
Basic Association Rules

Guichong Li and Howard J. Hamilton
Department of Computer Science

University of Regina
Regina, SK, Canada, S4S 0A2

{liguicho, hamilton}@cs.uregina.ca

Abstract Previous approaches for mining association
rules generate large sets of association rules. Such sets are
difficult for users to understand and manage. Here, the
concept of a restricted conditional probability distribution
is used to explain an association rule. Based on this
concept, a new type of association rules, called basic
association rules, is defined. We propose the GenBR
algorithm to generate the set of classes of basic
association rules. Theoretical analysis shows that the
search space of the algorithm can be translated to an n-
cube graph. The set of classes of basic association rules
generated by GenBR is easy for users to understand and
manage. Our experiments on synthetic and real datasets
show that GenBR is either faster than previous
approaches or generates fewer rules or both.

Keywords: Association Rules, Probabilistic/Statistical
Methods, Data Reduction/Preprocessing, Restricted
Conditional Probability Distributions, Inference Systems,
and Basic Association Rules.

1 Introduction
Techniques for mining association rules [1,2] were

originally devised for application to market basket data,
but they have also been applied in many other domains to
perform tasks [21,23,26]. Market basket data describes
the items purchased from retail stores grouped into
transactions. A transaction typically consists of items
bought together at the same point of time, but it may
consist of items bought by a customer over a period of
time. An itemset is a set of items, and a frequent itemset X
is an itemset whose frequency in transactions, also
referred to as its support, denoted as supp(X), is greater
than a user specified support threshold, minsup.

The main task of association rule discovery is to
extract frequent itemsets from market basket data and to
generate association rules from these frequent itemsets.
An association rule r is an implication of the form X→Y,
where X and Y are two disjoint itemsets. The support of
the rule is the support of X ∪ Y, denoted as supp(r), which
is given by the observed probability P(X = 1,Y = 1). The
confidence of the rule, denoted conf(r), is given by the
conditional observed probability P(X =1,Y = 1) / P(X =
1), which is denoted as p(xy) / p(x) in this paper. If an
association rule has support at least as great as minsup and

confidence at least as great as the confidence threshold
called minconf, it is referred to as a valid association rule.
An association rule with confidence 100% is an exact
association rule; all other association rules are
approximate association rules.

The Apriori algorithm [2] was proposed to discover
all frequent itemsets and to generate all valid association
rules corresponding to these itemsets by a fast algorithm,
called FastGenRules. Many algorithms have since been
proposed that reduce the time and space required to find
the frequent itemsets [2,14]. After all frequent itemsets
have been found, valid association rules are generated.

A serious problem in association rule discovery is
that the set of association rules can grow to be unwieldy
as the number of transactions increases, especially if the
support and confidence thresholds are small. As the
number of frequent itemsets increases, the number of
rules presented to the user typically increases
proportionately. Many of these rules may be redundant.
The definition of “redundancy” for association rules has
varied in previous approaches. Toivonen et al. proposed
finding a structural rule cover, which describes the same
database rows as the original set of association rules [28].
Therefore, those rules that are not in the cover are
regarded as redundant. In [11,20,24,30], the definition of
redundant rules is based on several inference rules or an
inference system. Therefore, all association rules that can
be derived from other rules by applying inference rules
are regarded as redundant. We adopt the latter type of
definition.

To address the problem of rule redundancy, four
types of research on mining association rules have been
performed. First, rules have been extracted based on user-
defined templates or item constraints [3,27]. Secondly,
researchers have developed interestingness measures to
select only interesting rules [16,18,19]. Thirdly,
researchers have proposed inference rules or inference
systems to prune redundant rules and thus present smaller,
and usually more understandable sets of association rules
to the user [5,11,20,24,30]. Finally, new frameworks for
mining association rule have been proposed that find
association rules with different formats or properties
[7,8,9].

The main problems with previous approaches are that
they still generate too many rules, and these rules may be

redundant. For example, a valid association rule X→Y that
is generated by one these approaches may in fact be
derived from some simpler rule X′→Y′ with the same
confidence as X→Y, where X′ ⊆ X and Y′ ⊆ Y. Inference
rules proposed by these approaches do not resemble
Armstrong axioms on functional dependencies. As well,
in some approaches, inference rules cannot infer the
confidence of rules without extra information.

In our research, we are creating an inference system
on association rules, consisting of a set of inference rules
such as augmentation and transitivity, which resembles
the Armstrong axioms on functional dependencies and
which allows the inference of the confidences of rules.

The remainder of this paper is organized as follows.
In Section 2, we present related work. In Section 3, we
define the concept of a basic association rule, and propose
a new algorithm called GenBR for generating the set BR
of classes of basic association rules from a set of frequent
itemsets. The computational complexity of GenBR is also
described. A comparison of our approach and other
approaches is presented in Section 4. Our experiments
compared the performance of our algorithm with that of
previous algorithms on synthetic datasets and real-life
datasets, with respect to the number of rules and the
elapsed running time. Conclusions and future work are
described in Section 5.

2 Previous Work
Previous research showed that relatively small sets of

association rules can be presented to users instead of all
valid association rules. As well, for some approaches,
inference rules were suggested that allowed additional
association rules to be derived from such small sets of
rules. In this section, we describe three approaches.

First, representative association rules (RR) are based
on a cover operator with which other non-representative
association rules can be generated [20]. Suppose we have
an association rule X→Y. A cover operator C, denoted
C(X→Y), is given by

C(X→Y) = {X ∪ Z→V Z, V ⊆ Y ∧ Z ∩ V = ∅ ∧
V ≠ ∅}

The set of all representative association rules is a minimal
set of rules that covers all association rules by means of
the cover operator. The FastGenRepresentative algorithm
was proposed to efficiently compute a RR [20].

Secondly, a kind of non-redundant association rules
with minimal antecedents and maximal consequents,
called minimal non-redundant association rules, has been
identified as particularly useful and relevant [5]. An
association rule r: X→Y is a minimal non-redundant
association rule iff there does not exist an association rule
r′: X′→Y′ with supp(r) = supp(r′), conf(r) = conf(r′), X′ ⊆
X and Y ⊆ Y′. A small non-redundant generating set for all
valid association rules is formed by combining a generic
basis GB for exact association rules and an informative

basis IB for approximate association rules. RI is defined
as a transitive reduction of the informative basis
corresponding to IB. Given a closure operator c of the
Galois connection, a set FC of frequent closed itemsets,
the set G of their generators, and a partial order p
(inclusion relation) on the set of itemsets, the definitions
of GB, IB and RI are as follows.

GB = {r: g→ (f \ g) | f ∈ FC ∧ g ∈ Gf ∧ g ≠ f}
IB = {r: g → (f \ g) | f ∈ FC ∧ g ∈ G ∧ c(g) ⊂ f}
RI = {r: g → (f \ g) | f ∈ FC ∧ g ∈ G ∧ c(g) p f ∧

∃/ f′ c(g) p f′p f}
Bastide et al. have proven that GB and IB contain

only minimal non-redundant association rules and all
exact association rules and approximate association rules
can be derived from GB and IB, respectively [5]. The
Gen-GB and Gen-RI algorithms were proposed to
generate a generic basis and a transitive reduction of the
informative basis, respectively. According to the
definition of a minimal non-redundant association rule,
the support and confidence of any association rules
inferred from the generating set are the same as the
support and confidence of the rules from which they were
inferred. The authors claim that none of the Armstrong
axioms hold in non-redundant association rules. A similar
approach has been proposed for discovering a small cover
for association rules based on closed itemsets, which
adapts the Duquenne-Guigues basis for exact association
rules and the Luxenburger results for approximate
association rules [24].

Thirdly, informative cover has been proposed
together with a new inference rule [11]. Let r, r′ be two
association rules, denoted X→Y and X′→Y′, such that X′
∪ Y′ ⊆ X ∪ Y. If supp(X′) ≤ supp(X), we say that r covers
r′, denoted r p r′. The goal is to find an informative cover
that covers all other association rules. The CoverRules
algorithm has been proposed to generate an informative
cover for association rules [11].

The cover operator in the informative cover approach
is similar to the cover operator in the representative
association rule approach. The difference between them is
that the cover operator of the informative cover approach
does not require the antecedent of the resulting
association rule to be included in the antecedent of the
initial association rule. In addition, the inference
procedure is not purely syntactic [11], because it uses

Table 2.1. A Binary Dataset.

A B C D E

1 0 1 1 1

0 0 1 1 1
1 0 1 1 1

1 1 1 1 0
0 1 0 1 1

1 1 0 1 0

3.1 Definitions information about the support of the antecedent of the
resulting association rule. The inference rules in the two
approaches are sound, but neither approach infers the
confidence of an association rule.

Definition 3.1.1. Given a dataset D with I as a set of
items and T as a set of transactions, an association rule

X→ Y over a relation R ⊆ I × T is said to be in canonical
form if |Y| = 1.

p
We found that the rules generated by these

approaches may be redundant. If X→Y is generated by
any of these approaches, it may be possible to derive it
from simpler valid association rules.

According to this definition, we only consider the case
of Y containing a single item. Before we introduce other
new notions, let us discuss another concept related to
conditional probability.

Example 2.1. Suppose we have the dataset shown in
Table 2.1, and that minsup is 0.3 and minconf is 0.6. The
sets of rules generated by the previous approaches are
shown in Table 2.2.

A conditional probability distribution (CPD) P(Y | X)
is defined as P(X, Y) / P(X), where X and Y are random
variables [10]. Y is conditionally independent of Z given
X, denoted as I(Y, Z | X), if and only if P(Y | X) = P(Y | X,
Z), where X, Y, and Z are three disjoint sets of random
variables. The statement I(X, Z | X) is referred to as a
conditional independence statement (CIS) [10].

Consider the rules in Table 2.2 from the perspective
of a user. For RR, CE→AD can be derived from simpler
association rules CE→A and CE→D by right union as

with Armstrong axioms, and conf(CE AD) =

conf(CE A) × conf(CE→ D). For GB, AB→D is
unnecessary, because B→D is in GB. For C, B→AD can
be derived from B→A and B→D by right union, assuming
B→A and B→D are valid association rules. Transitivity
cannot be used between GB and RI. For example, E→D in
GB and D→A in RI cannot be used to infer a valid
association rule by transitivity. These examples show that
some association rules in these generating sets are not in
the most desirable form. ڤ

67.0
→

67.0
→

0.1 Four properties that are satisfied by any joint
probability distribution (JPD) are symmetry,
decomposition, weak union, and contraction [10]. For
example, for the decomposition property, if I(X, Y ∪ W |
Z), then I (X, Y | Z) and I (X, W | Z).

We describe a CIS in another way in Lemma 3.1.1.
Lemma 3.1.1. Given a subset X′ ⊂ X, we say I(Y, X \ X′ |
X′), i.e., Y is conditionally independent of X \ X′ given X′,
if and only if P(Y | X) = P(Y | X′), where X and Y are two
disjoint sets of variables.
Proof:

3 Discovery of Basic Association Rules Suppose Z = X \ X′. Then X′, Y, and Z are three
disjoint sets of variables. Since X = X′ ∪ Z, P(Y | X) = P(Y
| X′, Z). Assuming P(Y | X) = P(Y | X′), we derive P(Y | X′,
Z) = P(Y | X′). Thus, we have I(Y, Z | X′), i.e., I(Y, X \ X′|
X′) according to the definition of CIS.

We propose a new approach to solve the problems
mentioned in Section 2.

Table 2.2. The Generated Association Rules
Algorithm Set Rule #Rule

FastGenRules AR … 36
FastGenRR RR

CE AD, C AD, D E, D C,
67.0
→

75.0
→

67.0
→

67.0
→

D
67.0
→ A, B AD, AC DE, C DE,

67.0
→

67.0
→

75.0
→

AE
0.1
→ CD, E CD, A CD

75.0
→

75.0
→

11

GB
C→ D, E D, AB D, E→ CD,

0.1 0.1
→

0.1
→

0.1

CE→ D, B D, AC D, A→ D
0.1 0.1

→
0.1
→

0.1

8 Gen-GB
and Gen-RI

RI
CE AD, C AD, D E, D C,

67.0
→

75.0
→

67.0
→

67.0
→

D A, B AD, AC DE, C DE,
67.0
→

67.0
→

67.0
→

75.0
→

E
75.0
→ CD, A CD

75.0
→

10

CoverRules C
E

75.0
→ CD, D E, C AD, D C,

67.0
→

75.0
→

67.0
→

B AD, CE AD, D A
67.0
→

67.0
→

67.0
→

7

For the converse, assuming I(Y, X \ X′| X′), then
according to the definition of CIS, we have P(Y | X′, X \
X′) = P(Y | X′), i.e., P(Y | X) = P(Y | X′). ڤ

Furthermore, we have Lemma 3.1.2.
Lemma 3.1.2. Given two disjoint sets of variables X and
Y, and X′ ⊂ X, if I(Y, X \ X′ | X′), then ∀Z ⊆ X \ X′, I(Y, Z |
X′), i.e., ∀ Z ⊆ X \ X′, P(Y | X) = P(Y | X′) = P(Y | X′, Z).
Proof:

If Z = X \ X′, the proof follows immediately. The
decomposition property of conditional independencies
states that if I(X, Y ∪ W | Z), then I (X, Y | Z) and I (X, W |
Z). Because I(Y, X \ X′ | X′), ∀ Z ⊂ X \ X′, we obtain I(Y,
Z | X′) and I(Y, {X \ X′} \ Z | X′). From I(Y, X \ X′| X′), we
obtain P(Y | X) = P(Y | X′, X \ X′) = P(Y | X′), and from I(Y,
Z | X′), we obtain P(Y | X′) = P(Y | X′, Z). Hence, P(Y | X)
= P(Y | X′) = P(Y | X′, Z). ڤ

To explain this idea more fully, we first give a more
general definition as follows.
Definition 3.1.2. Given two disjoint sets of variables X
and Y, and a conditional probability distribution P(Y | X),
a restricted conditional probability distribution (RCPD),

denoted as P̂ (Ŷ | X̂), is a subset of P(Y | X) defined by
specifying subsets Domain(Ŷ) ⊆ Domain(Y) and
Domain(X̂) ⊆ Domain(X).

Because MCS and MCPD are duals of each other, we
use whichever is convenient.

In previous research, MCS and MCPD have not been
defined or emphasized by researchers. In the context of
mining association rules, we use a RCPD P̂ (Y | X) for
inference on association rules. We do not consider how
P̂ (XY) and P̂ (X′Y) behave.

For binary variables X ∈ {0,1} and Y ∈ {0,1}, with
X̂ ∈ {1} and Ŷ ∈ {1}, the confidence p(y | x) of the

association rule r: X→Y is a positive conditional
probability of the RCPD P̂ (Ŷ | X̂). Example 3.1.2. Suppose we have the transaction dataset

shown in Table 2.1. Let X = {A, C, D}, Y = {E}, X′ = {A,
C}. Because the confidences of both X→Y and X′→Y are
2/3, i.e., the positive conditional probability p(e | acd) =
p(e | ac), we see that P̂ (Y | X) = P̂ (Y | X′) and that ∀Z ⊆
X \ X′ = {D}, P̂ (Y | X) = P̂ (Y | X′, Z). Because p(e | acd)
≠ p(e | a) = 2/4 and p(e | acd) ≠ p(e | c) = 3/4, there is no
X″⊂ X′ = {A, C} such that P̂ (Y | X) = P̂ (Y | X″). So X′ is
a MCS of X with respect to Y. P̂ (Y | X′) is a MCPD of
P̂ (Y | X) with respect to Y.

In the following discussion, P̂ (Ŷ | X̂) is simply
denoted as P̂ (Y | X).

Given X′ ⊂ X, if we have P̂ (Y | X) = P̂ (Y | X′), we
cannot guarantee that ∀Z ⊆ X \ X′, P̂ (Y | X) = P̂ (Y | X′,
Z). Hence, the decomposition property cannot be applied
in a RCPD.
Example 3.1.1. Suppose that we have the transaction
dataset in Table 2.1 and that minsup is 0.3 and minconf is
0.6. Consider two association rules ACD→E and D→E.
Although conf(ACD→E) = conf(D→E) = 2/3, conf(CDE)
= 3/4, i.e., if X = {A, C, D} and Y = {E}. If we choose X′
={D}, then Z = X \ X′ = {A, C}, p(y | x) = p(y | x′, z) = p(y |
x′) = 2/3, i.e., P̂ (Y | X) = P̂ (Y | X′). Let Z = {C} ⊂ X \ X′,
since p(y | x′, z) = 3/4, then p(y | x) ≠ p(y | x′, z) and p(y |
x′) ≠ p(y | x′, z), i.e., P̂ (Y | X) ≠ P̂ (Y | X′, Z) and P̂ (Y | X′)
≠ P̂ (Y | X′, Z). ڤ

Similarly, {A}, {C}, and {E} are three MCSs of {A,
C, E} with respect to D. ڤ

In the context of mining association rules, a CPD P(Y
| X) is always referred to as a RCPD P̂ (Ŷ | X̂).

We define a new notion of minimal association rules
analogously to minimal functional dependencies [25].
Definition 3.1.5. Suppose we have a set I of items and a

transaction dataset D. A canonical association rule X Y
over D is a basic association rule if X is conditionally
minimal with respect to Y, i.e., ∃ X′ ⊂ X such that

p
→

/

In the context of RCPDs, we hope to find a minimal
subset X′ of X with respect to Y such that P̂ (Y | X) = P̂ (Y
| X′), and ∀Z ⊆ X \ X′, P̂ (Y | X) = P̂ (Y | X′, Z).
Definition 3.1.3. Let X and Y be two disjoint sets of
variables. X′ is a minimal conditional subset (MCS) of X
with respect to Y if X′ is a subset of X that satisfies the
following conditions:

(1) P(Y | X) = P(Y | X′) and
(2) ∀Z ⊆ X \ X′, P(Y | X) = P(Y | X′, Z).
For example, given the transaction dataset shown in

Table 2.1, AC→E is a basic association rule, and AC is a
MCS of ACD with respect to E while P(E | AC) is a
MCPD of P(E | ACE) with respect to E.

(1) P̂ (Y | X) = P̂ (Y | X′).
(2) ∀Z ⊆ X \ X′, P̂ (Y | X) = P̂ (Y | X′, Z).
(3) X″ ⊂ X′ such that conditions (1) and (2) hold

for X″.
∃/ 3.2 Computing MCPDs

According to the definition of basic association rules,
either a MCS X with respect to Y or a MCPD P(Y | X)
corresponds to a basic association rule X→Y. The
confidence of the rule is a positive conditional probability
of P(Y | X). Therefore, the crucial task of finding basic
association rules is the computation of all MCPDs.

If X is a minimal conditional subset of itself with
respect to Y, then X is conditionally minimal with respect
to Y. For example, in Table 2.1, AC is conditionally
minimal with respect to E.

We also define the dual.
Definition 3.1.4. Suppose X and Y are disjoint sets of
variables. If X ′ is a MCS of X with respect to Y, then the
restricted conditional probability distribution P̂ (Ŷ | X̂ ′) is
a minimal conditional probability distribution (MCPD) of
the RCPD P̂ (Ŷ | X̂) with respect to Ŷ . If X is
conditionally minimal with respect to Y, then P̂ (Ŷ | X̂)
is a MCPD of itself.

Given a set L of frequent itemsets, ∀X ∈ L, and
minconf, our approach for computing MCPDs
corresponding to X is divided into two steps. We first
construct a set of RCPDs in canonical form from X, and
then we compute their MCPDs, in which all positive
conditional probabilities are at least as great as minconf.

Our approach is similar to the approach for
discovering the minimal directed I-Map of a joint
probability distribution (JPD) [10]. Suppose that a
permutation (ordering) Y = {Y1,…,Yn} of a set of variables
X = {X1,…,Xn}, and p(x) is a JPD of X. This approach
computes any minimal set of predecessors ∏i with respect

If P̂ (Ŷ | X̂ ′) is a MCPD of P̂ (Ŷ | X̂), then a series
of equations follow, i.e., ∀Z ⊆ X \ X′, P̂ (Ŷ | X̂) =
P̂ (Y |ˆ X̂ ′ , Ẑ).

to Yi, and ∏i satisfies p(yi | bi) = p(yi | πi), where ∏i ⊆ Bi =
{Y1,…,Yi-1}. Hence, a directed minimal I-map of p(x) is
constructed by designating ∏i as parents of Yi. The
differences from computing I-map from a JPD is that we
do not permutate items of a frequent itemset, and the
conditions (contexts) in the restricted conditional
probabilities contain all items in the frequent itemset
except for a single test item.

For example, to find MCPDs corresponding to the
frequent itemset X1X2X3X4X5, first the following RCPDs
are constructed:

P(X1 | X2X3X4X5), P(X2 | X1X3X4X5), P(X3 | X1X2X4X5),
P(X4 | X1X2X3X5), and P(X5 | X1X2X3X4).

For P(X1|X2X3X4X5), one can observe all MCSs of
X2X3X4X5 with respect to X1, such as a minimal subset ∏
⊆ {X2X3X4X5}, and ∀Z ⊆ {X2X3X4X5} \ ∏, p(x1 | x2x3x4x5)
= p(x1 | π) = p(x1 | π, z), where P(X1 | ∏) is a MCPD of
P(X1 | X2X3X4X5). If p(x1 | x2x3x4x5) is less than minconf,
then we stop the computation of MCPDs. Otherwise, ∏ is
a MCS of X2X3X4X5 with respect to X1. The corresponding

basic association rule is ∏→ X
p

1, as explained in Section
3.1. Similarly, we compute the MCPDs of P(X2 |
X1X3X4X5), P(X3 | X1X2X4X5), P(X4 | X1X2X3X5), and P(X5 |
X1X2X3X4). Finally, a set of MCPDs is obtained. Thus, for
each frequent itemset, a set of basic association rules with
respect to X can be found.

Because RCPDs do not obey decomposition, to
compute a MCPD P(Y | X′) of P(Y | X), we should
examine all cases, i.e., ∀Z ⊆ X \ {Y ∪ X′}, P(Y | X′) = P(Y
| X′, Z). This process goes from top to bottom, and is
depicted as a semi-lattice [12] in Figure 3.1.

The frequent itemset itself, such as ABCDE, is
placed at the first level. At the second level, we construct
a set of RCPDs, such as P(A | BCDE), P(B | ACDE), P(E |
ABCD), P(D | ABCE), and P(E | ABCD). All RCPDs at
the third level are constructed by setting their contexts as
maximal subsets of the contexts of the RCPDs at the
second level. At the fourth level, all RCPDs are formed
by setting their contexts as the intersections of the
contexts of the RCPDs at the third level. The number k of
itemsets being intersected at level d of the semi-lattice is
related to the length l of the frequent itemset at the first
level. We have the formula k = d – 2, 4 ≤ d ≤ l. For
example, for frequent 4-itemsets, the number of itemsets
being intersected at level 4 is 2. For frequent 5-itemsets,
the number of itemsets being intersected at level 5 is 3.
The depth of the semi-lattice equals the size of the
corresponding frequent itemset.
For example, for the computation of the MCPDs of P(E |
ABCD), we first examine P(E | ABC), P(E | ABD), P(E |
ACD), and P(E | BCD). If P(E | ABCD) = P(E | ABC) and
P(E | ABC) is minimal, then P(E | ABC) is already a
MCPD of P(E | ABCD), and we examine P(E | ABD), P(E
| ACD), and P(E | BCD). Similar cases arise

ABCDE

P(A | BCDE) P(B | ACDE) P(E | ABCD) P(D | ABCE) P(C | ABDE)

P(E | BCD) P(E | ACD) P(E | ABD) P(E | ABC)

P(E | AD) P(E | AC) P(E | CD) P(E | BD) P(E | BC) P(E | AB)

P(E | D) P(E | C)

... ...

level 1

level 2

level 3

level 5

level 4

P(E | A) P(E | B)

Figure 3.1. A Possible Semi-lattice for the Frequent Itemset
ABCDE.

for P(E | ABD), P(E | ACD), and P(E | BCD). If P(E | AB)
is a MCPD of P(E | ABCD), we only require P(E | ABCD)
= P(E | ABC) = P(E | ABD). The context of P(E | AB) is
the intersection of the contexts of P(E | ABC) and P(E |
ABD). If P(E | A) is a MCPD of P(E | ABCD), we require
P(E | AB) = P(E | AC) = P(E | AD) = P(E | ABCD), where
P(E | AB), P(E | AC), and P(E | AD) have already been
obtained. Therefore, according to Definition 3.1.3 and
3.1.4, P(E | A) is a MCPD of P(E | ABCD).

During extension of the semi-lattice, the RCPDs in
new children (the nodes at the next level) are also called
the candidate MCPDs (not unique). We reduce the
number of candidate MCPDs of new children by
intersecting itemsets in the contexts of their parents
(nodes at the previous level), and checking whether the
candidate MCPDs of the children are equal to those of
their parents, and whether the positive conditional
probabilities of their MCPDs are at least as great as
minconf.

To find all basic association rules, we should check
all frequent itemsets and compute the corresponding
minimal conditional probabilities.

Therefore, we define the following concepts.
Definition 3.2.1. Suppose we have a transaction dataset
D, minsup, minconf, and a set L of frequent itemsets over
D. A class of basic association rules for X ∈ L is a set of
basic association rules r:X′→A, denoted as Cr(X), such
that

(1) X′ ∪ A ⊆ X
(2) X′ is a MCS of X \ A with respect to A
(3) conf(r) ≥ minconf

Definition 3.2.2. Suppose we have a transaction database
D, minsup, and minconf. A basic association rule system,
denoted as BR(D, minsup, minconf), is defined as the set
of k distinct classes of valid basic association rules, i.e.,
BR(D, minsup, minconf) = {Cr

i
 | Cr

i is a class of basic

association rules, 1 ≤ i ≤ k such that for all j, 1 ≤ j ≤ k, j ≠
i, Cr

i
 ⊆/ Cr

j, Cr
i
 ⊇/ Cr

j}. BR(D, minsup, minconf) is also
simply denoted as BR when D, minsup, and minconf are
clear from context.

p (e | ac) p (d | a c) p (d | ae) p (e | ad)

p (e | d) p (e | a) p (d | a) p (d | e)

p (c | de)

p (a | c) p (c | d)

p (a | de)

ACDE

p (a | cd e) p (c | ad e) p (d | ace) p (e | acd)

p (a | cd) p (c | ae) p (c | ad)

p (a | d) p (c | a) p (a | e)

p (a | ce)

p (c | e) p (d | c) p (e | c)

p (e | cd) p (d | ce)

Example 3.2.1. Given the dataset in Table 2.1, minsup =
0.3, and minconf = 0.6, in Figure 3.2, we show how to
compute all MCPDs corresponding to the frequent itemset
ACDE.

Figure 3.2 shows the search space used to find MCSs
by computing a set of MCPDs corresponding to the
frequent itemset ACDE. This search space consists of four
semi-lattices, in which the single node at the top level
corresponds to the frequent itemset, and other nodes
correspond to its subsets, each of which includes a
positive conditional probability.

frequent itemset ACDE. This search space consists of four
semi-lattices, in which the single node at the top level
corresponds to the frequent itemset, and other nodes
correspond to its subsets, each of which includes a
positive conditional probability.

Regardless of the data in the dataset, at the second
level in the structure, we always have four positive
conditional probabilities for ACDE. Each of them
corresponds to an item in ACDE, such as p(a | cde), etc.
At the third level of the structure, the itemsets appearing
in the contexts of positive conditional probabilities are
always maximal subsets of the itemsets appearing in the
context of positive conditional probabilities in their
parents. For example, along the branch containing p(a |
cde), de, ce and cd are maximal subsets of cde. If the
positive conditional probability of a child is equal to the
positive conditional probability of its parent and both
positive conditional probabilities are at least as great as
minconf, then in Figure 3.2, they are connected with a
bold arrow; e.g., a bold arrow is shown from the node
including p(a | cde) to the node including p(a | ce),
because p(a | cde) = p(a | ce). If the positive conditional
probability of a parent is not equal to the positive
conditional probability of its child, but the positive
conditional probability of the child is at least as great as
minconf, we connect the parent node and the child node
with a narrow arrow; e.g., a narrow arrow is shown from
the node including p(a | cde) to the node including p(a |
cd). If the positive conditional probability of a parent is
not equal to the positive conditional probability of its
child or a positive conditional probability is less than
minconf, further computation of minimal conditional

probabilities along this path is terminated; e.g., a dotted
arrow is shown from the node including p(a | cde) to the
node including p(a | de). Hence, P(A | CE) is a MCPD of
P(A | CDE).

Regardless of the data in the dataset, at the second
level in the structure, we always have four positive
conditional probabilities for ACDE. Each of them
corresponds to an item in ACDE, such as p(a | cde), etc.
At the third level of the structure, the itemsets appearing
in the contexts of positive conditional probabilities are
always maximal subsets of the itemsets appearing in the
context of positive conditional probabilities in their
parents. For example, along the branch containing p(a |
cde), de, ce and cd are maximal subsets of cde. If the
positive conditional probability of a child is equal to the
positive conditional probability of its parent and both
positive conditional probabilities are at least as great as
minconf, then in Figure 3.2, they are connected with a
bold arrow; e.g., a bold arrow is shown from the node
including p(a | cde) to the node including p(a | ce),
because p(a | cde) = p(a | ce). If the positive conditional
probability of a parent is not equal to the positive
conditional probability of its child, but the positive
conditional probability of the child is at least as great as
minconf, we connect the parent node and the child node
with a narrow arrow; e.g., a narrow arrow is shown from
the node including p(a | cde) to the node including p(a |
cd). If the positive conditional probability of a parent is
not equal to the positive conditional probability of its
child or a positive conditional probability is less than
minconf, further computation of minimal conditional

probabilities along this path is terminated; e.g., a dotted
arrow is shown from the node including p(a | cde) to the
node including p(a | de). Hence, P(A | CE) is a MCPD of
P(A | CDE).

Similarly, we compute all MCPDs of P(C | ADE),
P(D | ACE) and P(E | ACD). As a result, a set of MCPDs
with respect to the frequent itemset ACDE is obtained,
i.e., P(A | CE), P(C | AE), P(D | E), P(D | C), P(D | A) and
P(E | AC), where P(A | CE) is a MCPD of P(A | CDE)
with respect to A, and P(C | AE) is a MCPD of P(C |
ADE) with respect to C, etc. ڤ

Similarly, we compute all MCPDs of P(C | ADE),
P(D | ACE) and P(E | ACD). As a result, a set of MCPDs
with respect to the frequent itemset ACDE is obtained,
i.e., P(A | CE), P(C | AE), P(D | E), P(D | C), P(D | A) and
P(E | AC), where P(A | CE) is a MCPD of P(A | CDE)
with respect to A, and P(C | AE) is a MCPD of P(C |
ADE) with respect to C, etc. ڤ

From the MCPDs corresponding the frequent itemset
X, we can readily obtain a class of basic association rules,
Cr(X). A class of basic association rules derived from one
frequent itemset may be completely included in another
class of basic association rules derived from another
frequent itemset. Hence, classes of basic association rules
that are completely contained in other classes of basic
association rules have no more information than the
classes containing them. They are called redundant
classes and are discarded.

From the MCPDs corresponding the frequent itemset
X, we can readily obtain a class of basic association rules,
Cr(X). A class of basic association rules derived from one
frequent itemset may be completely included in another
class of basic association rules derived from another
frequent itemset. Hence, classes of basic association rules
that are completely contained in other classes of basic
association rules have no more information than the
classes containing them. They are called redundant
classes and are discarded.
Example 3.2.2. Given the transaction dataset in Table
2.1, minsup = 0.3, and minconf = 0.6, from Example
3.2.1, we obtain Cr(ACDE) = {CE→A, AE→C, E→D,
C→D, A→D, AC→E}. Similarly, we also obtain another
class of basic association rules corresponding to the
frequent itemset ADE, Cr(ADE) = {A→D, E→D}. Since
Cr(ADE) ⊂ Cr (ACDE), Cr(ADE) is discarded. ڤ

Example 3.2.2. Given the transaction dataset in Table
2.1, minsup = 0.3, and minconf = 0.6, from Example
3.2.1, we obtain Cr(ACDE) = {CE→A, AE→C, E→D,
C→D, A→D, AC→E}. Similarly, we also obtain another
class of basic association rules corresponding to the
frequent itemset ADE, Cr(ADE) = {A→D, E→D}. Since
Cr(ADE) ⊂ Cr (ACDE), Cr(ADE) is discarded. ڤ

3.3 The GenBR Algorithm 3.3 The GenBR Algorithm
We propose the GenBR algorithm for generating BR.

Its goal is different from that of the second step of the
Apriori algorithm [1], which generates all association
rules. Our approach consists of two main steps. Given a
set of frequent itemsets and minconf, GenBR generates all
classes of basic association rules. Secondly, the algorithm
generates BR by discarding all redundant classes.

We propose the GenBR algorithm for generating BR.
Its goal is different from that of the second step of the
Apriori algorithm [1], which generates all association
rules. Our approach consists of two main steps. Given a
set of frequent itemsets and minconf, GenBR generates all
classes of basic association rules. Secondly, the algorithm
generates BR by discarding all redundant classes.

The GenBR algorithm, presented in Figure 3.3,
generates BR from a set of frequent itemsets L. For each
frequent itemset I in L, the GenBC algorithm is called to
generate a class of basic association rules corresponding
to I. All classes discovered by GenBC are collected into

The GenBR algorithm, presented in Figure 3.3,
generates BR from a set of frequent itemsets L. For each
frequent itemset I in L, the GenBC algorithm is called to
generate a class of basic association rules corresponding
to I. All classes discovered by GenBC are collected into

Figure 3.2. The Computation of MCPDs.

Algorithm GenBR(L) Algorithm MinimalSubsets(i, I′)
Purpose: generate BR from a set L of frequent itemsets Purpose: compute a set S of minimal conditional subsets of I′

with respect to i. Input: L, a set of frequent itemsets, where Lk ⊆ L is all itemsets
in L containing k items. Input: i, an item such that I′ ∪ i is a frequent itemset. Output: BR, a set of classes of basic association rules.

 I′, an itemset. begin
Output: S, a set of minimal conditional subsets of BAR = Ø
 I′ with respect to i. foreach I ∈Lk, k ≥ 2
begin begin

 S = Ø BAR = BAR ∪ GenBC(I)
 p = supp(I′ ∪ {i}) / supp(I′) end

 BR = RemoveRedundantClass(BAR) if (p ≥ minconf) then
 return BR S = {I′}
end S′ = MaximalSubsets(I′)

 k = 2 Figure 3.3. The GenBR Algorithm.
 while (S′ ≠ Ø) Algorithm GenBC(I)
 begin Purpose: generate the class of basic association rules

corresponding to I. foreach s ∈ S′
 begin Input: I, a frequent itemset.
 p1 = supp(s ∪ {i}) / supp(s) Output: R, a class of basic association rules corresponding to I.
 if (p1 = p) then begin
 S = S ∪ {s} R = Ø
 else foreach item i ∈I
 S′ = S′ \ {s} begin

 I′ = I \ {i} end
 S = MinimalSubsets(i, I′) foreach s ∈ S′

 foreach s ∈ S DelSuperset(s, S) // remove all s′ ∈ S such that
s′ ⊃ s from S

 R = R ∪ {s → i}
 end

 S′ = IntersectionSet(S′, k) return R
 k = k + 1 end
 end

Figure 3.4. The GenBC Algorithm. return S
end BAR. The RemoveRedundantClass algorithm removes

redundant classes from BAR to give BR. Figure 3.5. The MinimalSubsets Algorithm.
The GenBC algorithm, presented in Figure 3.4,

generates the class of basic association rules
corresponding to the frequent itemset I. The main loop of
the GenBC algorithm is repeated for each item i in the
frequent itemset I. It calls the MinimalSubsets algorithm
for computing the MCSs of I′ with respect to i. From
these MCSs, the algorithm forms a set of basic association
rules corresponding to I.

MCSs of I′ are found, then supersets of them are removed
from S. The DelSuperset function (omitted) does this task.
The IntersectionSet(S′, k) function (omitted) generates all
smaller candidate MCSs of I′, which are the intersections
of itemsets in S′ in terms of the depth k of loop. For
example, the intersection of the two itemsets AE and AC
is equal to A, and it is regarded as a candidate MCS.
Example 3.3.1. Given the dataset in Table 2.1, minsup =
0.3, and minconf = 0.6, we describe the process of
generating BR using GenBR. In the while loop of GenBR,
we assume I = {ACDE} is selected from L. The GenBC
algorithm is called to compute the class of basic
association rules corresponding to ACDE.

The MinimalSubsets algorithm, presented in Figure
3.5, computes the set of MCSs of I′ with respect to i. First,
the algorithm determines whether p = p(i | I′) ≥ minconf.
If so, the algorithm initializes the minimal conditional
subset S = {I′}. The MaximalSubsets function produces a
set S′ of all maximal subsets of I′ as a set of candidate
MCSs of I′ with respect to i, e.g., S′ =
MaximalSubsets(BDE) = {BD, BE, DE}. Because this
function is straightforward, we omit it. In the while loop,
the algorithm examines the validity of candidate MCSs in
S′. For ∀s ∈ S, the algorithm computes the conditional
probability p(i | s), and then compares p(i | s) with p. If
p(i | s) = p, then s is a valid candidate MCS of I′ with
respect to i, and it is stored in S. If smaller valid candidate

The main loop of the GenBC algorithm is repeated for
each item in a frequent itemset. Inside the main loop, the
MinimalSubsets algorithm is first called to generate all
MCSs of CDE with respect to A. I′ = CDE and i = A.
Because the positive conditional probability p(a | cde) ≥
minconf, the MinimalSubsets algorithm begins computing
MCPDs of P(A | CDE), i.e., a set S of MCSs of CDE with
respect to A. Initially, S = {I′}. MaximalSubsets produces a
set S′ of all maximal subsets of CDE as candidate MCSs of

CDE with respect to A, S′ = {DE, CE, CD}. In the while
loop, itemsets in S′ are checked to see if they are candidate
MCSs of CDE with respect to A. When CE is examined,
p(a | ce) = p(a | cde), so we obtain S = {BDE, CE}. For DE
and CD, because p(a | de) ≠ p(a | cde) and p(a | cd) ≠ p(a |
cde), DE and CD are removed from S′, and S′ = {CE}.
After DelSuperset, S = {CE} and S′ = {CE}. Because S′
has only one itemset, S′ = IntersectionSet(S′, k) = Ø. The
while loop in the MinimalSubsets algorithm exits, and S =
{CE} is returned to GenBC. In GenBC, the basic
association rule {CE→A} is placed in R.

redundant class Cr(I) contains no more information than
the class Cr(I′) containing Cr(I). For example, in Table
3.1, Cr(AB) ⊂ Cr(ABD). If a Cr(I1) is redundant and Cr(I1)
⊂ Cr(I2), then I1 ⊂ I2.

All frequent itemsets are arranged in a semi-lattice
based on their inclusion relation in order to discover all
redundant classes. For example, given the dataset shown
in Table 2.1 and minsup = 0.3, all frequent itemsets form
the semi-lattice shown in Figure 3.6. To identify the
redundant class Cr(AB), RemoveRedundantClass
compares Cr(AB) with Cr(ABD) because AB ⊂ ABD. To
check whether Cr(DE) is redundant, the algorithm
compares Cr(DE) with Cr(ADE) and Cr(CDE). Because
Cr(DE) ⊄ Cr(ADE) and Cr(DE) ⊄ Cr(CDE), the algorithm
does not need to compare Cr(DE) with Cr(ACDE), and
Cr(DE) is non-redundant. That means that to check
whether Cr(I1) is redundant, we only compare Cr(I1) with
all Cr(I2), where I1 and I2 are frequent itemsets, I1 ⊂ I2,
and |I1| = |I2| - 1, as justified by Theorem 3.3.1.

Similarly, from the computation of P(C | ADE), we
have a new basic association rule AE→C, and R =
{CE→A, AE→C}. From the computation of P(D | ACE),
we have new basic association rules E→D, C→D and
A→D, and they are added into R. From the computation
of P(E | ACD), a new basic association rule AC→E is
found.

Finally, the algorithm generates a class of basic
association rules corresponding to ACDE, R = {CE→A,
AE→C, E→D, C→D, A→E, AC→E}. The algorithm
returns R to GenBR. At this point, BR = {{DE→A, A→B,
D→B, E→B, A→E}}.

Theorem 3.3.1. Given three itemsets I1, I2, and I3, and I1

⊂ I2 ⊂ I3, if Cr(I1) ⊄ Cr(I2), then Cr(I1) ⊄ Cr(I3).
Proof: Suppose the condition is satisfied. Hence, ∃r:
X→A ∈ Cr(I1), and a MCP p(a | x), but r ∉ Cr(I2), i.e., ∃ Z
⊆ I2 \ {X, A}, p(a | x) ≠ p(a | x, z). Because I2 \ {X, A} ⊂ I3
\ {X, A}, ∃Z ⊆ I3 \ {X, A}, p(a | x) ≠ p(a | x, z), i.e., P(A |
X) is not a MCPD of P(A | I3 \ A). Hence, r∉ Cr(I3). ڤ

GenBR continues until all frequent itemsets in L,
with size of at least 2, have been processed.
Consequently, all basic association rules and their classes
are generated and presented, as shown in Table 3.1. ڤ In [22], we proposed an inference system for basic

association rules. It is called the C-inference system,
because it permits a rule’s confidence to be inferred. We
proved that the C-inference system holds on BR and that
all association rules can be derived from BR by the
application of inference rules in the C-inference system.
The C-inference system is summarized in Table 3.2,
where p and q signify the confidences of association rules.
Rules that cannot be derived from other rules by the C-
inference system are called non-redundant association
rules.

We define the following terminology over BR:
(1) Cr denotes a class of basic association rules. Ci is

a set of items, which appear in Cr.
(2) The class in which a basic association rule X→Y

resides is denoted as Cr(X→Y). For example,
Cr(C→D) might be referred to as one of
Cr(CDE), Cr(ACD), Cr(ACDE) and Cr(CD), as
shown in Table 3.1.

(3) Ci(X→Y) denotes a set of items, which appear in
Cr(X→Y). e.g, E∈ Ci(C→D) ={C, D, E}.

All redundant classes in Table 3.1 are discovered and
discarded by the RemoveRedundantClass algorithm. A ACDE

ABD ADE ACE CDE ACD

AB BD DE AE AD CE AC CD

A B C D E

4

3

2

1

H
ashtable

L

Figure 3.6. A Semi-Lattice for All Frequent Itemsets

Table 3.1. A Set of Classes of Basic Association Rules.
No. Class Basic association rule Redundant
1 Cr(AB) B→A Yes
2 Cr(BD) B→D Yes
3 Cr(DE) E→D, D→E
4 Cr(AD) D→A, A→D Yes
5 Cr(CE) E→C, C→E Yes
6 Cr(AC) A→C, C→A Yes
7 Cr(CD) D→C, C→D
8 Cr(ABD) B→D, B→A, D→A, A→D
9 Cr(ADE) E→D, A→D Yes
10 Cr(ACE) CE→A, AC→E, AE→C Yes
11 Cr(CDE) E→D, E→C, C→E, C→D
12 Cr(ACD) A→D, A→C, C→D, C→A
13 Cr(ACDE) E→D, CE→A, AC→E, A→D,

AE→C, C→D

Table 3.2. The C-inference System on Basic
Association Rules

Inference Rule Premise Conclusion
Augmentation

X
p
→ Y ∈ Cr, ∀X′ ⊆ Ci \ {X, Y} XX′ Y

p
→

Pseudo-Transitivity
X

p
→ Y ∈ Cr, XW→ Z ∈ C

q
r XW

q
→ Z

Contraction
X

p
→ Y ∈ AR, XY→ Z ∈ AR

q
X

pq
→ YZ

Additivity
X

p
→ Y ∈ Cr, W→ Z ∈ C

q
r XW

pq
→ YZ

Right union
X

p
→ Y ∈ Cr, X Z ∈ C

q
→ r X

pq
→ YZ

Left union
X

p
→ Z ∈ Cr, Y Z ∈ C

p
→ r XY

p
→ Z

3.4 The Computational Complexity of GenBR
Let us analyze the computational complexity of

GenBR. From Figure 3.1, we observed that itemsets
contained in the context of RCPDs may be used to
construct a specific semi-lattice for computing MCPDs.
All nodes in the semi-lattice are subitemsets of an itemset.

This construction corresponds to the problem of
generating subsets in mathematics, or creating a
hypercube (or a k-cube), or a Qn graph in graph theory
[15]. We analyze the computational complexity of our
algorithm based on the binomial theorem [13] as follows.

According to the binomial theorem, the number of
subitemsets of a k-itemset (nodes of the semi-lattice),
denoted NS, is given by:

NS = C1
k +…+Ck

k = 2k −1 (3.1)
By counting edges from the top of the semi lattice for

a k-itemset, as shown in Figure 3.7, to its bottom, the
number of edges, denoted NE, of the semi-lattice is given
by:

NE = Ck
k − 1 + 2Ck

k − 2 + 3Ck
k − 3 + … +(k−1)Ck

1
= Ck

k − 1 + 2Ck
k − 2 + 3Ck

k − 3 + … +(k−1)Ck
1 + kCk

0 –
kCk

0

= k
iki

ikkiC
k

i

k

i

ik
k −

−
=− ∑

==

−

11)!(!
!∑

= k
iki

kk
k

i

−
−−

−∑
=1)!()!1(

)!1(

= (3.2) kkCk k
k

i

k
i −= −

=

−
−∑ 1

1

1
1 2

From Equation (3.1), we obtain the number of
association rules NR for a k-itemset generated by the
FastGenRules algorithm [2] as follows:

NR = 2k − 2 (3.3)
According to Figure 3.1, to compute the MCSs of

ABCD with respect to E, in the worst case, the process
forms a semi-lattice of ABCD. One edge in the semi-
lattice corresponds to one comparison. For the whole

itemset ABCDE, there are five semi-lattices of this kind.
Hence, from Equation (3.2), the computational
complexity TC of GenBR for a k-itemset is determined
by:

TC = k(k − 1)(2k − 2 − 1) ≈ k22k − 2
 = O(k22k − 2) (3.4)

Given that l is the length of the longest itemsets in the
set of frequent itemsets, the ratio of the complexity of
GenBR to that of FastGenRules is:

R = O(l22l − 2)/O(2l+1) = O(l2 / 23)
= O(l2) (3.5)

Although the time complexity of GenBR
exponentially increases with l, we show that GenBR
performs very well over actual datasets in the following
section.

4 Comparison and Experimental Results
The overall comparison between our approach and

four previous approaches is shown in Table 4.1.

Table 4.1. The Overall Evaluation
 Algorithm
Features

Fast-
Gen-
Rules

Fast-
Gen-
RR

Gen-
GBRI

Cover-
Rules

GenBR

Canonical form √
Non-redundant √
Infer a rule’s support
Infer a rule’s confidence √ √
Armstrong axioms-like √
#Rules All Fewer Most Fewest Best
Elapsed time Fastest Slower Slowest Medium Fast

First, consider the form of rules generated. Only
GenBR generates non-redundant rules in canonical form.
We believe that this type of rules is easy for users to
understand. Rules generated by GenBR are non-
redundant, i.e., these rules and their confidences cannot be
derived from simpler rules and their confidences by using
the inference rules defined in any of the other approaches.
Secondly, consider whether an inference rule permits the
support and confidence of rules to be inferred. None of
the approaches can infer a rule’s support, and only Gen-
GBRI and GenBR can infer confidences. Thirdly,
consider whether the inference system resembles
Armstrong’s axioms; only the C-inference system does
so. Fourthly, consider the number of rules generated.
CoverRules generates the fewest, but GenBR organizes
the basic association rules into classes related to the
frequent itemsets. GenBR also tends to generate the
fewest rules when minconf is high. Finally, with respect
to the elapsed time, FastGenRules is the fastest on all
datasets. GenBR is more efficient than the other
approaches, except for a few cases.

As described in the remainder of this section,
experiments on several synthetic and real-life datasets
were conducted to compare the performance of GenBR
and previous algorithms with respect to the number of
rules and the elapsed running time.

Table 4.3. Chess, minsup = 80 % 4.1 Experimental Design
The experimental environment was a PC with a 2.53

GHz Intel CPU, 512MB of RAM, and Microsoft
Windows XP. All algorithms were implemented in
Microsoft Visual Java++.

Algorithm / minconf 10 30 60 80 90 100
#Rules 552564 552564 552564 552564 349298 4192Fast-

Gen-
Rules

Elapsed time
(ms)

39125 38594 39031 39000 20640 969

#Rules 27791 27791 27791 27791 26852 2228Gen-
GBRI Elapsed time 93020 93047 93021 93020 93057 92458

#Rules 1678 1678 1678 1678 4378 2228Fast-
Gen-
RR

Elapsed time 59234 58750 58719 58703 57656 60188

#Rules 226 226 226 226 1702 2228Cover-
Rules Elapsed time 36453 36734 36437 36453 526922 211609

#Classes 8112 8112 8112 8112 7710 145
#Rules 28416 28416 28416 28416 27054 6

GenBR

Elapsed time 25391 25141 25202 25593 25266 16468

The datasets used are listed in Table 4.2. Synthetic
datasets, T10I4D100K and T20I6D100K, were generated
by running GenData [17], which is a synthetic data
generator from IBM. Several well-known benchmark
real-world datasets were chosen from [29]. CustInfo-5
was obtained from the CustInfo database [4] by joining
five tables. The number of attributes shown for the real-
world datasets represents the number after multi-valued
attributes were converted to several binary attributes. For Chess with minsup = 80%, the number of rules

generated by the algorithms and their elapsed times are
shown in Table 4.3.

Table 4.2. Synthetic and Real-world Datasets

Dataset # Attributes #Items Length of
Record or

Transactions

Transactions

Chess 37 75 37 3196
Connect 43 129 43 67557
Mushroom 23 128 23 8124
Molecular 62 483 62 3190
CustInfo-5 14 9168 14 908241
T10I4D100K 1000 10 100000
T20I6D100K 1000 20 100000

GenBR generates significantly fewer rules than
FastGenRules for all settings of minconf. For example,
when minconf = 10%, FastGenRules generates 552564
rules, while GenBR generates 28416 rules.

Among all approaches, CoverRules generates the
fewest rules when minconf is 90% or less. For example,
in Table 4.3, with minconf = 10%, CoverRules generates
226 rules while GenBR generates 28416 rules. However,
when minconf is 100%, GenBR generates the fewest
rules. For example, in Table 4.3, GenBR generates only 6
rules, while the other approaches generate 2228 or more
rules.

To compare the performance of GenBR and previous

approaches with respect to the number of rules and the
elapsed running time, we implemented the FastGenRules
for generating association rules [2] as well as the Gen-GB
algorithm for generating generic basis for exact rules, and
the Gen-RI algorithm for generating informative basis for
approximate association rules [5]. The Gen-GB and the
Gen-RI algorithms were combined into the Gen-GBRI
algorithm for our experiments. The
FastGenRepresentatives (denoted FastGenRR) algorithm
generates a set RR of representative association rules [20].
CoverRules generates an informative cover of cover rules
[11].

Table 4.4. Comparison wrt the Number of Rules.

Dataset Minsup Fast-
Gen-
Rules

Fast-
Gen-
RR

Gen-
GBRI

Cover-
Rules

GenBR

Chess 80% 4192 2228 2228 2228 6
Chess 90% 132 116 116 116 2
Connect-4 95% 2270 684 684 684 10
Connect-4 97% 245 161 161 161 4
Mushroom 30% 8450 557 557 426 76
Mushroom 40% 939 169 169 139 43
Molecular 5% 2085 1261 1261 1221 391
Molecular 10% 57 45 45 43 22
CustInfo-5 5% 4913 656 2591 475 2591
CustInfo-5 10% 1862 330 1078 238 1078
T10I4D100K 0.05% 28695 6075 6075 4805 2641
T10I4D100K 0.1% 657 522 522 501 134
T20I6D100K 0.2% 67 45 45 36 26
T20I6D100K 0.3% 33 11 11 3 12

The GenBR algorithm consists of two steps to
generate basic association rules. The first step generates
all classes of basic association rules. The second step
removes redundant classes. The GenBR algorithm is more
similar to the FastGenRules algorithm than to the other
algorithms. To compare the GenBR with FastGenRules
with respect to the elapsed running time, we only consider
the first step of GenBR, which generates the basic
association rules, and we ignore the elapsed time required
for the second step.

For other datasets and different parameters, the
experimental results concerning the number of rules
generated are similar to those shown in Table 4.3. We
summarize these experimental results in Table 4.4.
Because users are generally concerned with association
rules with high confidences, we only describe the number
of rules with 100% confidence (minconf = 100%) for all
datasets besides CustInfo-5. For CustInfo-5, since there is
no exact association rule when minsup = 5% or 10%, we
use minconf = 90%. Under these conditions, GenBR

4.2 Results
We first compared the algorithms with regard to the

number of rules generated. GenBR generates fewer rules
than FastGenRules, and in some cases fewer rules than
FastGenRR, Gen-GBRI, and CoverRules.

generates fewer rules than the other algorithms, except for
a few cases when CoverRules generates the fewest.

Although the computation complexity of GenBR is
exponentially greater than that of FastGenRules (as
mentioned in Section 3.4), in our experiments, we
observed that the elapsed time for GenBR is significantly
less than that for FastGenRules, except for cases where
both algorithms have their fastest performance, which
correspond to values of minconf approaching 100%. For
example, in Table 4.3, when minconf is 10%, the elapsed
time for GenBR is 25391 ms while that of FastGenRules
is 39125 ms. When minconf is 100%, the elapsed time of
GenBR is 16468 ms while the elapsed time of
FastGenRules is 969 ms. Across all tested settings of
minconf from 10% to 100%, GenBR has the lowest
maximum elapsed time (25593 ms).

The number of exact association rules greatly affects
the elapsed time of GenBR. If there are more exact
association rules, there may be more functional
dependencies, and consequently, GenBR spends more
time.

We summarize the experimental results related to
elapsed time by recording the ratios of the elapsed time of
GenBR to previous algorithms in Table 4.5. We set
minconf = 100%. The bold entries identify cases where
the corresponding algorithm is faster than GenBR. The
results show that GenBR is faster than all algorithms
except FastGenRules on most presented datasets.

Table 4.5. Evaluation wrt Elapsed Time

Dataset Minsup

FastGen-
Rules

FastGen-
RR

Gen-
GBRI

Cover-
Rules

Chess 80% 16.99 0.27 0.18 0.08
Chess 90% 1.98 0.19 0.12 0.09
Connect-4 95% 11.69 0.65 1.12 0.18
Connect-4 97% 2.32 0.35 0.35 0.15
Mushroom 30% 30.47 2.51 16.72 0.66
Mushroom 40% 10.96 1.73 6.6 0.7
Molecular 5% 1.74 0.007 0.002 0.004
Molecular 10% 2.02 0.08 0.02 0.31
CustInfo-5 5% 2.73 0.37 0.1 0.11
CustInfo-5 10% 2.59 0.58 0.19 0.18
T10I4D100K 0.05% 15.86 0.05 0.01 0.08
T10I4D100K 0.1% 3.32 0.06 0.01 0.08
T20I6D100K 0.2% 2.12 0.03 0.002 0.07
T20I6D100K 0.3% 2 0.31 0.006 1.3

5 Conclusions and Future Work

5.1 Conclusions
In this paper, we proposed a new type of association

rules, called basic association rules.
First, by referring the relational database theory on

functional dependencies, we developed the new concepts
of a restricted conditional probability distribution
(RCPD), a minimal conditional probability distribution
(MCPD), a minimal conditional subset (MCS), and a
basic association rule. We established the C-inference

system on basic association rules, which is similar to
Armstrong’s axioms on functional dependencies.

Secondly, we proposed the GenBR algorithm for
generating a set of classes of basic association rules from
a set of frequent itemsets. GenBR efficiently generates
basic association rules as compared with the previous
approaches for generating small sets of association rules.
GenBR also generates fewer rules than previous
approaches when minconf is high.

Thirdly, arguably, users will find basic association
rules to be more manageable and understandable than
previously proposed reduced sets of association rules.
The rules are concise, the number of rules is small,
redundancy among rules in a class of basic association
rules has been eliminated, and inference involving
confidence values is possible on the rules. This point is
argued at greater length in [22].

Fourthly, we showed that the search space of our
algorithm to compute basic association rules is a
hypercube (n-cube) or Qn graph. This insight aided in our
theoretical analysis of the algorithm.

5.2 Future Work
An open problem is to find a more efficient algorithm

for discovering basic association rules from frequent
itemsets. Finding a heuristic method to discover basic
association rules without generating frequent itemsets will
also be challenging.

We proposed the idea of a restricted conditional
probability distribution as a foundation for mining
association rules, and we distinguished it from the
traditional conditional probability distribution. It can be
regarded as a more general concept than the context-
specific conditional probability distribution described in
[6]. Further work on restricted conditional probability
distributions may be promising.

We established the C-inference system on association
rules, which may be regarded as an extension of
Armstrong’s axioms on functional dependencies. This
kind of inference system works on exact and approximate
rules simultaneously. Further exploration of the properties
of the C-inference system is needed.

References
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. In Proc. SIGMOD′93, pages 207-216,
Washington. DC, May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithm for
mining association rules. In Proc. VLDB’94,
Santiago, Chile, 1994.

[3] E. Baralis and G. Psaila. Designing templates for
mining association rules. Journal of Intelligent
Information Systems, 9(1):7-32, July 1997.

[4] B. Barber and H. J. Hamilton. Extracting share
frequent itemsets with infrequent subsets. Data

Mining and Knowledge Discovery, 7(2):153-185,
April 2003.

[5] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and
L. Lakhal. Mining minimal non-redundant
association rules using frequent closed itemsets. In
Proc. of the First International Conference on
Computational Logic, pages 972-986, 2000.

[6] C. Boutilier, N. Friedman, M. Goldszmidt, and D.
Koller. Context-specific independence in Bayesian
networks. In Proc. 12th Conf. on Uncertainty in
Artificial Intelligence (UAI-96), pages 115-123,
Portland, Oregon, 1996.

[7] S. Brin, R. Motwani, and C. Silverstein. Beyond
market baskets: Generalizing association rules to
correlation. In Proc. SIGMOD′97, pages 265-276,
May 1997.

[8] S. Brin, R. Motwani, J. D. Ullman and S. Tsur.
Dynamic itemset counting and implication rules for
market basket data. In Proc. SIGMOD′97, pages
255-264, Montreal, Canada, June 1997.

[9] C. L. Carter, H. J. Hamilton, and N. Cercone. Share
based measures for itemsets. In Proc. PKDD’97,
pages 14-24, Trondheim, Norway, June 1997.

[10] E. Castillo, J. M. Gutierrez, and A. S. Hadi, Expert
Systems and Probabilistic Network Models,
Springer, 1997.

[11] L. Cristofor and D. Simovici. Generating an
informative cover for association rules. In Proc. of
the IEEE International Conference on Data
Mining, 2002.

[12] B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order, Fourth edition. Cambridge
University Press, 1994.

[13] E. G. Goodaire and M. M. Parmenter. Discrete
Mathematics with Graph Theory, Second Edition.
Prentice Hall, Upper Saddle River, NJ, 2002.

[14] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proc.
SIGMOD’00, pages 1-12, Dallas, TX, May 2000.

[15] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater.
Fundamentals of Domination in Graphs. Marcel
Dekker, 1998.

[16] R. J. Hilderman and H. J. Hamilton. Knowledge
Discovery and Interest Measures, Kluwer
Academic, Boston, 2002.

[17] IBM. GenData,
www.almaden.ibm.com/cs/quest/syndata.html

[18] M. Kamber and R. Shinghal. Evaluating the
interestingness of characteristic rules. In Proc.
KDD’96, pages 263-266, Portland, Oregon, 1996.

[19] M. Klemettinen, H. Mannila, P. Ronkainen, H.
Toivnen, and A. I. Verkamo. Finding interesting
rules from large sets of discovered association
rules. In Proc. of the 3rd CIKM Conference, pages
401-407, November 1994.

[20] M. Kryszkiewicz. Representative association rules
and minimum condition maximum consequence
association rules. In Proc. PKDD’98. pages 361-
369, Nantes, France, 1998.

[21] W. Lee, S. J. Stolfo, and K. W. Mokl. A data
mining framework for building intrusion detection
models. In Proc. IEEE Symposium on Security and
Privacy, 1999.

[22] G. Li. Basic Association Rules, M.Sc. Thesis,
Department of Computer Science, University of
Regina, 2004.

[23] W. Lin, S. A. Alvarez, and C. Ruiz. Collaborative
recommendation via adaptive association rules
mining. In Proc. WEBKDD’2000, San Francisco,
CA, Aug. 2000.

[24] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Closed set based discovery of small covers for
association rules. In Proc. of the 15th Conference
on Advanced Databases, pages 361-381, 1999.

[25] C. M. Ricardo. Database Systems: Principles,
Design, & Implementation, Macmillan, 1990.

[26] K. Satou, G. Shibayama, T. Ono, Y. Yamamura, E.
Furuichi, S. Kuhara, and T. Takagi. Finding
association rules on heterogeneous genome data. In
Proc. of the Pacific Symposium on
Biocomputing’97 (PSB’97), pages 397-408,
Hawaii, Jan. 1997.

[27] R. Srikant, Q. Vu, and R. Agrawal. Mining
association rules with item constraints. In Proc.
KDD’97, pages 67-73.

[28] H. Toivonen, M. Klemettinen, P. Ronkainen, K.
Hatonen, and H. Mannila. Pruning and grouping
discovered association rules. In Proc. ECML-95
Workshop on Statistics, Machine Learning, and
Knowledge Discovery in Database, pages 47-52,
April 1995.

[29] UCI Machine Learning Repository.
ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/

[30] M. Zaki, Generating non-redundant association
rules. In Proc. KDD’2000, pages 34-43. August
2000.

http://www.almaden.ibm.com/cs/quest/syndata.html
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/

	Basic Association Rules
	1 Introduction
	2 Previous Work

	3 Discovery of Basic Association Rules
	
	
	AR

	3.1 Definitions
	3.2 Computing MCPDs
	3.3 The GenBR Algorithm
	3.4 The Computational Complexity of GenBR

	4 Comparison and Experimental Results
	4.1 Experimental Design
	4.2 Results
	
	0.27
	2.12
	0.03
	0.002
	0.07

	5 Conclusions and Future Work
	5.1 Conclusions
	Future Work

	References

