
Focus-Plus-Context Audio Interaction Design

David Gerhard†, Brett Park, and Jarrod Ellis

Department of Computer Science
†Associate, Department of Music

University of Regina
Regina, SK CANADA S4S 0A2

{gerhard,parkb,ellisjja}@cs.uregina.ca

http://armadilo.cs.uregina.ca

Abstract. NEEDS REWRITE We present an audio browsing and edit-
ing paradigm that incorporates the “focus plus context” visual inter-
action metaphor. A traditional waveform is displayed in full, and an
area of focus is dynamically re-calculated to provide maximum detail in-
focus and minimum detail in-context. The interaction metaphor also si-
multaneously re-scales a frequency-domain display, with increased detail
available in both time and frequency domains by means of sub-sampling
and window overlap. Various methods for selecting focus, identifying fo-
cus, and transitioning between the focus and context display areas are
presented, and advantages for typical audio interaction applications are
discussed.

Key words: Human Centered Computing, Audio Interaction, Interface
Design, Focus-Plus-Context

1 Introduction

The standard interaction metaphor for editing digital audio presents a wave-
form which can be resized to any scale from a single sample or sample-per-pixel
representation to a display of the full waveform. Users interacting with such an
interface may find that, depending on the work being performed on the wave-
form, a number of different scales are appropriate. For example, when correcting
localized recording errors such as clicks and pops from a vinyl recording, the user
may need to zoom in to the sample level, however, when mixing multiple parts,
duplicating, or re-recording sections, a larger scale may be required. Regardless
of the working scale, for anything longer than a single note or acoustic event,
the user loses the context of the work being done when zooming in to a reason-
ably workable resolution. This is closely related to the problem of interactively
navigating large information spaces in a limited context.

Subsequently, most audio interaction software separates the global view of
the raw waveform from its local view or focused portion. This involves multiple
separate windows or “panes” to represent a single track of audio data, one for
the local work site and one for the context or overview. This multiple-window



2 Gerhard, Park and Ellis

Fig. 1. Audio interaction window in Amadeus. A context pane is available, but it is
outside of the user’s locus of attention, and presented at a different scale with no scale
markings.

metaphor is used in many other applications, and has been critiqued[2] [5]. Per-
haps more problematic in the audio interaction realm is the loss of context when
working with multiple tracks of audio simultaneously. Most current audio in-
terface programs require the view to be focused at a consistent point across all
tracks, effectively locking all tracks together and forcing a user to zoom out to
a wider context to jump from one point to another in the project. Several im-
provements have been made to facilitate this process, including bookmarks and
labels, hot-key zooming and complex navigation controls, and some programs
even allow a user to be localized at a different point in multiple tracks, but
these adaptations are primarily attempts to mitigate the difficulties of working
in multiple focus levels in the same document. The user has to mentally assim-
ilate these time-based domains, creating and maintaining a large mental model
of the entire project at high cognitive expense. This can be particularly difficult
when a project contains several portions that are acoustically similar, as is the
case when mastering music with repeating verse-plus-chorus structure. A user
may think she is working on chorus 1 when she is in fact working on chorus 3,
since the visualization of both choruses look identical. There is no indication in
the user’s Locus of attention[6] of the overall location of the work-point in the
wider piece.

Figure 1 shows an audio interface window from the program Amadeus1. There
are two panes showing audio information. The top pane shows the complete
1 http://www.hairersoft.com/Amadeus.html



FPC Audio Interaction 3

Fig. 2. Audio interaction window in Audacity. No context window is available, and the
user must create a complete mental model based only on the relative time and duration
shown on the display.

context of the audio clip, while the bottom pane shows the focused work area.
There is a rectangular selection box in the context pane that both selects and
indicates the area of the focus pane. The scroll bar at the bottom of the window
indicates in a minimal way the overall location and context of the focus window.
The “Horizontal zoom” slider is a second way to change the amount of audio
data in the focus window. Complete information about the context of the focused
area is not presented, and a user must look at three separate interface elements
to get a complete picture. Although the context is presented, it is not in the
user’s locus of attention and the user must either consult the context pane (thus
leaving the focus pane) or maintain a mental model (at cognitive cost).

Figure 2 shows an audio interface window from the program Audacity2, a
popular open source cross platform audio editor, presents similar problems. Au-
dacity presents only one audio window to the user, offering no visual context.
The location of the focus window in the larger sound file is displayed numeri-
cally both in a ruler-bar at the top of the window and in a series of text boxes
at the bottom of the window. The user must maintain a mental model of the
local context of the part they are working on.

Figure 3 shows a spectrum window from Amadeus. In this case, any familiar-
ity the user might have acquired interacting with the time-window is lost since
the frequency window is significantly different. The contextual information is
gone, replaced with a localized and aligned version of the time waveform.

2 http://audacity.sourceforge.net/



4 Gerhard, Park and Ellis

Fig. 3. Spectrogram display in Amadeus. There is no context pane, as the waveform
displayed is aligned with the spectrogram

Context is critical in audio editing and manipulation. Most of the existing
audio editing software attempts to inform the user of the overall context us-
ing cues such as numerical ranges or context windows, it remains cognitively
expensive to maintain a mental model of the piece being viewed.

1.1 The Detail-In-Context Problem

Alan Keahey[3] describes the detail-in-context problem thus:

“How can we effectively utilize the additional space made available by
any nonlinear magnification transformation to enhance the visualization
of the data or objects located within that space?”

Physical high-resolution presentations of information, such as printed pho-
tographs or line drawings, allow the user to examine an area of interest in more
detail by looking closely or even magnifying the area with a lens. Traditional
film photographers have decried a lack of low-level detail in digital print images,
since film resolution theoretically goes to the level of granularity in the film it-
self. There is an inherent multiresolution aspect to these physical presentations,
but when information is presented digitally, the ability to zoom in to an area of
interest is affected. On-screen, view magnification is performed digitally and the
limitations of magnification are shifted to the limits of the information contained
within the displayed data itself. The drawback of this is that the context of the
magnification is also removed.



FPC Audio Interaction 5

When a viewer uses a magnifying lens to look at an area of a photograph, the
entire photograph is still within the viewer’s perception. When a user zooms in
to a digital image, the context is immediately lost. The user does not know which
portion of an image is being considered, unless they were present when the zoom
took place, and even then the user must maintain, at cognitive expense, a mental
model of the entire data space and the context of the area being considered. Most
data interfaces that support zooming also present a “context” or overview as a
second display, but since this information is not presented in the user’s locus
of attention, the user may not incorporate this information into their mental
model. Further, an additional window for context adds to “palette clutter”,
taking screen-space away from the primary data.

A solution to this problem is the non-liner magnification transform, which
places a digital “lens” over the data, allowing the user to zoom in on one area
while maintaining the overall context. “Focus plus context” (FPC) is one of
many terms used to describe such zoomable display systems employing con-
tinuous nonlinear magnification transformations[4],[8],[9]. Terms such as detail-
in-context, polyfocal projection, fisheye [7] and distortion-oriented presentation
have also been used.

FPC displays present both a focus area and a context both in the same
window. The user does not have to switch between looking at different panes,
nor does she need to maintain a mental model of the context. In FPC displays,
the metaphor of the magnifying glass is taken several steps beyond the isolated
bounds of the focal lens. Nonlinear transformations provide varying levels of
detail in the surrounding context or contexts, providing more focused detail for
visually perceptive purposes. Using the multi-window approach in audio display
analysis, the user must judge the relative position of the focal region using limited
visual cues in the global context. Using a seamless multi-level view method of
magnification would eliminate the need for this difficult perceptive judgment.

1.2 Current Focus-Plus-Context Applications

Aside from “dock magnification” in Mac OS X3 (see Figure 4), there are very few
mainstream examples of FPC applications. Zoomable user interfaces (ZUIs) are
an attempt to provide a context-specific view of larger data spaces by allowing
the user to zoom in on a subspace of a display. The most common example of a
ZUI is the Virtual Desktop metaphor, where each desktop is a subset of a larger
set of desktops, shown in a contextualized window. While this does constitute a
FPC display, it shares the same problem of other systems, in that the context
for the focus is not within the user’s locus of attention and instead is presented
as a second, separate view of the full context, requiring the user to maintain a
mental model of this complete context.

A classic example of a “stronger” version of a zoomable user interface is the
Pad++ interface[1] developed by the University of Maryland Computer Science
department but no longer actively being worked upon. Pad++ is like a virtual

3 http://www.apple.com



6 Gerhard, Park and Ellis

Fig. 4. Dock magnification in Macintosh OS X.

Fig. 5. An example of the virtual desktop metaphor overlayed on top of a normal
desktop display. The context is brought into view with a hotkey combination.



FPC Audio Interaction 7

desktop environment, but it allows for multiple views and varying scales. The
idea behind Pad++ is to provide the user with the ability to navigate large
amounts of data using a FPC transformation method for semantic magnification.
Some issues with Pad++, mentioned by the authors, are a lack of customization
for sizes of objects (or nodes) with no location constraints and no animation
between magnified transitions. Transitions are immediate and abrupt, giving no
visual cues to the user as to what object has been magnified. One benefit of
Pad++ is its ability to use multiple foci on the same data.

Persons with visual disabilities have varying specific needs when it comes
to presenting data at readable resolutions. Many current operating systems, for
example the Macintosh OS X operating system, provide an accessibility feature
which allows the user’s display to be zoomed in to varying levels of magnification.
The focus window is centered on the mouse, and moves around the (virtual) user
interface with the mouse movements. The advantage is that the entire display is
enlarged by the same amount (rather that only increasing font size, for example),
however, there is no context presented, and the user must maintain a mental
model of the underlying environment.

More and more, web browsers and other traditional applications are being
offered on mobile devices with very small screens. Previous attempts at ren-
dering web content on small screens usually works best with so-called “mobile
content”, alternative versions of websites designed for smaller screens. There
are two main difficulties with this implementation: First, the familiarity that a
user develops with the normal version of a website is defeated by these smaller
versions, making them difficult to navigate; and second, websites without these
minimalist versions are rendered poorly by the mobile browsers. New browsers
are being developed, including Apple’s mobile Safari and Microsoft’s Deepfish,
which render the website as if it were on a large screen and allow the user to scroll
around within a zoomed sub-view of the full rendered page. Once again, a lack
of context requires the user to maintain a mental model of the page as they are
maneuvering around within it. New interfaces such as Multi-touch screens may
reduce the cognitive load associated with non-contextualized focus applications,
but this remains to be studied.

1.3 Pseudo-Non-Linear and Multi-Level Mappings

The computational cost of nonlinear transformations has been prohibitive to
implementing true FPC displays in the past, and while modern systems provide
sufficient computational overhead, The need to dedicate significant processing
power to implementing such transforms continues to be a barrier to mainstream
usage. The transformations that are required to move from focus to context need
not be non-linear, however. With piece-wise discrete interfaces such as menus
and icon displays, each element can be linearly scaled to a degree relating to
the distance from the center of the focus, making an apparent non-linear zoom.
This is the technique employed by the dock in Apple’s Macintosh OS X described
above, and it has been used in other contexts as well. Figure 6 shows an example
of “text zooming”, where a large textual hierarchy, for example a menu or a



8 Gerhard, Park and Ellis

document, can be navigated with the use of FPC magnification. Each menu
item or word is a discrete object in the contextual space, and can be zoomed
using the font size to indicate distance from the focus.

Fig. 6. Text zooming for large lists.

While discrete elements can be zoomed with little computational cost, con-
tinuous information such as linear time audio data must be handled differently.
Each pixel in the context image can be expanded into many pixels in the focus
area, up to the maximal data resolution. Further, continuous data that does
not have a natural analog must have overt indicators to describe the amount
of focus and the type of transition between the focus window and the context.
Because of this, a simple zoom of the data point is not possible - instead, a
re-interpolation must be used to re-draw the data at higher resolutions in the fo-
cus window. Three methods of this re-interpolation are: multiple zoomed layers;
linear interpolation; and non-linear transformation.

Multiple zoomed layers Because the metaphor of discrete elements is preva-
lent in modern FPC implementations, it makes sense to begin with a translation
of discrete elements into the continuous arena. The “multiple zoomed layers”
approach consists of defining a focus region and constructing a set of concentric
levels between the focus region and the underlying context (Figure 7. Each level
is at a resolution between that of the focus and the context.

Linear transformation The next obvious transition is to draw a straight line
from the focus area to the context area, and linearly transform the scale function
across this line (Figure 8). This implementation is more complex, requiring a
linear interpolation across a significant amount of data, but computationally
this will add only minimal additional burden. The result is a smooth transition
and a more natural localized structure for the focus window.

Non-linear transformation The most flexible but most complex transform is
to present a generalized nonlinear transition between the focus and the context



FPC Audio Interaction 9

Fig. 7. One-dimensional FPC display using multiple zoomed layers.

Fig. 8. One-dimensional FPC display using linear transformation.



10 Gerhard, Park and Ellis

Fig. 9. One-dimensional FPC display using a spherical non-linear transformation.

area. In general, this means a single continuous function across the entire context
space, but since the focus window display will need to be re-calculated at each
shift of its location, it makes more sense to re-calculate only on the portion that
is different from the initially calculated contextual backdrop. An example of a
spherical transition is presented in Figure 9.

2 Focus and Context in Audio

There are a number of standard interaction paradigms for working with audio,
many of which would benefit from an FPC interface of some form. We present
a discussion of some of the inherent difficulties in such implementations, as well
as some resolutions to these difficulties.

2.1 Audio Interfaces and Typical Tasks

As seen in Figure 1, the standard audio interface displays a waveform at a single
scale, with a vertical bar indicating the “play head” corresponding to the next
sound that would be heard if the “play” button were clicked. Other standard
interface elements include playback and selection controls. Users are able to select
chunks of audio by indicating start and stop times or samples, or by dragging
in the audio display window. Global track information is often presented in the
form of muting, stereo panning and local sound characteristics. It is important to
recognize that these indicators and track-level features are a holdover from the
days of solid-state mixing boards, where each channel in the board corresponds
to an audio input, with muting, soloing, trim, pan and other controls in a vertical
stripe up the board for each channel.

The audio interaction interfaces are designed to facilitate common tasks re-
lating to recorded audio. Some of these tasks will be discussed here, along with
how these tasks could be made easier with FPC displays.



FPC Audio Interaction 11

Splitting a large file One of the more common audio tasks performed by the
average user is transferring audio media from one format to another, usually
from a physical audio format such as tape or vinyl to a digital format. The
typical sequence for such a transfer is to attach the physical media player to the
computer, start the media playing at normal speed and start recording, then
walk away for half an hour. The nature of this task means that the transfer
is real-time, and no time saving is available. Vinyl and Tape albums are often
divided into tracks, and if these tracks are separated with silence, then some
automated track segmentation can be done. This process can be easily frustrated
by recording noise and live or continuous albums with no silence between tracks.

The standard metaphor for splitting a large file into smaller tracks is to
look at the full file, try to see where natural track splits might have occurred
(by finding small low-energy areas in the waveform), zooming in to these areas,
splitting the track, and zooming out to find the next one. The difficulties in this
method are numerous:

– not every low-energy area is a track break;
– not every track break is low-energy;
– track breaks are best made at the sample level;
– track breaks should incorporate fading out of the new track ending and

fading into the new track beginning.

Further, once a track break is made, the user must zoom out to the complete
context and start to search for the next track break.

FPC displays can help this process in many ways. When a user mouses over
an area that they suspect is a track break, they can see immediately if it is a
candidate or not, without having to zoom in. A medium-level context can be
selected to more easily show the potential track breaks, and false positives can
be more easily discarded without having to zoom in to verify. The user can
manipulate the focus window until it corresponds with the desired fade in and
fade out, and then execute a single command instead of selecting a break point
and creating a fade-out and a fade-in.

Soundtrack composition When creating a soundtrack for a movie, television
show or video, there are three components that are typically employed: ambience,
foley and effects. Ambience is the underlying noise of the surroundings, such as
street noise, office noise, or nature noise, depending on the surroundings in the
video. Foley is the addition of sound samples which correspond to actions by
actors or other objects in the scene. A classic example of foley is footsteps added
to a scene after it has been shot. Foley is used because it is often very difficult to
record sound events live, especially in wide shots. Foley is typically recorded in
a studio as the video is played. Effects are similar to foley, but are not recorded
live and are often taken from existing effects libraries, such as honking horns
and telephone rings.

Composing a soundtrack usually consists of interacting with multiple tracks
simultaneously. FPC displays would allow a user to accurately manipulate the



12 Gerhard, Park and Ellis

location of a foley sound within the context of the entire soundtrack without
having to zoom in and out. Manipulating the location of a series of footsteps
would be considerably easier. Further, a more natural correspondence between
the audio and video representations can be maintained if the user does not have
to continually zoom in and out to alter the location of an effect.

Filtering and processing Filtering and effects processing are common sound
manipulation activities. Here, manipulations are applied to the entire file or to
larger chunks of the piece being considered. Reverb, compression and equaliza-
tion are examples of this type of task. In existing systems, the typical procedure
is to apply the filter to a small subset of the sound file (often called a preview)
to verify that the filter parameters are appropriate, then apply the filter to the
entire piece. Application of a filter to a large sound file can take time, and nor-
mally the only feedback is a progress bar. Once the filtering is done, information
is sometimes presented to the user to indicate whether there were any problems
with the filtering, but the user usually must listen to the entire work to verify
that the desired acoustic effect was achieved.

An FPC display can help in this instance as well, to give an indication of the
progress of the application of a filter. The full context of the file is displayed, and
as the filter is applied to each local section, a focus window is traced across the
file showing the application of the filter and the result, and the user can identify
problems as they arise, or stop the filter if there is a problem. Traditional displays
can follow along with the progress of the filter, but it is difficult and cognitively
expensive to integrate the progress of the filter into a the context of the full file.

Simple playback Every sound editor is also a sound player, and in traditional
interfaces the user has the option of watching the playhead slowly traverse the
entire file or watching the zoomed-in waveform pass under a stationary playhead.
FPC displays can enhance this process in much the same way as the following
of filter progress described above. By following a focus window as it traverses an
overall context, the user can see both what is happing at a low level and where
the sounds are occurring at a higher level.

Breathers and other vocal editing One of the classic vocal editing problems
is the removal of “breathers” or audible inhalations just before a sung or played
musical phrase. Although the presence of breathers can be stylistically desirable
(for example in the piano recordings of Glen Gould), many professional studios
do what they can to remove breathers. The typical procedure is to examine the
onset of each phrase in the vocal (or instrumental) line, detect breathers by
observation of the waveform, or more typically the spectrogram, and then delete
or filter out the breath noise using a fade in, noise removal or other technique
depending on the surrounding noise.

FPC techniques can make this process easier and more accurate by showing
the spectral context of the breather, thereby confirming that the sound to be



FPC Audio Interaction 13

removed is the desired target. As before, finding events of interest within the
timeline can be augmented with the incorporation of FPC methods, which allow
a user to examine the low level details of the editing without losing the context.

Regardless of the task, there are two classic forms of information that are used
to analyze and interact with audio: the time waveform and the spectrum. Several
methods exist for converting from the time domain to the frequency domain, the
most popular of which continues to be the Fourier transform. In the following
sections, we will discuss FPC display issues surrounding both time-domain and
frequency-domain displays.

3 Zooming Issues

In the early days of focus-plus-context research, investigators employed tricks to
make a two-dimensional visual area appear to be warped in three-space. Comput-
ing power was at a premium, so simple graphical transformations were employed
to simulate the expansion of an area of focus. It might be tempting to look back
on these methods and expect that with the rise of integrated 3-D graphics pro-
cessing, all one needs to do is map the visual area onto a 3-D surface and stretch
the surface to provide a closer view of one area. The problem with this is that
in order to provide sufficient focus detail, the surface would have to be stretched
by a large proportion, leading to distorted contextual information. Orthogonal
3-d graphics views are typically optimized for a high degree of detail in the fore-
ground with a less-detailed background, or in some cases a static image as a
background. Rarely are the background and foreground connected in the way
that a FPC display would required.

In audio applications, there are two primary displays: the time waveform
and the spectrogram. Both displays can benefit from FPC integration, and the
following sections will describe the theoretical basis for zooming in time and in
frequency.

3.1 Time Zooming

The time display of the waveform is perhaps the most prevalent audio display,
being found in oscilloscopes and used in many movies and TV shows when it
is required to show that someone is interacting with audio. There are typically
two classical implementations of time waveform presentation, depending on the
viewing range. When viewing large sections of audio, each pixel on the screen
represents a range of time and the average energy in the waveform at that time.
For smaller ranges, each pixel represents the waveform value at that time, either
interpolated or sub-sampled to fill the range.

The difficulty with perceiving a time waveform in isolation is that there are
no perceptual cues to indicate the current scale. When viewing information that
has familiar visual characteristics, such as a photograph, humans achieve a sense
of scale by making use of perspective and falling back on familiar metaphors. We
are familiar with, for example, the average size of a person, so when a visual field



14 Gerhard, Park and Ellis

is ambiguous (as in an architectural model, for example) person-shaped objects
are often added to give a sense of scale. If a person is very familiar with audio
processing and has looked at many waveforms, they may be able to pick up cues
as to the scale of the waveform, for example, if they know they are looking at
music and they know the approximate tempo, they can infer the scale from the
distance between prominent peaks. This method and other “landmark finding”
methods are not reliable, however, because landmarks in audio waveforms are
typically ambiguous and can be very difficult to interpret. Tempo doubling er-
rors are common, for example, because much music has sub-beats between the
primary peaks. Speech is another interaction area where landmarks can be used
to give a sense of scale, since humans tend to speak at a rate of around 4 syllables
per second. Again, this method proves useful only when a user has considerable
experience on which to draw.

Applying FPC to a time waveform can give a sense of scale, since the entire
waveform is present and can be viewed at once. The user must still be aware of
the time duration of the sample in order to disambiguate the display, but this
is easier than maintaining a complete mental model of the waveform itself. The
amount of zoom utilized in such an application must also be indicated, since
the user may make scale errors if the amount of zoom is unknown. There are a
number of ways to indicate the amount of scale, including the size and steepness
of the non-linear transform, the thickness of the waveform trace itself, or an
external iconic or numeric scale display. Regardless, the difficulties with scale
perception in audio must be considered when designing such interfaces.

3.2 Frequency Zooming

The frequency display of an audio file normally corresponds to the short-time
Fourier transform (STFT) of the waveform, although other techniques are em-
ployed for specific purposes. The STFT is calculated by breaking the waveform
into overlapping fixed-size windows and calculating the spectrum of each win-
dow. The display is typically collocated in time with the waveform itself, to
make corresponding analysis easier. STFTs and other spectral transforms suffer
from an uncertainty principle: the more accurately you measure the frequency
of a signal, the less accurately you can know the time at which that frequency
occurred. This is evident in two extremes: If the STFT window is taken to be
the entire length of the waveform, the complete frequency information can be
calculated but it corresponds only to the entire waveform and not to any specific
part within it. Similarly, the smallest unit of time in a waveform is the sample,
corresponding to a single measure of air pressure. In itself, a sample has no
frequency information but is located as accurately as possible in time.

As a consequence of this spectral uncertainty, audio interfaces typically allow
a number of parameters to be manipulated when displaying the spectrogram. If
the user is more interested in time-accuracy of the spectrogram, a compactly-
supported window is employed. If frequency-accuracy is demanded, a larger win-
dow is used. Wavelets and other multi-resolution techniques have been employed
to allow better time-resolution at higher frequencies, but low frequencies cannot



FPC Audio Interaction 15

be extracted using a compactly-supported window. Despite the problems, the
STFT remains the frequency analysis method of choice because it represents
frequency information visually in a way that people can learn to interpret.

The spectrogram representation is fundamentally an image, and as such, it
is reasonable to expect that focus-plus-context zooming paradigms designed for
images would also be appropriate for spectrograms. This is not the case for two
reasons. The first is that image zooming metaphors assume that the image is
available at full resolution, and the context area is created by down-sampling
the image. Spectrogram data is fundamentally different at different frequency
and time resolutions, so it is not sufficient to simply calculate the best possi-
ble spectrogram and zoom in. As has been stated, there is no “full resolution”
spectrogram, and zooming must incorporate re-calculation. The second reason
is related to the difficulty of zooming in the time waveform. General images of-
ten have landmarks or contextual information that provide a hint of the scale
at which it is being viewed. Spectrograms have no such cues, and two spectra
can look the same when viewed at different resolutions if they are harmonically
related. For these reasons, a re-calculating metaphor is required.

3.3 Spectrogram Re-calculation

It is worthwhile to re-visit the classic formulation of the short-time Fourier trans-
form to see where our modifications take place. Equation 1 shows the discrete
STFT.

X(m, ω) =
∞∑

n=−∞
x[n]w[n − m]e−jωn (1)

The windowing function w[·] is a function which establishes a finite range for
the window, and typically tapers to zero at both ends of the range to reduce
discontinuities. The windowing function provides time-localization to the STFT,
and windows are often overlapped to compensate for the discarded information
in the tapering of the windowing function. The size of the window dictates the
maximum frequency that can be represented, and the relationship between the
amount of overlap and the window size determines the time-resolution of the
resulting spectrogram image, although it should be noted that no additional
information is presented when the overlap is greater than what is required to
compensate for the tapering.

There are three inter-related parameters, then, in the construction of a spec-
trogram based on the STFT: The window size and overlap, discussed above, and
the sampling frequency of the sound, which determines the actual range of fre-
quencies that are presented. If an audio waveform is sampled at 44,100 Hz (the
standard CD sampling rate), and a 1024-sample window is used in the STFT,
the longest sinusoid that can be detected is 1024 samples which is equivalent to
0.023 seconds or 43 Hz. The shortest sinusoid that can be detected is half the
sampling frequency, in this case 22,050 Hz.

The key to frequency zooming is in adjusting the time and frequency bounds
of the spectrogram. A full spectrogram can be calculated with a reasonable



16 Gerhard, Park and Ellis

balance between time and frequency to create the background context. A zoomed
window over top of the spectrum provides detail. How can the three parameters
we have control over be manipulated to alter the frequency and time bounds of
the resulting spectrogram?

Time bounds The upper and lower time bounds can be manipulated by ad-
justing the beginning and ending of the waveform to be analyzed. In order to fill
the pixel range, the window size and the window overlap can both be manipu-
lated. As we will see, the window size has an effect on the frequency bounds, so
it cannot be considered an independent variable in this case.

Upper frequency bound Since the maximum frequency that can be displayed
is dependent on the sampling frequency fs of the signal, we can reduce the
sampling frequency in order to bring down the upper frequency bound. Down-
sampling can be achieved by interpolating between the waveform samples and
re-sampling at a lower sampling frequency. Initially, it might seem like this would
reduce the amount of information available to the viewer, and while this is strictly
the case, it is necessary to keep in mind that the goal of this transformation is
only to increase the viewing resolution for a small portion of the frequency
display, and contextualizing this focused portion with the complete spectrum.

Lower frequency bound Since the minimum frequency that can be displayed
is dependent on the window size, we would like to re-sample within the window
in order to modify the displayed frequency. A window size could be selected
which corresponds directly to the minimum frequency desired, and this window
would then be up-sampled (through the same interpolation and re-sampling
procedure discussed above) to make a window of standard size (for example
1024 samples). The difficulty with this method is that in modifying the window
size, the calculation of the entire spectrum is altered, rather than just the low
frequency bound. In this case, the easiest and least intrusive method to assign the
lower frequency bound is simply to discard the information below that frequency.

The complete focus-generation sequence is then:

1. Select the upper frequency limit fl desired for the window.
2. Select the time range for the focus window, and copy 1

2fs/fl times that
number of samples from the original waveform.

3. Re-sample using a sampling ratio defined by fl/
1
2fs.

4. Calculate the STFT on this new waveform, using a window overlap appro-
priate for the number of pixels required in the image

5. Discard the result below the lower frequency limit.

1
2fs is the maximum frequency that can be represented in a signal sampled

at fs.



FPC Audio Interaction 17

Fig. 10. Two-dimensional FPC display using a single layer of focus on top of a cohesive
context.

Parametrization Because one of the goals of such a system would be usability,
a user should not be required to interface with the algorithm-level parameters
if they are not familiar to her. A “zoom amount” parameter could equally well
define the maximal frequency, resample factor and overlap, given the appropriate
mathematical mapping.

If a user wanted to double the scale of the spectrogram, the maximal fre-
quency would correspond to the location and size of the focus area. Imagine the
focus area was at the center of the display, and was one-third the size of the
full spectrum display. The maximal frequency of the focus area would then be
two-thirds of the maximal frequency of the overall spectrogram, or fs/3.

Limitations Re-sampling and window overlapping will work best when using
whole-number ratios of the original values. This has the potential to impart an
undue restriction on the usability of the system. The spectrogram zooming will
also have limits imposed by time-frequency tradeoffs.

4 Implementation

As a proof-of-concept, we have implemented a Focus-Plus-Context display as
part of the Audacity audio editor described earlier. Here are some details.



18 Gerhard, Park and Ellis

4.1 Deciding where to focus

One issue to consider with a FPC audio editing system is how the focus area is
moved around through the audio track. Three approaches were considered. The
first is to have the center of the focus area follow the location of the cursor when
the cursor is over the audio track. This method allows the user to quickly scan
through the audio track to focus in on any area of the audio track very quickly
and with high precision. The only problem with this approach is that it makes
selecting audio difficult because as you are moving the mouse to do a selection,
the focus are is also moving. This causes a side effect such that for each pixel
the mouse moves in one direction, the waveform underneath the cursor moves
in the opposite direction at a rate much quicker than the mouse (it moves at
X times the rate where X is how many times we are zoomed in relative to the
context area).

The granularity of selection by the mouse could be partially offset by altering
the size and magnitude of the zoom between the focus area and the context area
(called the delta area from here on). For example, if a user is selecting an area
from left to right, the right delta area can be expanded both in zoom and width
in order to compensate for the mouse movement. The delta area on the right
would be contracted in zoom and width. By changing the delta area on both
sides, we can then move the audio displayed in the focus area at a slower rate
which should produce a better user experience as well as finer control.

The second method to move the focus area within the audio track is by
using mouse and keyboard queues. There are many ways in which this can be
implemented. For example, the user may just have to click on any point in the
track, and the focal area will surround the selected point. This conflicts with
many programs as clicking on a track usually results in moving the play head to
that location. Another queue could be by clicking on the track (which positions
the play head) then pressing a keyboard button to signify that we want to move
the focal area to this point. Yet another option could be to hover the mouse over
the position and press a key in order to select the focal point and in addition,
this would allow a user to change the focal point without changing slide location.

The third method is to use the horizontal selection bar. This method is very
appealing since we are showing the whole context of the audio. The track is
always the width of the screen so the there is never an occasion when it would
be used in its conventional manner. The highlighted part of the bar could be the
same width and in the same location as that of the focal point. By doing so, we
create a very good relation between the two objects. However, by using the bar
as a focal selection point, we are removing the user from the normal paradigm
of using the bar to ”scroll” the whole window.

Automatic changing of the focal point It is possible to move the focal point
on the fly when playing back an audio track. This allows the user to follow the
location of the playback point very easily. However, it does cause some confusion
as the wavetrack within the focal point may moves quite fast depending on how
far the user is zoomed in.



FPC Audio Interaction 19

Zoom to Selection While editing audio, quite frequently a user wants to get
more detail on a section of audio. In order to do so, the user usually selects
the area that they want to view, and zoom in on the selection. However, in the
FPC environment, there is two parameters to the focus area: width and zoom.
Therefore, zooming in on the selection may not have the desired outcome for the
user. There are three ways in which this problem can be solved.

The first option is to adjust the width of the focal area so that the zoomed
selection can fit into the new focal width. Depending on the level of zoom, the
focus window may not be able to expand far enough to fit the whole selection
into the focal area. It is suggested that a threshold be created (such as ? of the
track window) such that, if the width of the focal are were to extend beyond
this threshold (due to a large selection and high zoom level) then the zoom level
of the focal area would be scaled down to the point that the selection can fit in
the focal area at a focal zoom level of two (twice the context area). This may
confuse the user, however, it may be the option that is closer to the expectation
of the user.

The second option is to only adjust the zoom level of the focal area so that
the selection can fit into the focal area without adjusting the focal width. This
option may work well if the user is always making selection with approximately
the same size as the zoom level of the focal area would not change dramatically.
However, if the user is making large changes in selection width, the change in
zoom level could greatly confuse the user. A good example is if the user has a
small focal width with a high level of zoom, and the user makes a very large
selection and wants to zoom in on the selection. This would result is the zoom
level being dramatically decreased possible to the point where the focal area
would of a smaller zoom level then the context area (essentially swapping the
focal and context areas). Since the focal area should never have a smaller zoom,
the program would be forced to either not widen the focal area and as a result,
not enclose all of the selection in the focal area, or the program would be forced
to widen the focal area to the width of the selection.

Focus to selection Width It is possible to have the user make a selection on
the screen then press a button to adjust the width of the focal area. This allows
the user to properly set the size of the focal window so they can get the right
ratio of the focal and context area.

4.2 Moving the Focal Area during playback

When playing back audio, a cursor is drawn on the track in the location of the
audio that is currently playing. As the track plays, the cursor is slide along the
track. It is possible for the Focus area to follow the cursor such that it is in
the focal area. This allows the user to see in greater detail the waveform of the
audio as its being played. This has two negative effects. The first being that is
moves the focal area from the previous point that it was set. The second effect is
that the waveform moves very quickly by the cursor. This can make it harder to



20 Gerhard, Park and Ellis

predict what the waveform will look like next and confuse the user as to where
they are in the track. It may be recommended to move the focal area but only
at a moderately low zoom level such that the waveform does not move overly
fast. An issue with our particular implementation is that the focal area moves
at a consistent rate but the cursor jumps back and forth within the focal area
at different rates because of the change in pixels per second from the context to
the focal areas.

4.3 FPC issues with multi-track editing

(This might not really be an issue with FPC, just with the way we handle it in
Audacity because we are working on a waveclip rather than a wavetrack)

Editing multi-track audio in Audacity with FPC poses a few additional prob-
lems. All of the problems again stem from the Audacity assuming that the
pixel/time relationship is constant. Audacity draws each audio track separately
and in addition, each track can contain several wave clips.

Difference Between FPC implementation and image zoom (aperature)
There are two ways to display FPC information. The first way is to create a focal
area and contract the context area to ensure that all of the context information
is displayed. This method makes sure that all of the context information is
displayed. As a side effect, it is often harder to code and slower to display as the
context information needs to be altered whenever the focal point is moved. The
dock on the Mac OSX is a good example of this. As a focal point is selected,
the context information is moved outward in order to compensate for the larger
focal point. The second way to create a focal area is to have the focal area cover
up some of the context area. This allows for quicker and more efficient code to
be written as the context area does not have to be recalculated. A good example
of this method is the magnifying glass option in Apple’s Aperture program.

4.4 Difficulties of implementing FPC in an existing application

The implementation method chosen was to alter the open source audio editing
program Audacity to use FPC. The major issue with modifying an existing appli-
cation to use FPC is that the basis assumption of almost all editing application
is that a direct relation exists between audio track time and pixel location. For
example, Audacity uses a variable called zoom which represents how many pixels
are displayed per second of audio. Therefore, if a pixel count is given a function,
the time can be calculated by dividing the number of pixels by the zoom. Also,
if a time is given, the number of pixels needed to represent that quantity of
audio can be calculated by multiplying the time by the zoom. Being that the
conversion from time to pixels and pixels to time is a primary calculation that
is done during audio selection, editing, and display, it is heavily entrenched into
program. When creating a FPC editor, the basic assumption that a direct rela-
tion exists between pixels and time is false. This difference causes many issues
when trying to modify an existing audio editing application.



FPC Audio Interaction 21

Even after all of the time/pixel relations are modified to use the new FPC
mappings, several problems still exist due to caching and file reading issues
which are used to speed up Audacity. For example, when displaying the audio
waveform, Audacity checks to see if how many blocks are used to calculate the
pixel to be displayed. It then reads in the audio data in large chunks (256B
or 64KB) if possible in order to speed up file reading and calculation of the
minimum, maximum, and root mean square points. When using FPC the number
of blocks per pixel varies depending on pixel location. This results in the inability
to read data in large chunks using Audacity’s existing functions and structures
because they do not allow for different chunk sizes concurrently. Caching also
creates many problems with FPC.

During normal use, Audacity caches the information it needs to display the
audio waveform. The end result is that the waveform only needs be calculated
a single time unless the zoom factor, start time, or window width changes. The
existing caching methods are not compatible with a FPC application because
of the lack of constant time/pixel relation and the ability to move the focal
window. A caching scheme similar to Audacity’s could be implemented. In order
to do this, two caching arrays would be needed; one for the context area and
one for the focal area. The context area cache would have to be the same size
as the number of pixels being displayed for the waveform minus the number
of pixels being displayed. The focal are cache would be approximately the size
of the focal window times the zoom factor. This caching scheme would be very
ineffective in many situations for several reasons. The whole cache would have to
recalculated when the focal window zoom, or width was changed. The transition
area between the focal window and context area would have to be recalculated
on the fly as caching this information would be inefficient and the transition
area would have to remain a constant size to avoid cache recalculation. Also, the
cache size of the focal window could become very large at large zoom factors. A
slight modification to this caching scheme would be to only use a single caching
array for the focal area and calculating the context values from the focal cache
rather than the original source. This would be useful when the focal area was
not at an overly high zoom. Due to these caching issues, it is recommended that
different caching schemes be utilized.

One way to speed up waveform display calculation is by pre-computing some
of the commonly used conversion variables. For example, when using FPC with
Audacity if we compute the pixel per second value for each pixel once and then
store it in an array, we can speed up many function as this value is used very
often. A mapping between pixel location and track time could also be stored in
an array. The values stored in the array are only valid if the display width, focal
zoom, focal start point, and focal width do not change. The end result is that
calculation for the current wave form display can be sped up. By using some
change information we can reduce the number of calculations that are needed
when re-computing the cache arrays.

As an example of efficient re-computation of the cache array, the pixel per
second (PPS) cache will be used. If the focal window is moved 50 pixels to the



22 Gerhard, Park and Ellis

left, only 100 values of the cache array have to be re-calculated (50 pixels at
the start of the focal window and 50 pixels past the end of the focal window).
Similarly, if the focal window is 20 pixels wide and is moved 100 pixels to the
right, only 40 values need to be recalculated (the 20 pixels at the new location
and the 20 pixels at the old location). These informed changes to the caching
arrays can reduce the number of new values that are being computed and stored
by a large factor. However, they may not yield an overly large performance
benefit when compared to the existing caching methods of Audacity.

Another speed issue caused by FPC results from the fact that we have to show
the entire track on the screen. Normally audacity only has to calculate values
for the portion of the track that is displayed on the screen. Because Audacity
only displays a subset of the whole track, the number of samples that need to be
read for calculating the waveform does not correlate to the length of the track.
With FPC, we need to read all of the samples for the entire track in order to
display the waveform. This creates a large performance hit when drawing the
waveform of long tracks. A one minutes track could take almost twice as long as
a half minute track to display.

Caching the final waveform would be an effective method increasing render
time, however as discussed earlier, the lifetime of caching the final pixel waveform
is small. Therefore, caching at a level closer to the sample level would be more
useful. The cache resolution should be of a rate equal to the number of samples
per pixel of the focal area. This will result in a large cache if the resolution is
small or the track length is long. As a compromise, if the cache size grew too
large the resolution could be increased to be equal to the number of samples per
pixel of the context area. This would speed up the rendering of the context area
but would not be useful for the focal or transition areas.

An additional way of speeding up the rendering of the waveform in both tra-
diational Audacity and Audacity with FPC is to speed up the rate of performing
calculations. This could be done quite practically through the use of the graph-
ics processing unit (GPU). The GPU’s in modern machines are much faster at
floating point calculation than CPU’s. By moving the root mean squared calcu-
lations as well as other common expensive calculations off of the CPU and onto
the GPU a very large performance increase can be gained.

5 Conclusions

We have presented a discussion of the issues involved in focus-plus-context dis-
plays for audio interaction. While it may be true that these displays will add a
computational burden to what has traditionally been a relatively simple task, it
is perhaps more appropriate to think of this as a shift in cognitive burden from
the human to the computer. In traditional audio editing displays, users are forced
to maintain and update a mental model of the entire file being considered, and
difficulties can arise when there are repeated segments in a file. FPC interfaces
can alleviate many of the current task-related difficulties of audio interaction.



FPC Audio Interaction 23

We have presented theoretical aspects of generating FPC displays of waveform
and spectral information, and discussed implementation issues.

While it may be tempting to suggest that audio interaction programs have
been successfully used for many years and that although learning is required, the
current systems are capable of performing the tasks required, it is worthwhile
to recall that most of the people who work with these programs have extensive
experience and strong familiarity with the paradigm, the result of which can be
overestimating the ease of use of the familiar interface. FPC audio displays have
the potential to remove considerable cognitive burden for people who work with
audio, regardless of whether they consider themselves burdened.

References

1. Benjamin B. Bederson and James D. Hollan. Pad++: a zooming graphical interface
for exploring alternate interface physics. In UIST ’94: Proceedings of the 7th annual
ACM symposium on User interface software and technology, pages 17–26, New York,
NY, USA, 1994. ACM Press.

2. Kasper Hornbæk, Benjamin B. Bederson, and Catherine Plaisant. Navigation pat-
terns and usability of zoomable user interfaces with and without an overview. ACM
Trans. Comput.-Hum. Interact., 9(4):362–389, 2002.

3. Alan Keahey. The generalized detail-in-context problem. In INFOVIS ’98: Pro-
ceedings of the 1998 IEEE Symposium on Information Visualization, pages 44–51,
Washington, DC, USA, 1998. IEEE Computer Society.

4. Allan Keahey. Nonlinear magnification infocenter. online: http://alan.keahey.
org/research/nlm/nlm.html [accessed April 14, 2007].

5. Matthew D. Plumlee and Colin Ware. Zooming versus multiple window inter-
faces: Cognitive costs of visual comparisons. ACM Trans. Comput.-Hum. Interact.,
13(2):179–209, 2006.

6. Jef Raskin. The Humane Interface: New Directions for Designing Interactive Sys-
tems. Addison-Wesley Professional, March 2000.

7. Uwe Rauschenbach. The rectangular fish eye view as an efficient method for the
transmission and display of images. In ICIP ’99: Proceedings of the 1999 IEEE con-
ference on Image Processing, Washington, DC, USA, 1999. IEEE Computer Society.

8. Uwe Rauschenbach, T. Weinkauf, and H Schumann. Interactive focus and context
display of large raster images. In WSCG ’00: The 8-th International Conference in
Central Europe on Computer Graphics, Visualization and Interactive Digital Media,
2000.

9. Allison Woodruff, James Landay, and Michael Stonebraker. Constant information
density in zoomable interfaces. In AVI ’98: Proceedings of the working conference
on Advanced visual interfaces, pages 57–65, New York, NY, USA, 1998. ACM Press.


