universe π = (L,M,R), sets DES and SOURCE,

where |SOURCE| = n, [xi] ⊆ SOURCE has ni actions, and the cost and benefit of

[xi]’s j
th action are denoted as cij and bij, respectively, j = 1, . . . , ni. The solution

that produces maximum benefit with limited action cost ca is a set of aij that

max
n∑

i=1

ni∑

j=1

aijbij, subject to
n∑

i=1

ni∑

j=1

aijcij ≤ ca,

where
ni∑
j=1

aij ≤ 1, aij ∈ {0, 1}, i = 1, . . . , n.
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Definition 3.7 Given a trisection of a universe π = (L,M,R), sets DES and SOURCE,

where |SOURCE| = n, [xi] ⊆ SOURCE has ni actions, and the cost and benefit of

[xi]’s j
th action are denoted as cij and bij, respectively, j = 1, . . . , ni. The solution

that requires the minimum action cost to reach the desired benefit, bl, is a set of aij

that

min
n∑

i=1

ni∑

j=1

aijcij, subject to
n∑

i=1

ni∑

j=1

aijbij ≥ bl,

where
ni∑
j=1

aij ≤ 1, aij ∈ {0, 1}, i = 1, . . . , n.

In the context of this thesis, the cost and benefit of an action are independent,

which means that they are two values associated with each action. The computational

relations of these models are shown in Figure 3.3. In this figure, the model (ii) is a

special case of model (i) by giving a constraint on cost, and it is also a special case

of model (iii) when bl = B̄. Model (i) is a special case of model (iii) when ca = +∞.

Model (iii) and model (iv) are dual problems.

(i)

(iv)(iii)

(ii)
special case:

dual

special case:
b
l
=

B̄

special case:
c
a

=
+1

min
nX

i=1

niX

j=1

aijcij

Monday, August 20, 18

Figure 3.3: Computational relations of models.

Figure 3.4 illustrates the solutions of four models in solution space. In this picture,

each curved line depicts the procedure of taking a possible set of actions. The circles

show the corresponding solutions, in which the top right circle indicates the solution

for models (i) and (ii). The solution for model (iii) is the circle indicating the highest
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intersection of vertical line ca and curved lines. The solution for model (iv) is the

circle of left most intersection of horizontal line bl and curved lines. Both the solutions

for models (iii) and (iv) are positioned below and to the left of the solution for models

(i) and (ii).
be

ne
fit

cost

(i)

(ii)

(iii)

(iv)

ca

bl

Figure 3.4: Illustration of models.
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Chapter 4

STATISTICAL

INTERPRETATIONS OF

TRISECTING

In this chapter, we consider the task of dividing OB into three regions. For such a

task, we consider the following fundamental issues:

(1) construction and interpretation of a totally ordered set V,

(2) construction and interpretation of an evaluation function e : OB −→ V,

(3) determination and interpretation of a pair of thresholds (α, β), and

(4) measurement of the quality of a tripartition {L,M,R}.

We examine two specific statistical interpretations of three-way decisions depending

on the structures of V, and a chi-square statistic based method for computing the

pair of thresholds for three regions.

The studies on combining statistics and three-way decisions provide a promising

research direction. The main objective of this chapter is to further examine the statis-

tical interpretations of three-way decisions. In particular, we use statistical notions,
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such as the mean, median, standard deviation, central tendency and dispersion, to

construct and interpret an evaluation function and a pair of thresholds for a three-

way decision. Objects around the mean value form one region, and two tails form

the other two regions. In other words, we search for statistical interpretations of

three-way decisions that enable us to examine the structures of the data and to make

inferences about the data.

4.1 General Considerations

In many applications, we typically have statistical information about objects in OB.

For example, we may have frequencies of measurement values with respect to a partic-

ular feature of objects. Such information may be used to construct both an evaluation

function and a pair of thresholds. In the cases when an evaluation function is given,

we may use a distribution of the evaluation status values (ESVs) to find a pair of

thresholds.

For convenience, we use an ordering � on the set of evaluation status values

(ESVs) V instead of the ordering � used in Chapter 2, and the three regions are

constructed as:

L(α,β)(e) = {x ∈ OB | e(x) � β},

M((α,β)(e) = {x ∈ OB | β ≺ e(x) ≺ α},

R((α,β)(e) = {x ∈ OB | e(x) � α}. (4.1)

According to Equation (4.1), we divide OB into three regions. As shown in Figure 4.1,

the region L consists of objects with low ESVs, the region M with medium ESVs, and

the region R with high ESVs. The example of blood pressure classification in the last

chapter also implies that the middle region M consists of normal or typical instances
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from a population, while regions L and R consist of abnormal or atypical instances.

In other words, the blood pressure of a healthy person is expected to fall within a

certain range, e.g., between 90 and 140 for systolic blood pressure. An interesting

question is how to interpret the intuitive notions of low, medium, and high values

used in three-way decisions based on concepts from statistics.

β α

ESVs of L ESVs of M ESVs of R

Figure 4.1: Division of (V,�).

In statistics, distributional characteristics such as median, mean, percentile, and

standard deviation can be used to describe a population. To establish a connection

to three-way decisions, we may collect objects with ESVs around the median or mean

value to form region M. The percentile or standard deviation may be used to calculate

the distances of objects with ESVs from the median or mean, which in turn determines

a pair of threshold values. Two special cases of V may be considered. One is a set of

non-numeric values and the other is a set of numeric values.

When V is a set of non-numeric values, we can perform comparisons based on the

total order � and we cannot carry out arithmetic operations such as addition and

multiplication. In other words, we can only consider the ranking of values in V and

the distribution of ESVs. The ordering enables us to locate the median, that is, an

object at the middle point of a ranked list. In addition, we can also use the frequency

information to compute percentiles. Consequently, we can use the median as the

middle point of region M and use two percentiles to determine the size of region M.

One percentile is used to calculate the left boundary of M, and the other percentile is

used to calculate the right boundary of M. Region L is the set of objects whose ESVs

are below the left boundary and region R is the set of objects whose ESVs are above

the right boundary.
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When V is a set of numeric ESVs, we can apply the median based interpretation

by using the object order induced by �. Moreover, since we can perform arithmetic

operations on V, we can consider another interpretation which uses the mean and

standard deviation. That is, we can use the mean to set up the middle position, and

use standard deviations to calculate the distances of the thresholds from the mean.

Based on standard deviations, region M is the set of objects with ESVs around the

mean, region L is the set of objects whose ESVs are much less than the mean, and

region R is the set of objects whose ESVs are much greater than the mean.

These two interpretations make use of different types of statistical information.

We discuss their detailed formulations in the next two sections.

4.2 Interpretations through Median and Percentile

When V is a set of non-numeric values, the ordering � only allows us to arrange

objects in OB into a ranked list according to their ESVs, as shown in Figure 4.2. The

median is the value at the middle position of this list and the positions of two thresh-

olds around the median are determined by two percentiles. A user can determine the

three regions L, M, and R by the pair of percentiles. We use a simple example to

demonstrate the main ideas.

Example 4.1 Suppose OB = {x1, x2, x3, x4, x5} is a set of five eggs, and V is a set

of words describing the size of eggs: {smallest, smaller, small, medium, large,

larger, largest} with the ordering smallest � smaller � small � medium �

large � larger � largest. We want to divide OB into three subsets according to their

sizes. Given an evaluation function, suppose objects in OB have the following ESVs:

e(x1) = small, e(x2) = smaller, e(x3) = largest, e(x4) = large, e(x5) = larger. We

can arrange all objects in OB into a ranked list based on their ESVs, x2, x1, x4, x5, x3,

according to the ordering �. The object at the middle position of this list is x4 and
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Figure 4.2: Illustration of division on rank ordered list through median and percentile.

its value is large, i.e., the median is large. Suppose we want the region M to include

60% of the objects and regions L and R each consists of 20% of the objects. We

use 20% for computing the position of the left threshold and 20% for computing the

position of the right threshold. The position of the left threshold is 1 with object x2

and ESV smaller, and the position of the right threshold is 4 with object x3 and ESV

largest. That is, β = smaller and α = largest. Therefore, the tripartition is given

L={x2}, M={x1, x4, x5} and R={x3}.

From the construction process of the example, we have an interpretation of three-

way decisions using the median and percentile, as depicted in Figure 4.2. In Exam-

ple 4.1, the two percentiles are l = 20th percentile and h = 80th percentile. The ESV

of the object denoted by the solid circle in the middle position is the median and

(α, β) is a pair of thresholds based on a pair of percentiles.

The trisection of three-way decisions can be constructed as follows. Suppose that

the size of OB is n. Step 1: arrange the set of objects into a ranked list according to

their ESVs in ascending order, in which objects with the same ESV can be ranked in

any order. In this way, we have a list of ESVs, v1, v2, . . . , vn, where v1 is the smallest

value and vn is the largest value. Step 2: we search for ESVs at lth and hth percentiles

with l < 50 and h > 50, we can calculate the pair of thresholds by:

β = vbln/100c,

α = vdhn/100e, (4.2)
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where the floor operator bac gives the largest integer that is not greater than a and

the ceiling operator dae gives the smallest integer that is not less than a. The floor

and ceiling operators used in β and α, respectively, are needed because ln/100 and

hn/100 may not be integers. As a result, three regions are constructed by:

L(α,β)(e) = {x ∈ OB | e(x) � β}

= {x ∈ OB | e(x) � vbln/100c},

M(α,β)(e) = {x ∈ OB | β ≺ e(x) ≺ α}

= {x ∈ OB | vbln/100c ≺ e(x) ≺ vdhn/100e,

R(α,β)(e) = {x ∈ OB | e(x) � α}

= {x ∈ OB | e(x) � vdhn/100e}. (4.3)

In order to have three pair-wise disjoint regions, we require that β ≺ α, i.e., β and α

cannot be the same value in V. This requires that the two percentiles must be chosen

to satisfy the criterion.

Equation (4.3) provides an interpretation of three-way decisions using the median

and percentile. Such an interpretation has been widely used in many applications.

For example, in boxplots [78], the values of β and α are obtained by first and third

quartiles, i.e., 25th and 75th percentiles, and the middle region M by interquartile

range (IQR).

4.3 Interpretations through Mean and Standard

Deviation

When V consists of numeric values, statistical measures based on arithmetic oper-

ations such as the mean and standard deviation can be applied. For simplicity, we

assume that V is the set of real numbers. Suppose e(x1), e(x2), . . ., e(xn) are the
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ESVs of objects in OB, where n is the cardinality of OB. The mean and standard

deviation are calculated by:

µ =
1

n

n∑

i=1

v(xi),

σ =

(
1

n

n∑

i=1

(e(xi)− µ)2

) 1
2

.

As shown by Figure 4.3 and Figure 4.4, we may interpret µ as the ESV for representing

objects in M and σ as a unit to measure the positions of the two thresholds β and α.

In some cases, we only have a data that is a sample of the whole population. Thus,

we have to use sample standard deviation s instead of σ:

s =

(
1

n− 1

n∑

i=1

(e(xi)− µ)2

) 1
2

.

Suppose two non-negative numbers k1 and k2 represent the distances of two thresh-

olds from the mean in terms of the number of the standard deviations. The pair of

thresholds can be constructed as follows:

β = µ− k1σ, k1 ≥ 0,

α = µ+ k2σ, k2 ≥ 0. (4.4)

Generally, k1 and k2 need not be equal. According to β and α, three regions can be

constructed by:

L(k1,k2)(e) = {x ∈ OB | e(x) ≤ β}

= {x ∈ OB | e(x) ≤ µ− k1σ},

M(k1,k2)(e) = {x ∈ OB | β < e(x) < α}

= {x ∈ OB | µ− k1σ < e(x) < µ+ k2σ},
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R(k1,k2)(e) = {x ∈ OB | e(x) ≥ α}

= {x ∈ OB | e(x) ≥ µ+ k2σ}, (4.5)

where ≤, <, and ≥ are standard relations on a set V of numeric values. It is worth

noting that k1 and k2 are related to z-score. Thus, we can interpret three-way decisions

in terms of z-scores.

Equation (4.5) makes no assumption of distribution of ESVs of objects. In many

real applications, it is common that the objects’ ESVs satisfy a certain distribution.

For example, Figure 4.3 and Figure 4.4 illustrate the trisection based on two kinds of

distributions. In Figure 4.3, the normal distribution shows a unimodal and symmetric

curve, in which the mean µ is the normal or typical point of the distribution. While

Figure 4.4 shows a monotonic curve, the region around the mean represents the

average area of the distribution, i.e., not too high and not too low.

β αµ

k1σ k2σ

β < e(x) < αe(x) ≤ β e(x) ≥ α

ESVs of L ESVs of M ESVs of R

Figure 4.3: Illustration of three-way decisions on a normal distribution.

There are many applications based on this model. For example, Pater [63] sug-

gested using k1 = k2 = 2 for blood pressure classifications. In other words, M(2,2)(e) =

{x ∈ OB | µ − 2σ < e(x) < µ + 2σ} is the region of normal blood pressure, while

L(2,2)(e) = {x ∈ OB | e(x) ≤ µ − 2σ} and R(2,2)(e) = {x ∈ OB | e(x) ≥ µ + 2σ}

regions are abnormal, that is, the hypotension and hypertension regions, respectively.

The Stanford-Binet test [81] is the most often used approach to measure people’s
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Figure 4.4: Illustration of three-way decisions on an exponential distribution.

Intelligence Quotient (IQ), and k1 = k2 = 2 is usually used to classify people into

three categories [81, 83]. People with an IQ between µ−2σ and µ+2σ are considered

average, people with an IQ greater than µ + 2σ are considered above average, and

people with an IQ less than µ− 2σ are considered below average.

The two statistical interpretations of three-way decisions are strongly related.

Both people’s IQ and blood pressure satisfy the normal distribution [63, 81], and

based on distributional properties, we know that the mean is equal to the median

and the middle region from µ − 2σ to µ + 2σ includes about 95% ESVs [12], while

both left and right regions include 2.5% ESVs. This conversion from mean-deviation

interpretation to median-percentile interpretation also can be done inversely. In real

practices, an imperial rule, namely 68-95-99.7 rule [12] is widely used, which means

the middle region is about 68%, 95%, and 99.7% of all ESVs in a normal distribution

when k = 1, k = 2, and k = 3, respectively. For non-symmetric distribution such

as Figure 4.4, we also can use the mean and deviation to calculate three regions

immediately, then the percentage of each region of all ESVs can be calculated by

distribution parameters. Another way is that we can do standardization, the new

standardized ESVs satisfy normal distribution with µ = 0 and σ2 = 1.

The interpretations through mean and standard deviation can also be described by

z-score or standard score [79]. An object x’s z-score is calculated by z = (e(x)−µ)/σ.

The z-score integrates mean and deviation together and outcomes only one value.
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This value is the ratio of the distance between the object and mean and standard

deviation. According to Equation (4.4), k1 and k2 are actually the two z-scores of the

pair of thresholds. The z-score provides another measure to determine three regions.

4.4 Determining Thresholds in Chi-square Statis-

tic

In this section, we introduce a chi-square statistic based method for determining

thresholds in three-way approximation of a concept.

4.4.1 Three-way Approximation of Concepts

Consider a classification problem in which all objects in OB are classified into one of

the two categories {X,XC}, where X is a set of objects belonging to the given class,

XC = OB − X is the set of objects not belonging to the given class. A fundamen-

tal task is to construct rules or a description function to achieve such a classifica-

tion. Binary classification models are typically used for such a task. However, these

models may not produce desirable results such as acceptable classification accuracy.

In three-way classification [114], a trisection π(α,β)(X)=(POS(α,β)(X),BND(α,β)(X),

NEG(α,β)(X)) as an approximation of {X,XC} shown in Equation (4.6) is obtained

by a pair of thresholds (α, β) on an evaluation function e(·):

POS(α,β)(X) = {x ∈ OB | e(x) � α},

BND(α,β)(X) = {x ∈ OB | β ≺ e(x) ≺ α},

NEG(α,β)(X) = {x ∈ OB | e(x) � β}, (4.6)

where POS(α,β)(X), NEG(α,β)(X), and BND(α,β)(X) consist of objects that are con-

sidered belonging to the class X, not belonging to X, and difficult to classify, respec-
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tively; they are called the positive region, negative region, and boundary region of

the class X, respectively.

In probabilistic rough set approximation of a concept [113], the probability of X

given an equivalence class of object [x] ⊆ OB is used as an evaluation function, i.e.,

e(x) = Pr(X|[x]), where X is a subset of OB. The conditional probability Pr(X|[x])

is the ESV of object x and all ESVs are real numbers between 0 and 1. The relation �

is the “greater than or equal” relation ≥. Under the assumption 0 ≤ β < 0.5 ≤ α ≤ 1,

one easily obtains three probabilistic regions by Equation (4.6).

Different choices of thresholds lead to different three-way approximations. A good

approximation shows a strong association or correlation of π(α,β)(X) and {X,XC}.

In other words, π(α,β)(X) and {X,XC} are correlated or dependent. The chi-square

statistic is a measure of correlation and can be used as an objective function for

measuring the goodness of a trisection π(α,β)(X).

4.4.2 Contingency Table of Three-way Decisions

The connection of the actual classification {X,XC} and a three-way approximation

π(α,β)(X) = (POS(α,β)(X),BND(α,β)(X),NEG(α,β)(X)) of {X,XC} can be represented

by a contingency table [19] as shown in Table 4.1. The two factors, i.e., the class X

and the pair of thresholds (α, β), form the rows and columns, respectively, are two

variables of the contingency table. A contingency table has two directions, i.e., row

and column; it is also called a cross-classification table.

Table 4.1: A contingency table of three-way decision.

POS(α,β)(X) BND(α,β)(X) NEG(α,β)(X) Total

X nXP nXB nXN nX·

XC nXCP nXCB nXCN nXC ·

Total n·P n·B n·N n

The numbers in the table such as nXP and nXCN represent the numbers of objects
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in the corresponding category of a class and a region. Numbers with subscripts

having a dot such as nXC · and n·N are called marginal totals, denoting the numbers

of objects in the corresponding row or column. The number n is the grand total. It

is the number of all objects in the table, i.e., n = |OB|, where | · | is the cardinality

of a set. In probabilistic rough sets, numbers in the first column of Table 4.1 are

nXP = |X ∩ POS(α,β)(X)|, nXCP = |XC ∩ POS(α,β)(X)|, and n·P = |POS(α,β)(X)|,

respectively. Additionally, we can estimate probabilities, such as Pr(POS(α,β)(X)) =

n·P/n, Pr(X|POS(α,β)(X)) = nXP/n·P , and Pr(XC |POS(α,β)(X)) = nXCP/n·P .

4.4.3 Chi-square Statistic as An Objective Function

The chi-square statistic, also referred to as χ2 statistic, plays an important role in

testing the independence of two variables. Given a contingency table, the χ2 statistic

is computed by:

χ2 =
∑ (observed− expected)2

expected
, (4.7)

where the “observed” is the actual observed number in a contingency table cell and

the “expected” is the corresponding expected number under the independence as-

sumption. For example, consider the cell (X,POS(α,β)(X)), the observed number of

objects is nXP and the expected number of objects is computed by assuming inde-

pendence of {X,XC} and π(α,β)(X). With the marginal numbers n·P and nX·, the

expected number is computed by:

Pr(X) ∗ Pr(POS(α,β)(X)) ∗ |OB| = (
n·P
n

nX·
n

)n =
nX·n·P
n

. (4.8)

The value (nXP − nX·n·P/n)2 measures the divergence of the observed number nXP

from the expected number nX·n·P/n under the independence assumption. If the

observed value is close or equal to the expected number, then (nXP − nX·n·P/n)2 is

close or equal to 0 and (nXP − nX·n·P/n)2/(nX·n·P/n) is close or equal to 0 as well.
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This suggests that the actual number is highly probable due to chance and there is

a lack of dependence of X and POS(α,β)(X). By summing up all cells, the chi-square

statistics can be used to measure the independence / dependence of {X,XC} and

π(α,β)(X). A higher value of chi-statistic suggests a stronger dependency. Therefore,

the chi-square statistic may be used as a measure of the goodness of fit of a three-way

approximation π(α,β)(X).

We can demonstrate the appropriateness of chi-square statistics as an objective

function by relating it to the general formulation of objective function as given by

Equation (2.2). Each region occupies a column with two cells in the contingency

table. We may quantify the quality of each region as a sum of two cells’ divergences

of observed numbers from their expected numbers as follows:

Q(POS(α,β)(X)) =
(nXP − nX·n·P/n)2

nX·n·P/n
+

(nXCP − nXC ·n·P/n)2

nXC ·n·P/n
,

Q(BND(α,β)(X)) =
(nXB − nX·n·B/n)2

nX·n·B/n
+

(nXCB − nXC ·n·B/n)2

nXC ·n·B/n
,

Q(NEG(α,β)(X)) =
(nXN − nX·n·N/n)2

nX·n·N/n
+

(nXCN − nXC ·n·N/n)2

nXC ·n·N/n
. (4.9)

By summing up the three quantities with wP = wB = wN = 1, we have:

Q(π(α,β)(X)) = Q(POS(α,β)(X)) +Q(BND(α,β)(X)) +Q(NEG(α,β)(X))

= χ2
(α,β). (4.10)

That is, the χ2 statistic of contingency table of three-way decisions may be viewed as

a special case of a measure of the quality of a three-way approximation π(α,β)(X) as

defined by Equation (2.2).

If the χ2 statistic is statistically significant, that means {X,XC} and π(α,β)(X)

are correlated or dependent; otherwise, they are independent. A larger χ2 statistic

indicates a stronger correlation. Each pair of thresholds (α, β) induces a trisection of
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OB. We want to find a pair of thresholds that provides the strongest correlation. In

other words, we search for a pair of thresholds by maximizing the χ2 statistic:

(α∗, β∗) = arg max
(α,β)

χ2
(α,β) (4.11)

where (α∗, β∗) is the optimal pair of thresholds. As pointed out by Miller and Sieg-

mund [60], “if the chi-square value is statistically significant, then it can be judged

that a predictor variable has been found.” In the context of three-way decisions, a

good pair of (α, β) is obtained.

4.4.4 Maximizing Chi-square Statistic to Find Thresholds

Based on the framework shown in Equations (4.9) and (4.10), we take a look at every

component of the objective function. When 0 ≤ β < 0.5 ≤ α ≤ 1, Q(POS(α,β)(X)) is

only related to the threshold α and Q(NEG(α,β)(X)) is only related to the threshold

β. When α changes from 0.5 to 1, n·P , nXP , and nXCP become smaller. How-

ever, Q(POS(α,β)(X)) may either increase or decrease, that is, Q(POS(α,β)(X)) is

non-monotonic with respect to α. Similarly, Q(NEG(α,β)(X)) and χ2
(α,β) are non-

monotonic as well. Thus, a pair of thresholds (α, β) that maximizes the statistic

cannot be obtained in a simple analytical expression like in a decision-theoretic rough

sets model [121] (i.e., in decision-theoretic rough sets, once the cost matrix is given,

the pair of thresholds can be computed directly by equations). Fortunately, given a

finite universal set OB, the number of possible values for α and β are limited. The

exhaustive search method may work well in these cases.

Many studies [7, 8, 32, 60, 129] discussed the computation of maximally selected

chi-square statistic. Boulesteix [7] analyzed maximally selected chi-square statistics in

the case of one binary response and nominal predictor. Miller and Siegmund [60], and

Boulesteix and Strobl [8] discussed the situation that a predictor variable is generated
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by two cut-points that have some relationships between each other and combined the

two columns of contingency table together. Hothorn and Zeileis [32] explained the

general maximally selected statistics and proposed an efficient algorithm that can be

applied to compute the maximally selected χ2 statistic for a 2 by 2 contingency table.

4.4.5 An Illustrative Example

We use an example from [15] to demonstrate the main idea of the proposed method.

Suppose that we have a partition of a universal set with 15 equivalence classes

X1, X2, . . . , X15. Table 4.2 gives the conditional probability of a class X given an

equivalence class Xi, that is Pr(X|Xi). To derive three-way decisions to approximate

X, we use a pair of thresholds (α, β) with 0 ≤ β < 0.5 ≤ α ≤ 1. The three regions

are given by:

POS(α,β)(X) =
⋃
{Xi | Pr(X|Xi) ≥ α},

BND(α,β)(X) =
⋃
{Xi | β < Pr(X|Xi) < α},

NEG(α,β)(X) =
⋃
{Xi | Pr(X|Xi) ≤ β}. (4.12)

According to Table 4.2, the sets of possible values of α and β for consideration are

Dα = {0.5, 0.6, 0.8, 0.9, 1.0} and Dβ = {0.0, 0.1, 0.2, 0.4}, respectively.

Table 4.2: Probabilistic information of a class X [15].

X1 X2 X3 X4 X5 X6 X7 X8

Pr(Xi) 0.0177 0.1285 0.0137 0.1352 0.0580 0.0069 0.0498 0.1070
Pr(X|Xi) 1.0 1.0 1.0 1.0 0.9 0.8 0.8 0.6

X9 X10 X11 X12 X13 X14 X15

Pr(Xi) 0.1155 0.0792 0.0998 0.1299 0.0080 0.0441 0.0067
Pr(X|Xi) 0.5 0.4 0.4 0.2 0.1 0.0 0.0

Given a sample size n, a pair of thresholds (α, β) produces a contingency table and

the corresponding chi-square statistic. Although, the sample size n is not given in [15],
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the optimal pair of thresholds will not be affected by providing different values of n,

i.e., all magnitudes of χ2 corresponding to different pairs of thresholds will change

under different sample sizes, but the ranking of these magnitudes will not change.

Based on this setting, nXP can be computed as the closest integer of the following

expression: ( ∑

Xi∈POS(α,β)(X)

Pr(X|Xi)Pr(Xi)

)
n.

The numbers in other cells can be similarly computed. Table 4.3 shows the con-

tingency table for (α = 0.6, β = 0.4) and n = 1000. All computed numbers in

Table 4.3 are modified to their nearest integers, since some computed numbers are

not integers when n is set to some numbers. The χ2 statistic of Table 4.3 is 351.18.

By computing contingency tables and the corresponding χ2 statistics for all possi-

ble combinations of α and β, we obtain Table 4.4. Accordingly, (α = 0.8, β = 0.2)

is selected as the optimal pair of thresholds due to its maximal χ2 statistic. This

means (α = 0.8, β = 0.2) provides the strongest correlation between the class X and

approximation of π(α,β)(X).

Table 4.3: The contingency table for (α = 0.6, β = 0.4) and n = 1000.

POS(0.6,0.4)(X) BND(0.6,0.4)(X) NEG(0.6,0.4)(X) Total

X 457 58 98 613

XC 60 58 269 387

Total 517 116 367 1000

Table 4.4: χ2 statistics for all combinations of (α, β).

β = 0.0 β = 0.1 β =0.2 β = 0.4
α = 1.0 311.24 316.04 368.05 373.31
α = 0.9 355.18 358.97 397.12 389.58
α = 0.8 381.39 384.36 411.35 394.72
α = 0.6 356.15 358.20 374.02 351.18
α = 0.5 310.29 311.53 318.29 292.50
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For comparison, the Gini index method [140] also chooses (α = 0.8, β = 0.2), the

game theory method [3] chooses (α = 0.5, β = 0) (using initial search point (α =

1, β = 0.5)), while the information entropy method [15] chooses (α = 0.9, β = 0.2)

that provides the second largest χ2 statistic in Table 4.4. The binary classification in

this case chooses (α = 0.5, β = 0.4), which provides the empty boundary region and

also produces the smallest χ2 statistic. The Pawlak rough sets method [65] chooses

(α = 1, β = 0), which provides the largest boundary region and produces the third

smallest χ2 statistic.

58



Chapter 5

ACTIONABLE RULE MINING

In this chapter, we propose four algorithms for mining actionable rules for the four

actionable three-way decision models introduced in Chapter 3.

Because of assumptions (A1) and (A2) in Section 3.3, we can analyze the costs and

benefits for each equivalence class individually. For consistent analysis of this chapter,

we continue using the medical example in Section 3.1.1. Based on the movement

patterns and trisection obtained in Example 3.1, we list all the benefits and costs for

each desirable action in Table 5.1.

Table 5.1: All desirable actions in DES with costs and benefits for the medical exam-
ple.

[o3] bij cij
r[o3]  r[o1] 2.5 3
r[o3]  r[o6] 16 6

[o7] bij cij
r[o7]  r[o1] 1.5 2
r[o7]  r[o6] 6 3

[o8] bij cij
r[o8]  r[o9] 6 5

5.1 Determining the Bounds of Benefit and Cost

Obviously, the lower bounds of both the benefit and the cost of a three-way decision

are zero when no action is taken. The upper bound of the benefit B̄ can be easily
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computed by following equation without considering cost:

B̄ =
∑

[xi]∈SOURCE

max
j=1,...,ni

{bij}, (5.1)

However, the upper bound of the benefit may not be unique, because there may exist

many actions that have the same benefit to transfer [xi]. Therefore, there may be

many solutions of aij that satisfy model (i). Among these solutions, the one with the

minimum cost is the solution for the model (ii). This can be achieved by choosing the

action with the maximum benefit to transfer each [xi] ∈ SOURCE. If there are two

or more actions that have the same maximum benefit, then the action with minimum

cost among them is chosen.

We design the Algorithm 1 for the model (i) and the model (ii). The set of aij

found by Algorithm 1 is the actionable three-way solution to obtain the upper bound

of benefit B̄ and the upper bound of cost C̄. Based on Table 5.1, we have B̄ = 28

and C̄ = 14.

Algorithm 1: An algorithm to find the upper bounds of benefit and cost.
Input: DES with costs and benefits
Output: B̄, C̄, and action set aij .

1 let B̄ = 0 and C̄ = 0;
2 compute SOURCE;
3 foreach [xi] ∈ SOURCE do
4 find all [y1], · · · , [yni ], where r[xi]  r[yj ] ∈ DES, j = 1, · · · , ni;
5 let cij = Cr[xi]

 r[yj ]
, bij = Br[xi]

 r[yj ]
;

6 let all aij = 0, j = 1, · · · , ni;
7 let p = 0, q = +∞, and k = 1;
8 for j = 1 to ni do
9 if (bij > p) or (bij = p and cij < q) then

10 let p = bij , q = cij ;
11 let k = j;

12 endif

13 end
14 let aik = 1;
15 let B̄ = B̄ + bik;
16 let C̄ = C̄ + cik;

17 end
18 return B̄, C̄, and all aij .

60



In Algorithm 1, given DES with actions’ costs and benefits, for each equivalence

class in SOURCE, all desirable actions in DES will be checked. Therefore, the com-

putational complexity of Algorithm 1 is |DES||SOURCE||As∪Af |. The computation

for SOURCE is |AT ||OB|2.

5.2 Maximum Benefit with Cost Constraints

The problem defined in Definition 3.6 is similar to the multiple-choice knapsack prob-

lem (MCKP) [71], where the constraint of aij in our problem is looser (MCKP requires
∑ni

j=1 aij = 1, aij ∈ {0, 1}, i = 1, . . . , n). Suppose there are n actionable equivalence

classes and each has m actions, then the exhaustive search for the solution has to

check mn combinations. Due to the similarity to the MCKP, it is also NP-hard to

find the optimal solution of model (iii).

To efficiently search for an approximate optimal solution of Definition 3.6, a dy-

namic programming based strategy can be adopted. Suppose we have n actionable

equivalence classes given in an order, denoted as [x1], . . ., [xn]. Any order can be

used and will not affect the result of the algorithm. Let f(i, k) denote the maximum

benefit for the first i actionable equivalence classes (i.e., [x1], . . . , [xi], i ≤ n) and k is

the limited action cost (k ≤ ca). Therefore, f(n, ca) is the maximum benefit under

limited cost ca. Suppose we know all the values of f(i − 1, k′), k′ = 0, . . . , k (i.e.,

the maximum benefit when we have the first i− 1 equivalence classes under different

limited action costs from 0 to k). To calculate the maximum benefit when we take

the ith equivalence class [xi] into account, we have to consider all [xi]’s actions and

the f(i, k) will be computed as the maximum one from the following ni + 1 cases:

(0) f(i, k) = f(i− 1, k), if none of [xi]’s actions is taken;

(1) f(i, k) = f(i− 1, k − ci1) + bi1, if [xi]’s first action is taken;
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(2) f(i, k) = f(i− 1, k − ci2) + bi2, if [xi]’s second action is taken;

· · ·

(ni) f(i, k) = f(i− 1, k − cini) + bini , if [xi]’s last action is taken.

We define ci0 = 0 and bi0 = 0, i = 0, . . . , n, i.e., there is no benefit or cost if we do

not take any of [xi]’s actions. Thus, the first case (0) can be rewritten in the same

form as others, i.e., f(i, k) = f(i− 1, k − ci0) + bi0. By combining all cases, f(i, k) is

computed by:

f(i, k) = max{f(i− 1, k − cij) + bij | cij ≤ k}, j = 0, . . . , ni.

The number j that maximizes f(i, k) is chosen, which means [xi]’s j
th action is taken:

aij =





1, j = arg max
l=0,...,ni

{f(i− 1, k − cil) + bil | cil ≤ k};

0 otherwise.

(5.2)

This is an iterative strategy gradually reducing the size of problem (i.e., the num-

ber of equivalence classes). That is, to compute f(i, k), we have to know f(i−1, 0), . . .,

and f(i − 1, k), and to compute f(i − 1, k), we have to know f(i − 2, 0), . . ., and

f(i − 2, k). Finally, the base conditions f(0, 0), . . . , f(0, k) will be reached. We de-

fine f(0, k) = 0, k = 0, . . . , ca, because there is no benefit when no equivalence class

can be transferred. Thus, a complete iterative formula for computing f(i, k) can be

formulated as follows:

f(i, k) =





0 if i = 0;

max{f(i− 1, k − cij) + bij | cij ≤ k}, j = 0, . . . , ni otherwise.
(5.3)

We use following example to show how this strategy works.

Example 5.1 We consider the medical example again. The set of desirable actions

DES is given in Table 5.1.
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We compute all values of f(i, k) in a table by considering the equivalence classes

one by one. Without losing generality, we use the order: [o3], [o7], [o8] and notations

[x1] = [o3], [x2] = [o7], and [x3] = [o8]. In the beginning, i = 0. According to

Equation (5.3), we have Table 5.2, in which the column [xi] lists equivalence classes,

Table 5.2: A maximum benefit computing table when i = 0.

[xi] cij bij k = 1 2 3 4 5 6 7 8 9 10
[x0] 0 0 0 0 0 0 0 0 0 0 0 0

column cij and bij show action costs and benefits, respectively, and columns from k = 1

to 10 stand for different action cost k from 1 to ca. The [x0] does not exist, we use

it as a symbol to compute f(i, k). The first row is the base condition computed by

f(0, k) = 0, k = 1, . . . , 10 according to Equation (5.3).

Next, we take [x1] into account and get Table 5.3 according to Equation (5.3). We

Table 5.3: A maximum benefit computing table when i = 1.

[xi] cij bij k = 1 2 3 4 5 6 7 8 9 10
[x0] 0 0 0 0 0 0 0 0 0 0 0 0
[x1] 3, 6 2.5, 16 0(0) 0(0) 2.5(1) 2.5(1) 2.5(1) 16(2) 16(2) 16(2) 16(2) 16(2)

analyze the computations of cell f(1, 1) and f(1, 10) here, other cells are similar. To

compute f(1, 1), the current limited action cost is k = 1, there is none [x1]’s actions

requiring a cost less than or equal to 1. Therefore, 0(0) is written into the cell (1, 1),

where the row of [x0] is not counted here, which means the first row is the row of [x1].

The first number 0 before the parenthesis denotes the obtained benefit, the second

number 0 in the parenthesis denotes the sequence number of action (i.e., j) that is

taken to get the benefit, 0 means that no action is taken. Similarly, when k = 10, we

have three options for f(i− 1, k− cij) + bij, where i = 1 and j = 0, . . . , 2. The values

are 0(0), 2.5(1), and 16(2), respectively. Therefore, f(1, 10) = max{0, 2.5, 16} = 16

and 16(2) is written into the cell (1, 10).
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By repeating the procedure for [x2] and [x3], we get Table 5.4. The maximum

Table 5.4: The complete maximum benefit computing table f(i, k).

[xi] cij bij k = 1 2 3 4 5 6 7 8 9 10
[x0] 0 0 0 0 0 0 0 0 0 0 0 0
[x1] 3, 6 2.5, 16 0(0) 0(0) 2.5(1) 2.5(1) 2.5(1) 16(2) 16(2) 16(2) 16(2) 16(2)
[x2] 2, 3 1.5, 6 0(0) 1.5(1) 6(2) 6(2) 6(2) 16(0) 16(0) 17.5(1) 22(2) 22(2)
[x3] 5 6 0(0) 1.5(0) 6(0) 6(0) 6(0) 16(0) 16(0) 17.5(0) 22(0) 22(0)

benefit, 22, is in the bottom right cell of the table, i.e., f(3, 10). It is worth mentioning

that the optimal solution may be not unique.

Once the maximum benefit is found, the associated set of actions to obtain this

benefit, i.e., the set of aij, can be inferred. According to Table 5.4, the maximum

benefit of 22 is reached by taking none of [x3]’s actions. Thus, we consider f(3 −

1, 10) = f(2, 10). We get 22(2) in cell (2, 10) and it indicates [x2]’s 2nd action is

taken. Then we have a remaining cost of 7 by subtracting cost of 3 (the taken action’s

cost c22 = 3) from 10. Next, we check the cell of f(2− 1, 10− 3) = f(1, 7) and we get

16(2), which shows that [x1]’s 2nd action is taken. Finally, by checking f(1−1, 7−6) =

f(0, 1) = 0, we reach the base condition, inference procedure completes. We get

a22 = 1, a12 = 1, and all other aij are 0. In other words, the optimal solution for

obtaining the maximum benefit of 22 with a limited cost of 10 is realized by taking the

following actions:

r[o7]  r[o6] and r[o3]  r[o6].

The inference procedure is indicated by arrows in Table 5.4.

According to the strategies analyzed above, an algorithm is designed and shown in

Algorithm 2. The algorithm consists of three parts. Part one is from line 1 to line 5,

it computes all action costs and benefits for each actionable equivalence class. The

second part is from line 6 to line 23, it is the main part of the algorithm computing the

complete maximum benefit table (i.e., f(i, k)). The last part is from line 24 to line 34,

64



it infers actions (i.e., aij) which are taken to obtain the maximum benefit. h(i, k) is an

action table associated with f(i, k) by simply collecting all numbers in parentheses in

Table 5.4. For example, h(2, 4) = 3 means that [x2]’s 3rd action maximizes the benefit

when action cost is limited at 4. Thus, the last part of the algorithm is accomplished

by h(i, k) table.

Algorithm 2: Compute maximum benefit with limited action cost.
Input: DES with costs and benefits, ca.
Output: B, aij . //B is the approximate maximum benefit

1 compute SOURCE;
2 foreach [xi] ∈ SOURCE do
3 find all [y1], . . . , [yni ], where r[xi]  r[yj ] ∈ DES, j = 1, . . . , ni;

4 let cij = Cr[xi]
 r[yj ]

, bij = Br[xi]
 r[yj ]

;

5 end
6 let f(0, k) = 0, h(0, k) = 0, where k = 0, . . . , dcae; //f and h are benefit table and action

table, respectively
7 for i = 1 to n do
8 for k = 1 to ca do
9 let b = 0, t = f(i− 1, k), p = 0; //temporary variables

10 for j = 1 to ni do
11 if cij ≤ k then
12 let b = f(i− 1, bk − cijc) + bij ;
13 else
14 let b = 0;
15 endif
16 if b > t then
17 let t = b;
18 let p = j;

19 endif

20 end
21 let f(i, k) = t, h(i, k) = p;

22 end

23 end
24 let B = f(n, ca), k = ca, all aij = 0;
25 for i = n to 0 do
26 if k ≤ 0 then
27 break;
28 endif
29 let t = h(i, k);
30 if t > 0 then
31 let ait = 1;

32 let k = bk − citc; //cit is the action cost of ith equivalence class’ tth action

33 endif

34 end
35 return B and aij .

In Algorithm 2, the dae is a ceil operator that offers the smallest integer larger
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than or equal to a and the bac is a floor operator that offers the largest integer less

than or equal to a. bk − cijc is used to ensure that the column index is always an

integer, because the action cost cij may be a real number in real applications. Thus,

k − cij as a column index might be a non-integer, this makes an incorrect reference

to a cell (i − 1, k − cij). By using b·c, each reference to a cell gets an equal or less

benefit than the maximum benefit that can be obtained. Therefore, the computed

maximum benefit from the algorithm is an approximate value that is equal to or less

than the actual maximum benefit. Suppose B′ is the actual maximum benefit, B is

the benefit obtained by Algorithm 2, they satisfy (B′ − ca) < B ≤ B′. Specifically,

we have B = B′ when all cij are integers.

The computational complexity analysis of Algorithm 2 is straightforward when

DES with costs and benefits is given. In the first part of this algorithm, each

equivalence class in SOURCE has to check every action in DES by comparing ev-

ery condition attribute’s value. Therefore, the maximum computation of this part is

|DES||SOURCE||As ∪ Af |, or is simply denoted as |OB|2|AT |. The second part has

three nested loops, the computation is ncam, where m is the average of all ni, i.e.,

m = 1/n
∑n

i=1 ni. The last part has one loop and its computation is n. Overall, the

algorithm reduces the time complexity from exponential to polynomial.

5.3 Minimum Action Cost for A Desired Benefit

In this section, we provide two algorithms for the model (iv).

On the one hand, model (iv) can be solved by the same strategy used in Section 5.2

with a similar complexity. The Table 5.4 can also be used to search for solutions of

model (iv). For example, if bl = 15, we only have to consider the first six columns

(until k = 6), because in the bottom row, the left most column offering benefit greater

than or equal to bl is the sixth column, i.e., 6 = arg mink f(3, k) ≥ 15. However, the
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table does not offer any benefit greater than 22. Therefore, we need more columns to

find such a benefit, but we do not know how many columns are needed for the table.

Fortunately, we know the maximum number of columns, that is the upper bound

of the cost dC̄e. Accordingly, we can make a slight modification to Algorithm 2 by

setting ca = dC̄e, then the left most cell in the bottom row of the table with benefit

greater than or equal to bl offers the obtained benefit. Part 3 of the algorithm deriving

the set of actions starts from this cell. The summed cost of these derived taken actions

is the minimum cost required by model (iv). Such a modified algorithm is designed

and shown in Algorithm 3.

Because the obtained benefit is underestimated by Algorithm 2, the action cost

needed to obtained a desired benefit by Algorithm 3 is overestimated. Suppose C ′

is the minimum action cost needed for the desired benefit bl, C is the approximate

action cost computed by Algorithm 3, they satisfy C ′ ≤ C < (C ′ + dC̄e). We may

use dk− cije instead of bk− cijc in Algorithm 3, then we have (C ′ − dC̄e) < C ≤ C ′,

it underestimates the cost. The time complexity of the second part is O(ndC̄em),

where m is the average of all ni. The amount of computation may be huge when

some cij are large.

On the other hand, we can design a different algorithm for model (iv). We use the

same notations as the last section and introduce a new function g(i, k), which denotes

the minimum action cost with respect to the first i equivalence classes and a desired

benefit of k. Therefore, the objective is to compute g(n, bl) and to find the associated

set of aij. Suppose we know all the values of g(i − 1, k), k = 0, . . . , bl when we take

the ith equivalence class, [xi], into account to calculate g(i, k). We have to consider

all [xi]’s actions and g(i, k) will be computed from one of the following ni + 1 cases:

(0) g(i, k) = g(i− 1, k), if none of [xi]’s actions is taken;

(1) g(i, k) = g(i− 1, k − bi1) + ci1, if [xi]’s first action is taken;
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Algorithm 3: Compute minimum action cost for a desired benefit.
Input: DES with costs and benefits, bl.
Output: C, B, aij . //C and B are the approximate minimum action cost and

approximate obtained benefit, respectively

1 compute SOURCE;
2 foreach [xi] ∈ SOURCE do
3 find all [y1], . . . , [yni

], where r[xi]  r[yj ] ∈ DES, j = 1, . . . , ni;

4 let cij = Cr[xi]
 r[yj ]

, bij = Br[xi]
 r[yj ]

;

5 end
6 compute C̄ by Algorithm 1;
7 let f(0, k) = 0, h(0, k) = 0, where k = 0, . . . , dC̄e; //f and h are benefit table and action

table, respectively
8 for k = 1 to dC̄e do
9 for i = 1 to n do

10 let b = 0, t = f(i− 1, k), p = 0; //temporary variables
11 for j = 1 to ni do
12 if cij ≤ k then
13 let b = f(i− 1, bk − cijc) + bij ;
14 else
15 let b = 0;
16 endif
17 if b > t then
18 let t = b;
19 let p = j;

20 endif

21 end
22 let f(i, k) = t, h(i, k) = p;

23 end
24 if f(i, k) ≥ bl then
25 break;
26 endif

27 end
28 let C = k, B = f(n, k), all aij = 0;
29 for i = n to 0 do
30 if k ≤ 0 then
31 break;
32 endif
33 let t = h(i, k);
34 if t > 0 then
35 let ait = 1;

36 let k = bk − citc; //cit is the action cost of ith equivalence class’ tth action

37 endif

38 end
39 return C, B, and aij .

(2) g(i, k) = g(i− 1, k − bi2) + ci2, if [xi]’s second action is taken;

· · ·

(ni) g(i, k) = g(i− 1, k − bini) + cini , if [xi]’s last action is taken.
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We define ci0 = 0 and bi0 = 0 for the first case, then the final iterative formula for

g(i, k) is given by:

g(i, k) =





+∞ if i = 0;

min{g(i− 1, k − bij) + cij | bij ≤ k}, j = 0, . . . , ni otherwise,
(5.4)

where all g(0, k) are initialized with +∞, k = 0, . . . , bl, because the iterative part of

Equation (5.4) always chooses the minimum value. If g(0, k) are set to 0, the solution

will be 0 as well. Additionally, all g(i, 0) are defined to 0, i = 0, . . . , n. We use the

following example to demonstrate this idea.

Example 5.2 Consider the same setting as last example. We want to find the so-

lution with minimum action cost for a desired benefit of 10 (i.e., bl = 10). We can

compute a table shown in Table 5.5.

Table 5.5: The complete minimum action cost computing table g(i, k).

[xi] cij bij k=1 2 3 4 5 6 7 8 9 10
[x0] +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
[x1] 3, 6 2.5, 16 2.5(1)3 2.5(1)3 16(2)6 16(2)6 16(2)6 16(2)6 16(2)6 16(2)6 16(2)6 16(2)6
[x2] 2, 3 1.5, 6 1.5(1)2 6(2)3 6(2)3 6(2)3 6(2)3 6(2)3 16(0)6 16(0)6 16(0)6 16(0)6
[x3] 5 6 1.5(0)2 6(0)3 6(0)3 6(0)3 6(0)3 6(0)3 16(0)6 16(0)6 16(0)6 16(0)6

The content in each cell of the main part of the Table 5.5 has three components.

For example, ‘6(2)3’ denotes that this cell gets an accumulated benefit of 6 (the number

on the left hand side of the parentheses), chooses the 2nd (the number in parentheses)

action of current equivalence class, and requires an accumulated action cost of 3 (the

number on the right hand side of parentheses). The bottom right cell, i.e., g(3, 10) =

16(0)6 provides the minimum action cost of 6 to obtain a benefit of 16, which satisfies

the condition 16 ≥ bl = 10. This cell has the same meaning as the cell f(3, 6) in

Table 5.4.

The inference procedure for aij is similar as previous. Step 1, according to ‘g(3, 10) =

16(0)6’, none of [x3]’s actions is chosen, then we consider g(3 − 1, 10). Step 2, by
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checking cell (2, 10), its content ‘16(0)6’ means none of [x2]’s actions is chosen as

well and we continue to consider g(2 − 1, 10). Step 3, the content in cell (1, 10) is

‘16(2)6’, which means [x1]’s 2nd action is chosen. Because we have reached the first

equivalence class, the inference procedure stops. Therefore, to obtain a desired benefit

of 10, the minimum action cost is 6 and it is achieved by following action:

r[o3]  r[o6].

The corresponding values for aij are a12 = 1 and all others are 0.

According to the strategy analyzed above, we provide Algorithm 4. This algorithm

has three parts as well, where the first and third parts are the same as Algorithm 2.

The second part computes three tables, i.e., g(i, k), h(i, k), and l(i, k), where g(i, k) is

explained above, h(i, k) and l(i, k) are used to save chosen actions and accumulated

benefit associated with g(i, k), respectively. By using the ceil operator d·e, the com-

puted minimum cost C satisfies C ′ ≤ C < (C ′+bl). Because using l(i, k), Algorithm 4

is able to provide the actually obtained benefit that satisfies the condition of model

(iv).

The computational complexity of the second part (i.e., line 6 to line 26) of Al-

gorithm 4 is O(nblm), where m is the average number of actions of all equivalence

classes. It is similar to the complexity of Algorithm 3, whose computational com-

plexity is O(ndC̄em). It is obvious that Algorithm 4 will be faster than Algorithm 3

if bl < dC̄e. Therefore, we may choose one of these two algorithms in real practice

according to the values of dC̄e and bl.
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Algorithm 4: Compute minimum action cost for a desired benefit (2nd
version).
Input: DES with costs and benefits, bl.
Output: C, B, aij . //C and B are the approximate minimum action cost and actually

obtained benefit, respectively

1 compute SOURCE;
2 foreach [xi] ∈ SOURCE do
3 find all [y1], . . . , [yni

], where r[xi]  r[yj ] ∈ DES, j = 1, . . . , ni;

4 let cij = Cr[xi]
 r[yj ]

, bij = Br[xi]
 r[yj ]

;

5 end
6 let g(i, 0) = 0, g(0, k) = +∞, h(0, k) = 0, l(0, k) = 0, where i = 0, . . . , n,

k = 1, . . . , bl; //g, h, and l are cost table, action table, and benefit table, respectively
7 for i = 1 to n do
8 for k = 1 to bl do
9 let c = 0, b = 0, p = 0, t = g(i− 1, k), q = l(i− 1, k), p = 0;

10 for j = 1 to ni do
11 if bij ≤ k then
12 let c = g(i− 1, dk − bije) + cij ;
13 let b = l(i− 1, dk − bije) + bij ;

14 else
15 let c = cij ;
16 let b = bij ;

17 endif
18 if (c < t) or (c = t and b > q) then
19 let t = c;
20 let p = j;
21 let q = b;

22 endif

23 end
24 let g(i, k) = t, h(i, k) = p, l(i, k) = q;

25 end

26 end
27 let C = g(n, bl), B = l(n, bl), k = bl, all aij = 0;
28 for i = n to 0 do
29 if k ≤ 0 then
30 break;
31 endif
32 let t = h(i, k);
33 if t > 0 then
34 let ait = 1;

35 let k = dk − bite; //bit is the benefit of ith equivalence class’ tth action

36 endif

37 end
38 return C, B, and aij .
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Chapter 6

THE R4 REDUCTION

FRAMEWORK FOR

ACTIONABLE THREE-WAY

DECISIONS

This chapter introduces the R4 reduction framework for actionable three-way deci-

sions. The framework specifies reductions of attributes, attribute-value pairs, classi-

fication rules, and actions. The first three types of reductions are based on existing

methods that are redefined for the context of actionable three-way decisions and the

fourth is novel. Attribute reduction removes attributes from all classification rules to

reduce the action cost. Attribute-value pair reduction shortens the left hand side of

particular rules to reduce their action cost without sacrificing any of their classifica-

tion power or action benefit. Rule reduction and action reduction remove redundant

classification rules and actions to reduce the computational cost. For the first two

types of reductions in R4, the Addition strategy for reduction is adapted and its cor-

rectness is proven. Based on this strategy, an algorithm for reductions of attributes
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and attribute-value pairs is designed.

The major contributions of this chapter are as follows: (1) we propose the R4

framework, a comprehensive, four-step approach to reduce the costs and increase

the benefits of finding and applying actions; (2) we modify the existing definitions

of attribute reduction, attribute-value pair reduction, and rule reduction to suit the

context of actionable three-way decisions; (3) we provide the Addition algorithm

schema for the first two steps of the framework and prove its correctness; (4) we

design specific instances of this schema for attribute reduction and attribute-value

pair reduction.

6.1 Motivation of Reduction and Related Works

In the acting step of three-way decision making, actions are taken with the goal of

transferring objects from unfavorable regions to favorable regions to gain benefit [22].

Given a trisection, classification rules are first induced to classify every object in

one of the three regions based on the obtained trisection. Then actionable rules for

transferring objects are constructed based on the classification rules, and actions for

specific objects are chosen according to the actionable rules. Each action may incur

a cost (the action cost) and bring a benefit (the action benefit).

Some studies focused on a local view, which is to search for one action for trans-

ferring one object or a group of similar objects [75], and other studies focused on

a global view, which is to search for a set of actions which optimizes an objective

function [22, 102]. As an example of a local view, Ras and Wieczorkowska [75] first

introduced actionable rules (referred to as action rules in their paper) to move specific

customers of a bank from a low profit class to a high profit class to increase profits.

Yang et al. [102] applied a similar step to decision trees; their method attempts to

change customers from an undesired status to a desired status by taking actions to
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move them from one node of the decision tree to another. Since they attempted to

obtain an optimal tree, they were taking a global view.

Gao and Yao [22] analyzed action costs and benefits, and proposed four actionable

models (i.e., Chapter 3) to deal with costs and benefits for different situations. In

these four models, the action costs are assumed to be determined by only the at-

tributes and their values. However, some attributes, attribute values, classification

rules, and actions may be redundant. In order to reduce costs and increase bene-

fits, we propose here that the notions of a reduct and rule induction be adopted from

rough sets [65] and machine learning [73] to remove those redundancies. Reducing the

number of attributes and attribute-value pairs may increase benefits and reduce ac-

tion costs, while reducing the number of rules and actions may reduce computational

costs.

There is some existing work related to the reductions of attributes, attribute-value

pairs, and rules. Most relevant publications discuss attribute reduction and relatively

few discuss attribute-value pair and rule reduction. An attribute reduct is a minimal

set of attributes that is necessary and sufficient to classify objects [65]. For attribute

reduction in cost-sensitive situations, Min et al. [61] introduced test-cost-sensitive

attribute reduction that aims to find a reduct with minimum test cost rather than a

reduct with maximum accuracy. Jia et al. [37] and Ju et al. [42] discussed attribute

reducts with minimum test costs for decision-theoretic rough sets. Miao et al. [59]

studied three types of relative attribute reducts. Yao and Zhang [124] analyzed class-

specific attribute reducts and their relations. Yao and Zhao [125] analyzed measures

for attribute reduction, such as confidence, coverage, cost, and generality, which may

be considered when designing attribute reduction algorithms. Ma et al. [57, 58]

proposed monotonic uncertainty measures for attribute reduction in a probabilistic

rough set model. The attribute-value pair reduction is also called rule simplification,

which simplifies the left hand side of a rule by removing some redundant attribute-
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value pairs without making the rule unsatisfied. Shan and Ziarko [85] introduced the

decision matrix to find all maximally general rules. Ziarko and Shan [146] designed

an algorithm for attribute-value pair reduction based on a decision matrix. Yao and

Fu [118] gave a formal definition of attribute-value pair reduction for a consistent

decision table but did not provide an algorithm. Rule reduction removes redundant

rules from a set of rules based on certain criteria. One widely applicable criterion for

rule reduction is to find a minimum set of rules that has maximum generality, but

other criteria can be used in specific applications. Hamilton et al. [30] introduced

the RIAC framework that combines attribute reduction and rule simplification for

approximate classification. Grzymala-Busse [28] introduced the LEM2 algorithm,

which directly induces a set of simplified rules for classification. We adopt the idea of

separating the attribute reduction, attribute-value pair reduction, and rule reduction

into three sequential steps [118]. We also propose a method for action reduction,

which may significantly reduce computational cost.

6.2 Four-step Analysis of Reductions

As previously stated, the goal of this chapter is to describe the R4 algorithmic frame-

work for reducing costs and increasing benefits for four actionable models. Given

a decision table, an objective concept, movement patterns, a misclassification cost

matrix, and attribute-value changing cost functions, five processing steps are suffi-

cient to produce a solution for any of four actionable models described in Chapter 3.

Figure 6.1 illustrates this procedure, in which each processing step is denoted as a

rectangle. The R4 framework specifies the first four steps, which are enclosed in a

dashed box, i.e., attribute reduction, attribute-value pair reduction, rule reduction,

and action reduction. Action reduction is a new process introduced in this thesis.

With the R4 framework, the first two steps can reduce the action cost, increase the
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upper bound of benefit, and increase the maximum benefit under a limited cost, and

the last two steps can reduce the computational cost.

(1) A decision table  
(2) An objective concept	
(3) Movement patterns	
(4) A misclassification cost matrix	
(5) Cost functions

Attribute reduction

A reduced decision table	
(a set of rules)

Attribute-value pair reduction

A set of  simplified rules

Rule reduction

A minimal set of simplified rules

Action reduction

A minimal set of actions

Search for solution

Solution

Figure 6.1: An overview of the procedure for acting in actionable three-way decision
making with R4.

6.3 Attribute Reduction

An attribute reduct of a decision table is a minimal subset of As ∪Af that keeps the

same classification power as the whole condition attribute set. The Addition strategy

for attribute reduction constructs a reduct from an empty set and adds the attributes
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to the set one at a time without ever deleting any attributes [23]. Other common

attribute reduction strategies, such as the Deletion strategy or the Addition-deletion

strategy requires a deletion phase. Since the Addition strategy allows the order of

the selection of attributes to be controlled by a heuristic selection function, it may

construct a reduct with preferable attributes [142] (e.g., attributes lead to low action

cost) compared to other strategies.

Generally, a decision table may have more than one reduct and it is an NP-hard

problem to find all reducts [92]. Our motive is to reduce action cost and increase

benefit. Therefore in this section, we introduce an algorithm based on the Addition

strategy to search for a reduct with an approximately minimum cost.

6.3.1 Attribute Reducts in Three-way Decisions

Let us consider how we can increase benefits and decrease costs for the four actionable

models. If some condition attributes are not required to distinguish objects, we can

remove them and obtain a subset of As ∪Af without losing any classification power.

It is possible to find a subset of the condition attributes that generates the same

trisection of OB as As∪Af . According to Equation (3.2), if some stable attributes are

removed without losing any classification power, then the resulting subset of As ∪Af
may provide more actionable rules to transfer objects and therefore may increase the

solution benefit and decrease the action cost. According to Equation (3.5), the cost of

each action depends on the costs of its sub-actions, where the sub-actions are based on

flexible attributes and their values. If some flexible attributes are removed, then the

subset avoids executing some sub-actions for each action and therefore may reduce the

action costs. Therefore, to reduce action cost, we must remove some flexible or stable

attributes, and to increase solution benefit, we must remove some stable attributes.

To describe the search for a minimal subset of condition attributes that maps

the same objects to the favorable and unfavorable regions as are mapped by the
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whole condition attribute set, we introduce some notation. Let (SF , SU , SI) denote a

trisection of OB where SF , SU , and SI are the sets of objects in all favorable regions,

all unfavorable regions, and all other regions, respectively, and any two of the sets

are pair-wise disjoint; they can be obtained based on the initial trisection π and

movement patterns. We use a set of three indicators T = {U, F, I} and a mapping τ

to indicate the type of region that an object belongs to:

τ : OB −→ T,

where U , F , and I indicate the unfavorable regions, favorable regions, and other

regions, respectively. For example, if x ∈ OB is in an unfavorable region, i.e, x ∈ SU ,

then τ(x) = U . We also define a indiscernibility relation [64] IND(A | τ) for a subset

of attributes A ⊆ (As ∪ Af ) with respect to the mapping τ :

IND(A | τ) = {(x, y) ∈ OB ×OB | τ(x) 6= τ(y)}. (6.1)

Based on this definition, a relative attribute reduct [66] can be redefined as follows.

Definition 6.1 An attribute set R ⊆ (As ∪ Af ) from a decision table S is called

a relative attribute reduct of S with respect to the mapping τ if R satisfies the

following two conditions:

(s1) IND(R | τ) = IND(As ∪ Af | τ);

(n1) ∀a ∈ R, IND(R− {a} | τ) 6= IND(As ∪ Af | τ).

Condition (s1), which is called the jointly sufficient condition, ensures that R has the

same trisecting power as the whole condition attribute set. Condition (n1), which

is called the individually necessary condition, ensures that every attribute in A is

necessary.
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By adapting the idea of a discernibility matrix from rough sets research [92], we

construct a version of a discernibility matrix for the context of three-way decision

making:

Definition 6.2 Given a decision table S and a mapping τ , the discernibility ma-

trix M = (m(x, y)) is an |OB| × |OB| matrix, in which the element m(x, y) for an

object pair (x, y) ∈ OB ×OB is defined by:

m(x, y) =




∅, τ(x) = τ(y);

{a ∈ (As ∪ Af ) | Ia(x) 6= Ia(y)}, τ(x) 6= τ(y).
(6.2)

The discernibility matrix M is a symmetric and square matrix where all elements

on the principal diagonal are the empty set, i.e., m(x, y) = m(y, x),∀x, y ∈ OB and

m(x, x) = ∅, ∀x ∈ OB. Any element m(x, y) of M is a set of attributes such that

each attribute of m(x, y) can distinguish x and y by its values. It is sufficient to

consider only the lower triangle or the upper triangle of M . As another formulation,

M also can be expressed as a set consisting of all distinct, nonempty elements, that

is, M = {m(x, y) | ∀x, y ∈ OB ∧m(x, y) 6= ∅}. The concept of a relative attribute

reduct can also be characterized in terms of the discernibility matrix, as shown by

the following theorem [92].

Theorem 6.1 Given the discernibility matrix M of a decision table S, an attribute

set R is a relative attribute reduct of S if and only if

(s2) ∀(x, y) ∈ OB ×OB, m(x, y) 6= ∅ ⇒ R ∩m(x, y) 6= ∅;

(n2) ∀a ∈ R, ∃(x, y) ∈ OB ×OB, m(x, y) 6= ∅ ∧ ((R− {a}) ∩m(x, y) = ∅).

The (s2) and (n2) conditions are the jointly sufficient condition and the individually

necessary condition, respectively, and the explanations are the same as for (s1) and

(n1). Theorem 6.1 provides a criterion to test whether a subset of As∪Af is a reduct,
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but it does not directly offer a method to find a reduct. In the rest of this chapter,

we use m for m(x, y) and we use the set form M = {m | m(x, y) 6= ∅} to represent

the discernibility matrix if there is no confusion. We use RED(M) to denote the set

of all reducts of a decision table with a discernibility matrix M .

We use Example 6.1 to demonstrate the above notations.

Example 6.1 Suppose we have the decision table shown in Table 6.1 for an artificial

medical data set, in which age is a stable attribute, chol and bp are flexible attributes,

representing for cholesterol level and blood pressure, respectively, and diagnosis is a

decision attribute.

Table 6.1: A decision table for an artificial medical data set.

# age chol bp diagnosis
o1 0-29 low normal +
o2 30-59 low normal +
o3 30-59 medium low +
o4 0-29 low low +
o5 30-59 high high -
o6 60+ low high -
o7 0-29 high high -
o8 60+ medium normal -

POS(X)

BND(X)

NEG(X)

Figure 6.2: Movement patterns for Table 6.1.

Given an objective class X = {x ∈ OB | Idiagnosis(x) = +} = {o1, o2, o3, o4} and

the misclassification cost matrix shown in Table 6.2, three regions are constructed:

POS(0.5,0.2)(X) = {o1, o2, o3, o4},
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Table 6.2: Misclassification cost matrix.

POS BND NEG
X 2 4 8
XC 11 9 8

NEG(0.5,0.2)(X) = {o5, o6, o7, o8},

BND(0.5,0.2)(X) = ∅,

where the pair of thresholds (α = 0.5, β = 0.2) is computed based on the given mis-

classification cost matrix, the computation method can be checked in [122]. The move-

ment patterns shown in Figure 6.2 indicate that SF = POS(X), SU = (NEG(X) ∪

BND(X)), and SI = ∅. Since BND(X) = ∅, we wish to transfer objects from only

NEG(X) to POS(X).

By applying Definition 6.2 to Table 6.1, the discernibility matrix shown in Ta-

ble 6.3 is computed, only the lower triangle is given. The set representation of the

discernibility matrix is:

M = {{age, chol}, {age, bp}, {chol, bp}, {age, chol, bp}}.

Table 6.3: Discernibility matrix of Table 6.1.

o1 o2 o3 o4 o5 o6 o7 o8

o1 ∅
o2 ∅ ∅
o3 ∅ ∅ ∅
o4 ∅ ∅ ∅ ∅
o5 {age, chol, bp} {chol, bp} {chol, bp} {age, chol, bp} ∅
o6 {age, bp} {age, bp} {age, chol, bp} {age, bp} ∅ ∅
o7 {chol, bp} {age, chol, bp} {age, chol, bp} {chol, bp} ∅ ∅ ∅
o8 {age, chol} {age, chol} {age, bp} {age, chol, bp} ∅ ∅ ∅ ∅

There are 3 condition attributes and an exhaustive search has to check 23 − 2 = 6
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combinations of them, i.e., all possible subsets except ∅ and As ∪ Af . Therefore, we

can use Theorem 6.1 to check each combination and get the set of reducts:

RED(M) = {{age, chol}, {age, bp}, {chol, bp}}.

6.3.2 Categorization of Attributes

In order to construct a reduct, attributes can be categorized in a variety of explicit

or implicit way [61, 97, 99, 127, 142]. A widely used categorization is the division

of attributes into core attributes and non-core attributes. To build a theoretical

foundation for our Addition strategy, which was previously proposed in a somewhat

different form [23], we categorize the condition attributes into three categories as

follows:

Definition 6.3 Given a decision table S, attributes in As ∪ Af can be divided into

three pair-wise disjoint classes:

CORE =
⋂

RED(M),

USEFUL-NC =
⋃

RED(M)− CORE,

USELESS = As ∪ Af −
⋃

RED(M).

Attributes in CORE, USEFUL-NC, and USELESS are called core, useful non-

core, and useless attributes, respectively. The set of attributes USEFUL =
⋃

RED(M) =

CORE ∪ USEFUL-NC is the set of all useful attributes.

A core attribute is one that appears in a singleton set in a discernibility matrix [92].

Given a discernibility matrix M , the CORE can be easily constructed by visiting each

element of M and computing CORE =
⋃{m ∈M | |m| = 1}.

According to the above classification of attributes, the following properties hold:
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(P1) CORE ∪ USEFUL-NC ∪ USELESS = As ∪ Af ;

(P2) Every attribute in USEFUL-NC appears in at least one reduct, but not in all

reducts;

(P3) Any attribute in USELESS does not appear in any reduct;

(P4) Any attribute in CORE appears in every reduct;

(P5) RED(M ′) = RED(M), where M ′ = {m− USELESS | m ∈M}.

Proof. Properties (P1) to (P4) are easy to prove and the proof of (P5) is given in

Appendix A.2.

We further adopt two operations, element absorption [92] and element deletion [126]

for simplifying discernibility matrix. They are defined in Definition 6.4.

Definition 6.4 An element absorption on m′ means replacing all m by m′ in a

discernibility matrix M if m′,m ∈M and m′ ⊂ m. The result of applying all possible

element absorptions in some order to M is a new discernibility matrix, M∗, called

an absorbed discernibility matrix of M . Given any A ⊆ As ∪ Af , an element

deletion of m ∈M with regard to A means replacing m by m− A in M .

In the set representation of a discernibility matrix, some elements may be removed

from M by absorption, i.e., M∗ ⊆ M . Absorption will not affect any reduct [92],

i.e., RED(M∗) = RED(M). Although, element deletion may change RED(M), the

existence of at least one reduct is still guaranteed, as stated in Lemma 6.1 [126].

Lemma 6.1 Given a discernibility matrix M , W =
⋃
M , and A ⊆ W , if the set

of attributes W − A is jointly sufficient (i.e., ∀m ∈ M, (W − A) ∩ m 6= ∅), then

RED(M ′) 6= ∅ and RED(M ′) ⊆ RED(M), where M ′ = {m− A | m ∈M}.

By making use of the notation in Definition 6.5 [126], we provide Lemma 6.2.
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Definition 6.5 Given an attribute a from a discernibility matrix M , i.e., a ∈ ⋃M ,

the group of sets of attributes defined by:

GroupM(a) = {m ∈M | a ∈ m}

is called the a-induced group of sets of attributes on M .

Lemma 6.2 Given a discernibility matrix M , then
⋃
M∗ = USEFUL, i.e., every

attribute in the absorbed discernibility matrix is useful.

Proof. See Appendix A.3.

Lemma 6.2 provides an effective way of computing the USEFUL set. This lemma

also leads to an effective way of computing the USEFUL-NC set, since the CORE

set is easy to calculate from M . That is, USEFUL-NC = USEFUL − CORE =
⋃
M∗ − ⋃{m ∈ M | |m| = 1} =

⋃ {m ∈M∗ | |m| > 1}. Based on Lemma 6.2,

Lemma 6.3 is readily proved.

Lemma 6.3 Given a discernibility matrix M , an attribute a ∈ USEFUL if and only

if ∃g ∈ GroupM(a), such that g cannot be absorbed by any other elements in M , i.e.,

∀m ∈ (M −GroupM(a)),m 6⊆ g.

Proof. See Appendix A.4.

If an attribute a is useful, there must exist some g ∈ GroupM(a) satisfying

Lemma 6.3 that makes a useful. Thus, Lemma 6.3 provides an approach to test

whether an attribute is useful without applying any actual element absorption to

obtain an absorbed matrix. Thus, we can find some useful attributes and construct

a reduct without needing to calculate any element absorptions.

Example 6.2 Based on the discernibility matrix M = {{age, chol}, {age, bp}, {chol, bp},

{age, chol, bp}} and RED(M) = {{age, chol}, {age, bp}, {chol, bp}} from Example 6.1,
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the absorbed discernibility matrix and classification of attributes are as follows:

M∗ = {{age, chol}, {age, bp}, {chol, bp}}.

CORE = ∅, USEFUL-NC = {age, chol, bp}, USELESS = ∅.

6.3.3 The Addition Strategy for Reduct Construction

The Addition strategy for attribute reduct construction starts from either the empty

set or the CORE set, adds attributes one at a time [142], and never removes any

attributes after they have been added. If it starts from the empty set, the reduct con-

struction procedure can be considered as a search on an attribute lattice < 2As∪Af ,⊆>

from the top to the bottom. Figure 6.3 illustrates the corresponding attribute lattice

for the decision table in Table 6.1, where a downward link connecting a pair of nodes

implies a proper subset relationship.

∅

{age} {chol} {bp}

{age, chol} {age, bp} {chol, bp}

{age, chol, bp}

Figure 6.3: The attribute lattice of the decision table in Table 6.1.

During construction, the Addition strategy ensures that the set of attributes is

always a subset of at least one reduct in RED. Yao and Zhao [126] provided the formal

definition of a partial reduct given in Definition 6.6.

Definition 6.6 A set of attributes R′ is called a partial reduct, if ∃R ∈ RED, such

that R′ ⊆ R.
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Once an attribute a ∈ ⋃M is chosen to be added into a partial reduct, then M

can be simplified by removing all elements in GroupM(a) from M , because all object

pairs associated with these elements can be discerned by a. We provide Theorem 6.2,

which can be applied to ensure that each added attribute a will be in a partial reduct

if two sequential steps are used to shrink M : (1) remove GroupM(a) from M yielding

M1, i.e., M1 = M −GroupM(a), and (2) delete g from M1 giving a new version of M ,

i.e., M = {m− g | m ∈M1}, where g ∈ Group(a) makes a useful. By repeating these

two steps, M will be shrunk to the empty set, and one reduct will be constructed.

Theorem 6.2 Given a discernibility matrix M , if an attribute a ∈ As∪Af is useful,

then ∃g ∈ GroupM(a) that satisfies the following property:

RED({{a}} ∪M ′) ⊆ RED(M),

where M ′ = {m− g | m ∈ (M −GroupM(a))}.

Proof. See Appendix A.5.

Theorem 6.2 applies to any discernibility matrix, and it suggests an Addition

strategy for reduct construction algorithms. In Algorithm 5, we provide an algorithm

schema for this Addition strategy. To clearly illustrate the idea, the schema is given

by a recursive procedure. As can be seen, the schema contains a tail recursion that can

be replaced by a loop. Based on the schema, many algorithms for reduct construction

can be designed. We later provide an algorithm instance of this schema by using a

loop. We use Example 6.3 to demonstrate the idea of the Addition strategy in detail.

Example 6.3 We continue using the data given in previous examples. We start to

construct a relative attribute reduct from ∅ (i.e., search from the top of Figure 6.3).

We use the order in which the attributes appear in the table for processing, and we use

M , R, and CA for the discernibility matrix, partial reduct, and candidate attributes

for the partial reduct, respectively.
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Algorithm 5: An algorithm schema of Addition strategy for reduct con-
struction.

Procedure: Addition(M)
Input: A discernibility matrix M .
Output: A relative attribute reduct R.

1 if M = ∅ then
2 return ∅;
3 else
4 let R = ∅, CA =

⋃
M ; // or R = CORE, CA = USEFUL-NC;

5 select a useful attribute a ∈ CA;
6 let R = R ∪ {a};
7 let M1 = M −GroupM(a); // shrinking step 1
8 select a g ∈ GroupM(a) such that ∀m ∈M1,m− g 6= ∅;
9 let M = {m− g | m ∈M1}; // shrinking step 2

10 let R = R ∪ Addition(M);
11 return R;

12 endif

[Recursion Level 1]. Check attribute age.

The initial values of the variables are as follows: M = {{age, chol}, {age, bp},

{chol, bp}, {age, chol, bp}}, R = ∅, CA = {age, chol, bp}, and GroupM(age) =

{{age, chol}, {age, bp}, {age, chol, bp}}.

Because there exists g = {age, chol} ∈ GroupM(age), which makes attribute

age useful, we add it to partial reduct: R = ∅ ∪ {age} = {age}. After perform-

ing the shrinking steps with g = {age, chol}, we have M = {m − g | m ∈ (M −

GroupM(age))} = {{bp}}.

The process of this level of recursion is illustrated in Figure 6.4. After adding age

into the partial reduct, we will need to search for the reduct in a sublattice that contains

all nodes containing the attribute age. Because the g = {age, chol} was deleted from

M , we do not have to check chol in next level of recursion. This shrinking step further

reduces the sublattice to the smaller one shown in Figure 6.5.

[Recursion Level 2]. Check attribute bp.

The values of variables are as follows: M = {{bp}}, R = {age}, and CA = {bp}.
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∅

{age} {chol} {bp}

{age, chol} {age, bp} {chol, bp}

{age, chol, bp}

Figure 6.4: The attribute lattice after adding attribute age.

∅

{age} {chol} {bp}

{age, chol} {age, bp} {chol, bp}

{age, chol, bp}

Figure 6.5: The attribute lattice after removing attribute chol.

Because {bp} is a singleton element in M , bp is a core attribute and therefore it is

an useful attribute. We add it to the partial reduct: R = {age}∪{bp} = {age, bp}. We

choose g = {bp} because it makes attribute bp useful. After performing the shrinking

steps with g = {bp}, we have M = {m− g | m ∈ (M −GroupM(bp))} = ∅.

After adding attribute bp into R, M is empty, which means all objects in OB can

be discerned by the attributes in R. The process of this level of resursion is illustrated

in Figure 6.6, in which the reduct node {age, bp} is circled.

6.3.4 Algorithm and Fitness Functions

Ideally, we would like to construct a reduct that produces the greatest benefit and

requires the lowest action cost for any actionable model. However, finding the reduct
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∅

{age} {chol} {bp}

{age, chol} {age, bp} {chol, bp}

{age, chol, bp}

Figure 6.6: The attribute lattice at recursion level 2.

with either lowest cost or the greatest benefit is at least NP-hard, because finding

all reducts has been proven to be NP-hard [92]. Therefore, based on the algorithm

schema given in Section 6.3.3, we present Algorithm 6 for computing an attribute

reduct with an approximately optimal solution. Algorithm 6 uses a while loop to

implement the recursive function call in the schema, a foreach loop from line 9 to 13

to determine whether attribute a is useful, and the two subtractions in lines 6 and 17

to implement the two shrinking steps.

The overall time complexity of Algorithm 6 is O(|M |3|AT |), where |M | is the

cardinality of the set representation of discernibility matrix. The foreach loop from

line 9 to 13 has to check |GroupM(a)||M−GroupM(a)||As∪Af | times in the worst case

and its time complexity is O(|M |2|AT |). In practice, M may be reduced significantly

in size during the interations of the while loop because of the two shrinking steps in

lines 6 and 17.

Algorithm 6 uses two fitness functions, σ and δ, where function σ evaluates each

attribute a and function δ evaluates each element of G, i.e., a subset of GroupM(a),

for the chosen attribute a. Because we prefer to construct a reduct that requires

the lowest action cost and produces the greatest benefit, the fitness functions should

be designed to reflect these preferences. The reduct {age, bp} found in Example 6.3

without using any fitness functions contains the stable attribute age, which may re-
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Algorithm 6: An Addition strategy based algorithm for attribute reduction.

Input: A discernibility matrix M .
Output: A relative attribute reduct R.

1 R = ∅, CA =
⋃
M ; // or R = CORE, CA = USEFUL-NC;

2 sort CA by using a fitness function σ;
3 while M 6= ∅ do
4 let a be the first attribute of sorted CA;
5 compute GroupM(a) for a;
6 let M = M −GroupM(a);
7 let CA = CA− {a};
8 let G = ∅;
9 foreach gi ∈ GroupM(a) do

10 if ∀m ∈M, gi * m then // gi makes a useful
11 let G = G ∪ {gi};
12 endif

13 end
14 if G 6= ∅ then // a is useful
15 let R = R ∪ {a};
16 select the g ∈ G with the highest value of δ;
17 let M = {m− g | m ∈M};
18 let CA = CA− g;

19 endif

20 end
21 return R.

duce the number of possible actions, because an age object in an unfavorable region

cannot have its value changed to match similar objects in a favorable region. There-

fore, this reduct may not lead to a solution with the lowest cost or the highest benefit.

In contrast, {chol, bp} has two flexible attributes, which provide more potential for

possible actions.

In order to generate a solution that requires lower action cost and produces higher

benefit, the following heuristic information may be relevant when designing both σ

and δ:

(i) Fewer attributes lead to fewer sub-actions, each of which has a cost, and therefore

may lead to less overall action cost.
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(ii) Fewer stable attributes lead to a greater number of desirable actions and therefore

may lead to less overall action cost.

(iii) Attributes with smaller average costs of value changing may lead to less overall

action cost.

Recall that function σ is used for choosing attributes. Heuristic information (i) sug-

gests choosing fewer attributes and also choosing attributes with greater classification

power. Heuristic information (ii) and (iii) suggest choosing the attribute with the low-

est cost for changing attribute values of the objects in unfavorable regions. Thus, we

propose fitness function σ(a) as follows:

σ(a) = f(a) · c(a)λσ , (6.3)

where f(a) is a function evaluating the classification power of attribute a, c(a) is a

function evaluating the cost of changing the value of a for the objects in unfavorable

regions, and λσ ≤ 0 is a parameter controlling the magnitude of the cost penalty.

Setting λσ to −1 gives the classification power and the cost the same importance.

An attribute with the largest value for σ will be firstly considered for adding into a

partial reduct.

The classification power, f(a), can be evaluated by frequency or entropy, as shown

as Equation (6.4) and Equation (6.5), respectively:

Frequency : f(a) = |{m ∈M | a ∈ m}|, (6.4)

Entropy : f(a) = H({a}|τ)−1

=
(
−

n∑

i=1

P (Xi)
∑

j∈{U,F,I}

P (Sj|Xi) log(P (Sj|Xi))
)−1

, (6.5)

whereH({a}|τ) denotes the conditional information entropy of attribute a with regard

to τ , and {X1, . . . , Xn} is a partition ofOB introduced by a. Intuitively, if an attribute
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has the highest frequency of appearance in the discernibility matrix, it may be able

to distinguish the largest number of objects. Therefore, the frequency-based strategy

selects the available attribute with the highest frequency to be added to the partial

reduct. Intuitively, if an attribute has the lowest entropy, it may have the lowest

uncertainty for distinguishing objects, i.e., it may have the greatest classification

power. Therefore, the entropy-based strategy selects the attribute with the lowest

entropy for adding into a partial reduct. In Equation (6.5), we use H({a}|τ)−1 so

that the Addition algorithm can consistently select the attribute with the largest

value for f(a).

By considering heuristic information (ii) and (iii), function c(a) is defined as shown

in Equation (6.6):

c(a) =





1
|SU |

∑
v∈V ′a

∑
y∈SU Ca(Ia(y), v), a is flexible;

λs, a is stable,
(6.6)

where V ′a is the set of all values of attribute a from all objects in SF and λs is a large,

fixed value, e.g., λs = +∞. For any flexible attribute a, the function c(a) needs to

visit all condition attributes for each object in SU . Therefore, the time complexity of

computing c(a) is O(|SU ||AT |). An alternative, simpler cost penalty function is given

in Equation (6.7):

c(a) =





λf , a is flexible;

λs, a is stable,
(6.7)

where λf and λs are fixed values and λf ≤ λs.

The second fitness function δ is applied to evaluate every element in G for a

useful attribute a. When shrinking M , we prefer to remove attributes with lowest

classification power and highest cost. Therefore, frequency and entropy can be again

used to design δ. Suppose we use frequency to evaluate classification power. In a

practical method, we want to remove a subset g with a small
∑

m∈M |m ∩ g| and a
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large 1/|g|∑b∈g c(b). Thus, we propose the following definition for the fitness function

δ:

δ(g) = |{m ∈M | m ∩ g 6= ∅}|
( 1

|g|
∑

b∈g

c(b)
)λδ , (6.8)

where λδ ≤ 0 is a parameter that controls the magnitude of cost and c(·) is given by

Equation (6.6) or Equation (6.7). In Algorithm 6, a subset g with the smallest value

for function δ will be chosen to shrink M .

Example 6.4 We continue from previous examples. Suppose the cost functions for

attributes chol and bp are given in Table 6.4 and Table 6.5, respectively. By applying

Equations (6.5) and (6.6) to Equation (6.3), and setting λσ = −1, λs = +∞, and

λδ = −1, the relative attribute reduct found by Algorithm 6 is {chol, bp}.

Table 6.4: Cost function Cchol.

low medium high
low 0 1 3
medium 2 0 1
high 4 1 0

Table 6.5: Cost function Cbp.

low normal high
low 0 1 2
normal 1 0 1
high 3 1 0

Given a reduct R ⊆ As ∪Af , the notation [x]R denotes the equivalence class of x

with respect to R: [x]R = {y ∈ OB | Ia(y) = Ia(x),∀a ∈ R}. For simplicity, we will

use [x] to represent [x]R in the remainder of this chapter.

6.3.5 Applying Attribute Reduct to Only Favorable Regions

To produce greater benefit, we only apply the attribute reduct to favorable regions

rather than to all regions. In the context of this chapter, objects are grouped into

equivalence classes that can be transferred. If we apply the reduct for all regions,

some equivalence classes in unfavorable regions based on As∪Af will be grouped into

a larger equivalence class. Such a larger equivalence class has a higher demand on

cost, and may exceed the cost limit. By applying attribute reduct for only favorable
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regions, we will have more possible actions, which may produce a greater benefit

solution. We use Example 6.5 with three cases to explain this idea.

Example 6.5 We continue using the previously introduced decision table, objective

class, movement patterns, misclassification cost matrix, and cost functions to transfer

objects from NEG(X) to POS(X). In the remainder of this example, we consider the

improvements of benefits, that is to compute the maximum benefit (model (i)), we also

compute the maximum benefit under a limited action cost of 8 (model (iii)) in three

specific cases.

Case (1) Not applying attribute reduction, i.e., all attributes in As∪Af are used

to induce classification rules. We get 8 equivalence classes, each containing one object.

There are only 2 transferable objects: o5 and o7. Objects o6 and o8 are untransferable

because there is no object in the favorable regions whose age is 60+. All desirable

actions are computed (see Table 6.6). For model (i), the upper bound of the benefit

is 12 by taking actions r[o5]  r[o3] and r[o7]  r[o1]. For model (iii), the maximum

benefit under a limited cost of 8 is 6 by taking action r[o5]  r[o3].

Table 6.6: All desirable actions with costs and benefits for case (1).

[o5] bij cij
r[o5]  r[o2] 6 5
r[o5]  r[o3] 6 4

[o7] bij cij
r[o7]  r[o1] 6 5
r[o7]  r[o4] 6 7

Case (2) Applying attribute reduction for all regions with reduct R = {chol, bp}.

The equivalence classes based on R are [o1] = {o1, o2}, [o3] = {o3}, [o4] = {o4},

[o5] = {o5, o7}, [o6] = {o6}, and [o8] = {o8}. All equivalence classes in unfavorable

regions, i.e., [o5], [o6], and [o8] are transferable, because the only stable attribute age

is removed after applying attribute reduction. Then, all desirable actions with their

benefits and costs are computed (see Table 6.7). The upper bound of benefit is 24 by

taking actions r[o5]  r[o3], r[o6]  r[o1], and r[o8]  r[o3]. The maximum benefit under

a limited cost of 8 is 12 by taking actions r[o6]  r[o1] and r[o8]  r[o3].
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Table 6.7: All desirable actions with costs and benefits for case (2).

[o5] bij cij
r[o5]  r[o1] 12 10
r[o5]  r[o3] 12 8
r[o5]  r[o4] 12 14

[o6] bij cij
r[o6]  r[o1] 6 1
r[o6]  r[o3] 6 4
r[o6]  r[o4] 6 3

[o8] bij cij
r[o8]  r[o1] 6 2
r[o8]  r[o3] 6 1
r[o8]  r[o4] 6 3

Case (3) Restricting attribute reduction to only favorable regions with reduct

R = {chol, bp}. In this case, o5 and o7 will not be grouped as one equivalence class.

The transferable equivalence classes are [o5] = {o5}, [o6] = {o6}, [o7] = {o7}, and

[o8] = {o8}. All desirable actions are computed (see Table 6.8). Thus, the upper

bound of benefit is 24 by taking actions r[o5]  r[o3], r[o6]  r[o1], r[o7]  r[o3], and

r[o8]  r[o3]. We can take actions r[o5]  r[o3], r[o6]  r[o1], and r[o8]  r[o3] to obtain

the maximum benefit of 18 under a limited cost of 8.

Table 6.8: All desirable actions with costs and benefits for case (3).

[o5] bij cij
r[o5]  r[o1] 6 5
r[o5]  r[o3] 6 4
r[o5]  r[o4] 6 7

[o6] bij cij
r[o6]  r[o1] 6 1
r[o6]  r[o3] 6 4
r[o6]  r[o4] 6 3

[o7] bij cij
r[o7]  r[o1] 6 5
r[o7]  r[o3] 6 4
r[o7]  r[o4] 6 7

[o8] bij cij
r[o8]  r[o1] 6 2
r[o8]  r[o3] 6 1
r[o8]  r[o4] 6 3

Also, we can reduce cost (models (ii) and (iv)) analogously. In Example 6.5,

under a limited cost of 8, case (3) can obtain a benefit of 18, which is greater than

the benefits obtained in case (2) and case (1). Furthermore, since the constraint B̄,

i.e., the upper bound of benefit may be changed after reduction, model (ii) can be

analyzed through model (iv). For example, the upper bound of the benefit in case

(1) is 12 and its associated minimum cost is 9. After applying attribute reduction for

favorable regions in case (3), we are able to transfer all objects from SU and the cost

to obtain the same benefit (i.e., 12) is reduced to 2 by taking actions r[o6]  r[o1] and

r[o8]  r[o3]. This is because case (3) groups the objects of SU at the finest granularity,

i.e., with the smallest equivalence classes, constructed based on As ∪Af . Intuitively,

this process splits some actions in case (2) into smaller actions in case (3) and allows
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us to take a part of them for computing the solution. In case (1), we can transfer

only o5 and o7 to favorable regions, because o6 and o8 cannot be transferred since

they contain the stable attribute, age.

6.4 Attribute-value Pair Reduction

The idea of attribute-value pair reduction is similar to attribute reduction. It can

be implemented as rule simplification by removing redundant attribute-value pairs

without sacrificing the classification power of the rules. Attribute-value pair reduction

may reduce the cost of some actions. For example, suppose two equivalence classes

[x] and [y] are from SF and SU , respectively, and two rules induced from them based

on a reduct {bp, chol} are r[x] : bp = normal ∧ chol = medium⇒ diagnosis = + and

r[y] : bp = high ∧ chol = high ⇒ diagnosis = −, respectively. We have to change

both the blood pressure and the cholesterol level for [y] to transfer it to [x]. If we can

remove the attribute-value pair chol = medium from the rule r[x] without reducing

any classification power, then the simplified rule r[x] leads to a shorter actionable rule

r[y]  r[x] : bp : high  normal ⇒ diagnosis : −  +. The cost of this action is

reduced because we do not have to pay the cost for changing the cholesterol level.

The decision matrix, a structure similar to the discernibility matrix, was intro-

duced by Shan and Ziarko [85] for attribute-value pair reduction. In the context of

actionable three-way decision, we provide a new definition as follows:

Definition 6.7 Given a decision table S and an attribute reduct R, the decision

matrix D = (d([x], [y])) is an m × n matrix, in which [x] ⊆ SF and [y] ⊆ SU are

equivalence classes on R, m and n are the numbers of equivalence classes in SF and

SU , respectively, and the element d([x], [y]) is a set of attribute-value pairs defined by:

d([x], [y]) = {a = Ia(x) | a ∈ R, Ia(x) 6= Ia(y)}. (6.9)
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The decision matrix of Table 6.1 is shown in Example 6.6. Every row of a decision

table includes sufficient information to distinguish an equivalence class (row) from SF

and all equivalence classes (columns) from SU . We can get a classification rule whose

left hand side is a conjunction of all attribute-value pairs of that row. The task of

this section is to find a subset of attribute-value pairs for each row that leads to a

classification rule which further leads to a solution with lowest cost.

Example 6.6 Based on a reduct R = {chol, bp}, SF = [o1]∪[o3]∪[o4] = {o1, o2, o3, o4},

and SU = [o5]∪[o6]∪[o8] = {o5, o6, o7, o8}, the decision matrix of Table 6.1 is computed

in Table 6.9.

Table 6.9: Decision matrix for favorable regions.

[o5] [o6] [o8]
[o1] chol = low, bp = normal bp = normal chol = low
[o3] chol = medium, bp = low chol = medium, bp = low bp = low
[o4] chol = low, bp = low bp = low chol = low, bp = low

The conjunction of the attribute-value pairs in the first row is: chol = low ∧ bp =

normal ∧ bp = normal ∧ chol = low, i.e., chol = low ∧ bp = normal. Therefore, the

classification rule of row [o1] is:

r[o1] : chol = low ∧ bp = normal⇒ diagnosis = +.

Each row of the decision matrix can be treated as a discernibility matrix, and each

attribute-value pair in the row can be treated as an attribute. Then all properties

and theorems for discernibility matrices are also satisfied for each row of the decision

matrix. We provide the definition of attribute-value pair reduct in terms of the

decision matrix as follows:

Definition 6.8 Given a row d([x], [yi]), i = 1, . . . , n of a decision matrix, let M =

{d([x], [yi])}, let AV =
⋃
i=1,...,n d([x], [yi]) be the set of all attribute-value pairs in this
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row. R ⊆ AV is an attribute-value pair reduct if it satisfies the following two

conditions:

(s3) ∀d([x], [yi]) ∈M, R ∩ d([x], [yi]) 6= ∅;

(n3) ∀a ∈ R, ∃d([x], [z]) ∈M, (R− {a}) ∩ d([x], [z]) = ∅.

The attribute-value pair reduct can be derived for each row of the decision matrix and

treated as a simplified rule. As with attribute reduction, the result of attribute-value

pair reduction is not unique. A reduction method based on the algorithm schema

of Algorithm 5 can be applied to each row of the decision matrix for attribute-value

pair reduction. In particular, the Algorithm 6 can be directly applied to each row of

the decision matrix for attribute-value pair reduction. In this case, the symbols in

Algorithm 6 are replaced as follows: M is a row of the decision matrix, CA is the set

of all attribute-value pairs in the row, and GroupM(a) is the set of attribute-value

pairs containing attribute-value pair a. The algorithm must be performed separately

on each row of a decision matrix.

As with attribute reduction, only the classification rules induced from favorable

regions require simplification. We use Example 6.7 to demonstrate this procedure.

Example 6.7 We continue the same setting of Example 6.5 and 6.6. Based on Ta-

ble 6.9, it is easy to compute simplified rules for favorable regions and they are listed

below:

r′[o1] : chol = low ∧ bp = normal⇒ diagnosis = +,

r′[o3] : bp = low ⇒ diagnosis = +,

r′[o4] : bp = low ⇒ diagnosis = +.

Based on these simplified rules, the benefits and the costs of some actions are

reduced and we have a new list of desirable actions in the DES shown in Table 6.10.
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According to the table, the maximum benefit under a limited cost of 8 is now 24,

which is the upper bound in this case. For comparison, the cost was 10 to obtain the

same benefit without rule simplification (calculated from Table 6.8). Obviously, the

minimum cost for obtaining a desired benefit is lowered after rule simplification.

Table 6.10: All desirable actions in DES with costs and benefits after attribute re-
duction and rule simplification.

[o5] bij cij
r[o5]  r′

[o1]
6 5

r[o5]  r′
[o3]

6 3

r[o5]  r′
[o4]

6 3

[o6] bij cij
r[o6]  r′

[o1]
6 1

r[o6]  r′
[o3]

6 3

r[o6]  r′
[o4]

6 3

[o7] bij cij
r[o7]  r′

[o1]
6 5

r[o7]  r′
[o3]

6 3

r[o7]  r′
[o4]

6 3

[o8] bij cij
r[o8]  r′

[o1]
6 2

r[o8]  r′
[o3]

6 1

r[o8]  r′
[o4]

6 1

We now explain why attribute-value pair reduction should not be applied to

unfavorable regions. For example, if the classification rule of [o5] in the unfavor-

able region, r[o5] : chol = high ∧ bp = high ⇒ diagnosis = − is simplified into

r′[o5] : chol = high ⇒ diagnosis = −, then we can transfer [o5] to only [o1], because

we removed the attribute-value pair of the blood pressure that is required to transfer

[o5] to [o3] or [o4].

To specify Algorithm 6 for attribute-value pair reduction, we only have to cus-

tomize two fitness functions, i.e., σ and δ. For σ, we may use the following two types

of heuristic information:

(i) The cost, i.e., the average sub-action cost of an attribute-value pair. It is the

average cost of changing the attribute values of unfavorable objects. The average

cost for attribute-value pair a = Ia(x) is:

c(a = Ia(x)) =





1
|SU |

∑
y∈SU Ca(Ia(y), Ia(x)), a is flexible;

λs, a is stable,
(6.10)

where λs ≥ 0 is a large, fixed value, e.g., λs = 109 or λs = +∞.

(ii) The confidence, i.e., the probability that an object has value Ia(x) for a if its

decision attribute value is Id(x). An attribute-value pair with higher confidence
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is considered to have a higher coverage of the extension of a rule. The confidence

of a = Ia(x) is defined as:

p(d = Id(x) | a = Ia(x)) =
|m(a = Ia(x)) ∩m(d = Id(x))|

|m(a = Ia(x))| , (6.11)

where m(·) is a set of all objects satisfying the condition in the parenthesis, e.g.,

m(d = Id(x)) = {y ∈ OB | Id(y) = Id(x)}.

We prefer a rule that consists of attribute-value pairs with lower costs and higher

confidences. Therefore, the fitness function σ can be designed as the ratio of these

two values:

σ(a = Ia(x)) = p(d = Id(x) | a = Ia(x))c(a = Ia(x))λσ , (6.12)

where λσ ≤ 0. An attribute-value pair with the largest fitness value of σ will be

checked first by the Algorithm 6.

For function δ, let GroupM(a = Ia(x)) be the set of d([x], [y]) containing a = Ia(x).

We use an equation similar in form to Equation (6.8) for any g ∈ GroupM(a = Ia(x)):

δ(g) = |{m ∈M | m ∩ g 6= ∅}| ·
( 1

|g|
∑

b∈g

c(b)
)λδ , (6.13)

where M is a row of the decision matrix, b is an attribute-value pair, c(·) is as given

in Equation (6.10), and λδ ≤ 0. An element g with the smallest value for the fitness

function δ will be chosen to shrink M .

6.5 Rule Reduction

Rule reduction is used to remove redundant rules produced by rule simplifications. A

common approach, which is based on generality, is to search for a minimum subset of
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rules that covers OB or all classifiable objects [30, 118]. For example, suppose there

are two rules: r1 : a = 1 ⇒ d = + and r2 : b = 2 ⇒ d = +. If m(a = 1) = {o1, o2}

and m(b = 2) = {o1, o2, o7}, i.e., the r2 is more general, then r1 can be removed.

In the context of actionable three-way decisions, costs and benefits are more im-

portant than generality. A less general classification rule is not redundant if it pro-

motes an action with lower cost. Based on this idea, we provide a new definition of

redundant rules in Definition 6.9.

Definition 6.9 Given an equivalence class [x] ⊆ SF , r[x] is a redundant rule if

for any desirable action r[yi]  r[x], [yi] ⊆ SU , there exists a desirable action r[yi]  

r[z], [z] 6= [x], [z] ⊆ SF , such that the benefit of r[yi]  r[z] is greater than or equal to

the benefit of r[yi]  r[x] and the cost of r[yi]  r[z] is less than or equal to the cost of

r[yi]  r[x].

According to the definition, any rule that may reduce the cost or increase the benefit

is not redundant. Therefore, removing redundant rules will not affect the benefit or

cost of a solution.

Unfortunately, checking whether a rule is redundant requires the calculation of all

its actions with their costs and benefits. This checking may be infeasible in practice.

A special case of redundant rules is duplicate rules, which have the same left hand

sides and the same right hand sides. Due to computational cost, we suggest only

dealing with this special case by keeping one rule and remove all its duplicates. Since

an algorithm for removing such duplicate rules is straightforward, we omit it.

We provide an example illustrating the main idea of rule reduction in Example 6.8.

Example 6.8 Based on the simplified rule list from Example 6.7, r′[o3] and r′[o4] are

identical, which means one of them can be removed without affecting the solution.

Suppose we remove r′[o4]. We obtain the following list of rules in favorable regions:

r′[o1] : chol = low ∧ bp = normal⇒ diagnosis = +,
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r′[o3] : bp = low ⇒ diagnosis = +.

As before, we get all desirable actions listed in Table 6.11. Therefore, the maximum

benefit under a limited cost of 8 is 24 and the minimum cost for obtaining the upper

bound of benefit is 8. The results are the same as in Example 6.7.

Table 6.11: All desirable actions in DES with costs and benefits after rule reduction.

[o5] bij cij
r[o5]  r′

[o1]
6 5

r[o5]  r′
[o3]

6 3

[o6] bij cij
r[o6]  r′

[o1]
6 1

r[o6]  r′
[o3]

6 3

[o7] bij cij
r[o7]  r′

[o1]
6 5

r[o7]  r′
[o3]

6 3

[o8] bij cij
r[o8]  r′

[o1]
6 2

r[o8]  r′
[o3]

6 1

Rule reduction is only required in favorable regions. Because rule simplification

is not applied to unfavorable regions, there are no duplicated rules in unfavorable

regions. The removal of duplicate rules will not reduce the cost or improve the

benefit. However, for some data sets, a great number of the redundant rules can be

removed, which reduces the computational cost.

6.6 Action Reduction

The last step in the R4 framework is action reduction, which removes redundant

actions from the set of desirable actions DES. There may be many actions for trans-

ferring an equivalence class from SU to SF , but only one or none of them will be

taken. Intuitively, actions with low cost or high benefit are preferred, while actions

with both relatively high cost and low benefit may never been taken.

With respect to an equivalence class in SU , some of its actions are comparable and

redundant. For example, in Table 6.11, after the above three steps of reductions, [o5]

has two actions, i.e., r[o5]  r′[o1] and r[o5]  r′[o3]. Both have the same benefit, but

r[o5]  r′[o1] has a higher cost, which makes it redundant because it will never been

taken. However, if one action has both higher benefit and higher cost than another

action, then the two actions are incomparable. We provide a formal definition of a

redundant action in Definition 6.10.

102



Definition 6.10 Given an action r[x]  r[y] that transfers [x], its cost and benefit

are c and b, respectively. r[x]  r[y] is a redundant action if

∃r[x]  r[yi], c ≥ ci and b ≤ bi, (6.14)

where ci and bi are the cost and benefit of r[x]  r[yi], respectively.

Algorithm 7: An action reduction algorithm.

Input: A set of all desirable actions DES.
Output: A reduced desirable action list DES′.

1 compute SOURCE;
2 let DES′ = ∅;
3 foreach [xi] ∈ SOURCE do
4 let A = {r[xi]  r[y] | r[xi]  r[y] ∈ DES};
5 let R = ∅;
6 foreach action a ∈ A do
7 let c and b be the cost and benefit of a, respectively;
8 let bRedundant = false;
9 foreach r[xi]  r[yj ] ∈ R do

10 let cij = Cr[xi] r[yj ]
, bij = Br[xi] r[yj ]

;

11 if c ≥ cij and b ≤ bij then // action a is redundant
12 let bRedundant = true;
13 break;

14 endif

15 end
16 if bRedundant = false then
17 let R = R ∪ {a};
18 endif

19 end
20 let DES′ = DES′ ∪R;

21 end
22 return DES′;

Algorithm 7 is designed for action reduction. The algorithm consists of three

nested loops that need |SOURCE||A||R| comparisons, where 1 ≤ |R| ≤ |A| ≤

|SOURCE|. In the worst case, |SOURCE| = |OB|, i.e., every equivalence class con-

tains one object. Therefore, the overall time complexity of the algorithm is O(|OB|3).
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The effect of action reduction is similar to rule reduction because it improves

computation time but does not improve the cost or benefit. Nonetheless, the search

for solutions of actionable models can be significantly accelerated. Let us continue

using the previous examples to demonstrate the idea of action reduction.

Example 6.9 Continuing from Example 6.8, we apply action reduction to the DES

set given in Table 6.11. According to the definition of a redundant action, actions

r[o5]  r′[o1], r[o6]  r′[o3], r[o7]  r′[o1], and r[o8]  r′[o1] are redundant with regard to

equivalence classes [o5], [o6], [o7], and [o8], respectively. Therefore, we can remove

them from DES. The reduced DES is shown in Table 6.12.

Table 6.12: All desirable actions in DES after action reduction.

[o5] bij cij
r[o5]  r′

[o3]
6 3

[o6] bij cij
r[o6]  r′

[o1]
6 1

[o7] bij cij
r[o7]  r′

[o3]
6 3

[o8] bij cij
r[o8]  r′

[o3]
6 1

The maximum benefit under a limited cost of 8 is still 24, which is also the upper

bound of the benefit. The results are not changed with respect to Example 6.8.
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Chapter 7

EXPERIMENTAL

EVALUATIONS

This chapter provides experimental results for evaluating the actionable rule mining

algorithms, the R4 reduction framework, and comparing with some existing methods.

7.1 Effectiveness of Four Actionable Models

We experimented with several data sets from UCI Machine Learning Repository [17]

and received similar results. In this section, we provide the experimental results of

our proposed four actionable models on a single data set. The experiments in this

section are completed on Matlab 2013a running on a Mac OS 10.9.5 with a dual core

Intel Core i5 2.4 GHz CPU and 8 GB 1600 MHz DDR3 RAM.

We use the Heart Disease Cleveland data set [25], which has 303 people, 13 symp-

toms, and one diagnosis. Three attributes, age, sex, and ca (i.e., number of major

vessels) are recognized as stable attributes, while the others are flexible. The values

of some attributes’ values are grouped and reassigned as follows. Age is categorized

into 5 groups, i.e., 0-19, 20-39, 40-59, 60-79, and 80+, they are reassigned to values 1,

2, 3, 4, and 5, respectively. Cholesterol is categorized into 3 groups: 0-199, 200-239,
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and 240+, they are reassigned to values 1, 2, and 3, respectively. Blood pressure is

categorized into 3 groups: 0-89, 90-139, and 140+, they are reassigned to 1 to 3 as

well. Maximum heart rate is categorized into 3 groups: 0-149, 150-209, and 210+,

they are reassigned to 1, 2, and 3, respectively. For simplicity, all missing values are

filled in with highest frequent values of corresponding attribute. The decision at-

tribute has 5 categories, valued from 0 to 4, in which only the value 0 means healthy.

Therefore, we construct three regions, namely POS, BND, and NEG to approximate

the concept of healthy people X = {x ∈ OB | Id(x) = 0}. A misclassification cost

matrix in Table 7.1 is used to compute the quality of three regions.

To demonstrate how our methods work, we use a simple cost function Cf (v1, v2) =

scale∗|v1−v2| for all flexible attributes. The parameter scale in this function is a scale

for sub-action costs and controls the magnitude of action cost during experiments.

By using different values of scale, we are able to show the difference between the ceil

and floor versions of Algorithm 3 and their differing computation times.

Table 7.1: Cost matrix for experiments.

POS BND NEG
X 2 3 6
XC 12 9 8

7.1.1 Evaluations of Algorithm 1 and Algorithm 2

Based on this setting, the upper bounds B̄ = 711 and C̄ = 589 are easily found by

Algorithm 1 when scale = 1. Two experiments of Algorithm 2 are studied when

scale = 1, one is to compare the performances of our algorithm and the random-

action-select method, the other is to show the relation between cost and the number

of transferred objects. The experimental results are shown in Figure 7.1.

In Figure 7.1(a), the solid line shows the maximum benefit obtained by Algo-

rithm 2 under limited cost and every dot shows the obtained benefit by randomly
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Figure 7.1: Results of two experiments of Algorithm 2.

choosing actions under a limited cost. Obviously, our algorithm has consistently the

same or better results. The algorithm reaches the maximum benefit 711 when cost is

589, while the random method requires almost twice the cost, about 1000 to obtain

it. Figure 7.1(b) shows the numbers of objects in three regions when we have different

limited costs. In this figure, the solid and dashed lines indicate the numbers of objects

in POS(X ′) and POS(X ′)∪BND(X ′), respectively, and the region above the dashed

line in the figure is NEG(X ′). By increasing the cost, two lines climb higher indicating

that objects are sequentially transferred from the negative and boundary regions to

the positive region. When the limited cost is about greater than 40, all objects in the

boundary region will be transferred into the positive region. That is, the two lines are

combined into one. When the cost reaches the upper bound, the three regions become

stable and no more object will be transferred, because the rest objects in the negative

region are non-actionable. In this scenario, the POS(X ′), BND(X ′), and NEG(X ′)

regions have 282, 0, and 21 objects, respectively. Most objects in unfavorable regions

are transferred into the favorable region.

7.1.2 Evaluations of Algorithm 3 and Algorithm 4

The third experiment shown in Figure 7.2(a) illustrates the difference between floor

and ceil operators on Algorithm 3. In this experiment, we use scale = 1.3527 for all
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cost functions of flexible attributes. The number 1.3527 is randomly chosen, it is one

of many numbers that may scale action cost to a non-integer value, such that the

floor and ceil operators can produce different values. Inherently, to obain any desired

benefit, the cost of the floor version of Algorithm 3 is higher than that of the ceil

version and the difference between them gradually increases as the desired benefit

increases. As shown in Figure 7.2(a), when the desired benefit is 600, the difference

in cost between the two solutions is about 100. When scale = 1, the floor and ceil

operators have the same result, which means that the two lines are identical.
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rithm 4.

Figure 7.2: Experiments on Algorithm 3 and Algorithm 4.

The fourth experiment compares the computation times between Algorithm 3 and

Algorithm 4. The result is shown in Figure 7.2(b). In this figure, there are four lines

representing Algorithm 3 with different scales for cost functions. The line with stars

indicates the computation time of Algorithm 4. The computation time of Algorithm 4

only depends on the desired benefit, which in turn relies on the misclassification

cost matrix. Its computation time is not affected by different scales. Therefore,

we draw one line for Algorithm 4. When the desired benefits exceed the maximum

value (bl = 711), the computation times of Algorithm 3 stabilize. It is obvious that

the computation times needed by Algorithm 3 are longer than the time needed by

Algorithm 4 when scale > 1.
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7.2 Effectiveness of R4 Reduction Framework

In this section, we evaluate the effectiveness of the R4 reduction framework by some

experimental results. We use Algorithm 1, Algorithm 2, and Algorithm 4 to generate

the results for four actionable models. These algorithms are reimplemented in C++

by Xcode 6.2 running on the same computer, i.e., Mac OS 10.9.5 with an Intel Core

i5 2.4 GHz dual core CPU and 8 GB 1600 MHz DDR3 RAM. The implemented

code uses only one core of the CPU for computation. For attribute reduction, we

apply Equations (6.5) and (6.6) to Equation (6.3), and set λσ = −1, λs = +∞,

and λδ = −1. For attribute-value pair reduction, we use Equation (6.10), and set

λs = +∞, λσ = −1, and λδ = −1. The movement patterns are: SF = POS(X),

SU = NEG(X) ∪ BND(X), and SI = ∅. We use the same configurations as the last

section for experiments. That is, we use cost functions Cf (v1, v2) = |v1 − v2| for each

flexible attribute and the misclassification cost matrix shown in Table 7.1.

We use 9 data sets from the UCI Machine Learning Repository [17] for exper-

iments in this section. Table 7.2 lists these data sets with their preprocessing. In

Table 7.2, Shuttle, CMC, and TAE stand for the Statlog (Shuttle) data set (test set),

Contraceptive Method Choice data set, and the Teaching Assistant Evaluation data

set, respectively, and the Heart Disease data set is the same data set used in the

last section. Column As denotes the indices (starting from 1) of stable attributes ap-

pearing in the corresponding preprocessed data set. We designate a subset As of the

attributes as stable by our understanding, but they may be categorized differently by

other people. Column X denotes the objective class, which consists of objects with

the indicated decision attribute values according to the data descriptions. The Acute

data set has two decision attributes and we consider that the objective class con-

sists of objects having a no value for both decision attributes, which means healthy.

Column preprocessing shows the detail preprocessing for these data sets.
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Table 7.2: Data sets information.

Data set Domain |OB| |As ∪ Af | As X Preprocessing

Hayes-Roth Social 160 4 {3} d = 1 The first attribute name is not used.

Heart Disease Life 303 13 {1, 2, 12} d = 0 Preprocessed according to [22].

Breast Cancer Life 699 9 {2, 3, 5} d = 2 The first attribute, i.e., Sample code number, is
not used. Missing attribute values are filled with
most frequent value for that attribute.

Acute Life 120 6 ∅ d1 =
no
and
d2 =
no

All attribute values of no and yes are replaced as
values 0 and 1, respectively. The first attribute
temperature is grouped as follows: 0-36.5, 36.6-
37.3, and 37.4+, and reassigned to values 1 to 3.

CMC Life 1473 9 {1, 4, 5, 9} d = 1 Attribute age is categorized into 5 groups: 0-19,
20-39, 40-59, 60-79, and 80+, and reassigned to
values 1 to 5.

Haberman Life 306 6 {1, 3} d = 1 Attribute age and operation age are categorized
into 5 groups: 0-19, 20-39, 40-59, 60-79, and 80+,
and reassigned to values 1 to 5.

Shuttle Physical 14500 9 ∅ d = 1 No preprocessing.

TAE Education 151 5 {1, 2} d = 3 Attribute class size is categorized into 4 groups:
0-15, 16-30, 31-45, and 46+, and reassigned to val-
ues 1 to 4.

Car Business 1728 6 ∅ d =
vgood

For each condition attribute, its non-numerical val-
ues are replaced with integers starting from 1 ac-
cording to their order of appearance in the data set
description. Attribute values 5more and more are
replaced to value 5.

7.2.1 Evaluations of R4 on Model (I) and Model (II)

In the first experiment, we compare the results of model (i) and model (ii) before and

after R4 reductions. The results are shown in Table 7.3, where B̄ and C̄ represent

the upper bounds of benefit and cost, computed without the R4 reductions, and B̄′

and C̄ ′ are those computed after the R4 reductions. Columns AVPs, Rules, RRules,

Actions, and RActions denote the average number of attribute-value pairs of rules

induced from SF , the number of rules in SF after R4, the number of reduced rules,

the number of actions after R4, and the number of reduced actions, respectively. Bold

face is used to indicate cases where R4 improved.

Table 7.3: Comparison before and after reductions on model (i) and model (ii).

Data set B̄ C̄ B̄′ C̄′ |R| AVPs Rules RRules Actions RActions

Hayes-Roth 525 154 525 137 3 3 12 0 49 131

Heart Disease 711 589 837 142 11 4.87 97 43 135 9876

Breast Cancer 138 374 1446 576 4 2.22 51 56 238 11900

Acute 540 241 540 109 2 2 1 0 11 0

CMC 5414 1988 5492 1178 9 4.16 245 154 541 36548

Haberman 142.02 42 178.13 49 3 2.05 35 2 12 1

Shuttle 18132 280545 18132 8152 4 1.92 686 4096 3022 2070070

TAE 608 494 608 165 5 2.38 23 3 60 600

Car 9978 6168 9978 6168 6 5.38 35 30 1663 56542
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As shown in Table 7.3, the R4 reduction framework can decrease the upper bound

of cost or increase the upper bound of benefit effectively. Specifically, both the benefit

and cost values for the Heart Disease, Breast Cancer, CMC, and Haberman data sets

are improved. The upper bound of cost in the Haberman data set increases after

the R4 reduction, but this higher cost also increases the upper bound of benefit. If

we desire to obtain a benefit of 142.02, the required cost is decreased to 34, which is

lower than the original cost of 42, and thus we highlight the number in the table as

well. The upper bound of benefit or cost is not improved on the Car data set, because

no attributes can be removed and most rules in SF cannot be simplified. From this

table, we can also gain a basic understanding of the effectiveness of the last two steps

of R4: (1) in the rule reduction step, a remarkable number of rules can be removed,

and (2) in the action reduction step, the majority of the actions can be removed.

These reductions imply that the required storage can be decreased significantly.

7.2.2 Evaluations of R4 on Model (III) and Model (IV)

The second experiment checked the improvements expected from Algorithm 6 for

attribute reduction and attribute-value pair reduction in models (iii) and (iv). Since

the experimental results on these data sets are similar, we show only the results of

Heart Disease and CMC in Figure 7.3 and Figure 7.4, respectively.

Figure 7.3(a) and Figure 7.4(a) show that the maximum benefit obtained after

R4 is greater than or equal to that obtained without R4, and Figure 7.3(c) and

Figure 7.4(c) show that for any desired benefit, the required minimum cost after R4

is less than or equal to that without R4. For example, the upper bound of the benefit

without reduction in the Heart Disease data set is 711 and the cost is 589, while with

R4, the upper bound of the benefit is increased to 837 and the cost is decreased to

142. Figure 7.3(b) and Figure 7.4(b) show that applying R4 reductions transfers more

objects when there is a limit on cost. Additionally, because some stable attributes
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Figure 7.3: Experiments on actionable models (iii) and (iv) on the Heart Disease data
set.

are removed by R4 reductions, all objects in unfavorable regions in these two data

sets can be transferred to favorable regions when cost is sufficient, whereas without

R4, some objects could not be transferred.

There is a general tendency for the number of transferred objects to increase as

the cost is increased, but the tendency may not be monotonic. This differs from the

tendency towards higher benefit, which is monotonic. This property is apparent in

the solid line in Figure 7.3(b) where the value on x-axis fluctuates from 10 to 40. We

can explain this phenomenon by a simple example. Suppose we have two actions:

a1 with a cost of 10 and a benefit of 20 and a2 with a cost of 5 and a benefit of 10.

Actions a1 and a2 can transfer 2 and 3 objects, respectively. When cost is limited to 8,

only a2 can be selected and it transfers 3 objects. When the limited cost is increased

to 10, a2 is selected instead of a1 due to its higher benefit, but only 2 objects are

transferred.
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Figure 7.4: Experiments on actionable models (iii) and (iv) on the CMC data set.

7.2.3 Evaluations of Computation Time

In the third experiment, we check the computation time on different sizes of data sets.

On most data sets in Table 7.2, this experiment can be completed in a few seconds.

Some smaller data sets can be processed in one second, but the larger Shuttle data

set takes longer to search for a solution. Therefore, we artificially create differently

sized data sets from the Shuttle data set for demonstration. The Shuttle data set is

evenly split into 10 parts, each having 1450 objects. The first data set consists of

the first 1450 objects, the second consists of the first 2900 objects, and so on. We

experimented on these 10 artificial data sets for four actionable models. The results

are shown in Figure 7.5, where R0 uses no reductions, R2 uses only attribute and

attribute-value pair reductions, R3A uses attribute, attribute-value pair, and rule

reductions (no action reduction), R3B uses attribute, attribute-value pair, and action

reductions (no rule reduction), and R4 uses all four reductions. The Figure 7.5(b)
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displays the time spent on searching for the maximum benefit with a cost limit of

1000 and the Figure 7.5(c) displays the time spent on searching for the minimum cost

for a desired benefit of 5000. As shown in Figures 7.5(b) and 7.5(c), the evaluations

of computation time for model (iii) and that for model (iv) are similar.
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(a) Results on model (i) and model (ii).
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(b) Results on model (iii).
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(c) Results on model (iv).

Figure 7.5: Time spent on four actionable models on different sizes of the Shuttle
data set.

In Figure 7.5, we see that the R4 requires the least computation time for each

actionable model. In the computation of model (i) and model (ii), R2 and R3B

require more time than R0 when the size of data set is larger than about 10000. In

the computation of model (iii) and model (iv), any experiment with reductions is

faster than R0. An interesting finding is that the R3A only requires a little more

computation time than R4, because rule reduction removes many classification rules,

which significantly reduces the time required to construct actions. This experiment

confirms that R4 effectively reduces computation time, especially for model (iii) and

model (iv).
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7.2.4 Comparisons with Existing Methods

The last experiment compared the proposed method and existing methods. Each of

the attribute reduction and attribute-value pair reduction steps can follow one of three

strategies, i.e., the Addition strategy, the Addition-deletion strategy, or the Deletion

strategy. The algorithms based on the Addition-deletion and Deletion strategies are

from [127], but we adapt them by computing the fitnesses of attributes prior to the

while loop for consistency with Algorithm 6. Therefore, we have nine combinations

for the first two steps of R4. We use A, Ad, and D to denote the Addition strat-

egy, the Addition-deletion strategy, and the Deletion strategy, respectively. Thus, a

combination AD means that the first step (attribute reduction) uses the Addition

strategy and the second step (attribute-value pair reduction) uses the Deletion strat-

egy. Other combinations follow the same pattern. We use the same fitness functions

and experiment settings as in the above experiments for each of the three reduction

algorithm strategies. The LEM2 [28] rule induction algorithm does not explicitly

need a fitness function.

The results of all nine combinations and LEM2 on actionable models (i) and (ii)

are shown in Table 7.4, where the first column of each data set denotes the upper

bound of benefits, the second column denotes the upper bound of costs, and bold

face indicates the best performances. In Table 7.4, the AA method, which uses both

attribute and attribute-value pair reductions based on the Addition strategy, has the

best outcomes, i.e., the upper bound of benefit obtained by AA is greater than or

equal to that obtained by any other method. However, it should be noted that for

most data sets, all methods yield the same benefits. Also, for any desired benefit,

the corresponding cost required by AA is less than or equal to that required by any

other method. A comparison between the first three rows shows that when attribute

reduction is executed using the Addition strategy, the attribute-value pair reduction

using the Addition strategy offers a best or equal results on both benefit and cost.
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The same is true of the second group (rows 4, 5, and 6) and the third group (rows 7,

8, and 9) based on the same attribute reduct found by the Addition-deletion or the

Deletion strategy. The Addition strategy for attribute-value pair reduction provides

better or equal results than any other strategy on all data sets. Rows 1, 4, and 7 all

use the Addition strategy for attribute-value pair reduction, but different strategies

for attribute reduction, and AA offers the best result of cost on the Shuttle data set.

Rows 1, 5, and 9 all use the same strategy for both attribute and attribute-value pair

reductions, and the results also show that the Addition strategy has the best or equal

outcomes. Additionally, the Addition-deletion strategy has better results than the

Deletion strategy in all cases, and the Deletion strategy has the worst results in all

nine combinations.
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The LEM2 method aims to produce a set of simplified rules with maximal gener-

ality. Therefore, it is not a good choice for actionable three-way decision problems.

LEM2 has two parts, rule induction and rule reduction. Rule induction produces

simplified rules with an addition-deletion strategy and rule reduction removes less

general rules with a deletion strategy. Thus, it is similar to the AdD method. How-

ever, LEM2 does not consider the cost factor, which excludes its use in cost-sensitive

applications.

To check the effects of restricted costs and desired benefits in models (iii) and (iv),

we show the experimental results of AA, AdAd, DD, and LEM2 on the Shuttle data

set in Figure 7.6. The graphs clearly show that in cases where the strategies differ

in effectiveness, the Addition strategy offers the greatest or equal benefit at any cost

limit and requires the lowest or equal cost to obtain any desired benefit. The DD and

AdAd have no significant difference; they are almost overlapped in the figure.
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Figure 7.6: Comparison between methods for actionable models (iii) and (iv) on the
Shuttle data set.
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Chapter 8

CONCLUSION AND FUTURE

WORKS

Three-way decisions play an important role in many real world decision-making prob-

lems. This chapter concludes the major contributions of this thesis and presents some

future research topics.

8.1 Summary of Contributions

The trisecting-and-acting three-way decision model has two steps, i.e., trisecting and

acting. This thesis extends the trisecting-and-acting three-way decision model by

proposing the actionable three-way decision framework. In the trisecting step of

the framework, we statistically interpret the three regions and provide a chi-square

method for determining the optimal trisection. In the acting step of the framework,

we propose four actionable models by adopting the concept of the actionable rule to

transfer objects from unfavorable regions to favorable regions. Further, we propose

the R4 reduction framework to reduce the action costs and increase benefits. In the

following, we conclude these works.
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8.1.1 An Actionable Three-way Decision Framework and Four

Models

The existing studies on three-way decisions focus mainly on the trisecting step and

relatively little on the acting step. We adopt actionable rules in the acting step to

promote the movement of objects from unfavorable regions to favorable regions. Such

movement leads to a new trisection and can improve the quality of the trisection.

We propose a general framework of actionable three-way decisions. Four action-

able models are introduced through a cost-benefit analysis of actions, and four algo-

rithms are designed to mine optimal actions for different models. The algorithms have

a polynomial time complexity. The experimental results on the Heart Disease data

set show that the algorithms have promising outcomes and objects can be effectively

moved between regions.

8.1.2 Two Statistical Interpretations for Trisecting

Evaluation based three-way decisions use an evaluation function and a pair of thresh-

olds to divide a universal set into three pair-wise disjoint regions. Statistical interpre-

tations of three-way decisions construct three regions based on an understanding that

the middle region M consists of normal or typical instances from a population, while

regions L and R consist of, respectively, abnormal or atypical instances. Two special

cases of statistical interpretation are given in this thesis. One is a set of non-numeric

values and the other is a set of numeric values. These interpretations are widely used

in many applications, such as boxplots, IQ score classifications, and blood pressure

classifications.

The two statistical interpretations for trisecting use mean, standard deviation,

median, and percentile. One may explore other types of statistical information, such
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as mode, average absolute deviation, median absolute deviation, and z-score to inter-

pret three regions.

8.1.3 A Statistical Objective Function for Determining Op-

timal Trisection

The chi-square statistic is widely used in independence tests of a contingency table.

In the context of trisecting, it measures the correlation between the actual classifi-

cation {X,XC} and a three-way approximation π(α,β)(X). Therefore, the chi-square

statistic can be used as an objective function to quantify the goodness of a three-

way approximation. According to the meaning of chi-square statistic, the greatest

chi-square statistic suggests a high probability of correlation between {X,XC} and

π(α,β)(X). An optimal pair of (α, β) is determined by maximizing the statistic.

The maximally selected χ2 statistic method for three-way decisions can be easily

extended to other applications. For example, the area around the decision hyperplane

in any classifier has higher impurity, i.e., it includes instances from different classes

that are difficult to distinguish. The suggested method in this thesis provides an op-

tion to abstract a boundary region between two hyperplanes located on both sides of

and parallel with the decision hyperplane for further analysis. These two hyperplanes

are determined by a pair of distances from the decision hyperplane and can be found

by maximizing χ2 statistic.

122



8.1.4 The R4 Reductions Framework for Reducing Action

Cost and Increasing Benefit

To reduce the cost and increase the benefit of actionable models, we redefine the

concepts of reductions in the context of actionable three-way decisions and introduce

the R4 reduction framework. The R4 framework consists of four steps to remove

redundant attributes, attribute-value pairs, rules, and actions. The first two steps of

R4 can reduce the action cost and increase the benefit of a solution, and the last two

steps of R4 can reduce the computation time of a solution.

In R4, the Addition strategy for reduction is adapted and its correctness is proven.

A schema of Addition strategy for reduct construction is provided for designing a

variety of reduction algorithms. Based on this schema, an algorithm instance for

attribute and attribute-value pair reduction is designed. The experimental results

show that the R4 can not only decrease action cost but can also increase benefit in a

reduced computation time. The proposed Algorithm 6 can produce the best or equal

results in many data sets, when compared to the LEM2 algorithm and the Deletion

and Addition-deletion strategy based algorithms.

8.2 Future Research Topics

In the future, we may study some problems of actionable three-way decisions in both

the trisecting and acting aspects.

For trisecting, we will examine the process of constructing an evaluation function

and study the methods for computing the pair of thresholds for trisection. We will

also study trisection to distinguish between normal and abnormal, and between typ-

ical and atypical instances by using specific classes of distributions. The criteria to

determine the pair of percentiles and the pair of thresholds for two interpretations can

be studied based on concrete applications. Several additional topics may be discussed,
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such as analyzing thresholds in 2 × 2 contingency table by combining two columns

together, developing a heuristic algorithm to find the thresholds, considering Fisher’s

exact test [20] if the magnitudes of some cells are less than 5, using likelihood ratio

statistic or phi coefficient instead of chi-square statistic, and using log-linear model

to determine the pair of thresholds.

For acting, we will research the following topics: (1) correlation between actions

and between sub-actions; (2) adapting the R4 framework to multi-objective problems;

(3) adapting the R4 framework to a sequential and dynamic scenario; (4) applying

utility theory to the actionable models; (5) designing a parallel reduct construction

algorithm for dealing with big data. For example, in real practice, we may have

limited money, time, and personnel, and each must be accounted for in a solution;

an action to be taken may be determined based on the results of the previous action.

We may consider relaxing the assumptions used in this thesis and make use of sets

UND and IDF.
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Appendix A

PROOFS

A.1 Proof of Proposition 3.1

Without loss of generality, we only prove the case that [x] ⊆ NEG(X) and [y] ⊆

POS(X). Other cases can be proved in similar way.

After taking action r[x]  r[y], the POS(X) and NEG(X) regions will be changed

to POS(X ′) and NEG(X ′), respectively. We have POS(X ′) = POS(X) ∪ [x] and

NEG(X ′) = NEG(X)−[x]. BND(X) region will not change, i.e., BND(X ′)=BND(X).

We have |X ∪ [x]| = |X ′ ∪ [x]|, because, the different objects between X and X ′ are

all in [x]. Therefore, we use b and a giving in Equation (3.9) to get |X ′|:

|X ′| = b− a+ |X| − |X ∪ [x]|+ |X ′ ∪ [x]|

= |X| − a+ b, (A.1)

and we also have

|X ′C ∩ [x]| = |(OB −X ′) ∩ [x]|

= |(OB ∩ [x])− (X ′ ∩ [x])|

= |[x]− (X ′ ∩ [x])|
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= |[x]| − |[x] ∩X ′ ∩ [x]|

= |[x]| − b. (A.2)

The new quality of positive region is:

Q(POS(X ′)) = |X ′ ∩ POS(X ′)|λPP + |X ′C ∩ POS(X ′)|λPN , (A.3)

where the first term in the right hand side of equation (A.3) is:

|X ′ ∩ POS(X ′)| = |X ′ ∩ (POS(X) ∪ [x])|

= |(X ′ ∩ POS(X)) ∪ (X ′ ∩ [x])|

= |X ′ ∩ POS(X)|+ |X ′ ∩ [x]| − |(X ′ ∩ POS(X)) ∩ (X ′ ∩ [x])|

= |X ∩ POS(X)|+ b. (A.4)

We prove that the last equal sign in Equation (A.4) is satisfied, i.e., |X ′∩POS(X)| =

|X ∩ POS(X)|. Because X ′ ⊆ X ∪ [x] and X ⊆ X ′ ∪ [x]. Therefore, we have

X ′ ∩ POS(X) ⊆ (X ∪ [x]) ∩ POS(X)

= (X ∩ POS(X)) ∪ ([x] ∩ POS(X))

= X ∩ POS(X). (A.5)

Similarly,

X ∩ POS(X) ⊆ (X ′ ∪ [x]) ∩ POS(X)

= (X ′ ∩ POS(X)) ∪ ([x] ∩ POS(X))

= X ′ ∩ POS(X). (A.6)

According to (A.5) and (A.6), we have X ′ ∩ POS(X) = X ∩ POS(X), so that their
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cardinalities are the same. Therefore, (A.4) is satisfied.

The second term in the right hand side of Equation (A.3) is:

|X ′C ∩ POS(X ′)| = |X ′C ∩ (POS(X) ∪ [x])|

= |(X ′C ∩ POS(X)) ∪ (X ′C ∩ [x])|

= |X ′C ∩ POS(X)|+ |X ′C ∩ [x]|

− |(X ′C ∩ POS(X)) ∩ (X ′C ∩ [x])|

= |XC ∩ POS(X)|+ |[x]| − b, (A.7)

where the last equal sign can be proved by the same principle of above.

Similarly, we can compute the quality of NEG(X ′):

Q(NEG(X ′)) = |X ′ ∩ NEG(X ′)|λNP + |X ′C ∩ NEG(X ′)|λNN , (A.8)

where the first term in the right hand side is:

|X ′ ∩ NEG(X ′)| = |X ′ ∩ (NEG(X)− [x])|

= |(X ′ ∩ NEG(X))− (X ′ ∩ [x])|

= |X ′ ∩ NEG(X)| − |(X ′ ∩ NEG(X)) ∩ (X ′ ∩ [x])|

= |X ′|+ |NEG(X)| − |X ′ ∪ NEG(X)| − |X ′ ∩ [x]|

= |X| − a+ b+ |NEG(X)| − |X ′ ∪ NEG(X)| − b

= |X|+ |NEG(X)| − |X ∪ NEG(X)| − a

= |X ∩ NEG(X)| − a, (A.9)

and where the second last equal sign is satisfied because X ′∪NEG(X) = X∪NEG(X),
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which can be proved by following:

X ′ ∪ NEG(X) ⊆ (X ∪ [x]) ∪ NEG(X)

= X ∪ NEG(X) (A.10)

and

X ∪ NEG(X) ⊆ (X ′ ∪ [x]) ∪ NEG(X)

= X ′ ∪ NEG(X). (A.11)

The second term of equation (A.8) is:

|X ′C ∩ NEG(X ′)| = |X ′C ∩ (NEG(X)− [x])|

= |(X ′C ∩ NEG(X))− (X ′C ∩ [x])|

= |(X ′C ∩ NEG(X))| − |X ′C ∩ NEG(X) ∩X ′C ∩ [x]|

= |(X ′C ∩ NEG(X))| − |X ′C ∩ [x]|

= |X ′C |+ |NEG(X)| − |X ′C ∪ NEG(X)| − |(OB −X ′) ∩ [x]|

= |OB| − |X ′|+ |NEG(X)| − |X ′C ∪ NEG(X)|

− |(OB ∩ [x])− (X ′ ∩ [x])|

= |OB| − (|X| − a+ b) + |NEG(X)| − |X ′C ∪ NEG(X)|

− |[x]− (X ′ ∩ [x])|

= (|OB| − |X|) + |NEG(X)| − |X ′C ∪ NEG(X)|+ a− b

− (|[x]| − |[x] ∩ (X ′ ∩ [x])|)

= |XC |+ |NEG(X)| − |XC ∪ NEG(X)|+ a− b

− (|[x]| − |X ′ ∩ [x]|) + |XC ∪ NEG(X)| − |X ′C ∪ NEG(X)|

= |XC ∩ NEG(X)|+ a− b− (|[x]| − b) + |XC ∪ NEG(X)|

128



− |X ′C ∪ NEG(X)|

= |XC ∩ NEG(X)| − |[x]|+ a (A.12)

The last equal sign is satisfied because |XC ∪ NEG(X)| = |X ′C ∪ NEG(X)| and we

prove it as follows:

|XC ∪ NEG(X)| = |(OB −X) ∪ NEG(X)|

= |(OB ∪ NEG(X))− (X ∪ NEG(X))|

= |OB| − |(OB ∪ NEG(X)) ∩ (X ∪ NEG(X))|

= |OB| − |X ∪ NEG(X)| (A.13)

and

|X ′C ∪ NEG(X)| = |(OB −X ′) ∪ NEG(X)|

= |(OB ∪ NEG(X))− (X ′ ∪ NEG(X))|

= |OB| − |(OB ∪ NEG(X)) ∩ (X ′ ∪ NEG(X))|

= |OB| − |X ′ ∪ NEG(X)|

= |OB| − |X ∪ NEG(X)|. (A.14)

Therefore, |XC ∪ NEG(X)| = |X ′C ∪ NEG(X)|.

Based on Equation (A.4), (A.7), (A.9), and (A.12), the quality of trisection π′

after taking action r[x]  r[y] is:

Q(π′) = Q(POS(X ′)) +Q(BND(X ′)) +Q(NEG(X ′))

= wP
[
(|X ∩ POS(X)|+ b)λPP + (|XC ∩ POS(X)|+ |[x]| − b)λPN

]
+

wBQ(BND(X)) +

wN
[
(|X ∩ NEG(X)| − a)λNP + (|XC ∩ NEG(X)| − |[x]|+ a)λNN

]
.
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Therefore, the benefit of action r[x]  r[y] is computed by:

Br[x] r[y]
= Q(π)−Q(π′)

= wP
[
− bλPP − (|[x]| − b)λPN

]
+ wN

[
aλNP + (|[x]| − a)λNN

]
.

�

A.2 Proof of Property P(5)

Because M ′ = {m− USELESS | m ∈ M}, i.e., ∀m′ ∈ M ′, m′ = m− USELESS,m ∈

M , and thus m′ ⊆ m.

RED(M ′) ⊆ RED(M): Assume R ∈ RED(M ′). By condition (s2) of Theorem 6.1,

R ∩ m′ 6= ∅. Since m′ ⊆ m, we get R ∩ m 6= ∅. Thus, R satisfies condition (s2)

of Theorem 6.1 for M . Consider an attribute a ∈ R. By the condition (n2) of

Theorem 6.1 for M ′, we conclude that there exists at least one m′ ∈ M ′ such that

(R−{a})∩m′ = ∅. According to (P3), we know a /∈ USELESS. Thus, (R−{a})∩m =

∅. That is, R satisfies condition (n2) of Theorem 6.1 for M . Therefore, R ∈ RED(M).

RED(M) ⊆ RED(M ′): Assume R ∈ RED(M). By condition (s2) of Theorem 6.1,

we have R ∩m 6= ∅ for all m ∈ M . By (P3), R ∩ USELESS = ∅. We can conclude

that R ∩ m′ = R ∩ (m − USELESS) 6= ∅ for all m′ ∈ M ′. Thus, condition (s2)

of Theorem 6.1 holds for R with respect to M ′. Since R satisfies condition (n2) of

Theorem 6.1 for M , by m′ ⊆ m, thus, R satisfies condition (n2) for Theorem 6.1 for

M ′. This means that R ∈ RED(M ′). �

A.3 Proof of Lemma 6.2

⋃
M∗ ⊇ USEFUL: Assume a ∈ USEFUL. By Definition 6.3, we know a ∈ ⋃RED(M).

Since RED(M∗) = RED(M), we obtain a ∈ ⋃RED(M∗) ⊆ ⋃M∗.
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⋃
M∗ ⊆ USEFUL: Assume a ∈ ⋃M∗. Since M∗ is an absorbed discernibility

matrix, ∀m ∈ (M∗ − GroupM∗(a)), ∀g ∈ GroupM∗(a), m * g, i.e., m − g 6= ∅. By

expressing g = {a} ∪ A, we get m − A 6= ∅. By Lemma 6.1, we get RED(M1) ⊆

RED(M∗), where M1 = {m− A | m ∈ M∗}. After removing A from M∗, we obtain

M1 and the original element g = {a} ∪A becomes a singleton element {a}. By using

{a} to absorb elements of GroupM∗(a) in M1, all elements of GroupM∗(a) can be

absorbed by {a}. After this absorption, we denote the resulting discernibility matrix

as M2. Since absorption will not change any reduct, we have RED(M2) = RED(M1).

Let M2 be the union of two parts: M2 = P1 ∪ P2, in which each element in

P1 contains attribute a and each element in P2 does not contains a. In P1, there

is only one element, {a}. In P2, all elements have been shrunk by A, i.e., P2 =

{m−A | m ∈ (M∗−GroupM∗(a))}. Since ∀m ∈ (M∗−GroupM∗(a)) does not contain

a and g = {a} ∪A, it follows m−A = m− g. Therefore, P2 = {m−A | m ∈ (M∗ −

GroupM∗(a))} = {m−g |m ∈ (M∗−GroupM∗(a))}. Thus, M2 = P1∪P2 = {{a}}∪P2.

It follows that RED({{a}} ∪P2) = RED(M2) = RED(M1) ⊆ RED(M∗) = RED(M).

Because {a} is a singleton element in ({{a}} ∪ P2), then a is a core attribute in

({{a}}∪P2), i.e., a ∈ CORE. Since CORE ⊆ USEFUL, a is useful, i.e., a ∈ USEFUL.

�

A.4 Proof of Lemma 6.3

⇐: If ∃g ∈ GroupM(a) such that g cannot be absorbed by any other elements in M ,

then g ∈M∗. By Lemma 6.2, a ∈ USEFUL.

⇒: Assume a ∈ USEFUL. By Lemma 6.2, a ∈ ⋃M∗. Therefore, ∃g ∈ M∗ and

g ∈ GroupM∗(a). Since M∗ is already absorbed, g cannot be absorbed by any other

elements in M . �
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A.5 Proof of Theorem 6.2

The proof uses similar approach in the proof of Lemma 6.2. Because a is useful,

according to Lemma 6.3, ∃g ∈ GroupM(a) such that ∀m ∈M, g 6⊆ m, i.e., m− g 6= ∅.

Let g = {a} ∪A, we have ∀m ∈M,m−A 6= ∅. By Lemma 6.1, we have RED(M1) ⊆

RED(M), where M1 = {m − A | m ∈ M}. After removing A from M , g ∈ M

becomes {a} in M1. Let M2 denote the discernibility matrix obtained by using {a}

to absorb M1. Therefore, M2 = {{a}} ∪ {m− A | m ∈ (M −GroupM(a))}. Because

every element m ∈ (M − GroupM(a)) does not contain a, we have m − A = m − g.

Thus, {m− A | m ∈ (M −GroupM(a))} = {m− g | m ∈ (M −GroupM(a))} = M ′.

Therefore, M2 = {{a}} ∪ {m − g | m ∈ (M − GroupM(a))} = {{a}} ∪M ′. Because

any absorption will not change the reducts, i.e., RED(M2) = RED(M1), we have

RED({{a}} ∪M ′) = RED(M2) = RED(M1) ⊆ RED(M). �
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