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Abstract

Computer music analysis is investigated, with
specific reference to the current research fields
of automatic music transcription, human mu-
sic perception, pitch determination, note and
stream segmentation, score generation, time-
frequency analysis techniques, and musical
grammars. Human music perception is in-
vestigated from two perspectives: the com-
putational model perspective desires an algo-
rithm that perceives the same things that hu-
mans do, regardless of how the program ac-
complishes this, and the physiological model
perspective desires an algorithm that models
exactly how humans perceive what they per-
ceive.

*This research is partially supported by The Nat-
ural Sciences and Engineering Research Council of
Canada and by a grant from The BC Advanced Sys-
tems Institute.

1 Introduction

A great deal of work in computer music deals
with synthesis—using computers to compose
and perform music. An interesting exam-
ple of this type of work is Russell Ovens’
thesis, titled “An Object-Oriented Constraint
Satisfaction System Applied to Music Com-
position” [Oven88]. In contrast, this report
deals with analysis—using computers to ana-
lyze performed and recorded music. The in-
terest in this field comes from the realization
that decoding a musical representation into
sound is fairly straightforward, but translat-
ing an arbitrary sound into a score is a much
more difficult task. This is the problem of Au-
tomatic Music Transcription (AMT) that has
been looked at since the late 1970’s. AMT
consists of translating an unknown and arbi-
trary audio signal into a fully notated piece
of musical score. A subset of this problem is
monophonic music transcription, where a sin-
gle melody line played on a single instrument



in controlled conditions is translated into a
single note sequence, often stored in a MIDI
track!. Monophonic music transcription was
solved in 1986 with the publication of Martin
Piszczalski’s Ph.D. thesis, which will be dis-
cussed in Section 3.0.1 on page 6.

AMT is a subset of Music Perception, a
field of research attempting to model the way
humans hear music. Psychological studies
have shown that many of the processing ele-
ments in the human auditory perceptual sys-
tem do the same thing as processing elements
in the human visual perceptual system, and
researchers have recently begun to draw from
past research in computer vision to develop
computer audition. Not every processing ele-
ment is transferable, however, and the differ-
ences between vision and audition are clear.
There are millions of each of the four types of
vision sensors, L, M, and S cones and rods,
while there are only two auditory sensors, the
left and right ears. Some work has been done
on using visual processing techniques to aid in
audition (see Section 2.1 on page 4 and Sec-
tion 4.2.2 on page 13), but there is more to be
gained from cautiously observing the connec-
tions between these two fields.

Many research areas relate to computer mu-
sic and AMT. Most arise from breaking AMT
down into more manageable sub-problems,
while some sprouted from other topics and
studies. Six areas of current research work will
be presented in this report:

e Transcription

Music perception

— Pitch determination

Segmentation

— Score generation
e Related Topics

— Time-frequency analysis

IMIDI will be discussed in Section 6.1 on page 15.

— Musical grammars

Part 1

Transcription

The ultimate goal of much of the computer
music analysis research has been the develop-
ment of a system which would take an audio
file as input and produce a full score as out-
put. This is a task that a well-trained human
can perform, but not in real time. The person,
unless extremely gifted, requires access to the
same audio file many times, paying attention
to a different instrument each time. A mono-
phonic melody line would perhaps require a
single pass, while a full symphony might not
be fully transcribable even with repeated au-
ditions. Work presented in [Tang95] suggests
that if two instruments of similar timbres play
“parallel” musical passages at the same time,
these instruments will be inseperable. An ex-
ample of this is the string section of an orches-
tra, which is often heard as a single melody line
when all the instruments are playing together.

Some researchers have decided to work on
a complementary problem, that of extracting
errors from performed music [Sche95]. Instead
of listening to the music and writing the score,
the computer listens to the music, follows the
score, and identifies the differences between
what the ideal music should be and what the
performed music is. These differences could be
due to expression in the performance, such as
vibrato, or to errors in the performance, such
as incorrect notes. A computer system that
could do this would be analogous to a novice
music student who knows how to read music
and can listen to a piece and follow along in
the music, but cannot yet transcribe a piece.
Such a system gives us a stepping stone to the
full problem of transcription.



2 Music Perception

There have been two schools of thought con-
cerning automatic music transcription, one re-
volving around computational models and one
revolving around psychological models.

The psychological model researchers take
the “clear-box” approach, assuming that the
ultimate goal of music transcription research
is to figure out how humans hear, perceive and
understand music. A working system is not as
important as little bits of system that accu-
rately (as close as we can tell) model the hu-
man perceptual system. This attitude is valu-
able because by modeling a working system —
the human auditory system, we can develop a
better artificial system, and gain philosophical
insight into how it is that we hear things.

In contrast, the computational model re-
searchers take the “black-box” approach, as-
suming that a music transcription system is
acceptable as long as it transcribes music.
They are more concerned with making a work-
ing machine and less concerned with modeling
the human perceptual system. This attitude is
valuable because in making a working system
we can then work backward and say “How is
this like or unlike the way we hear?” The prob-
lem is that the use of self-evolving techniques
like neural nets and genetic algorithms limits
our ability as humans to understand what the
computer is doing.

These two fields of research rarely work to-
gether and are more often at odds with each
other. Each does have valuable insights to gain
from the other, and an interdisciplinary ap-
proach, using results from both fields, would
be more likely to succeed.

Aside: Computational Models. A point
of dispute in interdisciplinary research has of-
ten been the notion of a computational model
for explaining human psychological phenom-
ena. Computer scientists and engineers have
been using computational models for many
years to explain natural phenomena, but when
we start going inside the mind, it hits a little

closer to home.

When a scientific theory tries to explain
some natural phenomenon, the goal is to be
able to predict that phenomenon in the fu-
ture. If we can set up a model that will pre-
dict the way the world works, and we use a
computer algorithm to do this prediction, we
have a computational model. The argument is
that these algorithms do not do the same thing
that is happening in the world, even though
they predict what is happening in the world.
Kinematics models do not take into account
quantum effects in their calculations, and since
they do not model the way the world really
works, they are not valuable, some would say.
These models do explain and predict motion
accurately within a given domain and whether
or not they model the complete nature of the
universe, they do explain and predict natural
phenomena.

This is less easy to accept when dealing with
our own minds. We want to know the under-
lying processes that are going on in the brain,
so how useful is a theory, even if it is good at
predicting the way we work, if we don’t know
how close it is to our underlying processes?
Wouldn’t it be better to develop a theory of
the mind from the opposite viewpoint and say
that a model is valid if it simulates the way we
work from the inside — if it concurs with how
the majority of people react to a certain stim-
ulus? This is very difficult because psycholog-
ical testing cannot isolate individual processes
in the brain, it can only observe input and out-
put of the brain as a whole, and that is a sys-
tem we cannot hope to model at present.

The other problem with this is one of prag-
matics. Ocham’s razor says that when theo-
ries explain something equally well, the sim-
pler theory is more likely to be correct. A sim-
pler theory is more likely to be easier to pro-
gram as well, and so simpler theories tend to
come out of computational models. Of course,
we must be careful that the theories we com-
pare do in fact explain the phenomena equally
well, and we must be aware that the simplest



computational model we get is not necessarily
the same processing that goes on in the mind.

This brings another advantage of computa-
tional models, their testability. Psychological
models can be tested, but it is much more dif-
ficult to control such experiments, because all
systems in the brain are working together at
the same time. In computational models, only
the processing we are interested in is present,
and that bit of processing can be tested with
completely repeatable results.

2.1 Auditory Scene Analysis

Albert Bregman’s landmark book in 1990
[Breg90] presented a new perspective in hu-
man music perception. Until then, much work
had been done in the organization of human
visual perception, but little had been done
on the auditory side of things, and what lit-
tle there was concentrated on general concepts
like loudness and pitch. Bregman realized that
there must be processes going on in our brains
that determine how we hear sounds, how we
differentiate between sounds, and how we use
sound to build a “picture” of the world around
us. The term he used for this picture is “the
auditory scene”.

The classic problem in auditory scene anal-
ysis is the “cocktail party” situation, where
you are in a room with many conversations go-
ing on, some louder than the one you are en-
gaged in, and there is background noise such
as music, clanking glasses, and pouring drinks.
Amid all this cacophony, humans can readily
filter out what is unimportant and pay atten-
tion to the conversation at hand. Humans can
track a single auditory stream, such as a per-
son speaking, through frequency changes and
amplitude changes. The noise around may be
much louder than your conversation, and still
you have little trouble understanding what the
other person is saying. For a recent attempt
to solve this problem, see [GrBI195].

An analogy that shows just how much pro-
cessing is done in the auditory system is

Figure 1: The Face-Vase Illusion.

the lake analogy. Imagine digging two short
trenches up from the shore of a lake, and then
stretching handkerchiefs across the trenches.
The human auditory system is then like deter-
mining how many boats are on the lake, what
kind of engines are running in them, which di-
rection they are going, which one is closer, if
any large objects have been recently thrown
in the lake, and almost anything else, merely
from observing the motion of the handker-
chiefs. When we bring the problem out to our
conscious awareness, it seems impossible, and
yet we do this all the time every day without
thinking about it.

Bregman shows that there are many phe-
nomena going on in the processing of audi-
tory signals that are similar to those in visual
perception. Ezclusive allocation indicates that
properties belong to only one event. When it
is not clear which event that property applies
to, the system breaks down and illusions are
perceived. The most common visual exam-
ple of this is the famous “face-vase” illusion,
Figure 1, where background and foreground
are ambiguous, and it is not clear whether the
boundary belongs to the vase or the two faces.
This phenomenon occurs in audition as well.
In certain circumstances, musical notes can be
ambiguous. Depending on what follows a sus-
pended chord, the chord can be perceived as
both major and minor, until the ambiguity is
removed by resolving the chord.

Apparent motion occurs in audition as it
does in vision. When a series of lights are
flashed on and off in a particular sequence,
it seems like there is a single light traveling



along the line. If the lights are flashed too slow
or they are too far apart, the illusion breaks
down, and the individual lights are seen turn-
ing on and off. In audition, a similar kind of
streaming occurs, in two dimensions. If a se-
ries of notes are of a similar frequency, they
will tend to stream together, even if there are
notes of dissimilar frequencies interspersed.
A sequence that goes “Low-High-Low-High...”
will be perceived as two streams, one high and
one low, in two circumstances. If the tempo
is fast enough, the notes seem closer together
and clump into streams. Also, if the difference
between the “Low” and the “High” frequen-
cies is large enough, the streaming will also oc-
cur. If the tempo is slow and the frequencies
do not differ by much, however, the sequence
will be perceived as one stream going up and
down in rapid succession.

There are more examples of the link be-
tween vision and audition in Bregman’s book,
as well as further suggestions for a model of
human auditory perception. Most of the book
explains experiments and results that reinforce
his theories.

2.2 Axiomatization of Music

Perception

In 1995, Andranick Tanguiane presented the
progress of a model of human music perception
that he had been working on for many years
[Tang95]. The model attempts to explain hu-
man music perception in terms of a small set
of well-defined axioms. The axioms that Tan-
guiane presents are:

Axiom 1 (Logarithmic Pitch) The frequency
axis is logarithmically scaled.

Axiom 2 (Insensitivity to the phase of the
signal) Ounly discrete power spectra are
considered.

Axiom 3 (Grouping Principle) Data can be
grouped with respect to structural iden-
tity.

Axiom 4 (Simplicity Principle) Data are rep-
resented in the least complex way in
the sense of Kolmogorov (least memory
stored).

Axiom 1 stems from the well-recognized fact
that a note with a frequency twice that of
some reference note is an octave higher than
the reference note. An octave above “A” at
440 Hz would be “A” at 880 Hz, and then “A”
at 1760 Hz and so on. This is a logarithmic
scale, and has been observed and documented
exhaustively.

Axiom 2 is a bit harder to recognize. T'wo
different time signals will produce the same au-
ditory response if the power frequency spectra
are the same. The phase spectrum of a signal
indicates where in the cycle each individual si-
nusoid starts. As long as the sinusoidal com-
ponents are the same, the audio stimulus will
sound the same whether the individual com-
ponents are in phase or not.

The third axiom is an attempt to describe
the fact that humans group audio events in
the same gestalt manner as other perceptual
constructs. Researchers in musical grammars
have identified this, and there is more material
on this phenomenon in Section 2.1 on page 4.

The last axiom suggests that while we may
hear very complicated rhythms and harmonies
in a musical passage, this is done in men-
tal processing, and the mental representation
used is that which uses the least memory.

Tanguiane argues that all of these axioms
are necessary because without any one of
them, it would be impossible for humans to
recognize chords as collections tones. The fact
that we are able to perceive complex tones as
individual acoustical units, claims Tanguiane,
argues for the completeness of the axiom set.
This perception is only possible when the mu-
sical streams are not parallel.



2.3 Discussion

Research has approached the problem of mu-
sic perception and transcription from two dif-
ferent directions. In order to fully under-
stand music enough to develop a computa-
tional model, we must recognize the psycho-
logical processing that is going on. Early work
in automatic music transcription was not con-
cerned with the psychological phenomena, but
with getting some sort of information from one
domain to another. This was a valuable place
to start, but in its present state, the study of
music perception and transcription has much
to gain from the study of the psychology of au-
dition.

3 Beginnings

In the mid 70’s, a few brave researchers tried
to tackle the whole transcription problem by
insisting on a limited domain. Piszczalski
and Galler presented a system that tried to
transcribe musical sounds to a musical score
[PiGa77]. The intent was to take the presented
system and develop it toward a full transcrip-
tion system. In order to make the system func-
tional, they required the input audio to be
monophonic from a flute or a recorder, pro-
ducing frequency spectra which are easily an-
alyzed.

3.0.1 Piszczalski and Galler

At this early point in the research, Piszczal-
ski and Galler recognized the importance of
breaking the problem down into stages. They
divided their system into three components,
working bottom-up. First, a signal process-
ing component identifies the amplitudes and
starting and stopping times of the component
frequencies. The second stage takes this infor-
mation and formulates note hypotheses for the
identified intervals. Finally, this information
is analyzed in the context of notation to iden-
tify beam groups, measures, etc., and a score

is produced.

A windowed Fourier transform is used to
extract frequency information. Three stages
of heuristics are used to identify note starts
and stops. The system first recognizes funda-
mental frequencies below or above the range
of hearing as areas of silence. More difficult
boundaries are then identified by fluctuations
in the lower harmonics and abrupt changes in
fundamental frequency amplitude. The sec-
ond phase averages the frequencies within each
perceived “note” to determine the pitch which
is then compared to a base frequency. In the fi-
nal phase, a new base frequency is determined
from fluctuations in the notes, and grouping,
beaming and other notational tasks are per-
formed.

Since this early paper, Piszczalski has pro-
posed a computational model of music tran-
scription in his 1986 Ph.D. Thesis [Pisz86].
The thesis describes the progress and comple-
tion of the system started in 1977. There is
also a thorough history of AMT up to 1986.
This thesis is a good place to start, for those
just getting in to computer music research. It
is now more than 10 years old and much has
been accomplished since then in some areas,
but monophonic music transcription remains
today more or less where Piszczalski left it in
1986.

3.0.2 Moorer

In 1977, James Moorer presented a paper
[Moor77] on the work he accomplished since
then, which would turn out to be the first
attempt at polyphonic music transcription.
Piszczalski’s work required the sound input to
be a single instrument and a single melody
line, while Moorer’s new system allowed for
two instruments playing together. Restric-
tions on the input to this system were tighter
than Piszczalski’s work: there could only be
two instruments, they must both be of a type
such that the pitches are voiced (no percussive
instruments) and piecewise constant (no vi-



brato or glissando) and the notes being played
together must be such that the fundamental
frequencies and harmonics of the notes do not
overlap. This means that no note pairs are al-
lowed where the fundamental frequencies are
small whole number ratios of each other.

Moorer claims that these restrictions, apart
from the last one, are merely for convenience
and can easily be removed in a larger sys-
tem. He recognized that the fundamental fre-
quency restriction is difficult to overcome, as
most common musical intervals are on whole
number frequency ratios. The other restric-
tions he identified have been shown to be more
difficult to overcome than he first thought.
Research into percussive musical transcrip-
tion has shown that it is sufficiently differ-
ent from voiced transcription to merit inde-
pendent work, and glissando and vibrato have
proved to be difficult problems. Allowing
more than two instruments in Moorer’s sys-
tem would require a very deep restriction on
the frequencies.

These restrictions cannot be lifted without
a redesign of the system, because notes on the
octave, or even a major third apart have fun-
damental frequencies that are whole number
multiples of each other, and thus cannot be
separated by his method.

Moorer uses an autocorrelation function in-
stead of a Fourier transform to determine the
period of the signal, which is used to determine
the pitch ratio of the two notes being played?.
The signal is then separated into noise seg-
ments and harmonic segments, by assigning
a quality measure to each part of the signal.
In the harmonic portions, note hypotheses are
formed based on fundamental frequencies and
their integer multiples. Once hypotheses of
the notes are confirmed, the notes are grouped
into two melody lines (which do not cross) by
first finding areas where the two notes over-
lap completely, and then filling in the gaps by

2Pitch and Period are not necessarily interchange-
able. For a discussion, see Section 4.1.2 on page 10.

heuristics and trial and error. Moorer then
uses an off-the-shelf program to create a score
out of the two melody lines.

3.1 Breakdown

The early attempts at automatic music tran-
scription have shown that the problem must
be limited and restricted to be solved, and the
partial solutions cannot easily be expanded to
a full transcription system. Many researchers
have chosen to break the problem down into
more manageable sub-problems. FEach re-
searcher has her own ideas as to how the prob-
lem should be decomposed, and three promi-
nent ones are presented here.

3.1.1 Piszczalski and Galler

In [PiGa77], discussed above, Piszczalski and
Galler propose three components, breaking the
process down temporally as well as computa-
tionally.

1. (low-level) Determine the fundamental
frequency of the signal at every point, as
well as where the frequencies start and
stop.

2. (intermediate-level) Infer musical notes
from frequencies determined in stage 1.

3. (high-level) Add notational information
such as key signature and time signature,
as well as bar lines and accidentals.

Piszczalski’s 1986 thesis proposes a larger
and more specific breakdown, in terms of the
intermediate representations. In this break-
down, there are eight representations, suggest-
ing seven processing stages. The proposed
data representations are, from lowest level to
highest level:

e Time waveform: the original continuous
series of analog air pressures representing
the sound.



e Sampled signal: a series of discrete volt-
ages representing the time waveform at
every sample time.

e Digital spectrogram: the sinusoid spec-
trum of the signal at each time window.

e Partials: the estimation of the frequency
position of each peak in the digital spec-
trogram.

e Pitch candidates: possibilities for the
pitch of each time frame, derived from the
partials.

e Pitch and amplitude contours: a descrip-
tion of how the pitch and amplitude vary
with time.

e Average pitch and note duration: discrete
acoustic events which are not yet assigned
a particular chromatic note value.

e Note sequence: the final representation.

The first four representations fit into stage
1 of the above breakup, The next three fit into
stage 2, and the last one fits into stage 3. In his
system, Piszczalski uses pre-programmed no-
tation software to take the note sequence and
create a graphical score. The problem of infer-
ring high-level characteristics, such as the key
signature, from the note sequence has been re-
searched and will be covered in Section 6.2 on
page 16.

3.1.2 Moorer

James Moorer’s proposed breakdown is similar
to that of Piszczalski and Galler, in that it sep-
arates frequency determination (pitch detec-
tion) from note determination, but it assigns
a separate processing segment to the identi-
fication of note boundaries, which Piszczal-
ski and Galler group together with pitch de-
termination. Moorer uses a pre-programmed
score generation tool to do the final nota-
tion. Indeed, this is a part of automatic mu-
sic transcription which has been, for the most

part, solved since the time of Moorer and his
colleagues, and there exist many commercial
software programs today that will translate a
MIDI signal (essentially a note sequence) into
a score. For more on MIDI see Section 6.1 on
page 15.

3.1.3 Tanguiane

In 1988, Andranick Tanguiane published a pa-
per on recognition of chords[Tang88]. Be-
fore this, chord recognition had been ap-
proached from the perspective of polyphonic
music—break down the chord into its compo-
nent notes. Tanguiane didn’t believe that hu-
mans actually did this dissection for individual
chords, and so his work on music recognition
concentrated on the subproblems that were
parts of music. He did work on chord recogni-
tion, separate from rhythm recognition, sepa-
rate again from melody recognition. The divi-
sion between the rhythm component and the
tone component has been identified in later
work on musical grammars, and will be dis-
cussed in Section 8 on page 18.

3.2 An Adopted Breakdown

For the purposes of this report, AMT will be
broken down into the following sub-categories:

1. Pitch determination: identification of the
pitch of the note or notes in a piece of mu-
sic. Work has been done on instantaneous
pitch detection as well as pitch tracking.

2. Segmentation: breaking the music into
parts.  This includes identification of
note boundaries, separation of chords into
notes, and dividing the musical informa-
tion into rhythm and tone information.

3. Score generation: taking the segmented
information and producing a score. De-
pending on how much processing was
done in the segmentation section, this



could be as simple as taking fully de-
fined note combinations and sequences
and printing out the corresponding score.
It could also include identification of key
and time signature.

4 Pitch Determination

Pitch Determination has been called Pitch Ex-
traction and Fundamental Frequency Identifi-
cation, among a variety of other titles, however
pitch and frequency are not exactly the same
thing, as will be discussed later. The task is
this: given an audio signal, what is the musical
pitch associated with the signal at any given
time. This problem has been applied to speech
recognition as well, since some languages such
as Chinese rely on pitch as well as phonemes
to convey information. Indeed, spoken English
relies somewhat on pitch to convey emotional
or insinuated information. A sentence whose
pitch increases at the end is interpreted as a
question.

In monophonic music, the note being played
has a pitch, and that pitch is related to the
fundamental frequency of the quasi-periodic
signal that is the musical tone. In polyphonic
music, there are many pitches acting at once,
and so a pitch detector may identify one of
those pitches or a pitch that represents the
combination of tones but is not present in any
of them separately. While pitch is indispens-
able information for transcription, more fea-
tures must be considered when polyphonic mu-
sic is being transcribed.

Pitch following and spectrographic analysis
deal with the continuous time-varying pitch
across time. As with instantaneous pitch de-
termination, many varied algorithms exist for
pitch tracking. Some of these are modified
image processing algorithms, since a time-
varying spectrum has three dimensions (fre-
quency, time and amplitude) and thus can be
considered an image, with time corresponding
to width, frequency corresponding to height,

and amplitude corresponding to pixel value.

Pitch determination techniques have been
understood for many years, and while im-
provements to the common algorithms have
been made, few new techniques have been
identified.

4.1 Instantaneous Pitch Tech-

niques

Detecting the pitch of a signal is not as easy as
detecting the period of oscillation. Depending
on the instrument, the fundamental frequency
may not be the pitch, or the lowest frequency
component may not have the highest ampli-
tude.

4.1.1 Period Detectors

Natural music signals are pseudo-periodic,
and can be modeled by a strictly periodic
signal time-warped by an invertible func-
tion[ChSM93]. They repeat, but each cycle is
not exactly the same as the previous, and the
cycles tend to change in a smooth way over
time. It is still meaningful to discuss the pe-
riod of such a signal, because while each cycle
is not the exact duplicate of the previous, they
differ only by a small amount (within a musi-
cal note) and the distance from one peak to the
next can be considered one cycle. The period
of a pseudo-periodic signal is how often the
signal “repeats” itself in a given time window.

Period detectors seek to estimate exactly
how fast a pseudo-periodic signal is repeating
itself. The period of the signal is then used
to estimate the pitch, through more complex
techniques described below.

Fourier Analysis. The “old standard”
when discussing the frequency of a signal. A
signal is decomposed into component sinu-
soids, each of a particular frequency and am-
plitude. If enough sinusoids are used, the sig-
nal can be reconstructed within a given er-
ror limit. The problem is that the discrete
Fourier transform centers sinusoids around a



given base frequency. The exact period of the
signal must then be inferred by examining the
Fourier components. The common algorithm
that is used to calculate the fourier spectrum
is called the fast fourier transform (FFT).

Chirp Z Transform. A method presented
in [Pisz86], it uses a charge-coupled device
(CCT) as an input. The output is a frequency
spectrum of the incoming signal, and in theory
should be identical to the output of a Fourier
transform on the same signal. The method
is extremely fast when implemented in hard-
ware, but performs much slower than the FF'T
when simulated in software. The CCD acts as
a delay line, creating a variable filter. The fil-
ter coefficients in the delay line can be set up
to produce a spectrum, or used as a more gen-
eral filter bank.

Cepstrum Analysis. This technique uses
the Fourier transform described above, with
another layer of processing. The log magni-
tude of the Fourier coefficients is taken, and
then inverse Fourier-transformed. The result
is a large peak at the frequency of the original
signal, in theory. This technique sometimes
needs tweaking as well.

Filter Banks. Similar to Fourier analysis,
this technique uses small bandpass filters to
determine how much of each frequency band is
in the signal. By varying the center frequency
of the filters, one can accurately determine the
frequency that passes the largest component
and therefore the period of the signal. This
is the most psychologically faithful model, be-
cause the inner ear acts as a bank of filters,
providing output to the brain through a num-
ber of orthogonal frequency channels.

Autocorrelation. A communication sys-
tems technique, this consists of seeing how
similar a signal is to itself at each point. The
process can be visualized as follows: take a
copy of the signal and hold it up to the orig-
inal. Move it along, and at each point make
a measurement of how similar the signals are.
There will be a spike at “0”, meaning that the
signals are exactly the same when there is no

10

time difference, but after a little movement,
there should be another spike where one cycle
lines up with the previous cycle. The period
can be determined by the location of the first
spike from 0.

The problem with most of these techniques
is that they assume a base frequency, and all
higher components are multiples of the first.
Thus, if the frequency of the signal does not
lie exactly on the frequency of one of the com-
ponents for example on one of the frequency
channels in a bank of filters, then the result is
a mere approximation, and not an exact value
for the period of the signal.

4.1.2 Pitch from Period

A common assumption is that the pitch of a
signal is directly confessed by its period. For
simple signals such as sinusoids, this is correct
in that the tone we hear is directly related to
how fast the sinusoid cycles. In natural mu-
sic, however, many factors influence the pe-
riod of the signal apart from the actual pitch
of the tone within the signal. Such factors in-
clude the instrument being played, reverbera-
tion, and background noise. The difference be-
tween period and pitch is this: a periodic sig-
nal at 440 Hz has a pitch of “A”, but a period
of about 0.00227 seconds.

A technique proposed in [Pisz86] to extract
the pitch from the period consists of formu-
lating hypotheses and then scoring them and
selecting the highest score as the fundamental
frequency of the note. Candidates are selected
by comparing pairs of frequency components
to see if they represent a small whole number
ratio with respect to other frequency compo-
nents. All pairs of partials are processed in
this way, and the result is a measure of pitch
strength versus fundamental frequency.

4.1.3 Recent Research

Xavier Rodet has been doing work with mu-
sic transcription and speech recognition since



before 1987. His fundamental frequency esti-
mation work has been done with Boris Doval,
and they have used techniques such as Hidden
Markov Models and Neural Nets. They have
worked with frequency tracking as well as es-
timation.

In [DoRo93], Doval and Rodet propose a
system for the estimation of the fundamental
frequency of a signal, based on a probabilis-
tic model of pseudo-periodic signals previously
proposed by them in [DoRo91]. They consider
pitch and fundamental frequency to be two dif-
ferent entities which sometimes hold the same
value.

The problem they address is the misnaming
of fundamental frequency by computer when a
human can easily identify it. There are cases
where a human observer has difficulty identi-
fying the fundamental frequency of a signal,
and in such cases they do not expect the al-
gorithm to perform well. The set of partials
that the algorithm observes is estimated by a
Fourier transform, and consists of signal par-
tials (making up the pseudo-periodic compo-
nent) and noise partials (representing room
noise or periodic signals not part of the main
signal being observed).

Doval and Rodet’s probabilistic model con-
sists of a number of random variables includ-
ing a fundamental frequency, an amplitude en-
velope, the presence or absence of specific har-
monics, the probability density of specific par-
tials, and the number and probability of other
partials and noise partials. Partials are first
classified as harmonic or not, and then a likeli-
hood for each fundamental frequency is calcu-
lated based on the classification of the corre-
sponding partials. The fundamental frequency
with maximum likelihood is chosen as the fun-
damental frequency for that time frame. This
paper also presented work on frequency track-
ing, see Section 4.2 on page 12.

In 1994 Quirés and Enriquez published a
work on loose harmonic matching for pitch
estimation [QuEn94]. Their paper describes
a pitch-to-MIDI converter which searches for
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evenly spaced harmonics in the spectrum.
While the system by itself works well, the
authors present a pre-processor and a post-
processor to improve performance. The pre-
processor minimizes noise and abhorrent fre-
quencies, and the processor uses fuzzy neural
nets to determine the pitch from the funda-
mental frequency.

The system uses a “center of gravity” type
measurement to more accurately determine
the location of the spectral peaks. Since the
original signal is only pseudo-periodic, an es-
timation of the spectrum of the signal is used
based on a given candidate frequency. The er-
ror between the spectrum estimation and the
true spectrum will be minimal where the can-
didate frequency is most likely to be correct.

Ray Meddis and Lowel O’Mard presented a
system for extracting pitch that attempts to
do the same thing as the ears do [MeOMO95].
Their system observes the auditory input at
many frequency bands simultaneously, the
same way that the inner ear transforms the
sound wave into frequency bands using a fil-
ter bank. The information that is present in
each of these bands can then be compared, and
the pitch extracted. This is a useful method
because it allows auditory events to be seg-
mented in terms of their pitch, using onset
characteristics. Two channels whose input be-
gins at the same time are likely to be rec-
ognizing the same source, and so information
from both channels can be used to identify the
pitch.

4.1.4 Multi-Pitch Estimation for

Speech

Dan Chazan, Yoram Stettiner and David
Malah presented a paper on multi-pitch esti-
mation [ChSM93]. The goal of their work was
to segment a signal containing multiple speak-
ers into individuals using the pitch of each
speaker as a hook. They represent the signal
using a sum of quasiperiodic signals, with a
separate warping function for each quasiperi-



odic signal, or speaker.

It is unclear if this work can be extended to
music recognition, because only the separation
of the speakers was the goal. Octave errors
were not considered, and the actual pitch of
the signal was secondary to the signal separa-
tion. Work could be done to augment the sep-
aration procedure with a more robust or more
accurate pitch estimation algorithm. The idea
of a multi-pitch estimator is attractive to re-
searchers in automatic music transcription, as
such a system would be able to track and mea-
sure the overlapping pitches of polyphonic mu-
sic.

4.1.5 Discussion

There is work currently being done on pitch
detection and frequency detection techniques,
but most of this work is merely applying new
numerical or computational techniques to the
original algorithms. No really new ideas seem
pending, and the work being done now con-
sists of increasing the speed of the existing al-
gorithms.

If a technique that could accurately deter-
mine the fundamental frequency without re-
quiring an estimation from the period or the
spectrum could be found, it would change this
field of research considerably. As it stands, the
prevalent techniques are estimators, and re-
quire checking a number of candidates for the
most likely frequency.

Frequency estimators and pitch detectors
work well only on monophonic music. Once
a signal has two or more instruments play-
ing at once, determining the pitch from the
frequency becomes much more difficult, and
monophonic techniques such as spectrum peak
detection fail. Stronger techniques such as
multi-resolution analysis must be used here,
and these topics will be discussed in Section 7
on page 17.
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4.2 Pitch Tracking

Determining the instantaneous frequency or
pitch of a signal may be a more difficult prob-
lem than needs to be solved. No time frame is
independent of its neighbors, and for pseudo-
periodic signals within a single note, very lit-
tle change occurs from one time frame to the
next. Tracking algorithms use the knowledge
acquired in the last frame to help estimate the
pitch or frequency in the present frame.

4.2.1 From the Spectrogram

Most of the pitch tracking techniques that are
in use or under development today stem from
pitch determination techniques, and these use
the spectrogram as a basis. Individual time
frames are linked together and information is
passed from one to the next, creating a pitch
contour. Windowing techniques smooth the
transition from one frame to the next, and in-
terpolation means that not every time frame
needs to be analyzed. Index frames may
be considered, and frames between these key
frames should be processed only if changes oc-
cur between the key frames. These frames
must be close enough together not to miss any
rapid changes.

While improvements have been made on this
idea (see [DoNa94]), the basic premise remains
the same. Use the frequency obtained in the
last frame as an initial approximation for the
frequency in the present frame.

In [DoRo93] presented earlier, a section on
fundamental frequency tracking is presented
where the authors suggest the use of Hidden
Markov Models. Their justification is that
their fundamental frequency model is prob-
abilistic. A discrete-time continuous-state
HMM is used, with the optimal state sequence
being found by the Viterbi algorithm. In
their model, a state corresponds to an inter-
val of the histogram. The conclusion that they
come to is that it is possible to use HMMs on
a probabilistic model to track the frequency



across time frames. HMMs are also used in
[DeGR93], where partials are tracked instead
of the fundamental frequency, and the ulti-
mate goal is sound synthesis. A natural sound
is analyzed using Fourier methods, and noise
is stripped. The partials are identified and
tracked, and a synthetic sound is generated.
This application is not directly related to mu-
sic transcription, rather music compression,
however the tracking of sound partials instead
of fundamental frequency could prove a useful
tool.

4.2.2 From Image Processing

The time-varying spectrogram can be consid-
ered an image, and thus image processing tech-
niques can be applied. This analogy has its
roots in psychology, where the similarity be-
tween visual and audio processing has been ob-
served in human perception. This is discussed
further in Section 2 on page 3.

In the spectrum of a single time frame, the
pitch is represented as a spike or a peak for
most of the algorithms mentioned above. If
the spectra from consecutive frames were lined
up forming the third dimension of time, the
result would be a ridge representing the time-
varying pitch. Edge following and ridge follow-
ing techniques are common in image process-
ing, and could be applied to the time-varying
spectra to track the pitch. The reader is re-
ferred to [GoWo92| for a treatment of these
algorithms in image processing. During the
course of this research, no papers were found
indicating the application of these techniques
to pitch tracking. This may be a field worthy
of exploration.

5 Segmentation

There are two types of segmentation in mu-
sic transcription. A polyphonic music piece
is segmented into parallel pitch streams, and
each pitch stream is segmented into sequential
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acoustic events, or notes. If there are five in-
struments playing concurrently, then five dif-
ferent notes should be identified for each time
frame. For convenience, we will refer to the
note-by-note segmentation in time simply as
segmentation, and we will refer to instrument
melody line segmentation as separation. Thus,
we separate the polyphonic music into mono-
phonic melody streams, and then we segment
these melody streams into notes.

Separation is the difference between mono-
phonic and polyphonic music transcription. If
a reliable separation system existed, then one
could simply separate the polyphonic music
into monophonic lines and use monophonic
techniques. Research has been done on source
separation using microphone arrays, identify-
ing the different sources by the delay between
microphones, however it is possible to segment
polyphonic sound even when all of the sound
comes from one source. This happens when we
hear the flute part or the oboe part of a sym-
phony stored on CD and played through a set
of speakers. For this reason, microphone array
systems will not be presented in this report,
however arrays consisting of exactly two mi-
crophones could be considered physiologically
correct, since the human system is binaural.

5.1 Piszczalski

The note segmentation section in Piszczalski’s
thesis takes the pitch sequence generated by
the previous section as input. Several heuris-
tics are used to determine note boundaries.
The system begins with the boundaries easi-
est to perceive, and if unresolved segments ex-
ist, moves on to more computationally com-
plex algorithms.

The first heuristic for note boundaries is si-
lence. This is perceived by the machine as a
period of time where the associated amplitude
of the pitch falls below a certain threshold. Si-
lence indicates the beginning or ending of a
note, depending on whether the pitch ampli-
tude is falling into the silence or rising out of



the silence.

The next heuristic is pitch change. If the
perceived pitch changes rapidly from one time
frame to the next, it is likely that there is
a note boundary there. Piszczalski’s system
uses a logarithmic scale independent of abso-
lute tuning, with a change of one half of a
chromatic step over 50 milliseconds indicating
a note boundary.

These two heuristics are assumed to identify
the majority of note boundaries. Other algo-
rithms are put in place to prevent inaccurate
boundary identifications. Octave pitch jumps
are subjected to further scrutiny because they
are often the result of instrument harmon-
ics rather than note changes. Other scruti-
nizing heuristics include the rejection of fre-
quency glitches and amplitude crevices, where
the pitch or the amplitude change sufficiently
to register a note boundary but then rapidly
change back to their original level.

The next step is to decide on the pitch and
duration for each note. Time frames with the
same pitch are grouped together, and a re-
gion growing algorithm is used to pick up any
stray time frames containing pitch. Abhorrent
pitches in these frames are associated with the
proceeding note and the frequency is ignored.
The pitch of the note is then determined by
averaging the pitch of all time frames in the
note, and the duration is determined by count-
ing the number of time frames in the note
and finding the closest appropriate note dura-
tion (half, quarter etc.). Piszczalski’s claim is
that the system generates less than ten per-
cent false positives or false negatives.

5.2 Smith

In 1994, Leslie Smith presented a paper to the
Journal of New Music Research, discussing his
work on sound segmentation, inspired by phys-
iological research and auditory scene analysis
[Smit94]. The system is not confined to the
separation of musical notes, and uses onset
and offset filters, searching for the beginnings
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and endings of sounds. The system works on
a single audio stream, which corresponds to
monophonic music.

Smith’s system is based on a model of the
human audio system and in particular, the
cochlea. The implications are that while the
system is more difficult to develop, the final
goal is less a working system and more an un-
derstanding of how the human system works.

The first stage of Smith’s system is to fil-
ter the sound and acquire the spectra. This
closely models the human process. It is known
that the cochlea is an organ that converts time
waveforms into frequency waveforms.

One might ask why not use a model of the
human system as a first stage in any compu-
tational pitch perception algorithm. The rea-
son is that the cochlea uses 32 widely spaced
frequency channels [Smit94]. The processing
necessary to go from 32 channels to an exact
pitch is very complicated, more so than the
algorithms that approximate a pitch from the
hundreds of channels in a Fourier spectrum.
Until we know how the brain interprets the in-
formation in these channels, pitch extraction
might as well use the more information avail-
able in modern spectrographic techniques.

The output of the 32 filter bands are
summed to give an approximation of the to-
tal signal energy on the auditory nerve, and
this signal is used to do the onset/offset fil-
tering. Theories have been stated that human
onset /offset perception is based on frequency
and amplitude, either excitatory or inhibitory.
Smith’s simplification is to interpret all the fre-
quencies at once, and even he considers this
too simple. It is evident, however, that until
we know how the brain interprets the differ-
ent frequencies to produce a single onset/offset
signal, this simplification is acceptable, and in-
structive.

The onset/offset filters themselves are
drawn from image processing, and use a con-
volution function across the incoming signal.
This requires some memory of the signal, but
psychological studies have shown that human



audio perception does rely on memory more
than the instantaneous value of the pressure
on the eardrum. The beginning of a sound
is identified when the output of this convolu-
tion rises above a certain threshold, but the
end of the sound is more difficult to judge.
Sounds that end sharply are easy, but as a
sound drifts off, the boundary is less obvi-
ous. Smith suggests placing the end of the
sound at the next appropriate sound begin-
ning, However this disagrees with Bregman’s
theory that a boundary can correspond to ex-
actly one sound, and is ambiguous if applied
to more than one sound.

Smith’s work is intended to model the hu-
man perceptual system and to be useful on
any sound. He mentions music often, because
it is a sound that is commonly separated into
events (notes) but the work is not directly
applicable to monophonic music segmentation
yet. Further study on the frequency depen-
dent nature of the onset/offset filters of the
human could lead to much more accurate seg-
mentation procedures, as well as a deeper un-
derstanding of our own perceptual systems.

5.3 Neural Oscillators

A number of papers have recently been
presented using neural nets for segmenta-
tion, specifically [Wang95], [NGIO95], and
[BrCo95], as well as others in that volume.
The neural net model commonly used for this
task is the neural oscillator. The hypothesis
is that neural oscillators are one of the struc-
tures in the brain that help us to pay atten-
tion to only one stream of audition, when there
is much auditory noise going on. The model
is built from single oscillators, consisting of a
feedback loop between an excitatory neuron
and an inhibitory neuron. The oscillator out-
put quickly alternates between high values and
low values.

The inputs to the oscillator network are the
frequency channels that are employed within
the ear. Delay is introduced within the lines
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connecting the inputs to the oscillator net-
work, and throughout the network itself.

When an example stream of tones “High-
Low-High-Low...” is presented to the net-
work, the high tones trigger one set of fre-
quency channels, and the low tones trigger an-
other set of channels. If the tones are tem-
porally close enough together, the oscillators
do not have time to relax back to the orig-
inal state from the previous high input and
are triggered again, thus following the audi-
tory stream. If the time between pulses is
long enough, then the oscillators relax from
the high tone and are excited by the low tone,
making the stream seem to oscillate between
high and low tones.

6 Score Generation

Once the pitch sequence has been determined
and the note boundaries established, it seems
an easy task to place those notes on a staff
and be finished. Many commercial software
programs exist to translate a note sequence,
usually a MIDI file, into a musical score, but
a significant problem which is still not com-
pletely solved is determining the key signature,
time signature, measure boundaries, acciden-
tals and dynamics that make a musical score
complete.

6.1 MIDI

MIDI was first made commercially available in
1983 and since then has become a standard for
transcribing music. The MIDI protocol was
developed in response to the large number of
independent interfaces that keyboard and elec-
trical instrument manufacturers were coming
up with. As the saying goes, “The nice thing
about standards is that there are so many to
choose from.” In order to reduce the num-
ber of interfaces in the industry, MIDI, yet an-
other standard, was introduced. It did, how-
ever, become widely accepted and while most



keyboards still use their own internal interface
protocol, they often have MIDI as an external
interface option as well.

MIDI stands for Musical Instrument Digital
Interface, and is both an information trans-
fer protocol and a hardware specification. The
communications protocol of the MIDI system
represents each musical note transition as a
message. Messages for note beginnings and
note endings are used, and other messages in-
clude instrument changes, voice changes and
other administrative messages. Messages are
passed from a controlling sequencer to MIDI
instruments or sound modules over serial asyn-
chronous cables. Polyphonic music is rep-
resented by a number of overlapping mono-
phonic tracks, each with its own voice.

Many developments have been added to
MIDI 1.0 since 1983, and the reader is referred
to [Rums94] for a more complete treatment.

6.1.1 MIDI and Transposition

Many researchers have realized the importance
of a standard note representation. If a sys-
tem can be developed that will translate from
sound to MIDI, then anything MIDI-esque can
then be done. The MIDI code can be played
through any MIDI capable keyboard, it can
be transposed, edited and displayed. The fact
that MIDI is based on note onsets and offsets
suggests to some researchers that transcrip-
tion research should concentrate on the begin-
nings and endings of notes. Between the note
boundaries, within the notes themselves, very
little interesting is happening, and nothing is
happening that a transcription system is try-
ing to preserve, unless dynamics are of con-
cern.

What MIDI doesn’t store is information
about the key signature, the time signature,
measure placement and other information that
is on a musical score. This information is eas-
ily inferred by an educated human listener,
but computers still have problems. James
Moorer’s initial two-part transcription system
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assumed a C major key signature, and placed
accidentals wherever notes were off of the C
major scale. Most score generation systems to-
day do just that. They assume a user-defined
key and time signature, and place notes on the
score according to these definitions.

The importance of correctly representing
the key and the time signatures is shown in
[Long94], where two transcriptions of the same
piece are presented side by side. An expe-
rienced musician has no problem reading the
correct score, but has difficulty recognizing the
incorrect one, because the melody is disguised
by misrepresenting its rhythm and tonality.

6.2 Key Signature

The key signature, appearing at the beginning
of a piece of music, indicates which notes will
be flat or sharp throughout the piece. Once
the notes are identified, one can identify which
notes are constantly sharp or flat, and then as-
sign these to the key signature. Key changes in
the middle of the piece are difficult for a com-
puter to judge because most algorithms look
at the piece as a whole. Localized statistics
could solve this problem, but current systems
are still not completely accurate.

6.3 Time Signature

Deciding where bar lines go in a piece and how
many beats are in each bar is a much more dif-
ficult problem. There are an infinite number of
ways of representing the rhythmical structure
of a single piece of music. An example given
in [Long94] suggests a sequence of 6 evenly
spaced notes could be interpreted as a single
bar of 6/8 time, three pairs, two triplets, a full
bar followed by a half bar of 4/4 time, or even
between beats. Longuet-Higgins suggests the
use of musical grammars to solve this problem,
which will be described in Section 8 on page
18.



Part 11
Related Topics

7 Time-frequency Analysis

Most of the pitch detection and pitch track-
ing techniques discussed in Section 4 rely on
methods of frequency analysis that have been
around for a long time. Fourier techniques,
pitch detectors and cepstrum analysis, for ex-
ample, all look at frequency as one scale, sepa-
rate from time. A frequency spectrum is valid
for the full time-frame being considered, and
if the windowing is not done well, spectral in-
formation “leaks” into the neighboring frames.
The only way to get completely accurate spec-
tral information is to take the Fourier trans-
form (or your favorite spectral method) of the
entire signal, and then all local information
about the time signal is lost. Similarly, when
looking at the time waveform, one is aware
of exactly what is happening at each instant,
but no information is available about the fre-
quency components.

An uncertainty principle is at work here.
The more one knows about the frequency of a
signal, the less that frequency can be localized
in time. The options so far have been com-
plete frequency or complete time, using the en-
tire signal or some small window of the signal.
Is it possible to look at frequency and time to-
gether? Investigating frequency components
at a more localized time without the need for
windowing would increase the accuracy of the
spectral methods and allow more specific pro-
cessing.

7.1 Wavelets

The Fourier representation of a signal, and
in fact any spectrum-type representation uses
sinusoids to break down the signal. This is
why spectral representations are limited to the
frequency domain and cannot be localized in
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time: the sinusoids used to break down the sig-
nal are valid across the entire time spectrum.
If the base functions were localized in time, the
resulting decomposition would contain both
time information and frequency information.

The wavelet is a signal that is localized
in both time and frequency. Because of the
uncertainty-type relation that holds between
time and frequency, the localization cannot be
absolute, but in both the time domain and the
frequency domain, a wavelet decays to zero
above or below the center time/frequency. For
a mathematical treatment of wavelets and the
wavelet transform, the reader is referred to
[Daub90] and [Daub92].

The wavelet transform consists of decom-
posing the signal into a sum of wavelets of dif-
ferent scales. It has three dimensions: loca-
tion in time of the wavelet, scale of the wavelet
(location in frequency) and amplitude. The
wavelet transform allows a time-frequency rep-
resentation of the signal being decomposed,
which means that information about the time
location is available without windowing. An-
other way to look at it is that windowing is
built in to the algorithm.

Researchers have speculated that wavelets
could be designed to resemble musical notes.
They have a specific frequency and a specific
location in time as well as an amplitude enve-
lope that characterizes the wavelet. If a sys-
tem could be developed to model musical notes
into wavelets, then a wavelet transform would
be a transcription of the musical piece. A mu-
sical score is a time-frequency representation
of the music. Time is represented by the for-
ward progression through the score from left
to right, and frequency is represented by the
location of the note on the score.

Malden Wickerhauser contributed an article
about audio signal compression using wavelets
[Wick92] in a wavelet application book. This
work does not deal directly with music applica-
tions, however it does have a treatment of the
mathematics involved. Transcription of music
can be considered lossy compression, in that



the musical score representation can be used
to construct an audio signal that is a recogniz-
able approximation of the original audio file
(i.e. without interpretation or errors gener-
ated during performance). The wavelet trans-
form has also been applied as a pre-processor
for sound systems, to clean up the sound and
remove noise from the signal [SOWK95].

7.2 Pielemeier and Wakefield

William Pielemeier and Greg Wakefield pre-
sented a work in 1996 [PiWa96] discussing
a high-resolution time-frequency representa-
tions. They argue that windowed Fourier
transforms, while producing reliable estimates
of frequency, are often less than what is re-
quired for musical analysis. Calculation of the
attack of a note requires very accurate and
short-time information about the waveform,
and this information is lost when a windowed
Fourier transform produces averaged informa-
tion for each window. They present a sys-
tem called the Modal distribution, which they
show to decrease time averaging caused by
windowing. For a full treatment, please see
[PiWa96].

8 Musical Grammars

It has been theorized that music is a natural
language like any other, and the set of rules
that describe it fits somewhere in the Chom-
sky hierarchy of grammar. The questions are
where in the hierarchy dies it fit, and what
does the grammar look like? Is a grammar for
12-semitone, octaval western music different
from a grammar for pentatonic Oriental mu-
sic, or decametric East-Indian music? Within
western music, are there different grammars
for classical and modern music? Top 40 and
Western? Can an opera be translated to a bal-
lad as easily (or with as much difficulty) as
German can be translated to French?
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8.1 Lerdahl and Jackendoff

In 1983, Fred Lerdahl, a composer, and Ray
Jackendoff, a linguist, published a book that
was the result of work aimed at a challenge is-
sued in 1973. The book is called “A Gener-
ative Theory of Tonal Music”, and the chal-
lenge was one presented by Leonard Bernstein.
He advocated the search for “musical gram-
mar” after being inspired by Chomskian-type
grammars for natural language. Several other
authors responded to the challenge, including
Irving Singer and David Epstein, who formed
a faculty seminar on Music, Linguistics and
Ethics at MIT in 1974.

The book begins by presenting a detailed
introduction to the concept of musical gram-
mar, from the point of view of linguistics and
artistic interpretation of music. Rhythmic
grouping is discussed in the first few chap-
ters, and tonal grammar is discussed in the
last few chapters. The intent is not to present
a complete grammar of all western music, but
to suggest a thorough starting point for fur-
ther investigations. The differences between
a linguistic grammar and a musical gram-
mar are presented in detail, and an interest-
ing point is made that a musical grammar
can have grammatical rules and preferential
rules, where a number of grammatically cor-
rect structures are ranked in preference. The
difference between a masterpiece and an unin-
teresting étude is the adherence to preferential
rules. Both pieces are “grammatically” cor-
rect, but one somehow sounds better.

8.1.1 Rhythm

In terms of rhythmic structure, Lerdahl and
Jackendoff begin by discussing the concept
of a grouping hierarchy. It seems that mu-
sic is grouped into motives, themes, phrases,
periods and the like, each being bigger than
and encompassing one or more of the previous
group. So a period can consist of a number
of complete phrases, each being composed of



a number of complete themes and so on. This
kind of grouping is more psychologically cor-
rect than sorting the piece by repetition and
similarity. While one can identify similar pas-
sages in a piece quite easily, the natural group-
ing is hierarchical.

Where accents fall in a piece is another im-
portant observation which aids in the percep-
tion of the musical intent. Accents tend to
oscillate in a self-similar strong-weak-strong-
weak pattern. There is also a definite con-
nection between the accents and the groups -
Larger groups encompassing many subgroups
begin with very strong accents, and smaller
groups being with smaller accents.

The full set of well-formedness rules and
preferential rules for the rhythm of a musi-
cal passage is presented in Appendix A. There
are two sets of well-formedness and preferen-
tial rules for the rhythm of a piece, these are
grouping rules and metrical structure rules.

8.1.2 Reductions

The rules quoted in Appendix A provide struc-
ture for the rhythm of a musical passage, pre-
sented here to provide the flavor of the gram-
mar developed by Lerdahl and Jackendoff. To
parse the tonality of a passage, the concept of
reduction is needed. Much discussion and mo-
tivation stems from the reduction hypothesis,
presented in [LeJa83] as:

The listener attempts to organize all
the pitch-events into a single coher-
ent structure, such that they are
heard in a hierarchy of relative im-
portance.

A set of rules for well-formedness and prefer-
ence are presented for various aspects of reduc-
tion, including time-span reduction and pro-
longational reduction, but in addition to the
rules, a tree structure is used to investigate the
reduction of a piece. Analogies can be drawn
to the tree structures used in analysis of gram-
matical sentences, however they are not the
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same. The intermediate forms at different lev-
els of the trees, if translated, would form gram-
matically correct musical pieces. The aim of
reduction is to bit by bit strip away the flour-
ishes and transitions that make a piece inter-
esting until a single pitch-event remains. This
single fundamental pitch-event is usually the
first or last event in the group, but this not
necessary for the reduction to be valid. As
with linguistic reductions, the goal is first to
ensure that a sentence (or passage) is gram-
matically correct, but more importantly, to
discover the linguistic (or musical) properties
associated with each word (or pitch-event).
Who is the subject and who is the object of
“Talk”? Is this particular C chord being used
as a suspension or a resolution? It is these
questions that a grammar of music tries to an-
swer, rather than “Is this piece of music gram-
matically correct in our system?”

8.2 Longuet-Higgins

In a paper discussing Artificial Intelli-
gence[Long94], Christopher Longuet-Higgins
presented a generative grammar for metrical
rhythms. His work convinces us that there
is a close link between musical grammars and
the transcription of music. If one has a gram-
mar of music and one knows that the piece
being transcribed is within the musical genre
that this grammar describes, then rules can be
used to resolve ambiguities in the transcrip-
tion, just as grammar rules are used to resolve
ambiguities in speech recognition. He calls his
grammar rules “realization rules” and are re-
produced here for a 4/4-type rhythm.
(%)—unit — (%)—note or (%)-rest
or 2 X (i)—units

(1)-unit — (3)-note or (1)-rest

1

4
or 2 X (%)—units

(§)-unit — (§)-note or (§)-rest

or 2 x ({5)-units



(11—6)—unit — (%)-note or (%)-rest

Different rules would be needed for 3/4-type
rhythms, for example, and to allow for dot-
ted notes and other anomalies. The general
idea, however, of repeatedly breaking down
the rhythm into smaller segments until an in-
dividual note or rest is encountered is insight-
ful and simple.

He also discussed tonality, but does not
present a generative theory of tonality to re-
place or augment Lerdahl and Jackendoff’s.
Discussions are made instead about resolution
of musical ambiguity even when the notes are
known. He compares the resolution of a chord
sequence to the resolution of a Necker cube,
which is a two dimensional image that looks
three-dimensional, as seen in Figure 2. It is
difficult for an observer to be sure which side
of the cube is facing out, just as it is difficult
to be sure of the nature of a chord without a
tonal context. He insists that a tonal gram-
mar is essential for resolving ambiguities.

8.3 The Well-Tempered Com-
puter
In 1994, at the same conference where

[Long94] was presented, Mark Steedman pre-
sented a paper with insights into the psycho-
logical method by which people listen to and
understand music, and these insights move to-
ward a computational model of human music
perception [Stee94]. A “musical pitch space”
is presented, adapted from an earlier work by
Longuet-Higgins.

Later in the paper Steedman presents a sec-
tion entitled “Towards a grammar of melodic

Figure 2: A Necker Cube.

tonality”, where he draws on the work of Ler-
dahl and Jackendoff. Improvements are made
that simplify the general theory. In some
cases, claims Steedman, repeated notes can
be considered as a single note of the cumula-
tive duration, with the same psychological ef-
fect and the same “grammatical” rules hold-
ing. In a similar case, scale progressions can
be treated as single note jumps. The phrase he
uses is a rather non-committal “seems more or
less equivalent to”. A good example of the dif-
ficulties involved in this concept is the fourth
movement of Beethoven’s Choral symphony,
Number 9 [Beet25]. In this piece, there is a
passage which contains what a listener would
expect to be two quarter notes, and in fact this
is often heard, but the score has a single half
note. Similar examples can be made to chro-
matic runs in the same movement. Part of the
reason that the two quarter notes are expected
and often heard is that the theme is presented
elsewhere in the piece, with two quarter notes
instead of the half note.

This is the way that the passage is written,
n!' I!'I | [T

|- T T LI
| T I I T I I |
1 I | T 1 I
T T T T 1 T

but when played, it can sound like this,

...._

L N LA LN N N N N NN N N NN S B |
T T T

or like this,
AN |

T T T
I I I I
T T T T
1 ! 1 !

!/—\!II! w ) | | u

L] il
I
T
1

= M M
I L =T T 1
- T T T T T
17 I | | I

T | T T T T

depending on the interpretation of the listener.
Since different versions of the score can be
heard in the same passage, it is tempting to
say that the two versions are grammatically
equivalent, and that the brain cannot tell one
from the other. However, it more accurate to
say that the brain is being fooled by the in-
strumentalist. We are not confused, saying “I
don’t know if it is one way or the other”, we are
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sure that it is one way and not the other, but
we are not in agreement with our colleagues as
to which way it is.

The substitutions suggested by Steedman
can be made in some cases, but not in all cases,
and the psychological similarity does not seem
to be universal. It is important to discover how
reliable these substitutions are before inserting
them into a general theory of musical tonality.

8.4 Discussions

There seems to be such a similarity be-
tween music understanding and language un-
derstanding that solutions in one field can
be used analogically to solve problems in the
other field. What needs to be investigated is
exactly how close these two fields really are.
The similarities are numerous. The human
mind receives information in the form of air
pressure on the eardrums, and converts that
information into something intelligible, be it
a linguistic sentence or a musical phrase. Hu-
mans are capable of taking a written represen-
tation (text or score) and converting it into
the appropriate sound waves. There are rules
that language follows, and there seem to be
rules that music follows - It is clear that mu-
sic can be unintelligible to us, the best exam-
ple being a random jumble of notes.

Identification of music that sounds good and
music that doesn’t is learned through example,
just as language is. A human brought up in
the western tradition of music is likely not to
understand why a particular East Indian piece
is especially heart-wrenching. On the other
hand, music does not convey semantics. There
is no rational meaning presented with music as
there is with language. There are no nouns or
verbs, no subject or object in music. There is,
however, emotional meaning that is conveyed.
There are specific rules that music follows, and
there is an internal mental representation that
a listener compares any new piece of music to.
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9 Conclusions

Since Piszczalski’s landmark work in 1986,
many aspects of Computer Music Analy-
sis have changed considerably, while little
progress has been made in other areas. Tran-
scription of monophonic music was solved be-
fore 1986, and since then improvements to al-
gorithms have been made, but no really revo-
lutionary leaps. Jimmy Kapadia’s M.Sc. The-
sis defended in 1995 had little more than
Piszczalski’s ideas from 1986 in it [Kapa95].
Hidden Markov Models have been applied to
pitch tracking, new methods in pitch percep-
tion have been implemented, and cognition
and perception have been applied to the task
of score generation. Polyphonic music recog-
nition, however, remains a daunting task to
researchers. Small subproblems have been
solved, and insight gained from computer vi-
sion and auditory scene analysis, but the prob-
lem remains open.

Much work remains to be done in the field of
key signature and time signature recognition,
and a connection needs to be drawn between
the independent research in musical grammars
and music transcription, before a complete
working system that even begins to model the
human system is created.

The research needed to solve the music un-
derstanding problem seems to be distributed
throughout many other areas. Linguistics,
psychoacoustics and image processing have
much to teach us about music. Perhaps there
are more areas of research that are also worth
investigating.
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Part III
Appendices

A  Musical Grammar Rules
from [LeJa83]

Grouping Well-Formedness Rules:

GWEFRI1: Any contiguous sequence of pitch-
events, drum beats, or the like can con-
stitute a group, and only contiguous se-
quences can constitute a group.

GWEFR2: A piece constitutes a group.

GWEFR3:
groups.

A group may contain smaller

GWEFR4: If a group G1 contains part of a
group G2, it must contain all of G2.

GWFRS5: If a group G1 contains a smaller
group G2, then G1 must be exhaustively
partitioned into smaller groups.

Grouping Preference Rules:

GPR1: Avoid analyses with very small
groups - the smaller, the less preferable.

GPR2 (Proximity): Consider a sequence of
four notes ninongng. All else being equal,
the transition ny — ng may be heard as a
group boundary if

a. (Slur/Rest) the interval of time from
the end of ny to the beginning of ng is
greater than that from the end of ny to
the beginning of ny and that from the end
of n3 to the beginning of ny, or if

b. (Attack-Point) the interval of time
between the attack points of ns and ns
is greater than that between the attack
points of n; and n9 and that between the
attack points of ng and n4.



GPR3 (Change): Consider a sequence of four
notes ninongng. All else being equal, the
transition ny—ng may be heard as a group
boundary if

a. (Register): the transition ny — ng in-
volves a greater intervallic distance than
both ny — ny and ng — ny, or if

b. (Dynamics): the transition ng —ng in-
volves a change in dynamics and n; — no
and ng — ng do not, or if

c. (Articulation): the transition ng — ng
involves a change in articulation and n; —
ng and nzg — ng do not, or if

d. (Length): ny and ng are of different
lengths and both pairs ni, ny and ns3, ny
do not differ in length.

(One might add further cases to deal with
such things and change in timbre or in-
strumentation)

GPR4 (Intensification): Where the effects
picked out by GPRs 2 and 3 are relatively
more pronounced, a larger-level boundary
may be placed.

PR5 (Symmetry): Prefer grouping analyses
that most closely approach the ideal sub-
division of groups into two parts of equal
length.

GPRG6 (Parallelism): Where two or more
segments of the music can be construed
as parallel, they preferably form parallel
parts of groups.

GPR7 (Time Span and Prolongational Sta-
bility): Prefer a grouping structure that
results in more stable time-span and/or
prolongational reductions.

Metrical Well-Formedness Rules:
MWFRI1: Every attack point must be asso-

ciated with a beat at the smallest metri-
cal level at that point in the piece.
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MWFR2: Every beat at a given level must
also be a beat at all smaller levels present
at that point in the piece.

MWEFR3: At each metrical level, strong beats
are spaced either two or three beats apart.

MWFRA4: The tactus and immediately larger
metrical levels must consist of beats
equally spaced throughout the piece. At
subtactus metrical levels, weak beats
must be equally spaced between the sur-
rounding strong beats.

Metrical Preference Rules:

MPR1 (Parallelism): Where two or more
groups can be construed as parallel, they
preferably receive parallel metrical struc-
ture.

MPR2 (Strong Beat Early): Weakly prefer a
metrical structure in which the strongest
beat in a group appears early in the
group.

MPR3 (Event): Prefer a metrical structure in
which beats of level L; that coincide with

the inception of pitch-events are strong
beats of L;.

MPR4 (Stress): Prefer a metrical structure
in which beats of level L; that are stressed
are strong beats of L;.

MPRS5 (Length): Prefer a metrical structure
in which a relatively strong beat occurs at
the inception of either

a.
b.
c.
d.

e. a relatively long duration of a pitch in
the relevant levels of the time-span reduc-
tion, or

a relatively long pitch-event,
a relatively long duration of a dynamic,
a relatively long slur,

a relatively long pattern of articulation

f. a relatively long duration of a harmony
in the relevant levels of the time-span re-
duction (harmonic rhythm).



MPR6 (Bass): Prefer a metrically stable
bass.

MPR7 (Cadence): Strongly prefer a metrical
structure in which cadences are metrically
stable; that is, strongly avoid violations
of local preference rules within cadences.

MPRS8 (Suspension): Strongly prefer a met-
rical structure in which a suspension is on
a stronger beat than its resolution.

MPRY (Time-Span Interaction): Prefer a
metrical analysis that minimizes conflict
in the time-span reduction.

MPRI10 (Binary Regularity): Prefer metri-
cal structures in which at each level every
other beat is strong.
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