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Abstract Previous approaches for mining association 
rules generate large sets of association rules. Such sets are 
difficult for users to understand and manage. Here, the 
concept of a restricted conditional probability distribution 
is used to explain an association rule. Based on this 
concept, a new type of association rules, called basic 
association rules, is defined. We propose the GenBR 
algorithm to generate the set of classes of basic 
association rules. Theoretical analysis shows that the 
search space of the algorithm can be translated to an n-
cube graph. The set of classes of basic association rules 
generated by GenBR is easy for users to understand and 
manage. Our experiments on synthetic and real datasets 
show that GenBR is either faster than previous 
approaches or generates fewer rules or both. 
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1 Introduction 
Techniques for mining association rules [1,2] were 

originally devised for application to market basket data, 
but they have also been applied in many other domains to 
perform tasks [21,23,26]. Market basket data describes 
the items purchased from retail stores grouped into 
transactions. A transaction typically consists of items 
bought together at the same point of time, but it may 
consist of items bought by a customer over a period of 
time. An itemset is a set of items, and a frequent itemset X 
is an itemset whose frequency in transactions, also 
referred to as its support, denoted as supp(X), is greater 
than a user specified support threshold, minsup. 

The main task of association rule discovery is to 
extract frequent itemsets from market basket data and to 
generate association rules from these frequent itemsets. 
An association rule r is an implication of the form X→Y, 
where X and Y are two disjoint itemsets. The support of 
the rule is the support of X ∪ Y, denoted as supp(r), which 
is given by the observed probability P(X = 1,Y = 1). The 
confidence of the rule, denoted conf(r), is given by the 
conditional observed probability P(X =1,Y = 1) / P(X = 
1), which is denoted as p(xy) / p(x) in this paper. If an 
association rule has support at least as great as minsup and 

confidence at least as great as the confidence threshold 
called minconf, it is referred to as a valid association rule. 
An association rule with confidence 100% is an exact 
association rule; all other association rules are 
approximate association rules. 

The Apriori algorithm [2] was proposed to discover 
all frequent itemsets and to generate all valid association 
rules corresponding to these itemsets by a fast algorithm, 
called FastGenRules. Many algorithms have since been 
proposed that reduce the time and space required to find 
the frequent itemsets [2,14]. After all frequent itemsets 
have been found, valid association rules are generated. 

A serious problem in association rule discovery is 
that the set of association rules can grow to be unwieldy 
as the number of transactions increases, especially if the 
support and confidence thresholds are small. As the 
number of frequent itemsets increases, the number of 
rules presented to the user typically increases 
proportionately. Many of these rules may be redundant. 
The definition of “redundancy” for association rules has 
varied in previous approaches. Toivonen et al. proposed 
finding a structural rule cover, which describes the same 
database rows as the original set of association rules [28]. 
Therefore, those rules that are not in the cover are 
regarded as redundant. In [11,20,24,30], the definition of 
redundant rules is based on several inference rules or an 
inference system. Therefore, all association rules that can 
be derived from other rules by applying inference rules 
are regarded as redundant. We adopt the latter type of 
definition. 

To address the problem of rule redundancy, four 
types of research on mining association rules have been 
performed. First, rules have been extracted based on user-
defined templates or item constraints [3,27]. Secondly, 
researchers have developed interestingness measures to 
select only interesting rules [16,18,19]. Thirdly, 
researchers have proposed inference rules or inference 
systems to prune redundant rules and thus present smaller, 
and usually more understandable sets of association rules 
to the user [5,11,20,24,30]. Finally, new frameworks for 
mining association rule have been proposed that find 
association rules with different formats or properties 
[7,8,9].  

The main problems with previous approaches are that 
they still generate too many rules, and these rules may be 

 



redundant. For example, a valid association rule X→Y that 
is generated by one these approaches may in fact be 
derived from some simpler rule X′→Y′ with the same 
confidence as X→Y, where X′ ⊆ X and Y′ ⊆ Y.  Inference 
rules proposed by these approaches do not resemble 
Armstrong axioms on functional dependencies. As well, 
in some approaches, inference rules cannot infer the 
confidence of rules without extra information.  

In our research, we are creating an inference system 
on association rules, consisting of a set of inference rules 
such as augmentation and transitivity, which resembles 
the Armstrong axioms on functional dependencies and 
which allows the inference of the confidences of rules. 

The remainder of this paper is organized as follows. 
In Section 2, we present related work. In Section 3, we 
define the concept of a basic association rule, and propose 
a new algorithm called GenBR for generating the set BR 
of classes of basic association rules from a set of frequent 
itemsets. The computational complexity of GenBR is also 
described. A comparison of our approach and other 
approaches is presented in Section 4. Our experiments 
compared the performance of our algorithm with that of 
previous algorithms on synthetic datasets and real-life 
datasets, with respect to the number of rules and the 
elapsed running time. Conclusions and future work are 
described in Section 5.  

2  Previous Work 
Previous research showed that relatively small sets of 

association rules can be presented to users instead of all 
valid association rules. As well, for some approaches, 
inference rules were suggested that allowed additional 
association rules to be derived from such small sets of 
rules. In this section, we describe three approaches. 

First, representative association rules (RR) are based 
on a cover operator with which other non-representative 
association rules can be generated [20]. Suppose we have 
an association rule X→Y. A cover operator C, denoted 
C(X→Y), is given by 

C(X→Y) = {X ∪ Z→V Z, V ⊆ Y  ∧  Z ∩ V = ∅  ∧ 
V ≠ ∅} 

The set of all representative association rules is a minimal 
set of rules that covers all association rules by means of 
the cover operator.  The FastGenRepresentative algorithm 
was proposed to efficiently compute a RR [20]. 

Secondly, a kind of non-redundant association rules 
with minimal antecedents and maximal consequents, 
called minimal non-redundant association rules, has been 
identified as particularly useful and relevant [5]. An 
association rule r: X→Y is a minimal non-redundant 
association rule iff there does not exist an association rule 
r′: X′→Y′ with supp(r) = supp(r′), conf(r) = conf(r′), X′ ⊆ 
X and Y ⊆ Y′. A small non-redundant generating set for all 
valid association rules is formed by combining a generic 
basis GB for exact association rules and an informative 

basis IB for approximate association rules. RI is defined 
as a transitive reduction of the informative basis 
corresponding to IB. Given a closure operator c of the 
Galois connection, a set FC of frequent closed itemsets, 
the set G of their generators, and a partial order p 
(inclusion relation) on the set of itemsets, the definitions 
of GB, IB and RI are as follows. 

GB = {r: g→ (f \ g) | f ∈ FC ∧  g ∈ Gf  ∧ g ≠ f} 
IB = {r: g → (f \ g) | f ∈ FC ∧ g ∈ G ∧ c(g) ⊂ f} 
RI = {r: g → (f \ g) | f ∈ FC ∧ g ∈ G ∧ c(g) p f ∧ 

∃/ f′ c(g) p f′p f} 
Bastide et al. have proven that GB and IB contain 

only minimal non-redundant association rules and all 
exact association rules and approximate association rules 
can be derived from GB and IB, respectively [5].  The 
Gen-GB and Gen-RI algorithms were proposed to 
generate a generic basis and a transitive reduction of the 
informative basis, respectively. According to the 
definition of a minimal non-redundant association rule, 
the support and confidence of any association rules 
inferred from the generating set are the same as the 
support and confidence of the rules from which they were 
inferred.  The authors claim that none of the Armstrong 
axioms hold in non-redundant association rules. A similar 
approach has been proposed for discovering a small cover 
for association rules based on closed itemsets, which 
adapts the Duquenne-Guigues basis for exact association 
rules and the Luxenburger results for approximate 
association rules [24]. 

Thirdly, informative cover has been proposed 
together with a new inference rule [11]. Let r, r′ be two 
association rules, denoted X→Y and X′→Y′, such that X′ 
∪ Y′ ⊆ X ∪ Y. If supp(X′) ≤ supp(X), we say that r covers 
r′, denoted r p r′. The goal is to find an informative cover 
that covers all other association rules. The CoverRules 
algorithm has been proposed to generate an informative 
cover for association rules [11]. 

The cover operator in the informative cover approach 
is similar to the cover operator in the representative 
association rule approach. The difference between them is 
that the cover operator of the informative cover approach 
does not require the antecedent of the resulting 
association rule to be included in the antecedent of the 
initial association rule.  In addition, the inference 
procedure is  not  purely  syntactic  [11],  because  it  uses  

Table 2.1. A Binary Dataset. 

A B C D E 

1 0 1 1 1 

0 0 1 1 1 
1 0 1 1 1 

1 1 1 1 0 
0 1 0 1 1 

1 1 0 1 0 

 



3.1 Definitions information about the support of the antecedent of the 
resulting association rule.  The inference rules in the two 
approaches are sound, but neither approach infers the 
confidence of an association rule. 

Definition 3.1.1. Given a dataset D with I as a set of 
items and T as a set of transactions, an association rule 

X→ Y over a relation R ⊆ I × T is said to be in canonical 
form if |Y| = 1.   

p
We found that the rules generated by these 

approaches may be redundant. If X→Y is generated by 
any of these approaches, it may be possible to derive it 
from simpler valid association rules.  

According to this definition, we only consider the case 
of Y containing a single item.  Before we introduce other 
new notions, let us discuss another concept related to 
conditional probability. 

Example 2.1. Suppose we have the dataset shown in 
Table 2.1, and that minsup is 0.3 and minconf is 0.6. The 
sets of rules generated by the previous approaches are 
shown in Table 2.2.  

A conditional probability distribution (CPD) P(Y | X) 
is defined as P(X, Y) / P(X), where X and Y are random 
variables [10]. Y is conditionally independent of Z given 
X, denoted as I(Y, Z | X),  if and only if P(Y | X) = P(Y | X, 
Z), where X, Y, and Z are three disjoint sets of random 
variables. The statement I(X, Z | X) is referred to as a 
conditional independence statement (CIS) [10]. 

Consider the rules in Table 2.2 from the perspective 
of a user. For RR, CE→AD can be derived from simpler 
association rules CE→A and CE→D by right union as 

with Armstrong axioms, and conf(CE AD) = 

conf(CE A) × conf(CE→ D). For GB, AB→D is 
unnecessary, because B→D is in GB.  For C, B→AD can 
be derived from B→A and B→D by right union, assuming 
B→A and B→D are valid association rules.  Transitivity 
cannot be used between GB and RI. For example, E→D in 
GB and D→A in RI cannot be used to infer a valid 
association rule by transitivity. These examples show that 
some association rules in these generating sets are not in 
the most desirable form.  ڤ 

67.0
→

67.0
→

0.1 Four properties that are satisfied by any joint 
probability distribution (JPD) are symmetry, 
decomposition, weak union, and contraction [10]. For 
example, for the decomposition property, if I(X, Y ∪ W | 
Z), then I (X, Y | Z) and I (X, W | Z). 

We describe a CIS in another way in Lemma 3.1.1. 
Lemma 3.1.1. Given a subset X′ ⊂ X, we say I(Y, X \ X′ | 
X′), i.e., Y is conditionally independent of X \ X′ given X′, 
if and only if P(Y | X) = P(Y | X′), where X and Y are two 
disjoint sets of variables. 
Proof: 

3  Discovery of Basic Association Rules Suppose Z = X \ X′. Then X′, Y, and Z are three 
disjoint sets of variables. Since X = X′ ∪ Z, P(Y | X) = P(Y 
| X′, Z). Assuming P(Y | X) = P(Y | X′), we derive P(Y | X′, 
Z) = P(Y | X′). Thus, we have I(Y, Z | X′), i.e., I(Y, X \ X′| 
X′) according to the definition of CIS.  

We propose a new approach to solve the problems 
mentioned in Section 2. 

 

Table 2.2. The Generated Association Rules 
Algorithm Set Rule #Rule

FastGenRules AR … 36 
FastGenRR RR 

CE AD, C AD, D E, D C,  
67.0
→

75.0
→

67.0
→

67.0
→

D
67.0
→ A, B AD, AC DE, C DE, 

67.0
→

67.0
→

75.0
→

AE
0.1
→ CD, E CD, A CD 

75.0
→

75.0
→

11 

GB 
C→ D, E D, AB D, E→ CD, 

0.1 0.1
→

0.1
→

0.1

CE→ D, B D, AC D, A→ D 
0.1 0.1

→
0.1
→

0.1

8 Gen-GB  
and Gen-RI 

RI 
CE AD, C AD, D E, D C,  

67.0
→

75.0
→

67.0
→

67.0
→

D A, B AD, AC DE, C DE,
67.0
→

67.0
→

67.0
→

75.0
→

E
75.0
→ CD, A CD  

75.0
→

10 

CoverRules C 
E

75.0
→ CD, D E, C AD, D C, 

67.0
→

75.0
→

67.0
→

B AD, CE AD, D A 
67.0
→

67.0
→

67.0
→

7 

For the converse, assuming I(Y, X \ X′| X′), then 
according to the definition of CIS, we have P(Y | X′, X \ 
X′) = P(Y | X′), i.e., P(Y | X) = P(Y | X′). ڤ 

Furthermore, we have Lemma 3.1.2. 
Lemma 3.1.2. Given two disjoint sets of variables X and 
Y, and X′ ⊂ X, if I(Y, X \ X′ | X′), then ∀Z ⊆ X \ X′, I(Y, Z | 
X′), i.e., ∀ Z ⊆ X \ X′, P(Y | X) = P(Y | X′) = P(Y | X′, Z). 
Proof:  

If Z = X \ X′, the proof follows immediately. The 
decomposition property of conditional independencies 
states that if I(X, Y ∪ W | Z), then I (X, Y | Z) and I (X, W | 
Z). Because I(Y, X \ X′ | X′), ∀ Z ⊂ X \ X′, we obtain I(Y, 
Z | X′) and I(Y, {X \ X′} \ Z | X′). From I(Y, X \ X′| X′), we 
obtain P(Y | X) = P(Y | X′, X \ X′) = P(Y | X′), and from I(Y, 
Z | X′), we obtain P(Y | X′) = P(Y | X′, Z). Hence, P(Y | X) 
= P(Y | X′) = P(Y | X′, Z). ڤ 

To explain this idea more fully, we first give a more 
general definition as follows. 
Definition 3.1.2. Given two disjoint sets of variables X 
and Y, and a conditional probability distribution P(Y | X), 
a restricted conditional probability distribution (RCPD), 

 

 



denoted as P̂ ( Ŷ | X̂ ), is a subset of P(Y | X) defined by 
specifying subsets Domain( Ŷ ) ⊆ Domain(Y) and 
Domain( X̂ ) ⊆ Domain(X).  

Because MCS and MCPD are duals of each other, we 
use whichever is convenient. 

In previous research, MCS and MCPD have not been 
defined or emphasized by researchers.  In the context of 
mining association rules, we use a RCPD P̂ (Y | X) for 
inference on association rules. We do not consider how 
P̂ (XY) and P̂ (X′Y) behave. 

For binary variables X ∈ {0,1} and Y ∈ {0,1}, with 
X̂ ∈ {1} and Ŷ ∈ {1}, the confidence p(y | x) of the 

association rule r: X→Y is a positive conditional 
probability of the RCPD P̂ ( Ŷ | X̂ ).   Example 3.1.2. Suppose we have the transaction dataset 

shown in Table 2.1. Let X  = {A, C, D}, Y  = {E}, X′ = {A, 
C}. Because the confidences of both X→Y and X′→Y are 
2/3, i.e., the positive conditional probability p(e | acd) = 
p(e | ac), we see that P̂ (Y | X) = P̂ (Y | X′) and that ∀Z ⊆ 
X  \ X′ = {D}, P̂ (Y | X) = P̂ (Y | X′, Z). Because p(e | acd) 
≠ p(e | a) = 2/4 and p(e | acd) ≠ p(e | c) = 3/4, there is no 
X″⊂ X′ = {A, C} such that P̂ (Y | X) =  P̂ (Y | X″). So X′ is 
a MCS of X with respect to Y. P̂ (Y | X′) is a MCPD of 
P̂ (Y | X) with respect to Y. 

In the following discussion, P̂ ( Ŷ | X̂ ) is simply 
denoted as P̂ (Y | X). 

Given X′ ⊂ X, if we have P̂ (Y | X) = P̂ (Y | X′), we 
cannot guarantee that ∀Z ⊆ X \ X′, P̂ (Y | X) = P̂ (Y | X′, 
Z). Hence, the decomposition property cannot be applied 
in a RCPD. 
Example 3.1.1. Suppose that we have the transaction 
dataset in Table 2.1 and that minsup is 0.3 and minconf is 
0.6. Consider two association rules ACD→E and D→E. 
Although conf(ACD→E) = conf(D→E) = 2/3, conf(CDE) 
= 3/4, i.e., if X = {A, C, D} and Y = {E}. If we choose X′ 
={D}, then Z = X \ X′ = {A, C}, p(y | x) = p(y | x′, z) = p(y | 
x′) = 2/3, i.e., P̂ (Y | X) = P̂ (Y | X′). Let Z = {C} ⊂ X \ X′, 
since p(y | x′, z) = 3/4,  then p(y | x) ≠ p(y | x′, z) and p(y | 
x′) ≠ p(y | x′, z), i.e., P̂ (Y | X) ≠ P̂ (Y | X′, Z) and P̂ (Y | X′) 
≠ P̂ (Y | X′, Z). ڤ 

Similarly, {A}, {C}, and {E} are three MCSs of {A, 
C, E} with respect to D. ڤ 

In the context of mining association rules, a CPD P(Y 
| X) is always referred to as a RCPD P̂ ( Ŷ | X̂ ). 

We define a new notion of minimal association rules 
analogously to minimal functional dependencies [25].  
Definition 3.1.5. Suppose we have a set I of items and a 

transaction dataset D. A canonical association rule X Y 
over D is a basic association rule if X is conditionally 
minimal with respect to Y, i.e., ∃  X′ ⊂ X such that 

p
→

/

In the context of RCPDs, we hope to find a minimal 
subset X′ of X with respect to Y such that P̂ (Y | X) = P̂ (Y 
| X′), and ∀Z ⊆ X \ X′, P̂ (Y | X) = P̂ (Y | X′, Z).  
Definition 3.1.3. Let X and Y be two disjoint sets of 
variables. X′ is a minimal conditional subset (MCS) of X 
with respect to Y if X′ is a subset of X that satisfies the 
following conditions: 

(1) P(Y | X) = P(Y | X′) and 
(2) ∀Z ⊆ X \ X′, P(Y | X) = P(Y | X′, Z). 
For example, given the transaction dataset shown in 

Table 2.1, AC→E is a basic association rule, and AC is a 
MCS of ACD with respect to E while P(E | AC) is a 
MCPD of P(E | ACE) with respect to E. 

(1) P̂ (Y | X) = P̂ (Y | X′). 
(2) ∀Z ⊆ X \ X′, P̂ (Y | X) = P̂ (Y | X′, Z). 
(3) X″ ⊂ X′ such that conditions (1) and (2) hold 

for X″. 
∃/ 3.2 Computing MCPDs 

According to the definition of basic association rules, 
either a MCS X with respect to Y or a MCPD P(Y | X)  
corresponds to a basic association rule X→Y. The 
confidence of the rule is a positive conditional probability 
of P(Y | X). Therefore, the crucial task of finding basic 
association rules is the computation of all MCPDs. 

If X is a minimal conditional subset of itself with 
respect to Y, then X is conditionally minimal with respect 
to Y. For example, in Table 2.1, AC is conditionally 
minimal with respect to E. 

We also define the dual. 
Definition 3.1.4. Suppose X and Y are disjoint sets of 
variables. If X ′ is a MCS of X with respect to Y, then the 
restricted conditional probability distribution P̂ ( Ŷ | X̂ ′ ) is 
a minimal conditional probability distribution (MCPD) of 
the RCPD P̂ ( Ŷ  | X̂ ) with respect to Ŷ .  If X is 
conditionally minimal with respect to Y, then P̂ ( Ŷ  | X̂ ) 
is a MCPD of itself. 

Given a set L of frequent itemsets, ∀X ∈ L, and 
minconf, our approach for computing MCPDs 
corresponding to X is divided into two steps. We first 
construct a set of RCPDs in canonical form from X, and 
then we compute their MCPDs, in which all positive 
conditional probabilities are at least as great as minconf. 

Our approach is similar to the approach for 
discovering the minimal directed I-Map of a joint 
probability distribution (JPD) [10].  Suppose that a 
permutation (ordering) Y = {Y1,…,Yn} of a set of variables 
X = {X1,…,Xn}, and p(x) is a JPD of X. This approach 
computes any minimal set of predecessors ∏i with respect 

If P̂ ( Ŷ | X̂ ′ ) is a MCPD of P̂ ( Ŷ | X̂ ), then a series 
of equations follow, i.e., ∀Z ⊆ X \ X′, P̂ ( Ŷ | X̂ ) = 
P̂ (Y |ˆ X̂ ′ , Ẑ ).  

 



to Yi, and ∏i satisfies p(yi | bi) = p(yi | πi), where ∏i ⊆ Bi = 
{Y1,…,Yi-1}. Hence, a directed minimal I-map of p(x) is 
constructed by designating ∏i as parents of Yi. The 
differences from computing I-map from a JPD is that we 
do not permutate items of a frequent itemset, and the 
conditions (contexts) in the restricted conditional 
probabilities contain all items in the frequent itemset 
except for a single test item. 

For example, to find MCPDs corresponding to the 
frequent itemset X1X2X3X4X5, first the following RCPDs 
are constructed:  

P(X1 | X2X3X4X5), P(X2 | X1X3X4X5), P(X3 | X1X2X4X5), 
P(X4 | X1X2X3X5), and P(X5 | X1X2X3X4). 

For P(X1|X2X3X4X5), one can observe all MCSs of 
X2X3X4X5 with respect to X1, such as a minimal subset ∏ 
⊆ {X2X3X4X5}, and ∀Z ⊆ {X2X3X4X5} \ ∏, p(x1 | x2x3x4x5) 
= p(x1 | π) = p(x1 | π, z), where P(X1 | ∏) is a MCPD of 
P(X1 | X2X3X4X5). If p(x1 | x2x3x4x5) is less than minconf, 
then we stop the computation of MCPDs. Otherwise, ∏ is 
a MCS of X2X3X4X5 with respect to X1. The corresponding 

basic association rule is ∏→ X
p

1, as explained in Section 
3.1.  Similarly, we compute the MCPDs of P(X2 | 
X1X3X4X5), P(X3 | X1X2X4X5), P(X4 | X1X2X3X5), and P(X5 | 
X1X2X3X4). Finally, a set of MCPDs is obtained. Thus, for 
each frequent itemset, a set of basic association rules with 
respect to X can be found.  

Because RCPDs do not obey decomposition, to 
compute a MCPD P(Y | X′) of P(Y | X), we should 
examine all cases, i.e., ∀Z ⊆ X \ {Y ∪ X′}, P(Y | X′) = P(Y 
| X′, Z). This process goes from top to bottom, and is 
depicted as a semi-lattice [12] in Figure 3.1.  

The frequent itemset itself, such as ABCDE, is 
placed at the first level.  At the second level, we construct 
a set of RCPDs, such as P(A | BCDE), P(B | ACDE), P(E | 
ABCD), P(D | ABCE), and P(E | ABCD).  All RCPDs at 
the third level are constructed by setting their contexts as 
maximal subsets of the contexts of the RCPDs at the 
second level.  At the fourth level, all RCPDs are formed 
by setting their contexts as the intersections of the 
contexts of the RCPDs at the third level.  The number k of 
itemsets being intersected at level d of the semi-lattice is 
related to the length l of the frequent itemset at the first 
level.  We have the formula k = d – 2, 4 ≤ d ≤ l.  For 
example, for frequent 4-itemsets, the number of itemsets 
being intersected at level 4 is 2.  For frequent 5-itemsets, 
the number of itemsets being intersected at level 5 is 3. 
The depth of the semi-lattice equals the size of the 
corresponding frequent itemset.  
For example, for the computation of the MCPDs of P(E | 
ABCD), we first examine P(E | ABC), P(E | ABD), P(E | 
ACD), and P(E | BCD). If P(E | ABCD) = P(E | ABC) and 
P(E | ABC) is minimal, then P(E | ABC) is already a 
MCPD of P(E | ABCD), and we examine P(E | ABD), P(E 
| ACD), and P(E | BCD). Similar cases arise 

ABCDE 

P(A | BCDE) P(B | ACDE) P(E | ABCD) P(D | ABCE) P(C | ABDE) 

P(E | BCD) P(E | ACD) P(E | ABD) P(E | ABC) 

P(E | AD) P(E | AC) P(E | CD) P(E | BD) P(E | BC) P(E | AB) 

P(E | D) P(E | C) 

... ... 

level 1 

level 2 

level 3 

level 5 

level 4 

P(E | A) P(E | B) 

 
Figure 3.1. A Possible Semi-lattice for the Frequent Itemset 
ABCDE. 

 
for P(E | ABD), P(E | ACD), and P(E | BCD). If P(E | AB) 
is a MCPD of P(E | ABCD), we only require P(E | ABCD) 
= P(E | ABC) = P(E | ABD). The context of P(E | AB) is 
the intersection of  the contexts of P(E | ABC) and P(E | 
ABD). If P(E | A) is a MCPD of P(E | ABCD), we require 
P(E | AB) = P(E | AC) = P(E | AD) = P(E | ABCD), where 
P(E | AB), P(E | AC), and P(E | AD) have already been 
obtained. Therefore, according to Definition 3.1.3 and 
3.1.4, P(E | A) is a MCPD of P(E | ABCD). 

During extension of the semi-lattice, the RCPDs in 
new children (the nodes at the next level) are also called 
the candidate MCPDs (not unique).  We reduce the 
number of candidate MCPDs of new children by 
intersecting itemsets in the contexts of their parents 
(nodes at the previous level), and checking whether the 
candidate MCPDs of the children are equal to those of 
their parents, and whether the positive conditional 
probabilities of their MCPDs are at least as great as 
minconf. 

To find all basic association rules, we should check 
all frequent itemsets and compute the corresponding 
minimal conditional probabilities. 

Therefore, we define the following concepts.  
Definition 3.2.1. Suppose we have a transaction dataset 
D, minsup, minconf, and a set L of frequent itemsets over 
D.  A class of basic association rules for X ∈ L is a set of 
basic association rules r:X′→A, denoted as Cr(X), such 
that 

(1) X′ ∪ A ⊆ X 
(2) X′ is a MCS of X \ A with respect to A 
(3) conf(r) ≥ minconf 

Definition 3.2.2. Suppose we have a transaction database 
D, minsup, and minconf.  A basic association rule system, 
denoted as BR(D, minsup, minconf), is defined as the set 
of k distinct classes of valid basic association rules, i.e., 
BR(D, minsup, minconf) = {Cr

i
 | Cr

i is a class of basic 

 



association rules, 1 ≤ i ≤ k such that for all j, 1 ≤  j ≤ k, j ≠ 
i, Cr

i
 ⊆/  Cr

j, Cr
i
 ⊇/  Cr

j}. BR(D, minsup, minconf) is also 
simply denoted as BR when D, minsup, and minconf are 
clear from context. 
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Example 3.2.1. Given the dataset in Table 2.1, minsup = 
0.3, and minconf = 0.6, in Figure 3.2, we show how to 
compute all MCPDs corresponding to the frequent itemset 
ACDE. 

Figure 3.2 shows the search space used to find MCSs 
by computing a set of MCPDs corresponding to the 
frequent itemset ACDE. This search space consists of four 
semi-lattices, in which the single node at the top level 
corresponds to the frequent itemset, and other nodes 
correspond to its subsets, each of which includes a 
positive conditional probability.   

frequent itemset ACDE. This search space consists of four 
semi-lattices, in which the single node at the top level 
corresponds to the frequent itemset, and other nodes 
correspond to its subsets, each of which includes a 
positive conditional probability.   

Regardless of the data in the dataset, at the second 
level in the structure, we always have four positive 
conditional probabilities for ACDE.  Each of them 
corresponds to an item in ACDE, such as p(a | cde), etc. 
At the third level of the structure, the itemsets appearing 
in the contexts of positive conditional probabilities are 
always maximal subsets of the itemsets appearing in the 
context of positive conditional probabilities in their 
parents. For example, along the branch containing p(a | 
cde), de, ce and cd are maximal subsets of cde. If the 
positive conditional probability of a child is equal to the 
positive conditional probability of its parent and both 
positive conditional probabilities are at least as great as 
minconf, then in Figure 3.2, they are connected with a 
bold arrow; e.g., a bold arrow is shown from the node 
including p(a | cde) to the node including p(a | ce), 
because p(a | cde) = p(a | ce). If the positive conditional 
probability of a parent is not equal to the positive 
conditional probability of its child, but the positive 
conditional probability of the child is at least as great as 
minconf, we connect the parent node and the child node 
with a narrow arrow; e.g., a narrow arrow is shown from 
the node including p(a | cde) to the node including p(a | 
cd). If the positive conditional probability of a parent is 
not equal to the positive conditional probability of its 
child or a positive conditional probability is less than 
minconf, further computation of minimal conditional 

probabilities along this path is terminated; e.g., a dotted 
arrow is shown from the node including p(a | cde) to the 
node including p(a | de).  Hence, P(A | CE) is a MCPD of 
P(A | CDE).   

Regardless of the data in the dataset, at the second 
level in the structure, we always have four positive 
conditional probabilities for ACDE.  Each of them 
corresponds to an item in ACDE, such as p(a | cde), etc. 
At the third level of the structure, the itemsets appearing 
in the contexts of positive conditional probabilities are 
always maximal subsets of the itemsets appearing in the 
context of positive conditional probabilities in their 
parents. For example, along the branch containing p(a | 
cde), de, ce and cd are maximal subsets of cde. If the 
positive conditional probability of a child is equal to the 
positive conditional probability of its parent and both 
positive conditional probabilities are at least as great as 
minconf, then in Figure 3.2, they are connected with a 
bold arrow; e.g., a bold arrow is shown from the node 
including p(a | cde) to the node including p(a | ce), 
because p(a | cde) = p(a | ce). If the positive conditional 
probability of a parent is not equal to the positive 
conditional probability of its child, but the positive 
conditional probability of the child is at least as great as 
minconf, we connect the parent node and the child node 
with a narrow arrow; e.g., a narrow arrow is shown from 
the node including p(a | cde) to the node including p(a | 
cd). If the positive conditional probability of a parent is 
not equal to the positive conditional probability of its 
child or a positive conditional probability is less than 
minconf, further computation of minimal conditional 

probabilities along this path is terminated; e.g., a dotted 
arrow is shown from the node including p(a | cde) to the 
node including p(a | de).  Hence, P(A | CE) is a MCPD of 
P(A | CDE).   

Similarly, we compute all MCPDs of P(C | ADE), 
P(D | ACE) and P(E | ACD).  As a result, a set of MCPDs 
with respect to the frequent itemset ACDE is obtained, 
i.e., P(A | CE), P(C | AE), P(D | E), P(D | C), P(D | A) and 
P(E | AC), where P(A | CE) is a MCPD of P(A | CDE) 
with respect to A, and P(C | AE) is a MCPD of P(C | 
ADE) with respect to C, etc. ڤ 

Similarly, we compute all MCPDs of P(C | ADE), 
P(D | ACE) and P(E | ACD).  As a result, a set of MCPDs 
with respect to the frequent itemset ACDE is obtained, 
i.e., P(A | CE), P(C | AE), P(D | E), P(D | C), P(D | A) and 
P(E | AC), where P(A | CE) is a MCPD of P(A | CDE) 
with respect to A, and P(C | AE) is a MCPD of P(C | 
ADE) with respect to C, etc. ڤ 

From the MCPDs corresponding the frequent itemset 
X, we can readily obtain a class of basic association rules, 
Cr(X).  A class of basic association rules derived from one 
frequent itemset may be completely included in another 
class of basic association rules derived from another 
frequent itemset. Hence, classes of basic association rules 
that are completely contained in other classes of basic 
association rules have no more information than the 
classes containing them. They are called redundant 
classes and are discarded. 

From the MCPDs corresponding the frequent itemset 
X, we can readily obtain a class of basic association rules, 
Cr(X).  A class of basic association rules derived from one 
frequent itemset may be completely included in another 
class of basic association rules derived from another 
frequent itemset. Hence, classes of basic association rules 
that are completely contained in other classes of basic 
association rules have no more information than the 
classes containing them. They are called redundant 
classes and are discarded. 
Example 3.2.2.  Given the transaction dataset in Table 
2.1, minsup = 0.3, and minconf = 0.6, from Example 
3.2.1, we obtain Cr(ACDE) = {CE→A, AE→C, E→D, 
C→D, A→D, AC→E}. Similarly, we also obtain another 
class of basic association rules corresponding to the 
frequent itemset ADE, Cr(ADE) = {A→D, E→D}. Since 
Cr(ADE) ⊂ Cr (ACDE), Cr(ADE) is discarded. ڤ 

Example 3.2.2.  Given the transaction dataset in Table 
2.1, minsup = 0.3, and minconf = 0.6, from Example 
3.2.1, we obtain Cr(ACDE) = {CE→A, AE→C, E→D, 
C→D, A→D, AC→E}. Similarly, we also obtain another 
class of basic association rules corresponding to the 
frequent itemset ADE, Cr(ADE) = {A→D, E→D}. Since 
Cr(ADE) ⊂ Cr (ACDE), Cr(ADE) is discarded. ڤ 

3.3 The GenBR Algorithm  3.3 The GenBR Algorithm  
We propose the GenBR algorithm for generating BR. 

Its goal is different from that of the second step of the 
Apriori algorithm [1], which generates all association 
rules. Our approach consists of two main steps. Given a 
set of frequent itemsets and minconf, GenBR generates all 
classes of basic association rules. Secondly, the algorithm 
generates BR by discarding all redundant classes. 

We propose the GenBR algorithm for generating BR. 
Its goal is different from that of the second step of the 
Apriori algorithm [1], which generates all association 
rules. Our approach consists of two main steps. Given a 
set of frequent itemsets and minconf, GenBR generates all 
classes of basic association rules. Secondly, the algorithm 
generates BR by discarding all redundant classes. 

The GenBR algorithm, presented in Figure 3.3, 
generates BR from a set of frequent itemsets L. For each 
frequent itemset I in L, the GenBC algorithm is called to 
generate a class of basic association rules corresponding 
to I. All classes discovered  by  GenBC  are collected  into 

The GenBR algorithm, presented in Figure 3.3, 
generates BR from a set of frequent itemsets L. For each 
frequent itemset I in L, the GenBC algorithm is called to 
generate a class of basic association rules corresponding 
to I. All classes discovered  by  GenBC  are collected  into 

 

Figure 3.2. The Computation of MCPDs.



Algorithm GenBR(L) Algorithm MinimalSubsets(i, I′) 
Purpose: generate BR from a set L of frequent itemsets Purpose: compute a set S of minimal conditional subsets of I′ 

with respect to i.  Input:  L, a set of frequent itemsets, where Lk ⊆ L is all itemsets 
in L containing k items. Input: i, an item such that I′ ∪ i is a frequent itemset. Output: BR, a set of classes of basic association rules. 

           I′, an itemset. begin 
Output: S, a set of minimal conditional subsets of         BAR = Ø 
                   I′ with respect to i.         foreach I ∈Lk, k ≥ 2 
begin         begin 

 S = Ø                 BAR = BAR ∪ GenBC(I) 
 p = supp(I′ ∪ {i}) / supp(I′)         end 

        BR = RemoveRedundantClass(BAR)          if (p ≥ minconf) then 
        return BR        S = {I′} 
end                S′ = MaximalSubsets(I′) 

               k = 2 Figure 3.3. The GenBR Algorithm. 
               while (S′  ≠ Ø) Algorithm GenBC(I) 
               begin Purpose: generate the class of basic association rules 

corresponding to I.                      foreach s ∈ S′ 
                     begin Input: I, a frequent itemset. 
                            p1 = supp(s ∪ {i}) / supp(s) Output: R, a class of basic association rules corresponding to I. 
                           if (p1 =  p) then begin 
                                  S = S ∪ {s}         R = Ø 
                           else         foreach item i ∈I 
                                 S′  = S′ \ {s}         begin 

        I′ = I \ {i}                      end 
        S = MinimalSubsets(i, I′)                     foreach s ∈ S′ 

               foreach s ∈ S                            DelSuperset(s, S)  // remove all s′ ∈ S such that 
s′ ⊃ s from S 

                      R = R ∪ {s → i} 
        end 

                    S′  = IntersectionSet(S′, k)         return R 
                    k = k + 1 end 
               end 

Figure 3.4.  The GenBC Algorithm.          return S 
end BAR.  The RemoveRedundantClass algorithm removes 

redundant classes from BAR to give BR. Figure 3.5. The MinimalSubsets Algorithm. 
The GenBC algorithm, presented in Figure 3.4, 

generates the class of basic association rules 
corresponding to the frequent itemset I. The main loop of 
the GenBC algorithm is repeated for each item i in the 
frequent itemset I. It calls the MinimalSubsets algorithm 
for computing the MCSs of I′ with respect to i.  From 
these MCSs, the algorithm forms a set of basic association 
rules corresponding to I. 

MCSs of I′ are found, then supersets of them are removed 
from S. The DelSuperset function (omitted) does this task. 
The IntersectionSet(S′, k) function (omitted) generates all 
smaller candidate MCSs of I′, which are the intersections 
of itemsets in S′ in terms of the depth k of loop. For 
example, the intersection of the two itemsets AE and AC 
is equal to A, and it is regarded as a candidate MCS. 
Example 3.3.1. Given the dataset in Table 2.1, minsup = 
0.3, and minconf = 0.6, we describe the process of 
generating BR using GenBR.  In the while loop of GenBR, 
we assume I = {ACDE} is selected from L. The GenBC 
algorithm is called to compute the class of basic 
association rules corresponding to ACDE.  

The MinimalSubsets algorithm, presented in Figure 
3.5, computes the set of MCSs of I′ with respect to i. First, 
the algorithm determines whether p = p(i | I′) ≥ minconf. 
If so, the algorithm initializes the minimal conditional 
subset S = {I′}. The MaximalSubsets function produces a 
set S′ of all maximal subsets of I′ as a set of candidate 
MCSs of I′ with respect to i, e.g., S′  = 
MaximalSubsets(BDE) = {BD, BE, DE}. Because this 
function is straightforward, we omit it. In the while loop, 
the algorithm examines the validity of candidate MCSs in 
S′. For ∀s ∈ S, the algorithm computes the conditional 
probability p(i | s), and then compares  p(i | s) with p. If 
p(i | s) = p, then s is a valid candidate MCS of I′ with 
respect to i, and it is stored in S. If smaller valid candidate 

The main loop of the GenBC algorithm is repeated for 
each item in a frequent itemset.  Inside the main loop, the 
MinimalSubsets algorithm is first called to generate all 
MCSs of CDE with respect to A. I′ = CDE and i = A. 
Because the positive conditional probability p(a | cde) ≥ 
minconf, the MinimalSubsets algorithm begins computing 
MCPDs of P(A | CDE), i.e., a set S of MCSs of CDE with 
respect to A. Initially, S = {I′}. MaximalSubsets produces a 
set S′ of all maximal subsets of CDE as candidate MCSs of 

 



CDE with respect to A, S′ = {DE, CE, CD}. In the while 
loop, itemsets in S′ are checked to see if they are candidate 
MCSs of CDE with respect to A. When CE is examined, 
p(a | ce) = p(a | cde), so we obtain S = {BDE, CE}. For DE 
and CD, because p(a | de) ≠ p(a | cde) and p(a | cd) ≠ p(a | 
cde), DE and CD are removed from S′, and S′ = {CE}.  
After DelSuperset, S = {CE} and S′ = {CE}. Because S′ 
has only one itemset, S′ = IntersectionSet(S′, k) = Ø. The 
while loop in the MinimalSubsets algorithm exits, and S = 
{CE} is returned to GenBC. In GenBC, the basic 
association rule {CE→A} is placed in R. 

redundant class Cr(I) contains no more information than 
the class Cr(I′) containing Cr(I). For example, in Table 
3.1, Cr(AB) ⊂ Cr(ABD). If a Cr(I1) is redundant and Cr(I1) 
⊂ Cr(I2), then I1 ⊂ I2.   

All frequent itemsets are arranged in a semi-lattice 
based on their inclusion relation in order to discover all 
redundant classes. For example, given the dataset shown 
in Table 2.1 and minsup = 0.3, all frequent itemsets form 
the semi-lattice shown in Figure 3.6. To identify the 
redundant class Cr(AB), RemoveRedundantClass 
compares Cr(AB) with Cr(ABD) because AB ⊂ ABD. To 
check whether Cr(DE) is redundant, the algorithm 
compares Cr(DE) with Cr(ADE) and Cr(CDE). Because 
Cr(DE) ⊄ Cr(ADE) and Cr(DE) ⊄ Cr(CDE), the algorithm 
does not need to compare Cr(DE) with Cr(ACDE), and 
Cr(DE) is non-redundant. That means that to check 
whether Cr(I1) is redundant, we only compare Cr(I1) with 
all Cr(I2), where I1 and I2 are frequent itemsets, I1 ⊂ I2,  
and |I1| = |I2| - 1, as justified by Theorem 3.3.1. 

Similarly, from the computation of P(C | ADE), we 
have a new basic association rule AE→C, and R = 
{CE→A, AE→C}. From the computation of P(D | ACE), 
we have new basic association rules E→D, C→D and 
A→D, and they are added into R. From the computation 
of P(E | ACD), a new basic association rule AC→E is 
found. 

Finally, the algorithm generates a class of basic 
association rules corresponding to ACDE, R = {CE→A, 
AE→C, E→D, C→D, A→E, AC→E}. The algorithm 
returns R to GenBR. At this point, BR = {{DE→A, A→B, 
D→B, E→B, A→E}}. 

Theorem 3.3.1. Given three itemsets I1, I2, and I3, and I1 

⊂ I2 ⊂ I3, if Cr(I1) ⊄ Cr(I2), then Cr(I1) ⊄ Cr(I3). 
Proof: Suppose the condition is satisfied. Hence, ∃r: 
X→A ∈ Cr(I1), and a MCP p(a | x), but r ∉ Cr(I2), i.e., ∃ Z 
⊆ I2 \ {X, A}, p(a | x) ≠ p(a | x, z). Because I2 \ {X, A} ⊂ I3 
\ {X, A}, ∃Z ⊆ I3 \ {X, A}, p(a | x) ≠ p(a | x, z), i.e., P(A | 
X) is not a MCPD of P(A | I3 \ A).  Hence, r∉ Cr(I3). ڤ 

GenBR continues until all frequent itemsets in L, 
with size of at least 2, have been processed. 
Consequently, all basic association rules and their classes 
are generated and presented, as shown in Table 3.1. ڤ In [22], we proposed an inference system for basic 

association rules.  It is called the C-inference system, 
because it permits a rule’s confidence to be inferred. We 
proved that the C-inference system holds on BR and that 
all association rules can be derived from BR by the 
application of inference rules in the C-inference system. 
The C-inference system is summarized in Table 3.2, 
where p and q signify the confidences of association rules.  
Rules that cannot be derived from other rules by the C-
inference system are called non-redundant association 
rules. 

We define the following terminology over BR: 
(1) Cr denotes a class of basic association rules. Ci is 

a set of items, which appear in Cr.   
(2) The class in which a basic association rule X→Y 

resides is denoted as Cr(X→Y). For example, 
Cr(C→D) might be referred to as one of 
Cr(CDE), Cr(ACD), Cr(ACDE) and Cr(CD), as 
shown in Table 3.1. 

(3) Ci(X→Y) denotes a set of items, which appear in 
Cr(X→Y). e.g, E∈ Ci(C→D) ={C, D, E}. 

All redundant classes in Table 3.1 are discovered and 
discarded  by  the  RemoveRedundantClass  algorithm.  A ACDE 
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Figure 3.6. A Semi-Lattice for All Frequent Itemsets 

Table 3.1. A Set of Classes of Basic Association Rules. 
No. Class Basic association rule Redundant
1 Cr(AB) B→A Yes 
2 Cr(BD) B→D Yes 
3 Cr(DE) E→D, D→E  
4 Cr(AD) D→A, A→D Yes 
5 Cr(CE) E→C, C→E Yes 
6 Cr(AC) A→C, C→A Yes 
7 Cr(CD) D→C, C→D  
8 Cr(ABD) B→D, B→A, D→A, A→D   
9 Cr(ADE) E→D, A→D Yes 
10 Cr(ACE) CE→A, AC→E, AE→C Yes 
11 Cr(CDE) E→D, E→C, C→E, C→D  
12 Cr(ACD) A→D, A→C, C→D, C→A  
13 Cr(ACDE) E→D, CE→A, AC→E, A→D,  

AE→C, C→D 
 

 

 



Table 3.2. The C-inference System on Basic 
Association Rules 

Inference Rule Premise Conclusion
Augmentation 

X
p
→ Y ∈ Cr, ∀X′ ⊆ Ci \ {X, Y} XX′ Y  

p
→

Pseudo-Transitivity 
X

p
→ Y ∈ Cr, XW→ Z ∈ C

q
r  XW

q
→ Z  

Contraction 
X

p
→ Y ∈ AR, XY→ Z ∈ AR 

q
X

pq
→ YZ  

Additivity 
X

p
→ Y ∈ Cr, W→ Z ∈ C

q
r XW

pq
→ YZ 

Right union 
X

p
→ Y ∈ Cr, X Z ∈ C

q
→ r  X

pq
→ YZ  

Left union 
X

p
→ Z ∈ Cr, Y Z ∈ C

p
→ r  XY

p
→ Z  

 

3.4 The Computational Complexity of GenBR 
Let us analyze the computational complexity of 

GenBR. From Figure 3.1, we observed that itemsets 
contained in the context of RCPDs may be used to 
construct a specific semi-lattice for computing MCPDs. 
All nodes in the semi-lattice are subitemsets of an itemset.  

This construction corresponds to the problem of 
generating subsets in mathematics, or creating a 
hypercube (or a k-cube), or a Qn graph in graph theory 
[15]. We analyze the computational complexity of our 
algorithm based on the binomial theorem [13] as follows. 

According to the binomial theorem, the number of 
subitemsets of a k-itemset (nodes of the semi-lattice), 
denoted NS, is given by: 

NS = C1
k +…+Ck

k = 2k −1  (3.1) 
By counting edges from the top of the semi lattice for 

a k-itemset, as shown in Figure 3.7, to its bottom, the 
number of edges, denoted NE, of the semi-lattice is given 
by:   

NE = Ck
k − 1 + 2Ck

k − 2 + 3Ck
k − 3 + … +(k−1)Ck
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= Ck
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From Equation (3.1), we obtain the number of 
association rules NR for a k-itemset generated by the 
FastGenRules algorithm [2] as follows: 

NR = 2k  − 2    (3.3) 
According to Figure 3.1, to compute the MCSs of 

ABCD with respect to E, in the worst case, the process 
forms a semi-lattice of ABCD. One edge in the semi-
lattice corresponds to one comparison. For the whole 

itemset ABCDE, there are five semi-lattices of this kind. 
Hence, from Equation (3.2), the computational 
complexity TC of GenBR for a k-itemset is determined 
by: 

TC = k(k − 1)(2k − 2 − 1) ≈ k22k − 2 
             = O(k22k − 2)   (3.4) 

Given that l is the length of the longest itemsets in the 
set of frequent itemsets, the ratio of the complexity of 
GenBR to that of FastGenRules is: 

R = O(l22l − 2)/O(2l+1) = O(l2 / 23)  
= O(l2)    (3.5) 

Although the time complexity of GenBR 
exponentially increases with l, we show that GenBR 
performs very well over actual datasets in the following 
section. 

4 Comparison and Experimental Results 
The overall comparison between our approach and 

four previous approaches is shown in Table 4.1. 

Table 4.1. The Overall Evaluation 
          Algorithm 
Features 

Fast- 
Gen- 
Rules 

Fast- 
Gen- 
RR 

Gen- 
GBRI  

Cover- 
Rules 

GenBR

Canonical form     √ 
Non-redundant     √ 
Infer a rule’s support      
Infer a rule’s confidence   √  √ 
Armstrong axioms-like     √ 
#Rules All Fewer Most Fewest Best 
Elapsed time Fastest Slower Slowest Medium Fast 

First, consider the form of rules generated.  Only 
GenBR generates non-redundant rules in canonical form. 
We believe that this type of rules is easy for users to 
understand. Rules generated by GenBR are non-
redundant, i.e., these rules and their confidences cannot be 
derived from simpler rules and their confidences by using 
the inference rules defined in any of the other approaches. 
Secondly, consider whether an inference rule permits the 
support and confidence of rules to be inferred.  None of 
the approaches can infer a rule’s support, and only Gen-
GBRI and GenBR can infer confidences.  Thirdly, 
consider whether the inference system resembles 
Armstrong’s axioms; only the C-inference system does 
so. Fourthly, consider the number of rules generated.  
CoverRules generates the fewest, but GenBR organizes 
the basic association rules into classes related to the 
frequent itemsets.  GenBR also tends to generate the 
fewest rules when minconf is high.  Finally, with respect 
to the elapsed time, FastGenRules is the fastest on all 
datasets.  GenBR is more efficient than the other 
approaches, except for a few cases. 

As described in the remainder of this section, 
experiments on several synthetic and real-life datasets 
were conducted to compare the performance of GenBR 
and previous algorithms with respect to the number of 
rules and the elapsed running time. 

 



Table 4.3. Chess, minsup = 80 % 4.1 Experimental Design 
The experimental environment was a PC with a 2.53 

GHz Intel CPU, 512MB of RAM, and Microsoft 
Windows XP. All algorithms were implemented in 
Microsoft Visual Java++. 

Algorithm / minconf 10 30 60 80 90 100 
#Rules 552564 552564 552564 552564 349298 4192Fast- 

Gen- 
Rules 

Elapsed time 
(ms) 

39125 38594 39031 39000 20640 969

#Rules 27791 27791 27791 27791 26852 2228Gen- 
GBRI Elapsed time 93020 93047 93021 93020 93057 92458

#Rules 1678 1678 1678 1678 4378 2228Fast- 
Gen- 
RR 

Elapsed time 59234 58750 58719 58703 57656 60188

#Rules 226 226 226 226 1702 2228Cover- 
Rules Elapsed time 36453 36734 36437 36453 526922 211609

#Classes 8112 8112 8112 8112 7710 145
#Rules 28416 28416 28416 28416 27054 6

GenBR

Elapsed time 25391 25141 25202 25593 25266 16468

The datasets used are listed in Table 4.2. Synthetic 
datasets, T10I4D100K and T20I6D100K, were generated 
by running GenData [17], which is a synthetic data 
generator from IBM. Several well-known benchmark 
real-world datasets were chosen from [29]. CustInfo-5 
was obtained from the CustInfo database [4] by joining 
five tables.  The number of attributes shown for the real-
world datasets represents the number after multi-valued 
attributes were converted to several binary attributes. For Chess with minsup = 80%, the number of rules 

generated by the algorithms and their elapsed times are 
shown in Table 4.3. 

Table 4.2. Synthetic and Real-world Datasets 

Dataset # Attributes #Items Length of  
Record or 

Transactions 

# Transactions

Chess 37 75 37 3196
Connect 43 129 43 67557
Mushroom 23 128 23 8124
Molecular 62 483 62 3190
CustInfo-5 14 9168 14 908241
T10I4D100K 1000 10 100000
T20I6D100K 1000 20 100000

GenBR generates significantly fewer rules than 
FastGenRules for all settings of minconf.  For example, 
when minconf = 10%, FastGenRules generates 552564 
rules, while GenBR generates 28416 rules.  

Among all approaches, CoverRules generates the 
fewest rules when minconf is 90% or less.  For example, 
in Table 4.3, with minconf = 10%, CoverRules generates 
226 rules while GenBR generates 28416 rules. However, 
when minconf is 100%, GenBR generates the fewest 
rules.  For example, in Table 4.3, GenBR generates only 6 
rules, while the other approaches generate 2228 or more 
rules. 

 
To compare the performance of GenBR and previous 

approaches with respect to the number of rules and the 
elapsed running time, we implemented the FastGenRules 
for generating association rules [2] as well as the Gen-GB 
algorithm for generating generic basis for exact rules, and 
the Gen-RI algorithm for generating informative basis for 
approximate association rules [5]. The Gen-GB and the 
Gen-RI algorithms were combined into the Gen-GBRI 
algorithm for our experiments. The 
FastGenRepresentatives (denoted FastGenRR) algorithm 
generates a set RR of representative association rules [20]. 
CoverRules generates an informative cover of cover rules 
[11]. 

Table 4.4. Comparison wrt the Number of Rules. 

Dataset Minsup Fast- 
Gen- 
Rules 

Fast- 
Gen- 
RR 

Gen- 
GBRI 

Cover-
Rules 

GenBR

Chess 80% 4192 2228 2228 2228 6
Chess 90% 132 116 116 116 2
Connect-4 95% 2270 684 684 684 10
Connect-4 97% 245 161 161 161 4
Mushroom 30% 8450 557 557 426 76
Mushroom 40% 939 169 169 139 43
Molecular 5% 2085 1261 1261 1221 391
Molecular 10% 57 45 45 43 22
CustInfo-5 5% 4913 656 2591 475 2591
CustInfo-5 10% 1862 330 1078 238 1078
T10I4D100K 0.05% 28695 6075 6075 4805 2641
T10I4D100K 0.1% 657 522 522 501 134
T20I6D100K 0.2% 67 45 45 36 26
T20I6D100K 0.3% 33 11 11 3 12

The GenBR algorithm consists of two steps to 
generate basic association rules. The first step generates 
all classes of basic association rules. The second step 
removes redundant classes. The GenBR algorithm is more 
similar to the FastGenRules algorithm than to the other 
algorithms. To compare the GenBR with FastGenRules 
with respect to the elapsed running time, we only consider 
the first step of GenBR, which generates the basic 
association rules, and we ignore the elapsed time required 
for the second step. 

For other datasets and different parameters, the 
experimental results concerning the number of rules 
generated are similar to those shown in Table 4.3. We 
summarize these experimental results in Table 4.4. 
Because users are generally concerned with association 
rules with high confidences, we only describe the number 
of rules with 100% confidence (minconf = 100%) for all 
datasets besides CustInfo-5. For CustInfo-5, since there is 
no exact association rule when minsup = 5% or 10%, we 
use minconf = 90%. Under these conditions, GenBR 

4.2 Results 
We first compared the algorithms with regard to the 

number of rules generated.  GenBR generates fewer rules 
than FastGenRules, and in some cases fewer rules than 
FastGenRR, Gen-GBRI, and CoverRules. 

 



generates fewer rules than the other algorithms, except for 
a few cases when CoverRules generates the fewest. 

Although the computation complexity of GenBR is 
exponentially greater than that of FastGenRules (as 
mentioned in Section 3.4), in our experiments, we 
observed that the elapsed time for GenBR is significantly 
less than that for FastGenRules, except for cases where 
both algorithms have their fastest performance, which 
correspond to values of minconf approaching 100%. For 
example, in Table 4.3, when minconf is 10%, the elapsed 
time for GenBR is 25391 ms while that of FastGenRules 
is 39125 ms. When minconf is 100%, the elapsed time of 
GenBR is 16468 ms while the elapsed time of 
FastGenRules is 969 ms. Across all tested settings of 
minconf from 10% to 100%, GenBR has the lowest 
maximum elapsed time (25593 ms). 

The number of exact association rules greatly affects 
the elapsed time of GenBR. If there are more exact 
association rules, there may be more functional 
dependencies, and consequently, GenBR spends more 
time.   

We summarize the experimental results related to 
elapsed time by recording the ratios of the elapsed time of 
GenBR to previous algorithms in Table 4.5. We set 
minconf = 100%. The bold entries identify cases where 
the corresponding algorithm is faster than GenBR. The 
results show that GenBR is faster than all algorithms 
except FastGenRules on most presented datasets. 

Table 4.5. Evaluation wrt Elapsed Time 

Dataset Minsup 
 

FastGen- 
Rules 

FastGen- 
RR 

Gen- 
GBRI 

Cover-
Rules 

Chess 80% 16.99 0.27 0.18 0.08
Chess 90% 1.98 0.19 0.12 0.09
Connect-4 95% 11.69 0.65 1.12 0.18
Connect-4 97% 2.32 0.35 0.35 0.15
Mushroom 30% 30.47 2.51 16.72 0.66
Mushroom 40% 10.96 1.73 6.6 0.7
Molecular 5% 1.74 0.007 0.002 0.004
Molecular 10% 2.02 0.08 0.02 0.31
CustInfo-5 5% 2.73 0.37 0.1 0.11
CustInfo-5 10% 2.59 0.58 0.19 0.18
T10I4D100K 0.05% 15.86 0.05 0.01 0.08
T10I4D100K 0.1% 3.32 0.06 0.01 0.08
T20I6D100K 0.2% 2.12 0.03 0.002 0.07
T20I6D100K 0.3% 2 0.31 0.006 1.3

5 Conclusions and Future Work 

5.1 Conclusions 
In this paper, we proposed a new type of association 

rules, called basic association rules. 
First, by referring the relational database theory on 

functional dependencies, we developed the new concepts 
of a restricted conditional probability distribution 
(RCPD), a minimal conditional probability distribution 
(MCPD), a minimal conditional subset (MCS), and a 
basic association rule. We established the C-inference 

system on basic association rules, which is similar to 
Armstrong’s axioms on functional dependencies.  

Secondly, we proposed the GenBR algorithm for 
generating a set of classes of basic association rules from 
a set of frequent itemsets. GenBR efficiently generates 
basic association rules as compared with the previous 
approaches for generating small sets of association rules. 
GenBR also generates fewer rules than previous 
approaches when minconf is high. 

Thirdly, arguably, users will find basic association 
rules to be more manageable and understandable than 
previously proposed reduced sets of association rules.  
The rules are concise, the number of rules is small, 
redundancy among rules in a class of basic association 
rules has been eliminated, and inference involving 
confidence values is possible on the rules.  This point is 
argued at greater length in [22]. 

Fourthly, we showed that the search space of our 
algorithm to compute basic association rules is a 
hypercube (n-cube) or Qn graph.  This insight aided in our 
theoretical analysis of the algorithm. 

5.2 Future Work 
An open problem is to find a more efficient algorithm 

for discovering basic association rules from frequent 
itemsets. Finding a heuristic method to discover basic 
association rules without generating frequent itemsets will 
also be challenging. 

We proposed the idea of a restricted conditional 
probability distribution as a foundation for mining 
association rules, and we distinguished it from the 
traditional conditional probability distribution.  It can be 
regarded as a more general concept than the context-
specific conditional probability distribution described in 
[6]. Further work on restricted conditional probability 
distributions may be promising. 

We established the C-inference system on association 
rules, which may be regarded as an extension of 
Armstrong’s axioms on functional dependencies. This 
kind of inference system works on exact and approximate 
rules simultaneously. Further exploration of the properties 
of the C-inference system is needed. 
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