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CHAPTER 1 

INTRODUCTION 

 
 

In this thesis, we address the problem of automatically finding interesting 

summaries of a data set. We propose an interactive summary mining approach, called 

GenSpace summary mining (GSSM), for finding interesting summaries based on belief 

revision. The remainder of this chapter is as follows. In Section 1.1, we define the 

summarization problem, discuss summarization in the context of Online Analytical 

Processing (OLAP) systems, and briefly identify the limitations of existing approaches to 

summary mining in OLAP systems. In Section 1.2, we introduce the concept of belief 

revision and propose a framework for using belief revision in data mining. In Section 1.3, 

we describe the GSSM problem in terms of its inputs, constraints, outputs, and 

challenges. In Section 1.4, we outline the remainder for the thesis. 

 

1.1 Summarization in OLAP Systems 

 Summarization refers to the formation of interesting, compact descriptions of 

data. It was listed by Fayyad et al. as one of the six primary data mining tasks [Fayyad et 

al., 1996]. Finding interesting summaries for a large data set at different conceptual levels 

is a basic task for a decision-making process. For example, a manager of a chain of 

grocery stores might be presented with summaries of sales information for a month or a 

year, for a city or a country, for customers of different ages or with different incomes, 

and for categories of commodities. When the number of summaries is overwhelming, 

automatically finding the most interesting ones is desirable. Based on these interesting 
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summaries, the CEO might gain insight into the performance of the company and then 

improve sales policies or assign resources to improve the performance of the company in 

the future. 

 Currently, the summarization problem is addressed by data warehouses and online 

analytical processing. A data warehouse is an analysis-oriented structure that stores a 

large collection of subject-oriented, integrated, time variant, and non-volatile data 

[Chaudhuri and Dayal, 1997]. Online analytical processing (OLAP) is a data analysis 

technique for processing multi-dimensional data warehouses. OLAP is widely used in 

applications such as marketing and sales analysis, financial reporting, and quality 

analysis [Chaudhuri and Dayal, 1997]. A common data model for OLAP is the data cube, 

which is composed of a set of summaries at different conceptual levels. An OLAP system 

provides functionalities and operators to assist analysts in exploring the space of the data 

cube. 

Although OLAP is a very powerful and practical technique, it suffers from some 

drawbacks. First, during exploration, the data analyst must examine summaries one by 

one to assess them, at least at the beginning of the exploration. However, the number of 

summaries that can be extracted from a data cube is exponential in the number of 

attributes.  An attribute describes a feature of objects, associated with a set of values. In 

the summary tables, an attribute is represented by a column. As the number of attributes 

and the number of conceptual levels for each attribute increase, exploring the data cube 

with the basic operators becomes tedious and error-prone. 

Secondly, OLAP cannot incorporate a user’s estimated probability distributions 

for summaries, hence cannot compare them with the mined results and customize the 
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presentation of results for users. For example, if a summary at a certain level matches a 

user’s estimated probability distribution, the system still presents it to the user. It is in the 

user’s discretion to decide which summaries are interesting to him/her.  

Thirdly, the ability to respond to changes in the user's knowledge during the 

knowledge discovery process is limited.  For example, if the information that more Pay-

TV shows are watched during the evening than the afternoon has already been presented 

to the user, it will subsequently be less interesting to the user to learn that more Pay-TV 

shows are watched starting at 8:00PM than shows starting at 4:00PM. OLAP methods do 

not adjust their presentation based on changes in the user’s knowledge. 

 

1.2 A Framework of the Integrated Data Mining and Belief Revision 

The problem of modelling changes in a user’s knowledge can be regarded as a 

belief revision problem. Belief revision is an active research area in philosophy and 

artificial intelligence. Two of the most common frameworks for this problem are based 

on logical inference [Katsuno and Mendelzon, 1991; Val and Shoham, 1994; Herzig and 

Rifi, 1999] and probability inference [Jensen, 1996; Xiang, 2002]. Under both  

frameworks, the input to the problem is the initial belief Bel and new evidence ξ. In the 

logical inference framework, Bel and ξ are represented as logic formulas, while in the 

probability inference framework, they are represented as probability distributions. In both 

frameworks, the output is the revised knowledge base Bel′. The belief revision problem is 

to find an operator or reasoning method O to revise Bel according to the new evidence, 

such that Bel′ = O(Bel, ξ). 
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Belief revision and data mining can complement each other in the following way.  

First, when people are involved in the updating procedure and the amount of the evidence 

is overwhelming, using data mining techniques to select the most interesting evidence to 

revise the belief is attractive. On the other hand, incorporating the revised user’s beliefs 

in the data mining process can improve the efficiency of the interaction during the mining 

process.    

Figure 1.1 shows the framework of an integrated data mining and belief revision 

system. The initial belief set Bel is set by the user. The data mining technique acts on Bel 

and the evidence data ξ to select some interesting evidence 'ξ  and present it to the user, 

who adjusts his/her beliefs B accordingly and presents them to an updating system that 

revises the initial belief set. The process can then be repeated with other interesting 

evidence. 

 

 

Data mining
technique 

Update belief 
Bel with B 

HumanBelief 
set Bel

Evidence ξ 

Interesting  
evidence 'ξ

Adjusted belief B

 

Figure 1.1 Framework for integrated data mining and belief revision 
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1.3 Objectives and Challenges 

The summary mining problem addressed in this thesis, called the GenSpace 

summary mining (GSSM) problem, can be considered as an integrated data mining and 

belief revision problem, where the evidence is represented by the observed probability 

distribution, in the form of histogram data, of possible values at some conceptual levels 

(summaries) observed from a data set and the user’s beliefs are represented by estimates, 

i.e., estimated probability distributions, also in the form of histogram data, at a certain 

conceptual level in a graphical structure called a Generalization Space graph, or 

GenSpace graph for short. A GenSpace is composed of a set of all possible summaries at 

different conceptual levels for multiple attributes, associated with the user’s estimates. A 

GenSpace graph can be represented in compact form as a set of ExGen graphs, one for 

each attribute. An ExGen graph represents the generalization relations between 

conceptual levels for a single attribute. 

The objective of this thesis is to provide a solution to the GSSM problem. The 

GSSM problem can be decomposed into the GenSpace summary selection (GSSS) 

problem and the GenSpace estimate propagation (GSEP) problem. The GSSS problem 

is to find an interesting summary far from the user’s estimates in a GenSpace graph, or in 

other words, to find summary s such that ),( ESarySelectSumms = , where E denotes the 

old estimates, S denotes the set of summaries, and SelectSummary chooses the most 

interesting summary s in S.  The selected summary is used as the evidence for belief 

revision. The GSEP problem is to consistently revise the model of the user’s estimates in 
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the GenSpace graph by incorporating adjusted estimates caused by the evidence, using 

the formula E' = O(E, HumanChoice(SelectRecords(s, E))), where E' denotes the new 

estimates in the GenSpace graph. The SelectRecords function chooses interesting records 

from an interesting summary. The HumanChoice function denotes the human choice of 

new estimates based on the interesting records presented to him/her. Both the 

SelectRecords and HumanChoice functions are optional in our study. If we do not 

consider them, we obtain the formula for the automated GSEP problem ),(' sEOE = .  

Figure 1.2 shows both the human assisted and automated processes for the GSSM 

problem. In Figure 1.2(a), the user specifies the initial estimates E0 for a given conceptual 

level in the ExGen graphs. The system propagates them to the entire GenSpace graph and 

obtains the estimates in all conceptual levels. Based on the estimates and the observed 

histogram data in summaries S, the most interesting summaries s are chosen and 

presented to the user. Furthermore, the most interesting records in the summaries can also 

be chosen to the user. The user then can adjust his estimates at a certain conceptual level 

and input it to the system. The system will start another round of propagation and mining. 

The process stops either when there are no more interesting summaries for presentation 

or when the user halts the process. Figure 1.2(b) is a simplified version of Figure 1.2(a), 

when we use the histogram data in the most interesting summary in the last round rather 

than the user’s input as the adjusted estimates in the next mining round. This method will 

be used in our experiments to demonstrate and evaluate the effectiveness of the GSSM 

method.  
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Choose interesting   
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 (a) Human involved GSSM process                              (b) Automated GSSM process       

Figure 1.2 Find interesting summaries to revise the user’s estimates 

The inputs of the GSSM problem are (1) a two-dimensional table to be 

summarized, (2) ExGen graphs for individual attributes in the table, which store the 

generalization/summarization relations for the attributes,  (3) a user’s estimates for a 

given node for each attribute, and (4) uninteresting nodes in ExGen and GenSpace graphs 

specified by the user. Two principles are used to generate constraints on the method: (1) 

the user’s estimates among all levels of the summaries should be consistent and (2) the 

changes made to the estimates by the propagation method should be minimal. The 

outputs are the interesting summary records. A summary record is interesting if (1) the 
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interestingness score of the summary is above a given threshold and (2) the chi-square 

test of the summary record is significant. 

There are three challenges in dealing with the GSSM problem. First, we need an 

efficient and consistent method for dealing with the GSEP problem, i.e., propagating a 

user’s adjusted estimates to various conceptual levels in a GenSpace graph. Second, we 

need to improve the efficiency of the GSSM process in terms of both storage space and 

time. Third, we need to seek appropriate subjective interesting measures for summaries 

since no research work has been done in this area up to date. To address the first problem, 

we propose the linear GenSpace estimate propagation method (LGSEP), which first 

propagates the user’s estimates to the bottom node of the GenSpace graph and then 

propagates them upward to the entire graph. This method is simple, consistent, and 

preserves former knowledge to some extent. To address the second problem, we propose 

various pruning strategies for the different mining processes, including pruning 

uninteresting nodes in ExGen graphs, pruning uninteresting nodes in GenSpace graphs, 

and pruning nodes based on interestingness measures. To address the third problem, we 

study the objective interestingness measures that are suitable to incorporate estimates and 

convert them to subjective measures for GSSM. We also study their properties in the 

context of GSSM, especially those that can be used in pruning. 

 
1.4 Organization of the Thesis 

The remainder of this thesis is organized as follows. In Chapter 2, we review 

related work. We first compare the characteristics and functionality of data mining and 

OLAP. We then review and compare five existing aggregation methods for calculating 

summaries. Lastly, we review the interestingness measures, including objective 
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measures, subjective measures, measures for association rules, and measures for 

summaries. 

In Chapter 3, we describe the GSSM framework, formalize the GSEP problem, 

identify principles for GSEP, and propose a linear GSEP method that consistently and 

efficiently propagates a user’s estimates throughout a GenSpace graph. 

In Chapter 4, we propose two methods to determine GSEP propagation paths for a 

GenSpace subgraph to reduce the storage and propagation costs. Determining the GSEP 

propagation path for a GenSpace subgraph is a variant of the constraint Steiner tree 

problem. After the user identifies uninteresting nodes, we can remove some of them. 

However, if we remove all of them, the propagation might be disrupted or the 

propagation costs might be increased. Of the two methods, the first method preserves the 

one step generalization property of the GenSpace. It uses a simpler data structure and 

algorithm for propagation, and it needs less time for generalizing one record in a 

summary to a higher conceptual level. Its disadvantages are that it usually keeps more 

nodes and has higher storage and scanning costs. The second method does not preserve 

the one step generalization property, and hence has the opposite advantages and 

disadvantages. 

In Chapter 5, we propose a method to construct virtual bottom nodes for a 

GenSpace graph to reduce the storage and propagation costs during the mining process 

while obtaining the same results as with the original GenSpace graph. This method is 

based on the concept of granular computing. We present an algorithm to construct the 

virtual bottom node, analyze the factors that affect its efficiency, and prove invariance of 
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the linear GSEP method when applied to a GenSpace graph with a real bottom node and 

the corresponding GenSpace graph with a virtual bottom node. 

In Chapter 6, we describe the process of GSSS. We especially analyze the 

interestingness measures that are suitable for GSSS. We identified the monotonic 

property for Bray and Whittaker measure and the upper bound for Schutz, symmetric 

relative variance, and relative entropy measure. These properties can be used as pruning 

strategies for GSSS. 

In Chapter 7, we present applications of our method. We apply the method to a 

Saskatchewan weather data set, a University of Regina student data set, and a customer 

data set. We also illustrate the mining process and present the results to show the 

effectiveness of our method. 

In Chapter 8, we conclude the thesis and give suggestions for future research. 
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CHAPTER 2  

BACKGROUND AND RELATED WORK 

 

Two of the most challenging issues in solving the GenSpace summary mining 

problem are the efficiency of the summarization process and the selection of suitable 

interestingness measures. In this chapter, we review related work on these issues. First, in 

Section 2.1, we review Online Analytical Processing [Chaudhuri and Dayal, 1997], in 

which summarization is a key issue, and the work to extend the functionality of OLAP 

with data mining techniques. Then, in Section 2.2, we review some efficient algorithms 

for summarization.  Finally, in Section 2.3, we review relevant interestingness measures 

in data mining. 

 

2.1 Data Mining and Online Analytical Processing 

Due to the widespread use of computers and the Internet, corporate, 

governmental, and scientific communities are overwhelmed with the influx of huge 

amounts of data. However, the raw data alone cannot benefit the decision making process 

for these organizations. Any value to be realized from this data will be obtained by 

analyzing those data and extracting useful patterns from them. Data mining and Online 

Analytical Processing (OLAP) are the two most prominent technologies for supporting 

strategic decision-making based on large data sets.  

Data mining refers to the extraction of implicit, previously unknown, and 

potentially useful patterns [Fayyad et al., 1996]. Based on previous research work, we 

categorize the form of the patterns that can be mined into decision rules, association 
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rules, instances (cases), clusters, summaries, anomalies, and graphic representations. 

A decision rule is an “if-then” rule that describes a causal relationship between a 

set of condition attribute-value pairs and a decision class [Clark and Niblett, 1989; 

Grzymala-Busse, 1992; Quinlan, 1993]. The condition attributes describe the features of 

objects. The decision attributes describe the possible classes that the objects may belong 

to. This type of rule is useful for classification and prediction of future data. For example, 

a financial analyst might be interested in how a customer’s income and assets would 

affect his/her credit rating. An association rule is defined as an if-then rule YX → , 

between two disjoint itemsets X and Y. An itemset is a set of items each of which can be 

considered as a binary attribute. An association rule is valid if it satisfies the confidence 

and support constraints [Agrawal et al., 1993; Brin et al., 1997; Bayardo, 1998; Han et 

al., 2004]. Support is defined as the fraction of the records in the data set containing the 

itemset XY. Confidence is defined as the fraction of the records containing the itemset XY 

to those containing the itemset X. Although association rules can also be represented in 

if-then form, they are different from decision rules. First, association rules are usually 

used as descriptive rather than predictive tools. They represent associations between two 

itemsets rather than a logic implication. Second, association rules do not distinguish 

decision attributes from condition attributes. Third, the items are always represented by 

binary attributes. A typical use of association rules is to find sales relations between any 

sets of commodities in a transaction database to form the sales and advertisement 

strategies. Instance based learning tries to find representative cases in dataset for 

classifying new instances [Aha et al., 1991; Smyth and McKenna, 1999; Wilson and 

Martines, 2000; Geng and Hamilton, 2002; Geng and Hamilton, 2003a]. The difference 
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between instance based learning and rule based learning is that instance based learning 

uses similarity measures rather than exact matching for both mining and classification 

procedures. Thus it can be used for mining complex data types, such as images and 

unstructured and semi-structured texts. Clustering is a data mining method that makes 

cluster of instances that are similar in characteristics [Guha et al., 1998; Zhang et al., 

1996; Kaufman and Rousseeuw, 1990; Agrawal et al., 1998]. An instance in a cluster 

should bear a stronger resemblance to the other instances in the same cluster than to those 

in other clusters. Unlike decision rule mining, clustering is unsupervised learning where 

no decision attributes are available. Summarization is the formation of interesting, 

compact descriptions of data at different conceptual levels [Beyer and Ramakrishnan 

1999; Harinarayan et al., 1996; Sarawagi et al., 1996]. For example, a sales manager may 

be interested in the sales information of a certain region during a certain period of time at 

different granularity levels, such as based on month and province, or week and city. 

Anomalies are the most significant changes in the data from previously measured or 

normative values. [Bay and Pazzani, 2001; Webb et al., 2003]. For example, in the 1990s 

the student acceptance rate of a university was 20%, but in 1994, the acceptance rate was 

40%, which is significantly different from that of the other years. In this case, the year 

1994 is an anomaly and may be worthy of special concern. Graphic representations of the 

mined knowledge include decision trees [Quinlan, 1993], neural nets [Bishop, 1995], and 

Bayesian belief networks [Jensen, 1996]. A variety of algorithms have been designed to 

learn these patterns from data sets. 

OLAP is a powerful data analysis method and technology for multi-dimensional 

data warehouses and widely used in various applications [Chaudhuri and Dayal, 1997].  



 14

The most popular data model for OLAP is multi-dimensional data cube. A data cube is 

composed of a set of summaries, called cuboids, which form a concept lattice. OLAP 

systems provide basic functionalities and operators to assist analysts in exploring data 

cubes. The rollup operator moves from more general summaries to more detailed ones. 

The drilldown operator moves from detailed summaries to more general ones. The slice 

operator performs a selection on one dimension of a data cube. The dice operator 

performs a selection on two or more dimensions of a data cube. The slice and dice 

operators help user select different facets of the data cube that are interesting to him/her 

for presentation.  

Data mining and OLAP have much in common. First, both data mining and 

OLAP help an analyst find useful knowledge and support decision-making. Secondly, 

they both deal with large amounts of data, and hence computational efficiency is an 

important issue for them. 

However, they have differences regarding their functionalities. First, although 

data mining methods can deal with concept hierarchies, the core techniques of data 

mining are still based on the raw data, while OLAP essentially deals with data with 

concept hierarchies. Secondly, data mining is more autonomous than OLAP. A data 

mining system usually formulates new hypotheses and chooses a relatively small set of 

interesting patterns to present to users according to user specified conditions. 

Conventional OLAP systems cannot suggest new hypotheses. The user must formulate a 

hypothesis and manually explore the data cube to verify his/her hypothesis. The user 

must also choose the path in the lattice for exploration. Since the number of cuboids is 

exponential in the number of the attributes, exploring the data cube with the basic 
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operators can become too time consuming and error prone, as the number of the attributes 

and the number of concept levels for each attribute increase. 

Due to these features of OLAP and data mining, much work has been done to 

integrate them to improve their functionality for decision support.  

Han et al. proposed a framework to combine data mining functions and OLAP 

[Han, 1998]. They added an online analytical mining (OLAM ) engine on top of the data 

cube, so that data mining tasks, such as association analysis, classification, prediction, 

and clustering analysis can be performed at different levels of the data cube. This type of 

integration is straightforward. 

To reduce the storage and computation costs, the iceberg cube method has been 

proposed. An iceberg cube is a subset of a data cube containing aggregates whose 

aggregate values are greater than or equal to a given support threshold [Beyer and 

Ramakrishnan, 1999]. The iceberg cube method incorporates pruning technique used in 

data mining to improve the efficiency of OLAP systems. However, this approach 

assumes that only the summaries with high aggregate values are interesting, which is not 

always the case. For example, the sales of a company in Ontario are perhaps always 

greater than those in Saskatchewan, but that does not mean that the sales in Ontario are 

always more interesting to analysts than those in Saskatchewan if Saskatchewan’s sales 

have dramatically increased while Ontario’s have remained steady.  

Discovery-driven exploration has been proposed to guide the exploration process 

by providing analysts with interestingness measures based on statistical models 

[Sarawagi et al., 1998]. Initially, the user specifies a starting data cuboid and a starting 

cell, and the tool automatically calculates three values for each cell based on statistical 



 16

models. The first value indicates the interestingness of this cell itself, the second value 

indicates the interestingness it would have if the data were drilled down from this cell to 

more detailed cuboids, and the third value indicates which paths to drill down from this 

cell. The user can follow the guidance of the tool to navigate through the space of the 

data cube.  

Sarawagi simplifies the discovery driven exploration process by automatically 

finding the underlying reasons for exceptions [Sarawagi 1999]. The user identifies an 

interesting difference between two cells. The system then presents the most relevant data 

in more detailed levels that account for the difference.  

Fabris and Freitas defined interestingness measures for attribute-value pairs in a 

data cube [Fabris and Freitas, 2001]. For a single attribute, the measures reflect the 

difference from the uniform distribution. For the interaction of two attributes, the 

measures are based on the assumption that dependencies are of interest, i.e., the more 

they are correlated, the greater the value of the interestingness measure. Coefficients are 

used to add bias towards the higher-level concepts in the data cube. Based on the 

interestingness measures, a list of attribute-value pairs is outputted. Users can pay 

particular attention to these attribute value pairs when they explore the data cube. 

In general, three approaches have been proposed to integrate the OLAP and the 

data mining techniques. First, OLAP can be taken as a platform to perform different data 

mining tasks. Secondly, the data mining technique can be used to improve the efficiency 

of OLAP process. Thirdly, the data mining technique can be used to guide and facilitate 

users’ exploration of the data cube.  
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2.2 Aggregation Methods in OLAP 

The methods to calculate summaries in OLAP systems are called aggregation 

methods. Aggregation methods have been intensively studied since the introduction of 

data warehousing, data cubes and OLAP. To improve the efficiency of aggregation 

methods, researchers have proposed techniques in the following categories.  

(1) Search orders, including specific-to-general, general-to-specific, breadth first, and 

depth first [Agarwal et al., 1996; Ross and Srivastava, 1997].  

(2) Heuristics, including Apriori pruning and the selection of the smallest parent for 

aggregation [Beyer and Ramakrishnan 1999; Harinarayan et al., 1996]. 

(3) Data structures to facilitate calculation, including arrays, hash tables, and trees 

[Agarwal et al., 1996; Ross and Srivastava, 1997; Han et al., 2001].  

(4) Storage reduction techniques, including iceberg cubes and selection of views to 

materialize [Beyer and Ramakrishnan 1999; Harinarayan et al., 1996; Han et al., 2001].  

(5) Data rearrangement, include sorting and partitioning [Agarwal et al., 1996; Ross and 

Srivastava, 1997; Beyer and Ramakrishnan 1999].  

We review several well-known algorithms that use techniques from these five 

categories. PipeSort is discussed in Section 2.2.1, Partitioned cube is discussed in Section 

2.2.2, BUC is discussed in Section 2.2.3, Selecting views to materialize is discussed in 

Section 2.2.4, and Top-k cubing is discussed in Section 2.2.5.  

 

2.2.1 PipeSort 

Agarwal et al. proposed an efficient specific-to-general aggregation method called 

PipeSort [Agarwal et al., 1996]. It takes into account both share-sort and smallest-parent 
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optimizations. Share-sort optimization aims at sharing the sorting results across multiple 

cuboids to improve aggregation calculation. Smallest parent optimization aims at 

computing cuboids from the smallest previously computed cuboids. The PipeSort 

algorithm first assigns two costs to each node in the search lattice. The first cost, called S, 

is the cost of computing a child (a node at a more general level) from this node when the 

node is not sorted. The second cost, called A, is the cost of computing a child from it 

when it is sorted according to the order of the child. For example, if node AC is 

calculated from node ABC and ABC is not sorted, the aggregation will have an S cost. If 

ABC is sorted in the order ACB, with AC as its prefix, the aggregation will have an A 

cost. From the most general node, in a level-by-level manner, the PipeSort algorithm 

finds the optimal parents for the child nodes using the weighted bipartite matching 

algorithm [Papadimitriou and Steiglitz, 1982]. In each level, if a child node is connected 

with a parent node with a cost A, the parent node will be sorted in the order of its child 

node. In this manner, a tree will be generated with two kinds of edges, pipeline edges and 

sort edges. An edge is a sort edge if before calculating the child, the parent needs to be 

sorted. Therefore, the cost of a sort edge is S. An edge is a pipeline edge if the parent is 

sorted in the order of its child, in other words, the child node is denoted as a prefix of its 

parent. Therefore, the cost of a pipeline edge is A. For each sort edge, the algorithm finds 

a path, called pipeline, for aggregation. 

Figure 2.1 shows an example of determining the path for calculating nodes A, B, 

and C from nodes AB, AC, and BC. The nodes AB, AC, and BC are assigned A costs of 2, 

5, and 13, respectively. The algorithm then makes one copy of AB, AC, and BC and 

assigns them the S costs 10, 12, and 20, respectively, and connects them with S edges to 
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the same set of child nodes. The number of the copies that should be made equals to the 

number of the attributes in the parent node minus 1. In Figure 2.1(a), the solid lines 

represent A edges and the dotted lines represent S edges. Now we need to select a subset 

of the parent nodes with the minimum cost such that it covers all the child nodes. After 

applying the weighted bipartite matching algorithm, we obtain the minimum cost 

matching as shown in Figure 2.1(b) (The solution to a bipartite matching may not be 

unique. In Figure 2.1, we only show one solution). Thus, the node AB will be sorted in 

the order BA, so that B is calculated from it without resorting.  Node A is generated with 

resorting node AB in the order of AB. Node AC will be sorted in the order CA so that the 

node C will be calculated without resorting. Node BC is not used to calculate any child 

nodes; therefore, it can be sorted in any order. 

 
       A                       B                            C 
 
 
  AB         AB       AC         AC         BC         BC  
   2            10        5           12            13          20 

 
       A                       B                            C 
 
 
  AB         AB       AC         AC         BC         BC  
   2            10        5           12            13          20 

 

          (a) Bipartite graph                                         (b) Aggregation path 

Figure 2.1 Selecting an aggregation path with PipeSort 

After processing all the levels, a tree is obtained for aggregation. 

This method has some limitations. First, the authors did not explain how to 

estimate the A and S costs. Secondly, the method finds the local optimal parent for each 

node, but it may not be globally optimal. Thirdly, as pointed out by [Ross and Srivastava, 

1997], the number of sorting procedures is not optimal. Fourth, the sorting method does 

not address the situation where concept hierarchies are involved.  
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2.2.2 Partitioned-Cube 

To reduce the sorting cost and caching cost of Pipesort, Ross and Srivastava, 1997 

proposed another specific-to-general algorithm to calculate data cubes [Ross and 

Srivastava, 1997]. The algorithm consists of two parts, Partitioned-Cube and Memory-

Cube. Partitioned-Cube partitions the original relation into smaller groups according to 

attribute values to reduce the use of memory. It first checks if the original relation fits in 

memory. If it does, it calls Memory-Cube to aggregate and output the results. Otherwise, 

it partitions the relation into a set of smaller relations according to an attribute A. Then it 

uses the smaller relations as parameters to recursively call itself for each partition to get 

an aggregate for each value for attribute A. Then it recursively calls itself by projecting 

the attribute A out to get aggregates without attribute A. Finally, it unions all the results 

from the recursive calls.  

Memory-Cube is similar to PipeSort method, except that it only focuses on the 

sorting cost (PipeSort also takes into account the size of the parent node). It is proved that 

for a lattice of k attributes, the minimum number of aggregation paths is ]2/[k
kC , each of 

which requires one sorting of the data. Memory-Cube finds the minimum number of 

aggregation paths, and therefore requires the minimum number of data sorting. 

The advantage of Partitioned-Cube and Memory-Cube is that they use a divide 

and conquer method to compute data cubes without caching any of the results for later 

reuse. Thus they do not incur any additional I/O costs beyond the input of the relation and 

the output of the data cube itself. The limitations of the method are that it does not have 

pruning heurists and all the aggregates will be calculated and it does not address the 

situation where concept hierarchies are involved. 
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2.2.3 BUC 

An iceberg cube is proposed to reduce the calculation cost and storage cost for a 

data cube because it only outputs the aggregates whose aggregate values are higher than a 

given threshold. Beyer and Ramakrishnan proposed a general-to-specific aggregation 

method, called bottom up computation (BUC), for sparse and iceberg cube [Beyer and 

Ramakrishnan 1999]. As with Apriori algorithm, pruning is based on the monotonic 

property of the measure: if the measure of a more general aggregate is below a given 

threshold, the measures for the corresponding more specific aggregates will be below the 

threshold, and thus can be pruned. The difference between BUC and Apriroi is that BUC 

uses a depth first strategy to traverse the space, while Apriori uses a breadth first strategy.  

The traverse path and order for a four-attribute lattice is shown in Figure 2.2. The 

numbers in Figure 2.2 indicate the order in which BUC visits the cuboids. The algorithm 

first calculates the aggregate node All, if the measure is above the threshold, they it will 

calculate all the aggregates containing a value of attribute A in nodes 2-9. We assume 

there are two values for each attribute, a1 and a2 for A, b1 and b2 for B, and so on. The 

algorithm will first calculate the aggregate for a1, then a1b1, a1b1c1 and a1b1c1d1 in a depth 

first traversal. Then the algorithm will calculate the aggregate for a1b1c1d2. Then it 

backtracks to node ABC to calculate aggregate a1b1c2.  This process continues until all the 

aggregates containing a1 is calculated. Then it calculates all the aggregates containing a2 

in the same manner. After all aggregates containing a value of A are calculated, it starts to 

calculate all aggregates containing B but not A in nodes 10-13, and then to calculate all 

aggregates containing C but not A and B in nodes 14-15. Finally it calculates all 
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aggregates containing a value of attribute D but not A, B, and C in node 16. In a stage, if 

the measure of any aggregate is below a threshold, the algorithm will not move on to the 

more specific levels in the search tree and continues for the next aggregates in the current 

node.  

The advantage of the depth first traversal used in BUC is that it needs less 

memory. The disadvantage is that the pruning may be one step latter than with Apriori. In 

the depth first search, when a1b1 is aggregated and its measure is above the threshold, 

a1b1c1 needs to be aggregated next to see if it can be pruned. However, in the breadth first 

search, a1c1 is aggregated before a1b1c1. If a1c1 is below the threshold, a1b1c1 does not 

need to be aggregated.  

The advantage of BUC (general-to-specific aggregation) over specific-to-general 

aggregation methods is that BUC can use pruning heuristics based on the iceberg cube 

threshold. A dramatic drawback of BUC is that it does not take advantage of aggregates 

that have already been obtained to reduce the aggregation cost. In BUC, every aggregate 

is aggregated from the most specific records. 

 

 5 ABCD
 
         4 ABC    6 ABD          8ACD       12 BCD 
 
 
   3 AB     7 AC       9 AD   11 BC   13 BD    15 CD 
 
 
                    2A        10B                14C     16D 
                 
 
                                        1 All 

 

Figure 2.2 Aggregation path for BUC 
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2.2.4 Selecting Views to Materialize 

When answering a query about cuboids, if the system does not materialize any 

cuboids, the average response time is high; if the system tries to materialize all cuboids, 

available memory might not be sufficient. Harinarayan et al. suggest a tradeoff between 

the time cost and the space cost [Harinarayan et al., 1996]. The suggested greedy node 

selection algorithm selects a subset of k cuboids to materialize while minimizing the 

average query time, where k is given by users. The authors first proposed a linear time 

cost model, which states that the cost of answering a cuboid A is directly proportional to 

the number of records present in the cuboid B that is used to construct A. With this 

model, they use the number of the records in B to represent the time cost to construct any 

decedents that are constructed from B.  

In the greedy method to select nodes to materialize, they define the benefit B(v, S) 

of a node v on a set S of selected nodes as follows. 

1. For each descendent w of v, define Bw(v, S) by  

(a) Let u be w’s ancestor with smallest size in S. 

(b) If cost(v) < cost(u), then Bw(v, S) = cost(v) – cost(u), otherwise, Bw(v, S) = 0. 

2. ∑=
w

SvBwSvB ),(),( , where w is a descendent of v. 

For each node v in the search lattice, the algorithm calculates the total benefit 

),( SvB . Then it selects the node with the maximum benefit into the set S. This process is 

repeated until k nodes have been selected.  

Figure 2.3 shows a search space for eight nodes. The numbers in the parentheses 

denote the sizes of the nodes, which is also the cost of constructing a descent from this 

node. If the user wants to select two nodes to materialize (besides base node a), the 
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algorithm first calculates the potential benefit of nodes b to h. If b is selected, five nodes 

b, d, e, g, and h will benefit and each of these nodes will benefit by 50 records. Therefore, 

the total benefit of materializing b is benefit(b) = (100 – 50) * 5 = 250. Similarly 

benefit(c) = 125, benefit(d) = 160, benefit(e) = 210, benefit(f) = 120, benefit(g) = 99, 

benefit(h) = 90. The algorithm selects node b to materialize. With nodes a and b 

materialized, the algorithm calculates the benefit of materializing nodes c to h again. If 

we select node f, node h will benefit by 10)()( =− fsizebsize and node f will benefit by 

60)()( =− fsizeBsize . The total benefit that node f yields is benefit(f) = 70. Similarly, 

we have benefit(c) = 50, benefit(d) = 60, benefit(e) = 60, benefit(g) = 49, and benefit(h) = 

40. Since node f yields the maximum benefit, it is selected. 

                          
                         a(100) 
 
 
             b(50)                       c(75) 
 
 
  d(20)                    e(30)                     f(40) 
 
 
 
                    g(1)                  h(10) 

 

Figure 2.3 Selecting nodes to materialize 

The authors also proved that the benefit achieved by the greedy algorithm is at 

least 1-1/e (63%) time of the benefit achieved by the optimal solution. This method can 

be applied to concept hierarchies. 

 

2.2.5 Top-k Cubing Using a Hyper Tree Structure 

Han et al. proposed an efficient algorithm to calculate iceberg cubes with measure 

average [Han et al., 2001]. Since average is not a monotonic measure, Apriori-like 
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pruning cannot be applied during the general-to-specific calculation in the mining 

process. To exploit the Apriori property, the authors developed a mapping that transforms 

average to a weaker, but monotonic measure top-k average for pruning. A top-k average 

is the average value of the top-k base (most specific) cells of a cell when sorted in value-

descending order. With this top-k average measure, pruning can be applied in the general-

to-specific calculation. The authors also proposed a binning technique to reduce the 

storage and computation cost caused by the large value of k during the calculation of the 

top-k average. 

Another contribution of this paper is that it uses a data structure H-tree to 

facilitate the computation. An H-tree is a compact representation of the data set that is 

built as follows. First, a scan of the original table creates a header table, in which each 

entry records the quant-info (including the sum, count and top k bins, that are needed to 

calculate the average and top-k average) for each attribute-value pair. Next, the root, 

labeled with null, of the tree is created. Then, it scans the table for the second time. For 

each record, it inserts the record into the tree. If the record matches a part of the path, it 

shares the common part of the path. If the record matches a whole path, then the quant-

info in the leaf node will be updated. If two leaf nodes have the same label, it will be 

connected by a side-link. Figure 2.4 is a sample H-tree with its head table for Table 2.1 

(Adapted from [Han et al., 2001]). The aggregation of the data cube is conducted by 

traversing and updating the H-tree structure. 
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Table 2.1 An example table  

Month Customer City Price 
Jan Edu Toronto 500 
Jan House Toronto 1000 
Jan Edu Torontol 800 
Feb Busi Montreal 700 
Mar Edu Vancouver 200 

 

                             Root
 
     Edu                    House                  Busi 
 
 
   
   Jan                  Mar          Jan                   Feb 
 
 
Toronto            Vancouver     Toronto      Montreal 

Quant-info  

Figure 2.4 The H-tree structure for Table 2.1 

From the example, we can see that each level of the tree corresponds to a variable. 

The H-tree is a compact representation of the original table and it preserves all 

information that is needed to calculate the average and top-k average measures. During 

the traversal, more specific cells of a cell are pruned if the top-k average measure of this 

cell is below the given threshold. The limitation of this method is that the tree cannot fit 

in memory when the search space of the H-tree is huge. 

 

2.2.6 Comparison of the Aggregation Methods 

Table 2.2 presents a comparison of five aggregation methods in summary form. 

The PipeSort and Partitioned-Cube are specific-to-general methods.  They calculate 

aggregates from the most specific level to the most general level, and output the full 
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cube. The advantage of these methods is that they can use sorting and partitioning and the 

calculated optimal intermediate cuboids to calculate the new cuboids. The disadvantage is 

that they do not use heuristics to prune the search space and cannot apply to the situations 

that concept hierarchies are involved. BUC and H-Tree methods are general-to-specific 

methods that are suitable to calculate iceberg cubes. They only output cells that meet 

some conditions. The advantage of these methods is that they use pruning methods by 

exploiting the monotonic property of the measures when calculating iceberg cubes. The 

disadvantage is that they need to calculate each summary from the original table and 

cannot use intermediate cuboids. They also do not take into account concept hierarchies. 

Selected materialization can be used where concept hierarchies are involved, but it does 

not materialize all the aggregates and only calculates the specified cuboids for a query. 

Table 2.2 Comparison of aggregation methods 

  Algorithms Search 
Order 

Prunning 
Heuristics 

Output  Applicable to 
Concept 
Hierarchies 

PipeSort Specific-
General 

No All No 

Partitioned-Cube Specific-
General 

No All No 

BUC General-
Specific 

Yes Partial No 

Selected 
Materialization 

Specific-
General 

No Partial Yes 

H-Tree General-
Specific 

Yes Partial No 

 

 

2.3 Interestingness Measures 



 28

Measuring the interestingness of discovered patterns is an active and important 

area of data mining research. Although much work has been conducted in this area, so far 

there is no widespread agreement on a formal definition of interestingness in this context.  

In this section, we review the interestingness measures used in different data 

mining tasks. We first describe the characteristics of interestingness patterns in Section 

2.3.1. We then review objective interestingness measures in Section 2.3.2, and review 

subjective interestingness measures in Section 2.3.3. 

 

2.3.1 Characteristics of Interesting Patterns 

Based on the diversity of definitions presented to date, interestingness is perhaps 

best treated as a very broad concept, which emphasizes conciseness, coverage, reliability, 

novelty, surprisingness, peculiarity, utility, and actionability. These eight more specific 

criteria are used to determine whether or not a pattern is interesting as follows. 

(1) Conciseness 

A pattern is concise if it contains relatively few attribute-value pairs. A pattern set is 

concise if it contains fewer patterns. First, a concise pattern or pattern set is easier to 

understand and remember and thus is added more easily to the user’s knowledge. 

Secondly, a more concise pattern tends to be more general and less sensitive to noise. In 

this sense, a more concise pattern is more interesting. Accordingly, much research has 

been done to find the “minimum set of patterns” using the properties of monotonicity 

[Padmanabhan and Tuzhilin, 2000] and confidence invariance [Bastide et al., 2000].  

(2) Generality/Coverage 
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A pattern is general if it covers a relatively large subset of a dataset. Generality (or 

coverage) measures how comprehensive a pattern is, i.e., in what fraction of all cases the 

pattern occurs. If a pattern characterizes more information in the data set, it tends to be 

more interesting [Agrawal and Srikant, 1994; Webb and Brain, 2002]. Frequent item sets 

are the most studied general patterns in the data mining literature.  An itemset is frequent 

if its support, the fraction of the records in the data set containing the itemset, is above a 

given threshold [Agrawal and Srikant, 1994]. The best known algorithm for finding 

frequent itemsets is the Apriori algorithm [Agrawal and Srikant, 1994].  Some generality 

measures can form the bases for pruning strategies; for example, the support measure is 

used in the Apriori algorithm as the basis for the pruning of itemsets. For classification 

rules, Webb and Brain gave an empirical evaluation showing how generality affects 

classification results. Generality frequently coincides with conciseness, because concise 

patterns tend to have greater coverage. 

(3) Reliability 

 A pattern is reliable if the relationship described by the pattern occurs in a high 

percentage of applicable cases.  For example, a classification rule is reliable if its 

predictions are highly accurate, and an association rule is reliable if it has high 

confidence.  Many measures from probability, statistics, and information retrieval, have 

been proposed to measure the reliability of association rules [Ohsaki et al., 2004; Tan et 

al., 2002]. 

(4) Novelty  
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A pattern is novel to a person if he or she did not know it before and is not able to 

infer it from other known patterns [Dong and Li, 1998; Li and Hamilton, 2004].  

Although some data mining systems represent what the user knows, no known data 

mining system represents what the user does not know.  Thus, novelty cannot be 

measured explicitly with reference to the user’s knowledge.  Instead novelty is detected 

by either having the user explicitly identify a pattern as novel [Sahar, 1999] or by 

noticing that a pattern cannot be deduced from and does not contradict previously 

discovered patterns. 

(5) Surprisingness 

A pattern is surprising (or unexpected) if it contradicts a person’s existing 

knowledge or expectations [Liu et al., 1997; Liu et al., 1999; Silberschatz and Tuzhilin, 

1995; Silberschatz and Tuzhilin, 1996]. A pattern that is an exception to a more general 

pattern that has already been discovered can also be considered as surprising [Bay and 

Pazzani, 1999; Carvalho and Freitas, 2000]. Surprising patterns are interesting because 

they identify failings in previous knowledge, show new things, properties, or 

relationships, and may suggest an aspect of the data that needs further study.  

(6) Peculiarity  

A pattern is peculiar if it is far away from the other discovered patterns according to 

some distance measure. Peculiar patterns, also called outliers, are generated from peculiar 

data, which are relatively few in number and are significantly different from the rest of 
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the data [Knorr et al., 2000; Zhong et al., 2003]. Peculiar patterns may be unknown to the 

user, and hence interesting. Peculiar pattern discovery is useful in fraud detection.  

(7) Utility 

A pattern is of utility to a person if its use by that person contributes to reaching a 

goal.  Different people may have different goals concerning knowledge that can be 

extracted from a data set. For example, one person may be interested in finding the sales 

with the most profit in a transaction data set. Another person may be interested in finding 

the largest increase in gross sales. This kind of interestingness is based on user-defined 

utility functions in addition to the raw data [Shen et al., 2002; Cai et al., 1998; Hilderman 

et al., 1998; Wang et al., 2002; Yao et al., 2004; Chan et al., 2003; Lu et al., 2001; Zhang 

et al., 2004]. 

(8) Actionability / Applicability 

A pattern is actionable (or applicable) in some domain if it enables decision making 

about future actions in the domain [Ling et al., 2002; Wang et al., 2002; Piatesky-Shapiro 

and Matheus, 1994]. Actionability is sometimes associated with a pattern selection 

strategy. For example, suppose we mine rules XAB → and YBC →  from a data set, 

and then we encounter some data including the itemset ABC. Both rules can be applied 

with different conclusions. The rule selection strategy determines which rule to apply, 

based perhaps on the statistical significance, accuracy, or conciseness of the rules. 

The above-mentioned interestingness factors are sometimes correlated with rather 

than independent of one another. For example, actionability may be a good 
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approximation for surprisingness and vice versa [Silberschatz and Tuzhilin, 1996], 

conciseness often coincides with generality, and generality conflicts with peculiarity. 

The conciseness, generality, reliability, and peculiarity factors depend only on the 

data and the patterns, and thus can be considered as objective. The novelty, 

surprisingness, and actionability factors depend on the user who uses the patterns as well 

as the data and patterns themselves, and thus can be considered as subjective. The utility 

factor relates to the explanation of the discovered patterns, and thus can be considered 

semantics based.The above-mentioned interestingness factors are sometimes correlated 

with rather than independent to each other. For example, actionability may be a good 

approximation for surpriseingness [Silberschatz and Tuzhilin, 1996] and conciseness 

often coincides with generality.  

 

2.3.2 Objective Interestingness Measures 

According to whether users are involved, interestingness measures are classified as 

either objective or subjective. An objective interestingness measure depends only on the 

structure of the data and patterns extracted from it, such as support and confidence. An 

overview of the objective interestingness measures and their criteria can be found in 

[Hilderman and Hamilton, 2001; Sahar, 1999; Tan et al., 2002]. A subjective 

interestingness measure depends on the data structure as well as the prior knowledge and 

specific needs of the user. 

 Most of the existing objective interestingness measures are made up for either 

association rules or summaries. We review these two kinds of measures in this section. 
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2.3.2.1 Objective Interestingness Measures for Associations 

Objective measures for association rules have been thoroughly studied by many 

researchers. Table 2.3 lists 38 common objective measures. In the table, A and B 

represent the antecedent and the consequent of a rule, respectively. P(A) denotes the 

probability of A, P(B|A) denotes the conditional probability of B given A. The association 

measures based on probability are usually functions of contingency tables. These 

measures originate from the different areas, such as statistics (correlation coefficient, 

Odds ratio, Yule’s Q, and Yule’s Y [Tan et al., 2002; Yao et al., 1999; Ohsaki et al., 

2004]), information theory (J-measure and mutual information [Tan et al., 2002; Yao et 

al., 1999; Ohsaki et al., 2004]), and information retrieval (accuracy and sensitivity/recall 

[Lavra et al., 1999; Yao et al., 1999; Ohsaki et al., 2004]).  

Table 2.3 Objective interestingness measures for association rules 

Measure Formula 

Support )(ABP  

Confidence 

/Precision 

)|( ABP , ))|(),|(max( BAPABP  

Coverage )(AP  

Accuracy )()( BAPABP ¬¬+  

Lift or Interest )(/)|( BPABP  or )()(/)( BPAPABP  

Leverage )()()|( BPAPABP −  

Added Value / 

Change of Support 

)()|( BPABP − , ))()|(),()|(max( APBAPBPABP −−  

Relative Risk )|(/)|( ABPABP ¬  

Jaccard ))()()(/()( ABPBPAPABP −+  
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Certainty Factor ))(1/())()|(( BPBPABP −− , 

)))(1/())()|((
)),(1/())()|(max((

APAPBAP
BPBPABP

−−
−−

 

Odds Ratio 

)()(
)()(

BAPBAP
BAPABP

¬¬
¬¬

 

Yule’s Q 

)()()()(
)()()()(

ABPBAPBAPABP
ABPBAPBAPABP

¬¬+¬¬
¬¬−¬¬

 

Yule’s Y 

)()()()(
)()()()(

ABPBAPBAPABP
ABPBAPBAPABP

¬¬+¬¬

¬¬−¬¬
 

Klosgen ))()|(()( BPABPABP − , 

))()|(),()|(max()( APBAPBPABPABP −−  

Brin’s Conviction 

)(
)()(

BAP
BPAP

¬
¬

, )
)(

)()(,
)(

)()(max(
ABP

APBP
BAP

BPAP
¬
¬

¬
¬

 

Gray and 

Orlowska’s 

Interestingness 

weighting 

Dependency (GOI-

D) 

mk ABP
BPAP

ABP )(*)1)
)()(

))((( − , k, m: Coefficients of dependency 

and generality, weighting the relative importance of the two factors.. 

Laplace Correction 

2)(
1)(

+
+

AN
ABN

, )
2)(
1)(,

2)(
1)(max(

+
+

+
+

BN
ABN

AN
ABN

 

J-Measure 
)

)(
)|(log()()

)(
)|(log()(

BP
ABPBAP

BP
ABPABP

¬
¬

¬+  

Yao and Liu’s One 

Way Support )()(
)(log*)|( 2 BPAP

ABPABP  

Yao and Liu’s Two 

Way Support )()(
)(log*)( 2 BPAP

ABPABP  
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Yao and Liu’s Two 

Way Support 

Variation )()(
)(log*)(

)()(
)(log*)(

)()(
)(log*)(

)()(
)(log*)(

22

22

BPAP
BAPBAP

BPAP
ABPABP

BPAP
BAPBAP

BPAP
ABPABP

¬¬
¬¬

¬¬+
¬
¬

¬

+
¬

¬
¬+

 

∅-Coefficient 

(Linear Correlation 

Coefficient) 

)()()()(
)()()(

BPAPBPAP
BPAPABP
¬¬

−
 

Piatetsky-Shapiro’s )()()( BPAPABP −  

Cosine 

)()(
)(
BPAP

ABP
 

Information Gain 

)()(
)(log
BPAP

ABP
 

Sebag-Schoenauer 

)(
)(

BAP
ABP
¬

 

Least Contradiction 

)(
)()(

BP
BAPABP ¬−

 

Example and 

Counter Example 

Rate 

)(
)(1

ABP
BAP ¬

−  

 

Given an association rule A → B, there are two main interestingness factors for the 

rule. The first factor is the generality, denoted as support P(AB) or coverage P(A), which 

represents the statistical significance or the generality of the rule. The second factor is the 

association, which represents the correlation between A and B. Some researchers have 

suggested that a good interestingness measure should include both factors. For example, 

Tan et al. proposed the IS measure SupportIIS ×= , where 
)()(

),(
BPAP

BAPI =  is the ratio 
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between the joint probability of two variables with respect to their expected probability 

under the independence assumption [Tan et al., 2000]. The IS measure is composed of 

two factors, the support and the I value that represents the association between A and B. 

Lavrac et al. proposed a weighted relative accuracy 

))()|()(( BPABPAPWRAcc −= [Lavrac et al., 1999]. This measure also combine the 

coverage P(A) and the correlation between B and A. This measure is identical to the 

Piatetsky-Shapiro’s measure )()()( BPAPABP − [Piatetsky-Shapiro, 1991]. Other 

measures involving these two factors include Yao and Liu’s two way support [Yao et al., 

1999], Jacard [Tan et al., 2002], Gray and Orlowska’s Interestingness weighting 

dependency [Gray and Orlowska, 1998], and Klosgen [Klosgen 1996]. 

Tan et al. call the measures that include both factors appropriate measures. They 

argue that any appropriate measure could be used to rank the association rules. [Tan et 

al., 2000]. They also show that such measures behave similarly, especially when support 

is low. 

Many objective measures have been proposed for different applications. To analyze 

these measures, some properties for the measures have been proposed. We classify these 

properties in two categories, the desirable properties and the circumstantial properties. 

The desirable properties are those must be satisfied in any cases. The circumstantial 

properties are those that should be satisfied in some applications, but should not be 

satisfied in others. 

Piatesky-Shapiro [Piatetsky-Shapiro, 1991] proposed three principles that should be 

obeyed by any intuitive objective measure F. 

P1. F = 0 if A and B are statistically independent; i.e., P(AB) = P(A)P(B). 
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P2. F monotonically increases with P(AB) when P(A) and P(B) remain the same. 

P3. F monotonically decreases with P(A) (or P(B)) when P(AB) and P(B) (or P(A)) 

remain the same. 

We classify principles P1 – P3 as desirable properties. 

The first principle states that the association rules that occur by chance have zero 

interest value, i.e., they are not interesting. In practice, this principle may seem too rigid 

and some researches have proposed a constant value instead that F should have for 

independent situations [Tan et al., 2002]. The second principle states that the greater the 

support for AB is, the greater the interestingness value is when the support for A and B is 

fixed, i.e., the more positive correlation A and B have, the more interesting the rule is. 

The third principle states that if the supports for AB and B (or A) are fixed, the smaller the 

support for A (or B) is, the more interesting the pattern is. According to these two 

principles, when the cover of A and B are identical or the cover of A (B) contains the 

cover of B (A), the interestingness measure should attain the maximum value. 

Tan et al. proposed five properties based on the operations on the contingency 

tables [Tan et al., 2002]. 

O1. F should be symmetric under variable permutation. 

O2. F should be the same when we scale any row or column by a positive factor. 

O3. F should become –F under row/column permutation, i.e., swapping the rows or 

columns in the contingency table should make the interestingness values change sign. 

O4. F should remain the same under both row and column permutation. 

O5. F should not depend on the count of the records that do not contain A and B. 
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Properties O1 – O4 can be considered as circumstantial. Property O1 states that 

rules A→B and B→A should have the same interestingness values, which is not true for 

many applications. Property O2 states that the invariance with the scaling the rows and/or 

columns. Many well know measures, such as Piatetsky-Shapiro’s and Lift, do not satisfy 

this property. Property O3 states that F(A→B) = -F(A→ not B) = -F(not A→B) which 

means that the measure can identify both positive and negative correlations. This 

property is not suitable for association rule mining where only positive correlation is of 

concern. Property O4 states that F(A→B) = F(not A→not B). Property O3 is a special 

case of property O4. So it is not necessary for association rule mining either. Property O5 

states that the measure only takes into account the number of the records containing A or 

B or both. Support does not satisfy this property while confidence satisfies it.  

Lenca et al. [Lenca et al., 2004] proposed five properties to evaluate association 

rules.  

Q1. F should be constant if there are no counterexamples to the rule. 

Q2. P(A not B) should be linear concave or convex decrease around 0+. 

Q3. Sensitivity to (increase with) the total number of records. 

Q4. Ease of fixing a threshold. 

Q5. Intelligibility, i.e., semantics can be easily expressed. 

Properties Q1 – Q3 can be considered as circumstantial. Property Q1 states that 

rules with confidence of 1 should have the same interestingness value regardless of the 

support, which is not always desirable. Property Q2 states how dramatically the 

interestingness value decrease when there is only a few counterexamples. If the system 

can tolerate a few counterexamples, a concave decrease is desirable. If the system is strict 
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about the confidence, a convex decrease is desirable. Property Q3 states that the measure 

should be sensitive to the size of the data set as well as the probabilities. Neither support 

nor confidence satisfies this property. Properties Q4 and Q5 can be considered as 

desirable, because these two properties define the friendliness of the measures to the 

users. A measure with semantics and easy to define threshold are easy to use.  

 

2.3.2.2 Objective Interestingness Measures for Summaries 

Diversity is an important concept that is used for measuring the interestingness of 

summaries. Although there is no consensus on the definition of diversity, researchers 

agree that the measures of diversity can be defined on the proportional distribution of the 

population and the number of classes [Hilderman and Hamilton, 2001]. Table 2.4 lists 

several measures for diversity [Hilderman and Hamilton, 2001]. In the definition, pi 

denotes the probability for class i, mq /1=  denotes the average probability for all 

classes, ni is the total count for class ti, N is the total count for tuples in the table, m is the 

number of classes in the summary, mNu /=  is the average count for each class, and 

Nunr ii 2/)( +=  is the probability for class ti according to the distribution r.  

 

Table 2.4 Interestingness measures for summaries 

Measure Definition P1 P2 P3 P4 P5 
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Although there is no single mathematical definition of diversity which has been 

widely accepted as standard, Hilderman and Hamilton proposed some general principles 

that a good measure should satisfy [Hilderman and Hamilton, 2001].  

P1. Minimum Value Principle. Given a vector (n1, …, nm), where ni = nj for all i, j, 

measure f(n1, …, nm) attains its minimum value. 

This property indicates that the uniform distribution is the most uninteresting.  
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P2. Maximum Value Principle. Given a vector (n1, …, nm), where n1 = N – m + 1, ni = 1, i 

= 2, …, m, and N > m, f(n1, …, nm) attains its maximum value. 

This property shows that the most uneven distribution is the most interesting. 

P3. Skewness principle. Given a vector (n1, …, nm), where n1 = N – m + 1, ni = 1, i = 2, 

…, m, and N > m, and a vector (n1 - c, n2, …, nm, nm+1, nm+c), where n1 – c > 1, ni = 1, i = 

2, …, m + c, f(n1, …, nm) > f(n1 - c, n2, …, nm, nm+1, …, nm+c). 

This property specifies that when the number of the total frequency remains the 

same, the interestingness measure for the most uneven distribution decreases when the 

number of the classes of tuples increases. This property has a bias for small number of 

classes. 

P4. Permutation Invariance Principle. Given a vector (n1, …, nm) and any permutation (i1, 

…, im) of (1, …, m), f(n1, …, nm) = f(ni1, …, nim). 

This property specifies that interestingness for diversity has nothing to do with the 

order of the class; it is only determined by the distribution of the counts. 

P5. Transfer principle. Given a vector (n1, …, nm) and 0 < c < nj < ni, f(n1, …, ni + c, …, 

nj - c, …, nm) > f(n1,…, ni,…, nj,…, nm). 

This property specifies that when a positive transfer is made from the count of one 

tuple to another tuple whose count is greater, the interestingness increases. 

 

2.3.3 Subjective Interestingness Measures 

Although objective interestingness measures may capture the essence of the data, 

they are inadequate for many real applications, because (1) the domains of applications 

are different from each other, (2) the background knowledge of the different users is 
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different, (3) the interest of the different users is different, and (4) the background 

knowledge of a user evolves. If an interestingness measure takes into account the 

background knowledge, expectation, or belief of the user, it is called a subjective 

interestingness measures. Unlike the objective measures, subjective measures sometimes 

cannot be represented by mathematical formulas, because the user’s knowledge can be 

represented in various forms. Instead, the user’s knowledge is usually incorporated in 

mining procedures. 

Liu et al. classify interestingness of discovered rules into three categories, finding 

unexpected patterns, conforming user’s knowledge, and finding actionable patterns [Liu 

et al., 1997]. Unexpected patterns are the patterns that are unknown to users. Three types 

of unexpectedness of a rule are unexpected consequent, unexpected reason, and totally 

unexpected patterns. Conforming patterns are intended to validate the user’s knowledge 

by the mined patterns. Actionable patterns can help the user do something to his/her 

advantage. For actionable patterns, the user should provide the situations under which 

he/she may take actions. They distinguish two types of user’s knowledge, the general 

impressions (GI) and reasonably precise knowledge (RPK). GI represents a user’s vague 

feelings. For example, the user may feel that annual income has relation with the chances 

of obtaining a loan, but he may not know the detailed correlation. RPK represents a 

user’s more definite idea. For example, the use may believe that if his/her annual income 

is more than sixty thousand dollars, he/she will be granted a loan.  

For the GI knowledge, Liu et al. proposed two specifications for defining the 

user’s vague knowledge, T1 and T2 [Liu et al., 1997]. T1 can express the positive and 

negative relations between a condition variable and a class, the relation between a range 
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(or a subset) of values of condition variables and class, and even vaguer impressions that 

there is a relation between a condition variable and a class. T2 extends T1 in that it 

separates user’s knowledge into core and supplement. The core represents user’s certain 

knowledge and the supplement represents user’s uncertain knowledge. The core and a 

subset of supplement have a relation with a class. The authors then proposed several 

match algorithms for obtaining interestingness patterns for these two kinds of 

specifications for conforming rules, unexpected conclusion rules, and unexpected 

condition rules. 

For the RPK knowledge, the authors represent the user’s knowledge in the form 

of fuzzy rules. The system matches each discovered pattern against the fuzzy rules. The 

discovered patterns are then ranked according to their degrees of match. The authors 

proposed different matching algorithms for the three categories. All these interestingness 

measures are based on functions of fuzzy values that represent the match between the 

users knowledge and the discovered patterns. 

Padmanabhan and Tuzhilin proposed another method to find unexpected rules 

based on user’s knowledge [Padmanabhan and Tuzhilin, 1998]. In this method, the user’s 

beliefs are represented in the same format as mined rules. Only rules that contradict with 

the beliefs are mined. The algorithm to find unexpected rules consists of two parts, 

ZoominUR and ZoomoutUR. For a belief YX → , ZoominUR attempts to find all 

exception rules of the form YAX ¬→, , i.e., all rules that are more specific than a belief 

but that have the contradictory consequence to that belief. Then ZoomoutUR generalizes 

the rules found by ZoominUR. For the rule YAX ¬→, , ZoomoutUR finds all rules 

YAX ¬→,' , where 'X is a subset of X, that are consistent with the data. Although 
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ZoominUR and ZoomoutUR use specifications for represent the user’s knowledge as GI 

and RPK, they have different mining process. GI and RPK methods work on a mined rule 

set and ranks the interestingness of the rules.  ZoominUR and ZoomoutUR integrate the 

user’s expectations in the mining process to narrow down the mining space and they do 

not rank the rules. 

To reduce the volume of work posted to the user in defining specifications for the 

user’s knowledge, Sahar proposed an interactive method to remove uninteresting rules 

without user’s specifications before the mining process [Sahar, 1999]. The method 

consists of three steps. First, the system selects the best candidate rule that has one 

condition attribute and one consequence attribute. The best candidate rule has the largest 

coverage, i.e., the number of the mined rules that contain the condition and consequence 

of the candidate rule is maximal. Second, the best candidate rule is presented for user to 

be classified into four categories, not-true-not-interesting, not-true-interesting, true-not-

interesting, and true-and-interesting. If the rule is not-true-not-interesting or true-not 

interesting, the system removes the candidate rule and all rules it covers, i.e., all rules that 

contain the conditions and the consequences of the candidate rule. If a rule is not-true-

interesting, the system removes this rule and all rules that it covers that have the same 

condition and keep all rules it covers that have additional condition attributes. Finally, if a 

rule is true-interesting, the system keeps it and its covered rules. After the best candidate 

rule is processed, the system selects the next best candidate rule and this process iterates 

until the rule set is empty or the user halts the process. 

The advantage of this method is that users are not required to offer a specification 

of knowledge in advance; instead, they work with the system interactively. They only 
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need to classify simple rules into true or false, interesting or uninteresting, and then the 

system may eliminate significant numbers of uninteresting rules. The drawback of this 

method is that it only makes the rule set smaller; it does not recommend which rules are 

the most interesting to users. 

The above-mentioned subjective interestingness measures and methods are 

proposed for association rule mining. Silberschatz and Tuzhilin defined a subjective 

interestingness measure in a broader perspective. They relate the unexpectedness of 

discovered patterns to a belief system and define beliefs on arbitrary predicate formulae 

in first order logic [Silberschatz and Tuzhilin, 1996]. They classify beliefs into hard 

beliefs and soft beliefs. A hard belief is a constraint that cannot be changed with new 

evidence. If the evidence (patterns mined from data) contradicts hard beliefs, they assume 

that mistakes have been made in acquiring the evidence. A soft belief is a belief that the 

user is willing to change as new patterns are discovered that provide the user with new 

evidence. They assume that the degree of belief can be measured with conditional 

probability and adopt Bayesian approach to define the interestingness measure based on 

changes in soft beliefs.  Given evidence E (a discovered pattern), the degree of a soft 

belief α is updated with the following Bayes rule 
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)|(),|(),|(
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context. Then, the interestingness measure for pattern p relative to a set of soft beliefs B 

is defined as the relative difference of the prior and posterior probability 
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Although Silberschatz and Tuzhilin described their overall approach to subjective 
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measures of interestingness, they did not provide a formal and detailed procedure and real 

applications. Another drawback is that it still needs to consult the original data to 

calculate the interestingness measure after the rules are mined. 
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CHAPTER 3 

ESTIMATE PROPAGATION METHODOLOGY IN 

GENSPACE GRAPHS 

 

In this chapter, we describe the framework for the GenSpace summary mining 

problem and propose the GSEP method for solving the GSSM problem. In Section 3.1, 

we describe the GSSM problem. In Section 3.2, we define the basic concepts relevant to 

the GSSM problem. In Section 3.3, we formalize the GSEP problem and propose a linear 

propagation method for solving this problem. In Section 3.4, we use an example to 

illustrate the GSEP process. In Section 3.5, we compare the linear GSEP method with 

Bayesian belief update and logic based belief revision. 

 

3.1 An Overview of Summary Mining in GenSpace Graphs 

In the beginning of the GSSM process, the user needs to specify his/her estimates 

at a certain aggregation level. These estimates need to be propagated in the whole graph 

for calculating the interestingness measure for the summaries. Generally speaking, the 

GSSM procedure consists of the following six steps [Geng and Hamilton, 2003b; Geng 

and Hamilton, 2004].  

1. A domain generalization graph (DGG) for each attribute is created by explicitly 

identifying the domains appropriate to the relevant levels of granularity and the 

mappings between the values in these domains. The estimates (estimated 

probability distributions) are specified by the user for some nodes in each DGG to 
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form an ExGen graph and then propagated to all the other nodes in the ExGen 

graph.   

2. The framework of the GenSpace graph is generated based on the ExGen graphs 

for individual attributes.  

3. Aggregation is performed by transforming values in one domain to another, 

according to the directed arcs in the DGGs, and the potentially interesting nodes 

in this graph are materialized.  

4. The given estimates are propagated throughout the GenSpace subgraph consisting 

of potentially interesting nodes (GSEP) [Hilderman and Hamilton, 2001].  

5. The interestingness measures for these nodes are calculated and the highest 

ranked summaries are displayed (GSSM).  

6. Estimates in the GenSpace graph are then adjusted and steps are repeated as 

necessary.  

In the mining process, many issues need to be considered. In the GSEP process, 

we need to identify principles that any propagation method should embody, select an 

appropriate propagation method, and ensure the efficiency of the propagation method. In 

the GSSM process, we need to choose an appropriate interestingness measure. In the 

remainder of this chapter, we concentrate on the methodology for estimate propagation in 

GenSpace graphs. 

 

 

 

3.2 Basic Concepts 
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In the propagation process, an ExGen graph is used to represent the user’s 

knowledge relevant to generalization for a single attribute, while a GenSpace graph is 

used for multiple attributes. First, we give some formal definitions.  

Definition 3.1 Given a set X = {x1, x2, …, xn} representing the domain of some attribute 

and a set }...,,,{ 21 mρρρρ = of partitions of the set X, we define a nonempty binary 

relation p  (called a generalization relation) on ρ , where we say ρ i p ρ j if for every 

section Sa ∈ ρ i, there exists a section Sb ∈ ρ j, such that Sa  ⊆ Sb . ρ i is a finer partition 

of ρ j. ρ j is a rougher partition of ρ i. For convenience, we often refer to the sections by 

labels.  

If  ρ i p  ρ j, for each section Sb ∈ ρ j,  there exists a set of sections {
kaa SS ,...,

1
} 

⊆ ρ i, denoted Spec(Sb, ρ i ), such that U
k

i
ab i

SS
1=

= . The generalization relation p  is a 

partial order relation. 

Example 3.1. Let MMDDMAN be a domain of morning, afternoon, and night of a 

specific non-leap year {Morning of January 1, Afternoon of January 1, Night of January 

1, …, Night of December 31}, and ρ  a set of partitions {MMDD, MM, Week, MAN}, 

where MMDD = {January 1, January 2, …, December 31},  MM = {January, February, 

…, December}, Week = {Sunday, Monday, …, Saturday}, and MAN = {Morning, 

Afternoon, Night}.  Values of MMDDMAN are assigned to the values of the partitions in 

the obvious way, i.e., all MMDDMAN values that occur on Sunday are assigned to the 

Sunday value of Week, etc. Here MMDD p  MM and MMDD pWeek.  

Definition 3.2 (adapted from [Hamilton et al., 2003; Hamilton et al., 2005]) A domain 

generalization graph (DGG) G = 〉〈 Arc,ρ  is constructed based on a generalization 
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relation ,ρ〈 p 〉  as follows.  The nodes of the graph are the elements of ρ .  There is a 

directed arc from ρ i to ρ j iff ρ i ≠ ρ j, ρ i p  ρ j, and there is no ρ k ∈ ρ  such that ρ i 

p  ρ k and ρ k p  ρ j. Each node corresponds to a domain of values called sections. Each 

arc corresponds to a generalization relation, which is a mapping from the values in the 

domain of the initial (or parent) node to that of the final node (or child) of the arc. The 

bottom (or source) node of the graph corresponds to the original domain of values X and 

the top (or sink) node T corresponds to the most general domain of values, which 

contains only the value Any. 

We call the more specific node the “parent node” and the more general node the 

“child node”, because in the generalization process the directed arc goes from the specific 

node to the general node. Although this terminology may be counter intuitive for readers 

familiar with trees, it is normal for directed acyclic graphs. 

From Example 3.1, we obtain the DGG shown in Figure 3.1.  

 

MAN Week MM 

MMDDMAN (or X)

Any (or T)

MMDD

 

Figure 3.1 An Example DGG 

In Figure 3.1, node MMDDMAN is the bottom node, representing the most 

specific level of domain. The Any node is the top node corresponding to most general 

level of the domain. Node MMDD is a parent of Node MM, because node MMDD can be 
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generalized to node MM. Node MM has 12 sections, each of which represents a month, 

node Week has seven sections, each of which represents a day in a week, and so on. 

Figure 3.1 shows that a DGG is a graphical structure that can be used both as a 

navigational aid by the user and as a guide to heuristic data mining procedures. The nodes 

in a DGG are domains of values for a given attribute, and the arcs tell how to generalize 

values from one domain to values in another. Each path in the graph corresponds to a 

generalization consistent with the specified generalization relations. 

Domain knowledge about concept generalization is often important for the data 

mining process. The most common data structures for representing the concept 

generalization are concept hierarchies and ontologies.  Essentially, a concept hierarchy is 

a tree, with the root node representing the most general concept and the leaf nodes 

representing the most specific concepts.  Unfortunately, a concept hierarchy can represent 

only one generalization at a level. Since a concept hierarchy represents a totally ordered 

generalization relation, any concept hierarchy can be converted into a path in a DGG.  

The term “ontology,” which originated in philosophy, refers to the science of 

describing the kinds of entities in the world and how they are related. An ontology not 

only describes the classes, entities, properties, and concepts relevant to a type of 

knowledge, but also gives specifications for the relations and constraints among the 

entities. An ontology can represent sophisticated relations in a domain, but computational 

complexity is introduced if all aspects are applied during the data mining process. In 

work to date, simplified ontologies have been applied in data mining in two ways.  First, 

ontologies have been used to customize data integration during information extraction 

from heterogeneous and distributed data sources [Silvescu et al., 2001]. Secondly, they 
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have been used to mine knowledge at different levels of abstraction. In this case, the 

ontology was specified as a group of related concept hierarchies [Zhang et al., 2002], 

which is a less rich representation than a DGG. 

Definition 3.3 An estimated distribution domain generalization (or ExGen) graph 

〉〈 EArc,,ρ is a DGG that has estimates associated with every node. Estimates represent 

the estimated probability distribution of the occurrence of the sections in the domain 

corresponding to the node. For a node (i.e., partition) ρ j = {S1, …, Sk}, we have 

1)(0, ≤≤∈∀ iji SES ρ and 1)(
1

=∑
=

k

i
iSE , where E(Si) denotes the estimated probability 

of the occurrence of section Si. 

An ExGen graph is a DGG where each node has been augmented with a 

description of the estimated distribution (or simply estimates) of the values in the 

corresponding domain.   

The estimate for a section Si in node N is denoted as E(Si). The estimates for a 

node N = {S1,  S2, …, Sn}is denoted as E(N) = [E(S1),  E(S2), …, E(Sn)]. Continuing 

Example 3.1, for the node MAN = {Morning, Afternoon, Night}, we have E(Morning) = 

0.2, E(Afternoon) = 0.5, E(Night) = 0.3, and E(MAN) = [0.2, 0.5, 0.3]. 

In the remainder of this thesis, we use “summary”, “node”, and “partition” 

interchangeably. 

Definition 3.4 Assume node Q is a parent of node R in an ExGen graph, and therefore for 

each section Sb ∈ R, there exists a set of specific sections Spec(Sb, Q) = {
kaa SS ...,,

1
} ⊆ 

Q, such that U
k

i
ab i

SS
1=

= . If for all  Sb ∈ R , ∑
=

=
k

i
ab i

SESE
1

)()( ,  we say that nodes Q and 

R are consistent and vice versa. 



 53

For example, if estimates are evenly distributed at node MMDD, i.e., E(MMDD) = 

[1/365, 1/365, ……, 1/365], and E(MM) = [31/365, 28/365, 31/365, 30/365, 31/365, 

30/365, 31/365, 31/365, 30/365, 31/365, 30/365, 31/365], we say nodes MMDD and MM 

are consistent. 

According to the definition, the consistency relation is reflexive and symmetric. 

However, it is not transitive, as illustrated in Example 3.2. 

Example 3.2.  The domain for the ExGen graph is {a, b, c, d, e}, with the estimates 

uniformly distributed among all five elements. Nodes P and R are generalizations of node 

X. Node Q is a generalization of R and P. In this graph, X and P are consistent, P and Q 

are consistent, Q and R are consistent. However, X and R are not consistent, because for 

section ab of R, we have E(ab) = 0.2, which is not equal to the sum of sections a and b in 

of X, which have E(a) = 0.2 and E(b) = 0.2.  

 Q = {abe, cd} 
E(Q) = [0.6, 0.4]

P = {abe , c, d} 
E(P) = [0.6, 0.2, 0.2] 

R = {ab, cd, e} 
E(R) = [0.2, 0.4, 0.4] 

(0 4)

X = {a, b, c, d, e} 
E(X)  = [0.2, 0.2, 0.2, 0.2, 0.2] 

 

Figure 3.2 Consistency is not transitive 

 This example shows that we cannot use transitivity to infer consistency in an 

ExGen graphs. To make an ExGen graph consistent, we have to ensure that every pair of 

parent-child nodes is consistent. 
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Definition 3.5 An ExGen graph G is consistent if all pairs of adjacent nodes in G are 

consistent. 

Definition 3.6 In an ExGen graph, we say that node R is bottom-consistent, i.e., 

consistent with the bottom node X, if for all Si ∈ R, ∑
∈

=
Xx

i xSE )( . 

The bottom node X is itself bottom-consistent. 

Theorem 3.1 An ExGen graph G is consistent iff every node in G is bottom-consistent. 

Proof. 

(1) Suppose G is consistent. 

Let the distance between node R and node Q is the minimum number of arcs that 

must be traversed to get from R to Q. By Definition 3.6, since G is consistent, the nodes 

at a distance of 1 from the bottom node (the child nodes of the bottom node) are bottom-

consistent. 

Now assume the nodes at a distance of k from the bottom nodes are bottom-

consistent. Any node R at a distance of k+1 from the bottom node must be a child node of 

some node Q at a distance of k from the bottom node. Because G is consistent, Q and R 

are consistent. Therefore, for every Sb ∈ R, we have }...,,{),(
1 kaab SSQSSpec = and 

∑
=

=
k

i
ab i

SESE
1

)()( . 

We know ∑
∈

=
ia

i
Sx

a xESE )()( , since node Q is assumed to be bottom-consistent. 

Hence, ∑∑ ∑∑
∈= ∈=

===
bia

i
Sx

k

i Sx

k

i
ab xExESESE )()()()(

11
, i.e., R is bottom-consistent. 

(2). Suppose every node in G is bottom-consistent. 
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Let R be an arbitrary non-bottom node with parent Q. For any Sb ∈ R, we have 

}...,,{),(
1 kaab SSQSSpec =  and U iab SS = . Since Q and R are both bottom-consistent, 

we have ∑
∈

=
bSx

b xESE )()(  and ∑
∈

=
ia

i
Sx

a xESE )()( . Therefore, 

∑ ∑∑∑
= ∈∈=

===
k

i
b

SxSx

k

i
a SExExESE

bia

i
11

)()()()( . R and Q are consistent. Since Q and R are an 

arbitrary parent-child pair, we say G is consistent. 

 When we propagate estimates in a node to other nodes in the ExGen graph, we 

have two groups of propagation orders. The first group is to propagate the estimates of 

one node to its neighbours (parents and children) and then propagate them in the same 

way throughout the graph. The second group is to propagate the estimates to the bottom 

node first, and then use bottom up propagation to reach the other nodes in the graph. In 

the first group of propagation, when we propagate the estimates upward and then 

downward, there is no way to ensure the consistency of the graph. For example, in Figure 

3.2, when we propagate estimates from node X to P to Q, and then from Q to R, no 

propagation method can ensure the consistency of node X with node P. The reason is that 

in the upward propagation from X to Q, there is information loss, which cannot be 

recovered without referring to node X in the downward propagation to from Q to R. 

However, in the second group of propagation, we can guarantee the consistency 

according to Theorem 3.1. Therefore, we will adopt the bottom up propagation for 

solving our problem. 

Here we distinguish the propagation order and propagation method in this way. 

The propagation order is the order in which the nodes are traversed. For example, we 
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may use minimal neighbour propagation, breadth first bottom up propagation, or minimal 

parent bottom up propagation. The propagation method is the method used to decide the 

estimate values for every node. It may include the optimized propagation and linear 

propagation, which are discussed in the next section. Different propagation methods 

produce different propagation results. 

An ExGen graph is based on one attribute. If the generalization space consists of 

more than one attribute, we need to construct a GenSpace graph. Each node in a 

GenSpace is the Cartesian product of nodes the ExGen graphs of all the attributes. The 

number of the nodes in the generalization state space is ∏
=

n

i
il

1

, where n is the number of 

the attributes and li is the number of nodes in the ExGen graph for attribute i.  

During the knowledge discovery process, the estimates at a particular node, which 

reflect a user's knowledge about the corresponding domain, can be updated.  As well, 

estimates can be allowed to propagate to other nodes in the GenSpace graph; for 

example, if the user revises the estimate about the number of shows watched in the 

evening, then the estimate about the number of shows watched from 8:00PM to 9:00PM 

can be automatically adjusted. 

We define a GenSpace graph as follows.  

Definition 3.7 Given a set of attributes {A1, A2, …An}, and an ExGen graph Gi = < ρ i, 

Arci, Ei> for each attribute Ai, a generalization space is defined as < ρ , Arc, E>, where 

ρ   = ρ 1 × ρ 2 ×… × ρ n. For two nodes Q =  [ ρ Q1, ρ Q2, …, ρ Qn] and  R = [ ρ R1, ρ R2, 

…, ρ Rn] ∈ ρ , where ρ Qi ∈ ρ i and ρ Ri ∈ ρ i denotes the partition of attribute Ai in 

nodes Q and R, respectively, if  ρ Qi p  ρ Ri  for ni ≤≤1 , we say Q p  R. There is a 
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directed arc from Q to R in Arc iff Q ≠ R, Q p  R, and there is no O ∈ P such that Q p  O 

and O p  R. The generalization relationship p  is a partial order relation and ,ρ〈 p 〉  

defines a partially ordered set. For each node, we attach a set of estimates (estimated 

probability distribution of occurrence) for the values in the domain corresponding to the 

node. For a node (i.e., partition) Q = {S1, …, Sk}, we have 1)(0, ≤≤∈∀ ii SEQS and 

1)(
1

=∑
=

k

i
iSE , where E(Si) denotes the estimate of occurrence of section Si.  A graph 

constructed in this way is called a generalization space graph, or GenSpace graph, 

〉〈 EArc,,ρ . 

It can be seen that any GenSpace graph satisfies the following conditions.  There 

is a directed arc from iD to jD  iff iD ≠ jD , iD p jD , and there is no kD ∈ D such that 

iD p kD  and kD p jD . The top node (or sink node) corresponds to the most general 

domain of values, which consists of only the value [Any, Any, …, Any].  

The following is the algorithm for constructing a GenSpace graph. 

Input: a set of ExGen graphs for a set of attributes. 

1. Select all the bottom nodes of ExGen graphs and create the bottom node of 

GenSpace graph by their Cartesian product. Then put the node in a queue. 

2. Select the head of the queue and for each element of the tuple find the children in 

its corresponding ExGen graph and replace the element of the tuple with the child 

nodes and form a set of new nodes. For the nodes that are not yet in the GenSpace 

graph, insert these nodes as the current nodes’ children in GenSpace graph and 

also insert these nodes in the queue, otherwise, connect parent-child nodes in the 

GenSpace graph. Delete the current node in the queue. 
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3. Repeat step 2 until the queue is empty. 

The following example illustrates the construction of a GenSpace graph. Given 

the two ExGen graphs representing the generalization relations for attributes Day and 

Address in Figure 3.3, we generate the GenSpace graph in Figure 3.4. Each node in the 

GenSpace represents a joint probability distribution for the corresponding nodes in the 

ExGen graphs. 

 
Any 

Month Weekday

Day 

Any 

North_South 

Address 

 

Figure 3.3. ExGens for single attributes 

 

Day-Address

Month-Address Weekday-Address Day-North_South 

Any-Address Month-North_South Weekday-North_South Day-Any

Any-North_South Month-Any Week-Any 

Any-Any 

 

Figure 3.4 A GenSpace graph 
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Definitions 3.4, 3.5, and 3.6 and Theorem 3.1 for ExGen graphs can be adapted 

directly to GenSpace graphs. The only difference is that for an ExGen graph, the term 

“section” means a set of values for an attribute, while for a GenSpace graph, it means a 

set of tuples where each element in a tuple corresponds to a value for an attribute. 

Corollary 3.1 A GenSpace graph G is consistent iff every node in G is bottom-

consistent. 

The structures of ExGen graphs and GenSpace graphs are directed acyclic graphs, 

but they are not necessarily lattices. However, a set of ExGen Graphs are all lattices, the 

structure of the GenSpace graph that results from combining them is also a lattice. 

 

3.3 Propagation of Estimates in GenSpace Graphs 

Due to the combinational number of the nodes in a GenSpace graph, it is not 

practical to require that the user specify the estimates for all nodes. In exploratory data 

mining, the user may begin with very little knowledge about a domain, perhaps only 

vague assumptions about the (a priori) probabilities of the possible values at some level 

of granularity. After the user specifies these estimates, a data mining system should be 

able to create default preliminary distributions for the other nodes. 

With the GSSM system, the user can specify the estimates for each node in a 

GenSpace graph as an explicit probability distribution, or as a parameterized standard 

distribution, or leave the estimates unconstrained. If a standard distribution is specified, it 

is discretized into an explicit probability distribution in histogram form. If estimates are 

not specified for a node, they are obtained by propagation from a node with specified 

estimates. 
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In the last section, we discussed propagation orders and concluded that bottom up 

propagation preserves consistency. We adopt this propagation order, i.e., propagating 

estimates from a node to the bottom node, and then propagating upward to the other 

nodes. In bottom up propagation, the estimates are aggregated as in data cube calculation. 

The problem we face here is to determine the estimates in the bottom node according to 

the estimates specified at an arbitrary node. We also handle the case where estimates are 

specified at multiple nodes, but in this case we insist that the user not specify the 

distributions in two nodes that have generalization relation in a graph, because the 

information is either redundant or inconsistent. 

In this propagation problem, we treat each estimate as either a hard constraint, 

which once specified, must be satisfied after all subsequent propagations, or a soft 

constraint, which must be satisfied for the current propagation, but thereafter need not be 

satisfied. 

We propose the following three estimate propagation principles: (1) propagations 

should be consistent, (2) if new estimates are being added, the new information should be 

preserved, while the old estimates should be changed as little as possible, and (3) if 

available information does not fully constrain the distribution at a node, the distribution 

should be made as even as possible. 

The minimal change principle, which is the most common criterion in traditional 

accounts of belief change [Delgrande et al., 2004], states that a belief corpus should be 

modified in a minimal fashion when assimilating new information. The principle can take 

various forms [Makinson, 1993; Rott, 2000]. In our case, we first formalize it as an 
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optimization problem and show how to solve this problem. We then propose a more 

efficient linear method as a heuristic solution for propagation. 

 

3.3.1 Optimization Based Propagation 

We identify six situations for propagating estimate: given estimates at only the 

bottom node, given no estimates for any node, given estimates at a single non-bottom 

node, given estimates at multiple nodes, and given updated estimates at one node. Let us 

consider each situation in turn. 

(1) Given estimates at the bottom node (bottom-up propagation): 

If the estimates at the bottom node are given, bottom up propagation preserves the 

consistency of the GenSpace graph regardless of the propagation path.  

Assume the estimates at the bottom node X are given by E(X) = [E(x1), …, E(xn)], 

node Q is an arbitrary node that is consistent with X through upward propagation, R is a 

child node of Q, Sb is a section of R, and }...,,{),(
1 kaab SSQSSpec = is the set of the 

sections in Q that forms Sb. To propagate estimates from Q to R, we set the estimates for 

every section Sb of R to ∑
=

k

i
ai

SE
1

)( . Since ∑∑ ∑∑
∈= ∈=

===
bia

i
Sx

k

i Sx

k

i
ab xExESESE )()()()(

11

 for 

every Sb ∈ R, then R is bottom consistent. Therefore, bottom-up propagation in a 

GenSpace graph preserves consistency. 

(2) Given no information about estimates in any node: 

We assume that the estimates for the elements of the domain X are the same. In 

other words, we assume a uniform distribution at the bottom node X. Then we apply 

bottom-up propagation. 
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(3) Given estimates at a single non-bottom node: 

Given estimates E(R)  = [E1, …, Ek] for a node R = {S1, …, Sk}, we distribute the 

estimates Ei uniformly for each section Si among the sections in Spec(Si, X), and therefore 

obtain the estimate for the jth element of the ith section Eij = Ei / |Spec(Si, X)|. After 

obtaining the estimates at the bottom node X, we use bottom-up propagation.  

(4) Given estimates in multiple nodes: 

We find the greatest lower bound of all nodes whose estimates are specified. We 

first calculate the estimates at the greatest lower bound by solving a linear equation 

group, and then use the same method as with case 3 to determine the bottom node’s 

estimates. The linear equation group is described as follows. 

Given a set of nodes with estimates, the estimates at the greatest lower bound G of 

all these nodes is found by representing the constraint due to each node as an equation 

and then solving the set of equations. For a node i with ji sections Sik, where ijk ≤≤1 , 

we assume that Eik is the estimate for section Sik. We also assume that SG is a section of 

G, i.e., SG ∈ G. We have E(Sik) = Eik, i.e., ik
GSSpecS

G ESE
ikG

=∑
∈ ),(

)( . There are three possible 

cases for the solutions of the linear equation group.  

First, if there is exactly one non-negative solution, we assign the solution as the 

initial estimates at the greatest lower bound G and perform upward propagation. 

Secondly, if more than one non-negative solution exists, we convert the problem 

to an optimization problem. To satisfy the equation group and at the same time to make 

the distribution as even as possible, we minimize the following expression: 

2

|)|/1)((∑
∈

−
GS

G
G

GSE .  
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Minimizing this expression is a constrained linear least-square problem, which is 

NP complete. Many iterative algorithms, called optimization methods, have been 

proposed for approximating the solution to this problem [Schittkowski, 1985; Fletcher, 

1987]. After obtaining the estimates at node G by solving this problem, and then 

determining the estimates at the bottom node, we use bottom-up propagation to determine 

the estimates for all other nodes. 

Thirdly, if no non-negative solution exists, we request that the user change the 

input knowledge to remove the inconsistency. 

(5) Given revised estimates for one node: 

We need to satisfy the new conditions as well as all existing hard constraints, and 

at the same time minimize 
2

1
))(_)(_(∑

=

−
n

i
xoldExnewE , where n is the cardinality of the 

bottom node X, to make the changes at node X as small as possible. This problem is also a 

constrained linear least-square problem.  

(6) Given revised estimates for multiple nodes: 

 We deal with this situation the same way as with situation 5 except that we 

combine the linear constraints obtained from all nodes whose estimates are revised.    

 

3.3.2 Linear Propagation 

For large scale GenSpace graphs, the above mentioned optimization process has a 

prohibitive time cost. We propose the linear propagation method to find a heuristic 

solution to the optimization problem. If 0)(_ >ikSoldE , we convert E(Sik) = Eik  to 

ikik
ik

SxE
SoldE
xoldExE ∈= ,

)(_
)(_)( , which means that we accept the probability ratio among the 
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groups and also retain the ratio among the elements of each group. If 0)(_ =ikSoldE , we 

convert E(Sik) = Eik  to ik
ik

ik Sx
S
E

xE ∈= ,
||

)( , which means that we distribute the estimates 

evenly among the elements. Once new estimates come in a node, this propagation will be 

performed. Therefore, it is an iterative process. 

This method has three advantages. First, it is computationally efficient, because it 

involves only linear computation with time complexity of O(|N||X|), where |N| is the size 

of node N where the user changed his/her estimates. Secondly, it does not need to resolve 

conflicts among the user’s new estimates, because we propagate estimates in different 

nodes in a sequence rather than simultaneously as with an optimization method. Thirdly, 

as proved below in Lemma 3.1, we have identified an upper bound for the changes of 

estimates at any node in the GenSpace graph, given the change specified by the user at an 

arbitrary node. In this sense, the user’s old information is preserved. The disadvantage is 

that all previously specified estimates are treated as soft constraints, i.e., after specifying 

and propagating a new constraint, any old constraint may be violated. 

 To identify the upper bound of the estimate change, we first define the relative 

variance as the measure for changes of estimates.  

Definition 3.8 The relative variance of an estimate for a section S is defined as 

)
)(

|)()('|)(
SE

SESESrvs −
= , where )(' SE and )(SE denote the old and new estimates, 

respectively. 

Definition 3.9 The relative variance of estimates for a node N = {S1, …Sn} is defined as 

)(1)(
1
∑
=

=
n

i
iSrvs

n
Nrvn . 
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Lemma 3.1 Suppose node N has m sections S1, ..., Sm and the bottom node X has n 

elements s1, …, sn, where nm ≤ . Let the old estimates for node N be E(N) = [E(S1), …, 

E(Sm)], for X be E(X) = [E(s1), …, E(sn)]. Let the new estimates for N be 

)](...,),([)(' '
1

'
mSESENE = . Let ))((max

1 i

m

i
Srvs

=
=α . After propagating 'E  from N to X 

using the linear propagation method, )(srvs for any element s in the bottom node satisfies 

α≤)(srvs  and the relative variance rvn(X) at the bottom node satisfies α≤)( Xrvn . 

Proof: For any element s in the bottom node, there exists a section S in N such that 

),( XSSpecs = . Since we have 
)(
)(

)(
)( ''

sE
sE

SE
SE

i

i =  according to the property of linear 

propagation, 

α≤−
=

−
= |

)(
)()('||

)(
)()('|)(

SE
SESE

sE
sEsEsrvs . 

Since for any si we have α≤)( isrvs , we have α≤= ∑
=

n

i
isrvs

n
Xrvn

1

)(1)( . 

Lemma 3.2 Suppose node N has m sections S1, ..., Sm and the bottom node X has n 

elements s1, …, sn, where nm ≤ . Let the old estimates for node N be E(N) = [E(S1), …, 

E(Sm)], for X be E(X) = [E(s1), …, E(sn)]. Let the new estimates for X be 

)](...,),([)(' '
1

'
msEsEXE = . Let ))((max

1 i

n

i
srvs

=
=α . After propagating )(' XE  from X to 

N, )(Srvs  for any element s in any node N satisfies α≤)(srvs  and the relative variance 

rvn(N) satisfies α≤)(Nrvn . 

Proof: For any section S in node N, there exists a set of elements Spec(S, X) 

corresponding to S. 



 66

∑
∑

∑
∑

∑
∑∑

∈

∈

∈

∈

∈

∈∈

−
≤

−
=

−
=

−
=

),(

),(

),(

),(

),(

),(),(

|)(|

|)()('|

|
)(

))()('(
|

|
)(

)()('
|

|
)(

)()('|)(

XSSpecs

XSSpecs

XSSpecs

XSSpecs

XSSpecs

XSSpecsXSSpecs

sE

sEsE

sE

sEsE

sE

sEsE
SE

SESESrvs

 

Since for any s we have α≤−
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Theorem 3.2 Suppose node N has m sections S1, ..., Sm. Let the old estimates for node N 

be E(N) = [E(S1), …, E(Sm)], the new estimates for N be )](...,),([)(' '
1

'
mSESENE = . 

Let ))((max
1 i

m

i
Srvs

=
=α . After propagating 'E  from N to the entire GenSpace graph using 

the linear propagation method, the relative variance )(srvs for any element s in any node 

M satisfies α≤)(srvs  and the relative variance rvn(M) of node M satisfies α≤)(Mrvn . 

Proof:  The proof follows directly from Lemmas 3.1 and 3.2. 

Next, we identify independence properties that ensure that old constraints remain 

valid after changing estimates and that changing estimate at one node only affects a 

subset of nodes in the GenSpace graph. 
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Definition 3.10 For a pair of nodes, A = {SA1, …, SAa} and B = {SB1, …, SBb} in an 

ExGen / GenSpace graph,  if E(SAi)E(SBj) = E(SAi∩ SBj), for all i and j, we say that nodes 

A and B are independent. 

Lemma 3.3 If a pair of nodes A = {SA1, …, SAa} and B = {SB1, …, SBb} in a GenSpace 

graph are independent, and we use the linear propagation method, then changing 

estimates at one node does not change the estimates in the other. 

Proof 

Assume we change the distribution of node B from E(SB1), …, E(SBn) to E’(SB1), …, 

E’(SBn). 

Because ∑
=

∩=
n

j
AiBjAi SSESE

1
)(')('  and we use the linear propagation method, we have 

)(
)(
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)(' AiBj
Bj

Bj
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SSE ∩=∩ , and accordingly we have  
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Since A and B are currently independent, we have 
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Bj

AiBj
Ai SE
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∩
= , therefore, 
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n

j
BjAiAi SESESESE == ∑

=

. 

Lemma 3.4 If nodes A and B are independent, then A is independent of B’s descendents, 

and vice versa. 

Proof:  

We have )()(*)( BjAiBjAi SSESESE ∩=  for all i and j, i = 1 to m, and j = 1 to n. 

Assume C is a descendent node of A with k sections SCm, km ≤≤1 . We have 



 68

)()()(

)(*)()(*)(

),(),(

),(

BjmBj
ASSpecS

Ai
ASSpecS

BjAi

Bj
ASSpecS

AiBjcm

SCESSESSE

SESESESE

PjAiPjAi

PjAi

∩=∩=∩=

=

∈∈

∈

∑

∑

U
. 

 We can infer that there is only one common descendent node, i.e., the top node, 

for any pair of independent nodes. 

Definition 3.11 For a pair of nodes A = {A1, …Am} and B = {B1, …Bn} in an 

ExGen/GenSpace graph, if NBABA jiji *||||*|| ∩= , where N denotes cardinality of the 

domain, holds for all i and j, i = 1 to m, and j = 1 to n we say A and B are structural 

independent. 

Lemma 3.5 If A and B are structurally independent, then A is structurally independent to 

B’s children, and B is structurally independent to A’s children. 

Proof:  

We have NBABA jiji *||||*|| ∩=  for all i and j, i = 1 to m, and j = 1 to n. 

Assume C is a child of A and a partition 
kiim AAC ∪∪= ...

1
, where k is the number of 

partions in A that belong to Cm  , we have 

 NBCNBANBABABC jmjijijijm kkk
*||*||*||||*||||*|| ∩=∩=∩== ∑∑ U . 

Lemma 3.6 If A = {A1, …Am} and B = {B1, …Bn} are structurally independent and the 

estimates for the bottom node are uniformly distributed, then A and B are independent. 

Note that nodes A and B are currently independent, but after update on the third 

node C, A and B are not necessarily be independent again. 

From the results, we infer that if all paths between the bottom node and top node 

do not cross each other and all pairs of the children of the bottom node are independent, 
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then to update the estimates in any node, we only need to propagate estimates along the 

path containing the node. 

 

3.4 A Propagation Example 

For simplicity, we use an ExGen graph to illustrate our propagation method. We 

use Example 3.1 and Figure 3.1 to illustrate the propagation methods presented in Section 

3.1 and Section 3.2. We specify the estimates of accessing the computer system at the 

University of Regina for some nodes as follows: E(MM) = [0.09, 0.12, 0.12, 0.09, 0.04, 

0.04, 0.04, 0.04, 0.09, 0.12, 0.12, 0.09], E(Week) = [0.1, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1], and 

no information about the estimates of other nodes. Since the node MMDD is the greatest 

lower bound of MM and Week, we first calculate the estimates in MMDD for a non-leap 

year as E(MMDD) = [e1, e2, …, e365]. Assuming January 1 is Sunday, we have the 

following linear constraints, 

09.0
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Then we minimize the following formula, 

2365

1
)365/1(∑

=

−
i

ie . 

We obtain E(MMDD) = [0.0020, 0.0040, 0.0040, …, 0.0022, 0.0021]. Next we 

calculate the estimates for the bottom node by dividing the estimates of MMDD by 3 

(divide evenly among Morning, Afternoon and Night). We get estimates for the bottom 

node E(MMDDMAN) = [0.0007, 0.0013, …, 0.0007]. Finally, we use upward 

propagation and we obtain E(MAN ) =  [0.3333, 0.3333, 0.3333]. 
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Now if new information is obtained that E(MAN) = [0.3, 0.5, 0.2], we have the 

following constraints at the bottom node. 

3.0)(
),(

=∑
∈ MMDDMANMorningSpecx

xE , 

  5.0)(
),(

=∑
∈ MMDDMANAfternoonSpecx

xE ,  

2.0)(
),(
=∑

∈ MMDDMANNightSpecx
xE . 

We minimize the formula
2

))(_)((∑
∈

−
MMDDMANx

xoldExE and get the new estimates for 

the bottom node. Then after upward propagation, we get E(MMDDMAN) = [0.0006, 

0.0011, …, 0.0003], E(MM) = [0.0884, 0.1186, 0.1184, 0.0885, 0.0433, 0.0427, 0.0431, 

0.0432, 0.089, 0.1184, 0.1185, 0.0884] and E(Weekday) = [0.1021, 0.1974, 0.1974, 

0.1974, 0.1021, 0.1019, 0.1018]. Thus, after adopting the new estimates in node MAN, 

the estimates at the other nodes are changed only a little, which means that the original 

information is significantly preserved. 

If we specify all the constraints from E(MMDD) and E(MAN) at the same time, 

we obtain E(MMDDMAN) = [0.0006, 0.0011, …, 0.0003] and E(MMDD) = [0.0019, 

0.0041, 0.0041, 0.0040, …, 0.0021, 0.0021]. The estimates for MM and Weekday and 

MAN are identical to the estimates specified for them. 

If we use the linear propagation method, after all propagations, we obtain 

E(MMDDMAN) = [0.0006, 0.0010, …, 0.0004], E(MM) = [0.0938, 0.1111, 0.1222, 

0.0875, 0.0426, 0.0389, 0.0407, 0.0417, 0.0875, 0.1250, 0.1195, 0.0895], E(Weekday)  = 

[0.1000, 0.2000, 0.2000, 0.2000, 0.1000, 0.1000, 0.1000] and E(MAN) = [0.3000, 0.5000, 

0.2000]. Figures 3.5 to 3.7 compare the estimates for the Month, Weekday, and MAN 
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nodes obtained from the optimization method and the linear method. In Figures 3.5, the 

one-step optimization propagation method preserves the identical estimates for Month as 

the ones given by the user. The two-step optimization propagation method and the linear 

propagation method give very close results. In Figure 3.6, similar results are also 

observed. In Figure 3.7, the three methods produce the same results. Figures 3.8 and 3.9 

compare the results for MMDD node for January and February. In general, the results 

obtained from linear propagation method are close to those obtained from optimization-

based propagation. 
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Figure 3.5 Estimated distributions for Month 
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Figure 3.6 Estimated distributions for Weekday 
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Figure 3.7 Estimated distributions for MAN 
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Figure 3.8 Estimated distributions for MMDD for January 
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Figure 3.9 Estimated distributions for MMDD for February 
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 Table 3.1 compares the running time of the optimization method and the linear 

method.  The experiments were conducted using Matlab 6.1 on a PC with 512MB 

memory and 1.7 GHz CPU. First, we applied the optimization method twice. The total 

propagation time is 2051 seconds (67 seconds for the first propagation and 1984 seconds 

for the second). Then, we combined all the constraints and propagated the estimates with 

the optimization method. The running time was 4791 seconds. For the linear method, the 

time was imperceptible for all three propagations. 

Table 3.1 Comparison of running time between optimization and linear methods 

Method # of variables # of constraints Running time (Sec) 
Step 1 365 18 67 Optimization 

- two steps Step 2 1095 3 1984 

Optimization - one step 1095 21 4791 
Linear 1095  <1 
 

3.5 Relation to Bayesian Belief Updating 

 Bayesian networks are models that use probability theory to manage uncertainty 

by explicitly representing the conditional dependencies between the attributes to improve 

the reasoning efficiency. They also provide an intuitive graphical visualization of a user’s 

knowledge.  

We identify five differences between Bayesian belief updating and linear GSEP. 

The most prominent difference between linear GSEP and Bayesian belief updating is that 

linear GSEP is a belief revision problem and Bayesian belief updating is a belief updating 

problem. A belief revision problem is a problem where the world is static and the user’s 

knowledge about the world is not perfect and needs to be revised when new evidence 

arises. A belief updating problem is a problem where user’s knowledge is assumed to be 
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correct. When the new event happens, the status of the world changes and the user’s 

knowledge should be updated to reflect the new circumstance. 

Secondly, in Bayesian belief updating, the users know what domain they are 

interested in before propagation, and hence only that variable needs to be updated. In 

GSEP, users do not know what generalization levels they are interested in, and therefore, 

all nodes need to be updated.  

Thirdly, linear GSEP and Bayesian belief updating use different methods to tackle 

the intractability problems in probability propagation. Jensen identified three 

intractability problems in Bayesian belief updating: acquisition intractability, updating 

intractability, and magnetization intractability [Jensen, 1996].  Bayesian belief updating 

uses conditional independence to tackle the intractability problems. In GSEP, we use a 

variety of methods to deal with these problems. To avoid acquisition intractability, we 

ask the user to specify estimates at high conceptual levels in the GenSpace graph, which 

contain tractable numbers of probabilities. To avoid updating intractability, we only take 

into consideration the tuples present in the original table. Finally, to avoid 

marginalization intractability (or generalization intractability, in our case), we adopt 

OLAP aggregation methods to tackle the efficiency problem.  

Fourthly, Bayesian belief updating assumes each variable has only a single 

conceptual level. Inferences are performed on different variables and do not deal with 

multiple conceptual levels of a single attribute. 

Fifthly, evidence in linear GSEP and Bayesian belief updating is of a different 

form. In Bayesian belief updating, the evidence can be considered as a probability 

distribution [P1, P2,… Pn]. If event i happens, we have Pi = 1 and Pj = 0, where j ≠ i. In 
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GSEP, the new estimates are in the form [P1, P2,… Pn], where 10 ≤≤ iP , 1
1

=∑
=

n

i
iP . In 

this sense, Bayesian belief updating can be considered as a special case of GenSpace 

propagation. 

Linear GSEP is similar to Bayesian belief updating [Jensen, 1996; Xiang, 2002] 

in that (1) they are both based on probability theory; (2) they both propagate the user’s 

beliefs or estimates from one domain to the others; (3) they both use linear calculation 

(normalization and marginalization) to proportionally propagate beliefs; (4) they both 

face the problems of acquisition intractability, updating intractability, and 

marginalization intractability [Jensen, 1996]. 

We use an example to demonstrate the relationship between linear GSEP and 

Bayesian belief updating. Therefore, they deal with different problems. 

Example 3.3. Suppose we have four variables, Season (S), City (C), Fishing (F), and 

Temperature (T), with domains {Summer, Other}, {Victoria, Montreal}, {Suitable, 

Unsuitable}, and {High, Low}, respectively. We assume the Bayesian network shown in 

Figure 3.10 has been constructed for these variables. We assume that the prior 

probabilities for season and city are P(S) = {0.2, 0.8} and  P(C) = {0.1, 0.9}. The 

remaining conditional probabilities are listed in Table 3.2. 

 
S C

F T

 

Figure 3.10 An example of Bayesian network 
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Table 3.2 The conditional probabilities for Example 3.3 

P(F|S) S = Summer S = Other 
F = Suitable 1 0.2 
F = Unsuitable 0 0.8 

 

P(T|S,C) Summer, 
Victoria 

Summer, 
Montreal 

Other, Victoria Other, Montreal

T = High 1 1 0.9 0 
T = Low 0 0 0.1 1 

 

Now, we calculate the prior probabilities for F and T. 

Using formula P(S, F) = P(F|S)P(S), we have the probabilities for P(F, S) as 

shown in Table 3.3. 

Table 3.3 Probability distribution for P(F, S) 

P(F, S) S = Summer S = Other 
F = Suitable 0.2 0.16 
F = Unsuitable 0 0.64 

 

Marginalizing S out, we have P(F) = {0.36, 0.64}, which means that 36% of days 

are suitable for fishing. 

Similarly, using the formula P(S, C, T) = P(T | S, C)P(S)P(C), we calculate the 

probability distribution for P(S, C, T) as shown in Table 3.4. 

Table 3.4 Probability distribution for P(S, C, T) 

P(T, S, C) Summer, 
Victoria 

Summer, 
Montreal 

Other, Victoria Other, Montreal

T = High 0.02 0.18 0.072 0 
T = Low 0 0 0.008 0.72 

 

Marginalizing S and C out of P(T, S, C) yields P(H) = (0.272, 0.728). 
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Now, suppose that we have the evidence T = High and want to obtain the updated 

probabilities P*(S), P*(C), and P*(F). 

In Table 3.4, we set all entries with T = Low to zero and normalize the table by 

dividing by the sum of the remaining entries as shown in Table 3.5  

Table 3.5 Probability distribution for P*(S, C, T) with evidence T = High 

P*(T, S, C) Summer, 
Victoria 

Summer, 
Montreal 

Other, Victoria Other, Montreal

T = High 0.074 0.662 0.264 0 
T = Low 0 0 0 0 

 

By marginalization, we have P*(S) = (0.736, 0.264), P*(C) = (0.338, 0.662). We 

obtain P*(F) by calculating P*(F, S) with P*(F, S) = P(F, S) * P*(S) / P(S). Results are 

shown in Table 3.6 

Table 3.6 Updated probability distribution for P*(F, S) 

P*(F, S) S = Summer S = Other 
F = Suitable 0.736 0.0528 
F = Unsuitable 0 0.2112 

 

By marginalization, we have P*(F) = (0.788, 0.212), which means that the 

probability that fishing is suitable is 0.788. 

Now we apply the linear estimate propagation to this problem. First, we define a 

DGG for each attribute, with only a bottom node representing the domain and a top node 

All. Then we calculate the initial estimates for the bottom node in GenSpace graph with 

the formula )|(),|()()(),,,( STPCSTPCPSPTFCSP = . The results are shown in Table 

3.7. 
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Table 3.7 Initial and revised estimates for the bottom node 

S C F T Initial Exps Revised Exps 
Summer Victoria Suitable High 0.02 0.0735 
Summer Victoria Suitable Low 0 0 
Summer Victoria Unsuitable High 0 0 
Summer Victoria Unsuitable Low 0 0 
Summer Montreal Suitable High 0.18 0.6618 
Summer Montreal Suitable Low 0 0 
Summer Montreal Unsuitable High 0 0 
Summer Montreal Unsuitable Low 0 0 
Other Victoria Suitable High 0.0144 0.0529 
Other Victoria Suitable Low 0.0016 0 
Other Victoria Unsuitable High 0.0576 0.2118 
Other Victoria Unsuitable Low 0.0064 0 
Other Montreal Suitable High 0 0 
Other Montreal Suitable Low 0.144 0 
Other Montreal Unsuitable High 0 0 
Other Montreal Unsuitable Low 0.576 0 

  

To perform revision, we first convert the evidence T = High to the probability 

distribution P(T) = (1, 0). We propagate it to the bottom node and obtain the revised 

estimates as shown in the last column in Table 3.7. By summarization, we get P(S) = 

(0.736, 0.264), P(C) = (0.338, 0.662), and P(F) = (0.788, 0.212), which are consistent 

with the Bayesian belief updating. 
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CHAPTER 4  

ESTIMATE PROPAGATION IN GENSPACE SUBGRAPHS 

 

In Chapter three, we proposed a linear GSEP method that propagates the user’s 

new estimates to all the other nodes in a GenSpace graph. The bottom up propagation in 

GSEP process is similar to the aggregation process in OLAP systems. However, 

compared with the other summarization methods [Agarwal et al., 1996; Ross and 

Srivastava, 1997; Beyer and Ramakrishnan 1999], our summary mining faces the 

following computation challenges. 

First, most other summarization methods do not involve concept hierarchies, or 

involve concept hierarchies that represent a totally ordered relation. Our method is based 

on a GenSpace graph that represents a partially ordered relation. Therefore, dynamic 

sorting method that helps improve the efficiency of other aggregation methods do no help 

with our problem. 

Secondly, traditional summarization methods only aggregate data, while our 

method needs to aggregates data as well as to calculate interestingness measures, which 

requires more computation. 

Thirdly, traditional summarization methods only aggregate data once, while our 

method needs to propagate estimates and calculate interestingness measures repeatedly. 

However, there are two features of our problem that we can take advantage of. 

First, before the mining process, the user can specify uninteresting nodes in the data set. 



 80

Oftentimes, the user may not be interested in lower level nodes and nodes with specific 

real and time values. It is these nodes that constitute the most space and time costs for the 

mining process. After properly pruning these nodes, we can greatly improve the mining 

efficiency. Second, in our problem, we only need to find top k interesting nodes to 

present to the user, therefore, we do not need to materialize all the nodes in memory at 

the same time. In this chapter, we propose two pruning methods for GSEP in GenSpace 

subgraphs.  

 

4.1 Aggregation in GenSpace Graphs and Subgraphs 

In the GSEP process, most of the time cost is caused by the bottom up 

propagation. The bottom up propagation is very similar to the aggregate process of data 

cubes, in which efficiency is a key issue. There are two kinds of popular aggregation 

methods for constructing a data cube: general to specific and specific to general. General 

to specific method excels for iceberg cube construction, where the measure satisfies the 

monotonic property, and thus supports Apriori-like pruning. In our case, none of the 

interestingness measures for summaries that we can use possesses this property; 

therefore, general to specific aggregation does no good in our case. The bottom up 

propagation takes advantage of dynamic sorting and the smallest parent node to improve 

efficiency. The sorting technique is useful to improve the aggregation efficiency in 

traditional data cube calculation when the child node is a prefix of its parent node. 

However, in the GenSpace graph, most of the parent-child node pairs do not satisfy the 

prefix relations. Therefore, sorting summaries dynamically will not improve efficiency in 

our case. We use the smallest parent technique in our approach. The problem becomes 
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choosing appropriate path in GenSpace graph or subgraph to improve propagation 

efficiency.  

An ExGen graph for an attribute can be comprehensive. For example, Hamilton et 

al. identified 27 nodes for the Time attribute [Randall et al., 1999]. Considering the 

combinational nature of the GenSpace graphs, the complete GenSpace graph may have 

tremendous space and time cost. However, in many occasions, the user is only interested 

in a subset of the nodes in a GenSpace graph and can specify some nodes as uninteresting 

before the propagation process starts. For example, he can specify a specific node, or a 

set of nodes with a specific attribute at a certain level, or a set of nodes with a certain 

depth in the GenSpace graph, as uninteresting. Practically, the uninteresting nodes are 

usually in the lower levels of the GenSpace graph, because with too many values, it will 

be difficult for users to grasp the insight of the table. Therefore, even if a small 

percentage of the nodes are pruned, the savings of space storage and propagation time 

may be high. 
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Another situation for pruning nodes occurs when one node has the same size as its 

smallest parent. We can see that there is no generalization effect in this situation, and thus 

mark this node as uninteresting. Furthermore, if the interestingness measures we use only 

involve the records present in the nodes, the interestingness measure for the two nodes 

are the same. Generalizing this situation one more step, we can mark uninteresting a 

node’s all descendents that have the same size with the node. In Figure 4.1, the solid 

ovals denote the potentially interesting nodes and the blank ovals denote the uninteresting 

nodes. The storage cost for the GenSpace graph is 5700 units, while the storage cost for 

the subgraph is 2800 units. 

Figure 4.1 Uninteresting nodes 

When uninteresting nodes are identified either by the user or automatically, we 

can prune them before propagation and select the appropriate path for propagation. 

 

4.2 Prune Nodes While Preserving One-Step Generalization Links 

We can prune all the uninteresting nodes by connecting all their parent nodes to 

their child nodes, but this will destroy the one-step-generalization feature of a link, and 

thus improve the complexity of the data structure and generalization process. Further 
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more, pruning all uninteresting nodes may increase the time cost for the propagation. In 

this section, we propose a pruning method that preserves one-step generalization. 

In this section, we take into account both the storage costs and time (scanning) 

costs when we tackle the propagation efficiency. We use the number of records (or size) 

in a summary to represent its storage cost. Harinarayan et al. proposed a linear time cost 

model for aggregating a table [Harinarayan et al., 1996]. They found that the time cost (or 

scanning cost) for a summarization is directly proportional to the size of the raw table. 

Therefore, in our case, when we propagate estimates from node A to node B, the time cost 

is directly proportional to the size of node A. We use the number of the records in A to 

represent the time cost of propagating estimates from A to B. 

 

4.2.1 Algorithm 

Example 4.1 (Figure 4.2) illustrates this problem. 

      N9
 
 

     N7                                      N8 
          N5(500) 

    N4(100)                                             N6(300) 
 
 
 

N2(800)                                     N3(800) 
 
                 N1  

Figure 4.2 Example 4.1 

Example 4.1. The blank nodes (nodes N4, N5, and N6) denote the uninteresting nodes and 

the solid nodes denote the potentially interesting nodes. The numbers in the parentheses 

denotes the storage cost of the nodes. We intend to prune a subset of uninteresting nodes 

such that all the potentially interesting nodes can be reachable from bottom node. We can 
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prune either N4 and N6 or node N5 to satisfy this constraint. If we want to reduce storage 

cost, it is apparent that we prefer to prune N5 instead of N4 and N6, because we can save 

(500 - 100 - 300) = 100 units storage. If we want to reduce time cost, we prefer to prune 

N4 and N6 and keep N5, since we can save (800 + 800 + 100 + 300) – (800 + 500 + 500) = 

200 units scanning cost. 

The node preservation problem is to find a subset of the uninteresting nodes in a 

GenSpace graph such that every interesting node can be reachable from the bottom node 

and the comprehensive cost wsCs + wtCt is minimum, where Cs and Ct represent the 

storage cost and the time cost, respectively, and ws and wt represent the weights. 

 If wt equals to 0, the node preservation problem becomes a directed Steiner tree 

problem, which is NP-complete. 

In this section, we propose a heuristic approach to solve this node preservation 

problem. We first give some definitions that will be used in our approach. 

Definition 4.1 If a non-uninteresting node only has uninteresting nodes as its parents, we 

call it an endangered node. 

In Figure 4.2, nodes N7 and N8 are endangered nodes. If the pruning is not 

properly conducted, these nodes might not obtain estimates from bottom up propagations. 

Definition 4.2 The parent nodes of endangered nodes are called candidate nodes. 

We need to select a subset of the candidate nodes to prune and preserve the rest in 

the GenSpace graph, although we hide them from showing to the user. 

Definition 4.3 A candidate node’s endangered children are called the candidate node’s 

cover. 

In Figure 4.2, node N4’s cover is N7; node N5’ s cover is N7 and N8. 
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 We use Example 4.2 to illustrate the heuristics. 

Example 4.2. Figure 4.3 illustrates the definitions. 

         N9
 
 
 
     
                  N6               N7                        N8 
 
    
 N2(100)        N3(150)      N4(300)                   N5(150) 
  
 
                                       1 

 

Figure 4.3 GenSpace graph for Example 4.2 

Endangered node set {N6, N7, N8}, Candidate node set {N2, N3, N4, N5}. CoverN2 = {N6}, 

CoverN3 = {N6, N7}, CoverN4 = {N7, N8}, CoverN5 = {N8}. We represent this in Table 4.1. 

Table 4.1 Relations between the endangered nodes and the candidate nodes 

      Endangered 
 
Candidate 

N6 N7 N8 

N2 100   
N3 150 150  
N4  300 300 
N5   150 

 

In Table 4.1, each row describes a candidate node, and each column describes an 

endangered node. If a candidate is a parent of an endangered node, we put the storage 

cost in the corresponding cell. Here {N3, N5} is a subset that covers the entire set of 

endangered nodes, and its storage cost (150 + 150 = 300) is minimum. Therefore, we 

choose to keep N3 and N5 and prune nodes N2 and N4.  

We first use a Linear programming (LP) method to solve this problem. The 

problem for LP can be formalized as follows: 
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Maximize or miminize the objective funtion f(X1, X2, …, Xn) = c1X1 + c2X2+… 

+cnXn, such that the constraints mibXaXaXa ininii ,...,1,...2211 =≤+++  are satisfied, 

where ci, aij, and bi are coefficients, and the Xi are variables. 

We translate the node selection problem into this format to use the LP method. In 

the case of m candidate nodes and n endangered nodes, we define m binary variables xi 

corresponding to candidate nodes. If a candidate node is selected, x has the value of 1, 

otherwise it has the value of 0. We define n constraints corresponding to the endangered 

nodes. For the jth endangered node, the constraint is that the sum of the variables 

corresponing to the candidate nodes that cover the endangered node should be greater 

than or equal to 1, i.e., it is covered by the selected nodes. To simplify the problem, we 

only take into account the storage cost, i.e., set ws to 1 and wt to 0. Therefore, the target 

function to minimize is the size of the selected candidate node. 

In Table 4.1, we define four binary variables x1, …, x4 correponding to nodes N4, 

…, N7. The three constraints are  

131 ≥+ xx , 

12 ≥x  ,  

141 ≥+ xx , 

and the target function is 43214321 *8*8*15*10),,( xxxxxxxxf +++= .  

Linear programming can find the optimal solutions. However the time complexity 

is not only related to the number of the variables and constraints, but also related to the 

coefficients present in the objective function and the constraints. In the worst case, the 

time complexity is exponential. 
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Here we propose heuristics to solve this problem. The intuition is that we would 

like to choose a smaller number of nodes with smaller sizes to preserve. Since we want to 

choose the nodes that have smaller storage costs and greater coverage, it is natural to 

create an index Storage-Coverage-Ratio (N) = Storage (N) / Coverage (N) for each 

candidate node N. In each step, we select a node with the highest storage coverage ratio 

to preserve. After the selection, we remove the endangered nodes that are covered by the 

selected node, i.e., we delete their corresponding columns in the table. We also delete the 

row in the table corresponding to the selected node. Then we recalculate the storage 

coverage ratio in the new table and repeat the selection process. This process continues 

until all the columns of the table are deleted, i.e., all the endangered nodes are covered. 

After obtaining the subset, we use forward adding backward elimination to eliminate the 

redundant nodes. Figure 4.4 presents the algorithm. 

One difficulty is that this process occurs before materializing the nodes. So it is 

difficult to obtain the storage cost for the nodes. We use the maximum storage cost, i.e., 

the product of the cardinalities of the possible values for each attribute, to estimate the 

real cost. 

Let m and n denote the numbers of the candidate and endangered nodes, 

respectively. The worst case occurs when only one more endangered node is covered 

when selecting one candidate node. If m < n, the number of loops is m + (m - 1) + … + 1, 

therefore the worst case complexity is O((m + 1) m / 2) = O(m2). If nm ≥ , the number of 

loops is 2/)1()1(...)1( −−=+−++−+ nnmnnmmm . Therefore, the worst case 

complexity for this algorithm is O(mn-n(n - 1) / 2) = O(m(m – n)). 
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Figure 4.4 Function SelectCandidateNodesOneStep 

In Example 4.2, since node N3 has the minimum storage coverage ratio (150 / 2 = 

75), we select it and eliminate nodes N6 and N7 of the endangered node set. In the next 

step, we choose N5, because it has minimum storage coverage ratio 150. (Initially, the 

storage coverage ratio (N4) = 150, but after eliminating N7, the ratio becomes 300). In this 

case, N3 and N5 are selected. And it is easy to see that none of them can be eliminated. 

Hence we keep them and prune node N2 and N4.  

After we select a new uninteresting node to preserve, it can become an 

endangered node again. We have to guarantee that all the newly selected candidate nodes 

are safe for propagation. We adapt the GenSpace graph in Figure 4.2 to Figure 4.5 by 

setting nodes N2 and N3 as uninteresting nodes. Applying algorithm 1, we first choose N5. 

Then, N5 becomes an endangered node, because N2 and N3 are uninteresting nodes. We 

need to apply the algorithm SelectCandidateNodesOneStep again to select N2. Finally, we 

Function SelectCandidateNodesOneStep 
1. Search the GenSpace graph and find all the endangered nodes. 
2. Find the set of candidate nodes corresponding to the endangered 
nodes. 
3. Construct the coverage relation table (as in Table 1).  
4. While the set of the endangered node set is not empty, 

4.1 Select a candidate node with the minimum storage coverage 
ratio. If there is a tie, select one with greater coverage. If there is a 
tie again, we randomly select one. 
4.2 Eliminate the covered endangered nodes from the endangered 
node set to eliminate the selected candidate node from the 
candidate node set. 
4.3 Recalculate the coverage and storage coverage ratio for the left 
candidate nodes. 

5. Check the selected node set one by one in the reverse order of 
selection using forward adding backward elimination strategy and 
eliminate the redundant nodes. 
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prune nodes N4, N6 and N3. Figure 4.6 presents the algorithm to select candidate nodes 

throughout the GenSpace graph. 

        N9
 
  

     N7                                       N8 
           N5(200) 

   N4(100)                                            N6(300) 
 
 
 
            N2(1000)        N3(1500) 

 
                  N1  

Figure 4.5 Adapted GenSpace graph of Example 4.1 

 

 

 

 

Figure 4.6 Function SelectCandidateNodes 

In some cases, even when there are no endangered nodes, selecting extra 

uninteresting nodes may reduce the time cost.  

Example 4.3. In Figure 4.7, only node 2 is specified as uninteresting node. If we delete it, 

we have total scanning cost 2000 + 1500 * 3 + 100 = 6600. If we keep it, we have total 

scanning cost 2000 * 2 + 300 * 3 + 100 = 5000. This situation occurs when small sized 

nodes (node 2 in this example) are specified as uninteresting nodes, and the next best 

parents (node 3) for their children are significantly larger than the uninteresting nodes. 

Practically this situation is rare, because first, the users usually specify big sized nodes as 

uninteresting nodes. 

Algorithm SelectCandidateNodes 
1.Create the set of endangered nodes by scanning the GenSpace 
graph. 
2. While the set of endangered nodes with is not empty, 

2.1 Find the nodes to preserve using Function 
SelectCandidateNodesOneStep. 

2.2 Find the set of endangered nodes in the selected node set.  
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Figure 4.7 Pruning deteriorates the time efficiency 

To deal with this special case, we need to select some redundant nodes that will 

improve efficiency after calling function SelectCandidateNodes. The idea is 

straightforward. We check the remaining uninteresting nodes left by function 

SelectCandidateNodes. In the increasing order of size, calculate the efficiency 

improvement. We first obtain the set of its children that have to be preserved. Then we 

calculate the best efficiency cost for these children into value oldcost. Then we calculate 

the efficiency cost for this node newcost (size of its best parent plus the best efficiency 

cost for its children considering the presence of this node). If oldcost – newcost is greater 

than a nonnegative threshold, we keep this node, otherwise we prune it. This process 

continues until all the nodes are checked. In Figure 4.7, the oldcost is 1500 * 3 = 4500. 

The newcost is 2000 +300 * 3 = 2900. The difference is 1600. If we set threshold to be 

1000. We keep this node. The algorithm is presented in Figure 4.8 
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Figure 4.8 Algorithm One-Step-Generalization-Pruning 

 

4.2.2 Experimental Results 

To measure the efficiency of the propagation in subgraphs created by the heuristic 

method proposed in Section 4.2.1, we first experimented on synthetic data sets, and then 

on the Saskatchewan weather data set and the University of Regina Student data set.  

As we mentioned before, since the propagation time is directly proportional to the 

size of the records scanned in GenSpace graphs [Harinarayan et al., 1996], we report 

propagation time in thousands of records scanned in our experiments. The advantage is 

that this measure is independent to the detailed implementation and computers where we 

run the program. 

We generated a set of tables with sizes ranging from 40K to 200K. All tables have 

four attributes, a1, a2, a3, and a4. The possible values for these attributes are integers. All 

the values in the table are generated randomly. For simplicity, we give all attributes 

identical ExGen graphs, as shown in Figure 4.9. We did two series of experiments to test 

the effect of cardinality and depth below which the nodes are marked as uninteresting.  

 

Algorithm One-Step-Generalization-Pruning 
1. Call SelectCandidateNodes to select nodes to preserve. 
2. Find the set S of the left nodes that at least have one preserved child. 
3. While S is not empty { 
3.1     Find the smallest node of S. 
3.2     Find the improvement value I of this node. 
3.3     If I is greater than a given threshold, then keep it, otherwise, prune it. 
3.4     Find the set S of the left nodes that at least have one preserved child. 
} 
4. Prune all the left uninteresting nodes. 
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Figure 4.9 DGG for synthetic data sets 

Scalability. In this series, we want to see the storage and time savings of propagation 

paths obtained by the proposed method to the paths consisting of only potentially 

interesting nodes and the paths consisting of all nodes as a function of the sizes of data 

sets. We set the number of sections in nodes A, B, and X to 5, 30, and 50 respectively and 

varied the size of data sets from 40K to 200K with an increment of 40K. We marked the 

nodes under level four in the GenSpace graph as uninteresting, which results in 162 

uninteresting nodes and 94 potentially interesting nodes. Figures 4.10 and 4.11 show the 

time cost and storage cost for bottom nodes with different sizes. Figure 10 shows that the 

time cost of propagation in the GenSpace subgraph obtained by our heuristic algorithm is 

significantly less than those in the entire GenSpace graph and in the subgraph obtained by 

pruning all uninteresting nodes. Figure 4.11 shows that the storage cost of the GenSpace 

subgraph is significantly less than that of the entire GenSpace graph.   

Any 

A B 
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Figure 4.10 Time cost for bottom nodes with different sizes 
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Figure 4.11 Storage cost for bottom nodes with different sizes 

Depth of uninteresting nodes. In this series, we mark nodes at varoius depths as 

uninteresting. We set the size of A, B, and X to 8, 8, and 50. The size of the data set is 

200K. Figures 4.12 and 4.13 compare the time and storage costs, respectively. As we 

expected, when we mark uninteresting nodes below very low levels, the time savings are 

limited, because no nodes or only a few nodes can improve the propagation time; while 

when we set uninteresting nodes from the middle levels, the time savings are significant. 
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 We also observed two interesting phenomena. First, when we mark the nodes 

under level 1 as uninteresting, the subgraph obtained with the pruning algorithm has more 

propagation costs than that obtained from pruning all uninteresting nodes. This is because 

the nodes at level 1 are very large, or even as large as the bottom node. Incorporating 

some nodes in that level will not reduce the propagation costs to the nodes at level 2, 

while it introduces the extra propagation costs for itself. Second, we observed that when 

we prune all uninteresting nodes, the propagation costs increase when we increase the 

levels of the uninteresting node for the first two levels. This is because the number of the 

nodes in the lower levels increases with the level number. Pruning all the nodes in the 

lower levels results in propagation from the bottom node to more nodes, which is the 

bottleneck of the propagations.  
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Figure 4.12 Propagation time with different levels of uninteresting nodes 
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Figure 4.13 Storage cost with different levels of uninteresting nodes 

For the Saskatchewan weather data set, we assume two scenarios. First, we 

assume that all the nodes with depth less than or equal to four in GenSpace graph are not 

interesting. In this case, 165 out of 560 nodes are uninteresting. In the second scenario, 

we assume that all the nodes with specific date and specific temperature values are not 

interesting. In this case, there are 200 uninteresting nodes.  Figure 4.14 shows that the 

storage space (in the number of records) for uninteresting nodes and the storage for 

preserved nodes using heuristics and linear programming in the first scenario, with the 

bottom nodes ranging from 40K and 200K. Figure 4.15 shows the scanning costs for the 

GenSpace graph with and without pruning. Figure 4.16 and 4.17 show the corresponding 

trends for scenario 2.  We can see that the storage and scanning costs for both cases have 

linear trends. We compared the results for linear programming and the proposed 

heuristics. For the linear programming algorithm, we use the commercial tool Premium 

Solver Platform Version 5.0 with Large-Scale LP Solver Engine (Frontline Systems, Inc. 

Website: http://www.solver.com/). The results for linear programming and heuristic 
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selection are very close. For case 1, the storage cost obtained from linear programming is 

consistently less than that obtained from heuristics, but the difference is trivial. The 

scanning cost obtained from linear programming and the heuristics are intertwined. For 

case 2, the results from two methods are identical. Although the results of linear 

programming and heuristics are very close, their running time differs significantly. For 

the heuristics selection, the running time is unperceivable regardless of the size of the 

bottom node, while in linear programming, the running time changes dramatically 

according to coefficients. In scenario one, when the size of bottom node is 40K, the 

running time is a couple of seconds; when bottom node increases to 80km, the running 

time increases to 10 minutes; when the bottom node increases to 160k, the running time 

is 8 hours; when the bottom node increases to 200k, the program runs out of memory. 
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Figure 4.14 Storage of uninteresting nodes versus storage of preserved nodes for 

scenario 1 for Saskatchewan weather data set 
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Figure 4.15 Scanning cost of unpruned graph versus pruned graph for scenario 1 for 

Saskatchewan weather data set 
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Figure 4.16 Storage of uninteresting nodes versus storage of preserved nodes for 

scenario 2 for Saskatchewan weather data set 
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Figure 4.17 Scanning cost of unpruned graph versus pruned Graph for scenario 2 for 

Saskatchewan weather data set 

For the student data set, we assume two scenarios. In the first scenario, we assume 

that all the nodes with depth less than or equal to four in the GenSpace graph are not 

interesting. In second scenario, we assume that all the nodes involving any specific 

values are not interesting.  Figure 4.18 shows that the storage space for uninteresting 

nodes and the storage for preserved nodes using the heuristics and linear programming in 

the first scenario, with the bottom nodes ranging from 10K and 60K. Figure 4.19 shows 

the time costs for the GenSpace graph with and without pruning. Figure 4.20 and 4.21 

show the corresponding trends for scenario 2.  
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Figure 4.18 Storage of uninteresting nodes versus storage of preserved nodes for 

scenario 1 for student data set 
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Figure 4.19 Scanning Cost of unpruned graph versus pruned graph for scenario 1 for 

student data set 
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Figure 4.20 Storage of uninteresting nodes versus storage of preserved nodes for 

scenario 2 for student data set 
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Figure 4.21 Scanning cost of unpruned graph versus pruned graph for scenario 2 for 

student data set 

 
4.3 Prune Nodes and Incorporate Multi-Step Generalization Links 

 In this section, we propose a pruning method that incorporates multi-step 

generalization links. Compared with the pruning method involving one-step 
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generalization links, the subgraph obtained from this pruning method requires less 

memory, but with more complex data structures and time for generalizing attributes. 

 
4.3.1 Algorithm 

Example 4.4 illustrates the problem. 

Example 4.4. In Figure 4.22, the solid ovals denote interesting nodes and the blank ovals 

denote uninteresting nodes. If we prune node N4, the propagation cost from node N5 to 

N1, N2, and N3 is size(N5) * 3 = 3000. If we preserve N4 as a hidden node, the propagation 

cost is size(N5) + size(N4) * 3 = 1600. Keeping hidden nodes reduces the propagation cost 

by nearly 50%. 
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                       N 5(1000) 

 

Figure 4.22 Efficiency improvement due to keeping uninteresting nodes 

Sarawagi et al. encountered a similar problem when they calculated a collection 

of group-bys [Sarawagi et al., 1996]. They converted the problem into a variant of the 

directed Steiner tree problem, which is an NP-complete problem. They used a heuristic 

method proposed in [Smith and Liebman, 1980] to solve their problem. In order to use 

the Steiner tree model, they need to create additional links in the graph to connect all 

pairs of nodes that have a generalization relation, which causes extra storage space. In the 
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extreme case, for example, for a totally ordered relation with 2000 nodes, the number of 

the original links in GenSpace is 1999, and the number of the expanded links is 

1,999,000. 

Furthermore, when we materialize all interesting nodes in memory to improve 

propagation efficiency, the storage space is limited for the uninteresting nodes. The 

Steiner Tree problem does not impose constraints on the size of the nodes. 

Here, we consider our problem as a constrained directed Steiner tree problem, 

where there is a space limit for the uninteresting nodes. We propose a greedy method to 

select hidden nodes and find an efficient propagation path for subgraphs. 

Definition 4.4. Given a GenSpace graph G = <P, Arc, E> and a set of nodes N ⊆ P such 

that the bottom node X ∈ N, the optimal tree OT of N in G is a tree that consists of nodes 

in N. The root of the tree is X. For every non-bottom node n ∈ N, its parent is its smallest 

ancestor in G that belongs to N. 

In Figure 4.23(a) is a GenSpace with uninteresting nodes. Figure 4.23(b) is the 

optimal tree for the potentially interesting nodes. 

(a)      (b) 

Figure 4.23 Optimal path for potentially interesting nodes 
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The optimal tree for a set of nodes has the most efficient propagation paths for the 

subgraph consisting of these nodes, because every node obtains estimates from its 

smallest possible ancestor in the subgraph. 

Our method for choosing hidden nodes and determining the propagation paths is 

given in Figure 4.24. We first create the optimal tree consisting of only the interesting 

nodes, then check the uninteresting nodes, and select the one that results in the greatest 

reduction in the scanning cost. Then we modify the optimal tree to incorporate the 

selected nodes. This process continues until the memory limit is reached, no 

improvement can be obtained, or no candidate uninteresting nodes are left. Selecting an 

uninteresting node will affect propagation efficiency in two ways. First it will cause an 

extra propagation cost for propagating estimates to this node; secondly, it may reduce the 

cost for its interesting descendents. Function Improvement calculates the efficiency 

improvement for an uninteresting node u. If it returns a positive value, it will reduce the 

scanning cost. 

Let m denote the number of uninteresting nodes and n denote the number of all 

nodes in a GenSpace graph. In the worst case, all the uninteresting nodes are selected to 

be preserved. In the first round, we calculate the improvement of m nodes each with 

complexity n, thus the total complexity is mn. In the second round, we calculate the 

improvement of (m-1) nodes, each with complexity n. In the kth round, the complexity is 

(m-k+1)n, and the worst case complexity is calculated as  
2

)1()1(
1

−
=+−∑

=

mnmkmn
m

k
 . 

Therefore, the complexity of this algorithm is O(nm2). 
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Figure 4.24 Algorithm for selecting hidden nodes and creating optimal tree 

Our method is similar to the method proposed in [Harinarayan et al., 1996] in that 

they are all greedy algorithms for selecting nodes for materialization. The difference is 

that the method in [Harinarayan et al., 1996] aims to select a subset of nodes to 

materialize in order to facilitate the calculation of a query on an arbitrary node. In other 

SelectHiddenNodes(GenSpace graph G, Interesting node set I, 
Uninteresting node set U) { 
1. Create initial optimal tree OT based on I; 
2. U' = ∅; 
3. While there is enough memory and U is not empty do { 
4. For each u ∈U, do 
5.  Impu = Improvement(u, I, G, U', OT); 
6. Select umax as the one with maximum improvement Impmax; 
7. If Impmax ≤ 0 
8.  break; 
9. U' = U' ∪ {umax}; U = U − {umax}; 
10. For each node x ∈ I∪U' do { 
11. Find its best ancestor uan (with smallest size) in I∪U'; 
12.  Set uan as x's parent; 
13. } 
14. OT = newly generated optimal tree; 
15. } 
16. Return selected node set U' and optimal tree OT for nodes I∪U'; 
17. } 
 
Improvement(u, I, G, U', OT) { 
18. Improvement = 0; 
19. Find u's best ancestor uan ∈ I∪U' in G;  
20. Find u's descendent set D ⊆ I∪U' in G; 
21. For each d in D, do { 
22. Find d's parent p in current OT; 
23. If size(p) > size (u) 
24.  Improvement += size(p) − size(u); 
25. } 
26. Improvement −= size(uan); 
27. Return Improvement; 
28. } 
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words, it intends to improve the average calculation time for a node. Our method aims to 

find an optimal path in the GenSpace graph such that the calculation of a subset of nodes 

is efficient. The improvement function of their method takes non-negative values, which 

means that given enough memory, the algorithm always select a node to materialize until 

all nodes are selected. In our algorithm, the improvement function can take negative 

values, since incorporating a new node will incorporate the scanning cost for 

materializing this node.  

4.3.2 Experimental Results 

To measure the efficiency of the propagation in subgraphs created by the heuristic 

method proposed in Section 4.3.1, we first experimented with synthetic data sets, and 

then on the Saskatchewan weather data set and the University of Regina student data set.  

We used the same synthetic data sets and DGGs as in section 4.2.2. 

Scalability. In this series, we want to see the time savings of propagation paths obtained 

by the proposed method to the paths consisting of only potentially interesting nodes as a 

function of the sizes of data sets. We set the number of sections in nodes A, B, and X to 5, 

30, and 50 respectively and varied the size of data sets from 40K to 200K with an 

increment of 40K. We marked the nodes under level four as uninteresting, which results 

in 162 uninteresting nodes and 94 potentially interesting nodes. Figure 4.25 shows the 

percentage time savings when we select some uninteresting nodes to facilitate 

propagation. The savings increase when the size of the bottom node increases. The 

possible reason is that when the size of the bottom nodes increases, the generalization 

ratio in the GenSpace increases.  
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Figure 4.25 Percentage savings for data sets with different sizes 

 We also experimented with scalability from another perspective by changing the 

size of the bottom nodes in ExGen graphs as shown in Figure 4.9. We set the size of A 

and B to 5 and varied the size of the bottom nodes for all ExGen graphs from 10 to 80. 

We marked nodes under level 4 as uninteresting. The time cost and storage cost are 

shown in Figures 4.26 and 4.27, respectively. Figure 4.26 shows that the propagation cost 

in the GenSpace subgraph obtained by our approach is consistently and significantly 

lower than that in both the GenSpace graph and subgraph consisting of only interesting 

nodes. We also observed that the propagation costs of the subgraph obtained by pruning 

all uninteresting nodes go flat when we increase the sizes of the bottom nodes of the 

ExGen graphs. This is because when we increase the sizes of the bottom nodes in the 

ExGen graphs, the nodes in the lower levels in the GenSpace graph usually increases 

accordingly and the nodes in the upper levels are usually small and tend to have constant 

sizes. If we prune the nodes in the lower levels, the propagation costs for the upper levels 

will not change dramatically. The results also show that when the sizes of the bottom 

nodes are small (less than 55 according to the results), pruning all the uninteresting nodes 

will deteriorate the propagation costs. This is because when the sizes of the bottom nodes 
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of ExGen graphs are small, the nodes in the lower levels are much smaller than the 

bottom node. When the sizes of the bottom nodes of ExGen graphs are large, the nodes in 

the lower levels are of nearly the same size as the bottom node. If we prune the nodes that 

are much smaller than the bottom node, which can facilitate the propagation, the 

propagation costs deteriorate. Figure 4.27 shows that the storage of the GenSpace 

subgraph does not significantly increase compared to the storage of entire GenSpace 

graph. 
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Figure 4.26 Time cost for bottom nodes with different sizes 
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Figure 4.27 Storage cost for bottom nodes with different sizes 

Depth of uninteresting nodes. In this series, we mark nodes at various depths as 

uninteresting. We set the size of A, B, and X to 8, 8, and 50. The size of the data set is 

200K. Figures 4.28 and 4.29 compare the time and storage costs, respectively. Figure 

4.30 shows the percentage of time saved.  As we expected, when we mark uninteresting 

nodes below very low levels, the time savings are limited, because no nodes or only a few 

nodes can improve the propagation time; while when we set uninteresting nodes from the 

middle levels, the time savings are significant.   
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Figure 4.28 Propagation time with different levels of uninteresting nodes 
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Figure 4.29 Storage with different levels of uninteresting nodes 
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Figure 4.30 Time savings for different levels of uninteresting nodes 

For the Saskatchewan weather data set, we experimented with three cases: (1) 

mark all nodes in the lowest 5 levels (out of 19 levels) as uninteresting, (2) mark all  

nodes in the lowest 5 levels or with specific date values or specific temperature values as 

uninteresting, (3) mark all nodes with specific values for any attribute as uninteresting. 

The results are shown in Table 4.2. The Storage column lists the storage cost in 
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thousands of records. The Scanning column lists the number of the records scanned 

during propagation, in thousands of records, which gives an estimate of the propagation 

cost.  The Time column lists the propagation cost in seconds. In case 1, after selecting 

hidden nodes, the storage increased by 25%, while the scanning cost decreased by 60%. 

In case 2, the storage cost increased by 26%, and the scanning cost decreased by 82%. In 

case 3, the storage cost increased by 8% and the scanning cost decreased by 42%. In all 

three cases, the scanning cost decreased significantly while the storage cost increased by 

a smaller percentage. Figure 4.31 illustrates the storage and scanning cost after selecting 

varying numbers of nodes for cases 1 and 2. The X-axis denotes the number of the nodes 

currently selected, and the Y-axis denotes the storage and scanning cost, in thousands of 

records. In both cases, the first few nodes contribute the most to the reduction of the 

scanning cost. Therefore, we suggest that the node selection process be halted when the 

improvement is below a given threshold. These experimental results indicate that with the 

propagation path selected by our approach, the propagation time is significantly reduced, 

while the increase of storage space remains acceptable. 

Table 4.2 Efficiency comparison of propagation in GenSpace subgraph in three cases for 

Saskatchewan weather data set 

  Storage (K) Scanning 
(K) 

Time (Sec) 

Prune all 4128 21173 2149Case 1 
Heuristic  5156 8391 1056
Prune all 912 11703 983Case 2 
Heuristic  1152 2155 152
Prune all 467 1692 158Case 3 
Heuristic  507 965 69
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(b) Case 2 

Figure 4.31 Storage and time costs when selecting hidden nodes for Saskatchewan 

weather data set 

For the student data set, we experimented with two cases: (1) mark all nodes in 

the lowest 4 levels as uninteresting, and (2) mark all the nodes with attributes at specific 

levels as uninteresting. Figure 4.32 illustrates the storage and scanning cost after selecting 

varying numbers of nodes for cases 1 and 2. 
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Figure 4.32 Storage and time costs when selecting hidden nodes for student data set 

 
4.4 Discussion 

In most cases, subgraphs for multi-step generalization have less storage cost and 

scanning cost than one-step generalization subgraphs. However, we need to store 

additional mapping information and procedures to deal with multi-step generalization. In 

the previous discussion, we use the number of records scanned to describe the time cost 

for propagation. Now we separate the time cost into generalization cost and aggregation 

cost for analysis.  
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Generalization cost refers to the time cost of generalizing a more specific record 

to a more general record. Aggregation cost refers to the time cost of aggregating 

estimates in the more general node. Although multi-step generalization may scan fewer 

records, for each record, it has more generalization cost. Therefore, if the subgraph 

consisting of the potentially interesting nodes is already optimal or close to optimal in 

terms of propagation without incorporating uninteresting nodes, we intend to choose the 

one-step generalization method. Otherwise we choose the multi-step generalization 

method. Since when no or a few additional uninteresting nodes are selected, the 

propagation cost in the number of the scanned records are similar for both generalization 

methods, therefore, one step generalization is more efficient. Otherwise, the multi-step 

generalization method always scans fewer records than the one-step method, and is, 

therefore more efficient. 

 In our implementation of the GSEP, we tried the updating and generating 

methods. In the updating method, we materialize all the potentially interesting nodes in 

memory. When new estimates come, we update the old estimates. In the generating 

method, we only keep the currently unexpanded nodes and the top k nodes in memory 

and release all other nodes when we propagate the estimates to them and calculate the 

measure values for them. Experimental results show that when the bottom node is small, 

the updating method is slightly more efficient than the generating method. However, 

when the size of the bottom node increases, the efficiency of the updating methods 

deteriorates quickly. In our implementation, we adopted the generating method.  
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CHAPTER 5 

CONSTRUCTING VIRTUAL BOTTOM NODES WITH 

GRANULAR COMPUTING 

 

 Bottom nodes are always the bottleneck for the GSSM process. To tackle this 

problem, in this chapter, we use virtual bottom nodes as substitutes for real bottom nodes. 

The virtual bottom node can be significantly smaller than its corresponding real bottom 

node. The mining results with virtual bottom nodes are identical to those obtained with 

real bottom nodes. 

5.1 Virtual Bottom Nodes 

Since an ExGen (or DGG) graph can be used to represent the ontology for a 

domain, it can be fairly complex. For example, in [Randall et al., 1999], a calendar DGG 

with 27 nodes is proposed. However, in a specific application, perhaps only a small 

subset of the nodes is interesting to a user. If the user can mark uninteresting nodes in 

ExGen graphs for individual attributes, the ExGen graphs can be pruned before the 

GenSpace graph is created, and the resulting GenSpace will be smaller than it would have 

been. Usually the bottom node is not interesting to the user, since it represents the basic 

granularity of the domain and has large cardinality. However, if the bottom node of an 

ExGen graph is marked as uninteresting, pruning the bottom node will prevent 

propagation from being performed consistently, because GSEP first propagates the 

estimates to the single bottom node before propagating them to the other nodes. We need 

to use the bottom node as the basis for this propagation. Preserving the structure of a 
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GenSpace graph with a single bottom node allows us to preserve the consistency of 

propagation. On the other hand, bottom nodes are usually very big and consequently form 

the bottleneck for storage and propagation. Reducing its size is desirable for storage and 

propagations in GSEP. In this section, we introduce a substitute bottom node, called a 

virtual bottom node (VBN), which can have a smaller size than its corresponding real 

bottom node, but still has a generalization relation with all other potentially interesting 

nodes in the ExGen graph. Since the propagation process may be repeated many times, 

creating virtual bottom nodes before the propagation process is worthwhile. 

Virtual bottom node construction can be considered as a specific form of granular 

computing. Granular computing refers to the theories, methodologies, techniques, and 

tools that make use of granules, i.e., groups, classes, or clusters of a universe, in the 

process of problem solving [Yao, 2000; Bargiela and Pedrycz, 2002; Skowron and 

Stepaniuk, 2001]. A granule is composed of a set of elements drawn together by 

indistinguishablitiy, similarity, or proximity relations. Two major issues regarding 

granular computing are the construction of granules and computation with granules.  

With regard to using a virtual bottom node of a GenSpace graph, the construction 

of the virtual bottom node can be considered to be construction of a granule, and the 

propagation in the GenSpace with a virtual bottom node can be considered as computing 

with granules. The criteria for constructing a virtual bottom node is that the output should 

not be changed when we replace the real bottom node with the virtual one, and the space 

required should be reduced. Here we look for a granulation level that is as rough as 

possible, but contains all the information needed for propagation. 
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Definition 5.1 In an ExGen graph G, let the set of interesting nodes be I.  A node B is a 

base interesting node iff B ∈ I and there does not exist an interesting node A ∈ I such 

that A p  B. 

Definition 5.2 The virtual bottom node (VBN) V of ExGen graph G is the combination 

of the partitions of base interesting nodes Bi, such that V satisfies X p  V and V p  Bi, and 

there does not exist a partition V’ such that X p  V’, V’ p  Bi, and V p  V’.  

From Definition 5.2, we can see that the VBN V is a rougher partition of the 

bottom node X since we have X p  V.  It is the roughest possible partition that has 

generalization relation with every base interesting node Bi since we have V p  Bi and 

there does not exist a partition V’ such that V’ p  Bi, and V p  V’. If there is only one 

base interesting node B, the VBN V is identical to B. In the worst case, V = X.  

We call an ExGen graph with a VBN a virtual ExGen graph and a GenSpace 

graph with a VBN a virtual GenSpace graph. 

Here we seek indiscernibility relations based on different levels of generalizations 

for our granule construction. Two objects are indiscernible with respect to condition 

attributes B if they have the same values for all the attributes belonging to B [Pawlak, 

1992]. Yao et al. proposed a granulation based on indiscernible relations on multiple 

attributes [Yao, 2000], while our indiscernible relations are based on one attribute, but 

multiple generalizations of that attribute.  

Figure 5.1 gives our algorithm for constructing a VBN for an ExGen graph.  

 There are four input parameters for this algorithm, the attribute we work on, its 

corresponding ExGen graph, the set of base interesting nodes, and the original data table.  

The first two lines of the algorithm deal with the situation where there is only one base 
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interesting node. In this case, we return the base interesting node as the VBN. If there are 

two or more base interesting nodes in the ExGen graph, we initially set the VBN as an 

empty set. Then for each real value in the real bottom node, we map the value into all the 

base interesting nodes, and concatenate the results to get a virtual value. Then we 

uniquely insert the value into the VBN.  

The worst case complexity for this algorithm is O(n(m + n)), where n is the 

cardinality of the bottom node BT and m is the cardinality of BI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Algorithm for constructing a VBN 

 After we obtain the VBN, we connect it to all the base interesting nodes as a 

parent. We then remove the real bottom node and all the uninteresting nodes that have 

base interesting nodes as decedents. We preserve the other uninteresting nodes in the 

ExGen graph to construct the GenSpace graph. After obtaining GenSpace graph, we mark 

the nodes that are composed of any uninteresting nodes and VBNs in ExGen graphs as 

Algorithm ConstructVB 

Input: attribute a, its corresponding ExGen graph EG, the set of base 
interesting nodes BI, bottom node table BT. 
Output: virtual bottom node VB. 
1. If there is only one node b in BI, 
2.    Return VB = b; 
3. VB = {}; 
4. For each value bvalue in BT do 
5.    VirtualValue = “”; 
6.    For each base interesting node b ∈ BI do  
      // Find the generalized value of bvalue in b. 
7.    GenValue = FindGenValue (bvalue, b);  
      // Concatenate the generalized value to the current virtual value.  
8.    VirtualValue = Concatenate(VirtualValue, GenValue); 
9.    If VirtualValue is not in VB 
10.      Insert VirtualValue into VB; 
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uninteresting automatically, and use the algorithms proposed in Chapter 4 to prune nodes 

in the GenSpace graph. 

 In the linear GSEP process, if old estimates are non-zero, the results for the virtual 

GenSpace graph are identical to that for the original GenSpace graph. However, if there 

are zeros for old estimates, we need to adjust the propagation formula to make the 

propagation results identical in both the virtual and original GenSpace graphs. In this 

case, we record the size of each sections in the VBN, i.e., count the number of elements 

in the real bottom node belonging to each section in the VBN, denoted as size(v) = 

|Spec(v, X)|, where v is a section in VBN, and X denotes the real bottom node. If the old 

estimate for the kth section in the ith node equals zero, i.e., 0)(_ =ikSoldE , we propagate 

the new estimate E(Sik) = Eik  to the VBN with the formula 
|),(|

*)(
)(

XSSpec
Evsize

vE
ik

ik= . 

The following theorem guarantees that propagation in the revised GenSpace graph 

has the same effect as in the original one. 

Theorem 5.1 The linear GSEP method produces the same results for the original 

GenSpace graph and the virtual GenSpace graph in terms of potentially interesting nodes, 

if initial estimates in the original and virtual GenSpace graphs are consistent. 

Proof. 

(1) There are no zero old estimates.  

First, we incorporate the VBN V in the original GenSpace graph. Set V as a child of 

bottom node X and the parent node of base interesting nodes. This will not change the 

results of the mining process. 

When the user changes estimates in a potentially interesting node P, the estimates are 

first propagated to the bottom node, and then upward to the other nodes, including V.  
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Assume that node P’s estimates are changed. We propagate them to the bottom node X. 

For a section x ∈ Spec(p, X) in the bottom node X, where p is a section of P, we have 

)(
)(

)()(
pE
pE

xExE
old

new
oldnew = . 

When we propagate estimates upward to V, For an section v ∈ V that satisfies v ∈ Spec(p, 

V), we have 

∑∑
∈∈

==
),(),( )(

)(
)()()(

XvSpecx old

new
old

XvSpecx
newnew pE

pE
xExEvE . 

Because initial estimates are consistent, i.e., ∑
∈

=
),(

)()(
XvSpecx

oldold xEvE , we have 

)(
)(

)()(
pE
pE

vEvE
old

new
oldnew = . 

This new estimate for section v is identical to that obtained from the propagation in the 

virtual GenSpace graph. Then when we propagate the estimates upwards to all other 

potentially interesting nodes, we obtain the same results for estimates. 

(2) There are zero old estimates. 

Assume 0)( =pEold . According to linear GSEP, we have 
),(

)(
)(

XpSpec
pE

xE new
new =  for the 

real bottom node. Then we propagate upward to the VBN, we obtain 

),(
)(|),(|

)()(
),( XpSpec

pEXvSpec
xEvE new

XvSpecx
newnew ∑

∈

== . This result is identical to that obtained 

from propagating from P to V in the virtual GenSpace graphs. 

Example 5.1. Figure 5.2 illustrates the definition of a VBN. Figure 5.2(a) is an ExGen 

graph for a Date attribute for a specific non-leap year. Suppose that only the bottom node 

is specified as uninteresting and that all possible values occur in the data set. We have a 
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domain of 365 elements in the bottom node Day, 12 sections for node Month, and 7 

sections for node Weekday. The base interesting nodes are Month and Weekday. Figure 

5.2(b) is the corresponding ExGen graph with a VBN Month_Weekday, with 12 * 7 = 84 

sections {January Sunday, January Monday, …, December Saturday}. We can see that 

node Month_Weekday is a finer partition of the Month and Weekday nodes, and is a 

rougher partition of the Day node.  

 

 

 

 

  

 

        

                   (a) Original ExGen Graph             (b) ExGen Graph with a VBN 

Figure 5.2. An example for VBN 

Some factors influence the effect of the VBNs. First, the greater the generalization 

ratio is in the ExGen graphs, the better effect the VBN will achieve. This is because the 

size of the VBN is related to the size of the base interesting nodes. 

Secondly, the more the base interesting nodes are correlated, the better effect it 

will achieve. Assume that we have a set of countries in the Asia-Pacific region and there 

are two base interesting nodes (partitions) A and B. A = {North America, South America, 

Asia} is a partition based on continent. B = {Big countries (with a population more than 

100 million people), Medium countries (with a population between 10 million and 100 

million), Small countries (with a population less than 10 million)} is a partition based on 

population. They all partition the domain into three sections. Because there is no 

correlation between these two partitions, we get nine partitions when we combine them to 

Any 

Month Weekday 

Day 

Any 

Month Weekday 

Month_Weekday
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construct the VBN as shown in Figure 5.3(a). The thick line denotes partition A and the 

thin line denotes the partition B. Then if we change the partition B to {Canada, USA, 

Other countries} and keep the partition A unchanged, the two partitions correlated in the 

way that two sections of partition B (Canada and USA) are subsets of a section of 

partition A (North America) as shown in Figure 5.4(b). In this case, we get five sections 

for the VBN. 

 
   North America    South America    Asia 
 
   Big 
 
   Medium 
 
   Small 

 
   North America    South America    Asia 
 
    
    
    
 
 
 
                 Canada   USA       Other 

 
 (a) Partitions A and B are not correlated           (b) Partitions A and B are correlated 

Figure 5.3 The correlation among the base interesting nodes and the size of VBN 

Thirdly, the more compact the data distribution is, the better effect it will bring. 

Based on the partition in Figure 5.3(a), if the country set is {USA, Canada, Bermuda, 

Brazil, Argentina, Bolivia, China, Korea, Singapore} the data are distributed in all 

sections in the VBN as shown in Figure 5.4. In the VBN, there will be nine sections. The 

VBN will not help reduce the storage. However, if the county set is {USA, Canada, 

India, China, Japan, Korea, Thailand, Singapore, Nepal}, the data are distributed in only 

five sections as shown in Figure 5.4(b). Therefore, in the VBN, storage cost will be 

reduced by nearly 50%. 
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   North America    South America    Asia 
 
   Big 
 
   Medium 
 
   Small 

 
   North America    South America    Asia 
 
   Big 
 
   Medium 
 
   Small 

 
 (a) Data distributed in all sections.         (b) Data distributed in only five sections. 

Figure 5.4 Data distribution and the size of VBN 

From the analysis, we can see that the size of a VBN cannot exceed the size of the 

real bottom node and the multiplication of the sizes of the basic interesting nodes, i.e., 

|)||,min(||| ∏
∈

≤
BIB

i
i

BXV , where V denotes the VBN, X denotes the real bottom nodes, 

and Bi denotes a base interesting node. The lower bound of the size of the VBN is the 

maximum size of the base interesting nodes, i.e., ||max|| iBIB
BV

i∈
≥ . This occurs when one 

of the base interesting nodes is a finer partition of all other base interesting nodes. 

Although the two partitions may not have a generalization relation logically, the relation 

can exist for a given subset of values.  For example, we can partition a set of countries 

into P1 = {North America, Asia, South America}. We can also partition them into P2  = 

{Canada, Other countries}. Logically, there is no generalization relation between these 

two partitions. However, if we do not have North American countries except Canada in 

the data set, we can see that P1pP2. In this case, the VBN is identical to P1. We can call 

this generalization relation a factual generalization relation. 
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5.2 Experimental results 

We conducted experiments on the Saskatchewan weather dataset and the 

University of Regina student data set to measure the effectiveness of using VBNs. 

For the Saskatchewan weather data set, we assumed all bottom nodes in ExGen 

graphs are uninteresting. For the attributes HighTemp and TotalPrep, which have 

numeric values and have only one child node of the bottom node in their ExGen graphs, 

we simply eliminated the bottom node. For attribute Station, we replaced the bottom node 

Specific-Station with a VBN called C-D-L-Region. For attribute Date, we replaced the 

bottom node Specific-Date with a VBN called YYYYMM-Season. Table 5.1 lists the sizes 

of the real bottom node and the VBN for the ExGen graphs for the individual attributes 

and the Genspace graph formed by combining these ExGen graphs. Figure 5.5 shows the 

percentage of time cost saved by traversing in a virtual GenSpace graph compared with 

traversing in the original GenSpace graph. We can see that the percentage of the 

propagation time saved increases as the size of the bottom node increases. Figure 5.6 

compares the time cost and space cost of virtual and real bottom nodes. The X-axis 

denotes the size of the bottom node, and Y-axis denotes the propagation cost and space 

cost in thousands of records, respectively.  All costs increase linearly with the size of the 

bottom node, but the rate of increase is smaller for the VBN than for the real bottom 

node.  

After incorporating VBNs in ExGen graphs, any nodes in the GenSpace graph 

involving the virtual values are not interesting to the user, because the virtual values are 

only intended to facilitate the propagation and they do not necessarily have any logical 

meaning. When we mark them as uninteresting nodes and apply the node pruning 
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algorithm presented in Chapter 4, we can further reduce the time and storage costs. 

Figure 5.7 compares the costs. 

Table 5.1 Comparison of the sizes of the real bottom nodes and VBNs for the weather 

data set 

Size Station Date HighTemp TotalPrep GenSpace 
Bottom node 30     18262 152 280 211584 
VBN 21 1200 4 4 43808 
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Figure 5.5 Percentage time savings for VBNs for the weather data set 
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(a) Propagation cost 
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(b) Space cost 

Figure 5.6 Time and storage costs for virtual and original GenSpace graphs for the 

weather data set 
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(a) Propagation cost 
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(b) Space cost 

Figure 5.7 Time and storage cost for the virtual GenSpace graph and the virtual 

GenSpace subgraph for the weather data set 

For the University of Regina student data set, we also assumed that all bottom 

nodes in ExGen graphs are uninteresting. Table 5.2 lists the size of the real bottom node 

and the VBN for the ExGen graphs for the individual attributes and the Genspace graph 

formed by combining these ExGen graphs. Figure 5.8 shows the percentage of time cost 

saved by traversing in a virtual GenSpace graph compared with traversing in the original 

GenSpace graph. We can see that the percentage of propagation time saved increases as 

the size of the bottom node increases. Figure 5.9 compares the time cost and space cost of 

virtual and real bottom nodes. All costs increase linearly with the size of the bottom node, 

but the rate of increase is smaller for the VBN than for the real bottom node. Figure 5.10 

compares the time and the storage costs for traversing the GenSpace graph with those of 

traversing the pruned GenSpace graph. All the experiments on the student data set have 

similar results to those obtained from the weather data set.  
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Table 5.2 Comparison of the sizes of the real bottom nodes and the VBNs for the student 

data set 

Size City Program Term GPA GenSpace 
Bottom node 832     159 6 62 59361 
VBN 64 88 6 9 4599 
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Figure 5.8 Percentage time savings for VBNs for the student data set 
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(a) Propagation cost 
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(b) Space cost 

Figure 5.9 Time and storage cost for virtual and original GenSpace graphs for the 

student data set 
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(a) Propagation cost 
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(b) Space cost 

Figure 5.10 Time and storage cost for the virtual GenSpace graph and the virtual 

GenSpace subgraph for the student data set 
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CHAPTER 6 

INTERESTINGNESS MEASURES IN GENSPACE 

SUMMARY SELECTION 

 

In this chapter, we analyze the interestingness measures in the GSSS process, 

which selects the summaries that are far from the user’s estimates and presents them to 

the users. The key issue in the GSSS process is to choose the appropriate interestingness 

measures that measure the distance between the observed probability distributions and 

the estimates. Since the user’s estimates are integrated in the measures in the GSSS 

process, the measures can be considered as subjective measures. In the remainder of this 

chapter, we first review 16 common objective interestingness measures for summaries 

and the principles for choosing the measures. We then choose the appropriate measures to 

convert to subjective measures for GSSS by incorporating the user’s estimates. Finally 

we identify the properties of these measures in terms of the GSSS process. 

 

6.1 Interestingness measures for summaries 

Hilderman and Hamilton reviewed 16 objective interestingness measures for 

summaries [Hilderman and Hamilton, 2001] (see Table 2.4). These measures rank 

summaries according to the diversity of their distribution. They also proposed five 

principles desired for any acceptable interestingness measures for summaries. The 

formulas of the measures are listed in the second column in Table 2.4. Here we only 

consider the concentration order [Hilderman and Hamilton, 2001], which means that the 
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further the distribution is from the uniform distribution, the higher value the 

interestingness measure will attain, and thus the more interesting the summary is. 

These interestingness measures are widely used in various domains to measure 

the diversity distribution of populations, such as ecology [Bulla, 1994; Molinari, 1989; 

Peet, 1974], economy [Allison, 1978; Atkinson, 1970; Schutz, 1951], biology [Lewontin, 

1972], and business [Attaran and Zwick, 1989; Hart, 1971]. Although the interestingness 

measures are highly dependent on the specific domain and there is not a single standard 

for choosing them, some fundamental principles have been proposed to evaluate the 

measures. They are Minimum Value Principle (P1), Minimum Value Principle (P2), 

Skewness Principle (P3), Permutation Principle (P4), and Transfer Principle (P5). 

Hilderman and Hamilton identified relations between the measures and the principles as 

shown in Table 2.4 [Hilderman and Hamilton, 2001].  

 

6.2 Incorporating Estimates in Interestingness Measures 

 In GSSS process, the interestingness measures need to incorporate the user’s 

estimates. The most straightforward way to do so is to substitute the average probability 

q  in measures in Table 2.4 with the estimates ei. Since the Simpson measure, the 

Shannon measure, the Total measure, and the McIntosh measure do not contain q , they 

are not suitable to incorporate the estimates. The Gini measure is also not straightforward 

to incorporate estimates. Therefore, we incorporate the estimates in the other nine 

measures and convert them to subjective measures as shown in Table 6.1. In Table 6.1, oi 

and ei denotes the observed probability and the estimate, respectively, for the ith record in 

the summary. 
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 Here we distinguish these measures into distance measures (D), similarity 

measures (S), and other measures (O). 

Definition 6.1 A distance measure d of observed probability distribution o = [o1, …, on] 

and estimates e = [e1, …, en] is a non-negative real valued function 

],0[:),( ∞+→× nn RReod .  It attains the minimum value 0 iff o = e is satisfied. 

The distance measures measure the distance between two vectors. When the two 

vectors are identical, the distance is zero. Farther distance results in higher interestingness 

values. Based on Definition 6.1, the variance measure, Schutz measure, Kullback-Liebler 

measure, and Theil measure are distance measures. 

It must be noted that there are differences between our definition of distance and 

the traditional definition of distance in mathematics. The traditional definition of the 

distance function requires the symmetric property ),(),( xydyxd = and triangular 

inequality ),(),(),( yzdzxdyxd +≤  to be satisfied. Our definition of distance between 

the observed probabilities and the estimates is more relaxed than the traditional one. 

Definition 6.2 A similarity measure of observed probability distribution o = [o1, …, on] 

and estimates e = [e1, …, en] is a function ]1,0[:),( →× nn RReos , which satisfies 

1),( =eos  iff o = e. 

 The similarity measures measure the similarity of two vectors. Similarity value 0 

corresponds to the maximum dissimilarity and 1 corresponds to the maximum similarity. 

 Any similarity measure can be converted to a distance measure. They are 

distinguished here because we need to know their semantics to explain the interestingness 

of summaries in GSSM process. 

 If a measure is neither a distance measure nor a similarity measure, we call it the 
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other measure. The Type column in Table 6.1 classifies the measures according to this 

criterion. The reason that we classify the measures in this way is that we need to interpret 

the semantics of the interesting values in GSSS process. Since the unexpectedness is 

represented by the distance between the observed probabilities and the estimates, if a 

distance measure is used, the summaries should be ranked in the descending order. If a 

similarity measure is used, the summaries should be ranked in the ascending order. The 

semantics of the other measures is difficult to explain in the context of GSSS.  

Table 6.1 Subjective interestingness measures with the user’s estimates 

Measure Definition Type Pruning 
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6.3 Properties of the Interestingness Measures That Can Be Used for Pruning 
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The pruning methods proposed in the previous chapters are aimed at improving 

the efficiency of the GSEP process. In this section, we propose pruning strategies based 

on different interestingness measures in the GSSS process. 

After the pre-process of pruning nodes in ExGen Graphs and GenSpace graph and 

the estimate propagation, we begin the GSSS process. Intuitively, if the difference 

between the observed probability distribution and the estimates in a node is small enough, 

the difference of its descendent nodes will not be large, and thus are not interesting and 

may be pruned in the GSSS process. However, this is not always true for all measures. 

For example, the variance measure is not a monotonic function and the higher levels of 

summaries might have higher interestingness values than the lower levels of summaries, 

therefore, the pruning cannot be conducted for this measure. In this section we study the 

properties of some interestingness measures and show how these properties can be used 

as pruning strategies. 

 

6.3.1 Monotonicity    

 Monotonicity can be defined in different ways in different contexts. In the context 

of GenSpace graphs and GSSS processes, we define monotonicity in the following way. 

Definition 6.3 In a GenSpace graph G, if for any two given nodes n1 and n2 satisfying 

21 nn p , an interestingness measure m satisfies )()( 21 nmnm ≤ , we call the measure m 

monotonic. 

Theorem 6.1. The Bray measure is monotonic in GenSpace graphs. 

Proof:  

Assume we have two nodes n1 and n2 satisfying 21 nn p . Each section 2ns∈  corresponds 
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Theorem 6.2 The Whittaker measure is monotonic in GenSpace graphs. 

Proof: 

Assume we have two nodes n1 and n2 satisfying 21 nn p . Each section 2ns∈  corresponds 
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Theorems 6.1 and 6.2 state that more general nodes always attain higher 

interestingness value than more specific ones. It also implies that the top node always 

obtains the maximum interestingness value and the bottom node always obtains the 

minimum interestingness value regardless of the distributions of oi and ei. Since both the 

Bray and the Whittaker  measures are similarity measures, we always obtain the bottom 

nodes as the most interesting nodes. 

The monotonicity property of the Bray and Whittaker measures can be used to 

prune the summaries when the user sets a threshold for the interestingness values and 

only wants to output the summaries that are below the threshold. Once the interestingness 

values of a node is above the threshold, all its decedents can be pruned. 

 

 

 

6.3.2 Upper Bound 

 Some interestingness measures do not have the monotonicity property, but they 

still have an upper bound for the interestingness values for the descendent nodes of a 

given node. These measures include the Schutz measure, the symmetric relative variance 

measure, and the Kullback-Liebler measure. 
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6.3.2.1 Schutz Measure 

 The Schutz measure represents the relative difference of the observed 

probabilities and the estimates. Although it does not possess the monotonicity property, 

we identified a relaxed upper bound for the descents of a node. Lemma 6.1 shows this 

property. 

Lemma 6.1 In a GenSpace graph, a node P consists of partition {S1, S2, …, Sn}, and we 

use the Schutz as the interestingness measure. If for every partition Si we have 

0,
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Suppose node Q is a descendent of node P. We have the partition for Q = {T1, T2, …, 

Tm}, where U
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Theorem 6.3 shows that if all the relative differences of every section in a node 

have an upper bound, then the interestingness measures of its descendents cannot exceed 

this upper bound. 

Here we define 0)( =iSd  if 0)( =iSe and 0)( =iSo . We define 

computertheindrepresentevaluegreatesttheSd i =)(  if 0)( =iSe and )()( ii SeSo ≠ . 

Theorem 6.3 indicates that when we use the Schutz measure, the child’s greatest 

relative difference is not greater than the parent’s greatest relative difference. But it does 
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not mean that the interestingness value of the child cannot be greater than that of its 

parent, as is demonstrated by the following example. 

 

 

 

 

 

(a) GenSpace graph      (b) Estimates and observed probability for nodes P1 and P2  

Figure 6.1 An example to illustrate Lemma 6.1 

In Figure 6.1(a), node P1 is a parent of node P2. P1 has three sections a1, a2 and a3. 

P2 has two sections b1 and b2, where b1 is the union of a1 and a2, and b2 is identical to a3. 

The observations and estimates for the two nodes are listed in Figure 6.1(b). We obtain 

33.0
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|)()(|)(
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11
1 =

−
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ao
aoaead ; similarly, we have d(a2) =  0.33, d(a3) =  0.5, d(b1) = 

0.33, d(b2) = 0.5, Intr(P1) = 1 / 2 * ( 0.33 + 0.5 ) = 0.42, Intr(P2) = 1 / 3 * ( 0.33 + 0.33 + 

0.5 ) = 0.37. Although the child’s interestingness value (0.42) is greater than that of its 

parent (0.37), it is not greater than the greatest relative difference of its parent node (0.5). 

If t = 0.5 has been set as the threshold, since all the differences of sections in P1 is less 

than t, according to Lemma 6.1, the relative variances of the descendents of P1 should be 

less than t, thus, the descendents of P1 can be pruned. 

 

 

 

 

P2: b1 = a1∪a2, b2 = a3 

P1: a1, a2, a3 

o(a1) = 0.3,  e(a1) = 0.4 
o(a2) = 0.3,  e(a2) = 0.4 
o(a3) = 0.4,  e(a3) = 0.2 
 
o(b1) = 0.6, e(b1) = 0.8 
o(b2) = 0.4, e(b2) = 0.2
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6.3.2.2 Symmetric Relative Variance 

We define a variant of the Schutz measure, called the symmetric relative 

variance, as ∑
=

−
=

n

i ii

ii

SoSe
SoSe

n
PIntr

1 ))(),(max(
|)()(|1)( , where o(Si) and e(Si) are observed and 

estimated probabilities for section Si, respectively.   

Compared with the Schutz measure, the symmetric relative variance is symmetric 

for observed probabilities and the estimates and takes values in [0,1]. We found that the 

symmetric relative variance also has the upper bound property, which is presented in 

Lemma 6.2. 

Lemma 6.2 In a GenSpace graph, a node P consists of partition {S1, S2, …, Sn}, and we 

use the symmetric relative variance. If for all partition ai we have 
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))(),(max(
|)()(|

≥≤
−

tt
SoSe

SoSe

ii

ii  the interestingness values of all the descendents of P are not 

greater than t. 

Proof: 

To prove Lemma 6.2, we only need to prove that the relative difference for every section 

of a descendent node cannot be greater than t. 

Let i be the number of the sections in node P that belong to a section in its descendent. 

We use induction on i for the proof. 

(1) If i = 2, we assume section b in a descendent node corresponds to sections a1 and a2 in 

the node P, i.e., 21 aab ∪= , 
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(1.3.2) If )()()()( 2121 aoaoaeae +≤+ , similarly we can get 
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6.3.2.3 Kullback-Liebler measure 

The Kullback-Liebler interestingness measure ∑
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based on information theory. We also identified the upper bound for this measure.  

Lemma 6.3 In a GenSpace graph, a node P consists of partition {S1, S2, …, Sn}, and we 

use the Kullback-Liebler interestingness measure. If for every partition Si we have 
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Proof: 
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6.3.2.4 Pruning Based on Upper Bound Property   

Figure 6.2 illustrates a pruning strategy based on the upper bound property. This 

search algorithm finds the k most interesting summaries. In a run, if the user accepted the 

estimates for the observed probability, i.e., the estimates and observed probabilities are 

identical, all its descendants will not be interesting and they will be pruned. This is a 

special case of our heuristic.  
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In the thesis, we present the GSEP and GSSS as two separate steps. In 

implementation, we combined these two steps, because some nodes can be pruned based 

on interestingness measures in GSSS process and thus estimates do not need to be 

propagated to these nodes in GSEP process. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Pruning algorithm GSProp for searching the GenSpace graph 

 

GSProp Algorithm 
Input: a GenSpace graph G, k (find top k nodes) 
1. From bottom to top in G, select the first k nodes using breadth 
first search and mark them as the visited nodes. 
2. Calculate the interestingness values for the selected nodes. 

2.3. Let t be the smallest interestingness value in the k nodes.  
4. For the next unvisited and unpruned node in the breadth first 

search,  
5. Calculate the difference between observations and estimates 

for each section.  
6. If the differences are all less than t,  
7.  Prune this node and all its descendant nodes,  
8. Otherwise,  
9.  Calculate its interestingness measure. 
10.  If the interestingness measure is greater than t, 
11. Replace the node with the least 

interestingness value in the set of selected 
nodes with the new node.  

12. Set t to be the least interestingness value of 
the currently selected nodes. 
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CHAPTER 7 

APPLICATIONS 

 

In this Chapter, we demonstrate the effectiveness of the GSSM method by 

applying it to three real data sets, the Saskatchewan weather data set, the University of 

Regina student data set, and a customer data set. We will demonstrate the mining process 

as well as analyze the mining results. 

 

7.1 Saskatchewan Weather Data Set 

The Saskatchewan weather data set contains 211,534 records concerning daily 

weather observations in Saskatchewan from January 1, 1900 to December 31, 1949. Our 

goal was to assess whether, with no previous experience with this dataset, the GSSM 

discovery methodology could guide exploration of the data.   

We used four attributes, Station, Date, HighTemperature (temperature in Celsius), 

and TotalPrecip (precipitation in mm), in our experiments. Attribute Date has format 

YYYYMMDD, including the information of year, month, and day. We generalize it to six 

nodes, YYYYMM (year and month), MM (month), YYYY (year), Decade, Season, and Any 

(any time). High Temperature was generalized to three nodes: TempRange with the 

domain {cold, cool, warm, hot}, TempSplit with the domain {high, low}, and Any. 

TotalPrecip was generalized to three nodes: PrepRange with the domain {0, (0, 50], (50, 

100], (100, 400], >400}, PrepSplit with the domain {no, yes}, and Any. Station was 
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generalized to four nodes according to geographic features and node Any. Figure 7.1 

shows the DGGs for these attributes. The three interior nodes in the Station DGG 

correspond to the three clustering maps shown in Figure 7.2.  

 Any 

Decade 
MM Season

YYYY 

YYYYMM 

YYYMMDD 

Any 

TempSplit 

TempRang
e

SpecificTemp 

 

                  (a) DGG for attribute Date           (b) DGG for attribute HighTemperature    

 Any 

PrecSplit 

PrecRange 

SpecificPrec 

Any 

Clustered Latitude Distance 

SpecificStation
 

   (c) DGG for attribute TotalPrecip       (d) DGG for attribute Station 

Figure 7.1 DGGs for Date, HighTemperature, TotalPrecip, and Station attributes 

Figure 7.2(a) shows the stations clustered using the k-means algorithm with k = 6 

(other values of k gave less plausible maps). Figure 7.2(b) shows ten regions defined 

based on the adjusted distance d to the southwest corner of the province, which is at 



 147

(49°N, 110°E), using the formula 

d = (Latitude – 49) + 0.35 (110 – Longitude). 

This division assumes that similar weather occurs along a slanted line across the 

province.  The 0.35 is a constant defined based on a map of the province showing 

ecological regions [Ecoregions].  Since the northeast corner of the province is at (60°N, 

102°E), the values for d ranged from 0 to 13.8.  To create the DistanceRegion node, we 

divided this range into 10 equal-sized intervals.  Figure 7.2(c) shows the stations grouped 

from south to north into four regions (South, LowMid, HighMid, and North) to create the 

Latitude node.   

 

 

 

 

 

 

 

 

 

Figure 7.2 Maps corresponding to the interior DGG nodes for the Station Attribute 

Associate initial estimates: In the beginning of the exploration process, we assumed 

initial estimates for some nodes in the DGGs. For the Date attribute, we assumed a 

uniform distribution at the Year (YYYY) node, i.e., we assumed an equal number of 

observations from each year 1900-1949.  For the Station attribute, we assumed a uniform 

distribution at each weather station (SpecificStation node).  For the HighTemperature 

(a) Clustered Regions 
(CRegion) 

(b) Distance Regions 
(DRegion)

    (c) Latitude Regions 
  (LRegion) 
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attribute, we assumed a uniform distribution at the TempRange node, which means that 

cold days, cool days, warm days, and hot days all have probability value of 0.25. 

Similarly, for TotalPrecip, we assumed a uniform distribution at the PrecRange node, 

which means that the numbers of days for no precipitation, low precipitation, medium 

precipitation, and high precipitation are equal. 

Generalize the data:  We generated the framework of the GenSpace graph from DGGs 

without materialization. Since the Date, HighTemperature, TotalPrecip, and Station 

DGGs have 7, 4, 4, and 5 nodes, respectively, the number of aggregations or summaries 

produced is 55915447 =−××× . We set the summaries that involve the specific values 

for Date, HighTemperature, and TotalPrecip attributes as uninteresting. Then the weather 

data are aggregated in all possible ways consistent with the DGGs according to the 

optimal tree in the GenSpace subgraph. We assume that the four attributes are 

independent and obtain the initial estimates for the node (SpecificStation, YYYY, 

TempRange, PrecRange) in the GenSpace graph. The system then propagates them to all 

the other nodes.  

Rank the summaries:  We used the variance measure for ranking the summaries in the 

experiments.   

Table 7.1 shows the top 10 summaries for the first iteration.  To get more insight 

into the highest ranked summaries, we use the chi-square test to test the fitness of the 

observations and estimates and determine which detailed summary records should be 

provided to the user. In this case, the highest ranked summary, which corresponds to the 

(Any, Any, Any, PrecSplit) node combination, is automatically translated into the English 

sentence “More readings (79%) have precipitation = NONE than estimated (50%).” This 
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summary shows that, when Station, Date, and Temperature are ignored (set to Any), the 

percentage of daily observations in the data with rain is 21%, and that without is 79%.  

Since the original estimate was 50%/50%, according to the variance measure, the 

observed distribution of this summary is the farthest from its estimated distribution 

among all the summaries in the GenSpace subgraph. 

Adjust estimates:  At this point, the user has learned something about the domain, and 

the estimates can be adjusted according to the acquired knowledge.  To continue this 

example, we assume that the distribution is simply accepted for the (Any, Any, Any, 

PrecipSplit) node and propagated to all the other nodes in the GenSpace graph.  This 

assumption follows in a straightforward fashion from the results, and can be readily 

automated.  The effect on further data mining corresponds to saying: “I accept that only 

21% of the days have precipitation; now, don't tell me about that again or about any 

logical consequence of that.” 

Table 7.1 Top 10 summaries after the first iteration 

Station Date Temperature Precipitation Variance 
Any Any Any PrecSplit 6.88e-1 
Any Any TempSplit PrecSplit 1.16e-1 
Any Any Any PrecRange 1.11e-1 
LRegion Any Any PrecSplit 2.63e-2 
Any Any TempRange PrecSplit 2.55e-2 
Any Any TempSplit PrecRange 2.51e-2 
Any Season Any PrecSplit 2.473-2 
CRegion Any Any PrecSplit 2.07e-2 
DRegion Any Any PrecSplit 2.02e-2 
Any Decade Any PrecSplit 1.81e-2 

 

Continue data mining:  After revising the estimates and thereafter propagating them and 

calculating the variances of the summaries, we obtain the 10 most interesting summaries 

in Table 7.2. Most summaries with PrecipSplit or PrecipRange have disappeared from 
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the top ten list because the changes of the estimates of PrecipSplit affect those of 

PrecipRange appropriately. The summaries (Any, Any, Any, PrecRange) and (Any, 

Decade, Any, PrecSplit) remain in the top ten. However, the summary (Any, Any, Any, 

PrecRange) ranks seventh instead of third, and its interestingness measure decreased 

from 1.11e-1 to 2.91e-3. Although summary (Any, Decade, Any, PrecSplit) has a higher 

ranking (from 10 to 8), its interestingness measure decreased from 1.81e-2 to 2.87e-3. 

This indicates that through estimate propagation from node (Any, Any, Any, PrecSplit), 

the distribution for other nodes in this GenSpace graph has been adjusted appropriately.  

Now, the highest ranked summary tells us that the estimates for Decade node are 

the farthest from the observed ones.  Among the five decades from 1900 to 1949, the 

percentage of observations from the decades in order are: 7%, 13%, 21%, 25%, and 34%. 

Again, the user can simply accept this, or explore deeper reasons.  The actual reason was 

that only a few weather stations existed in 1900 and others were gradually added.  We 

simply accept the observed distribution as the new estimates for Decade and propagate it 

to all the other nodes.  

Table 7.2 Top 10 summaries after the second iteration 

 

 

 

 

 

 

 

Tables 7.3 to 7.6 list the ten most interesting summaries for the third to sixth 

Station Date Temperature Precipitation Variance 
Any Decade Any Any 1.05e-2 
Any Any TempSplit Any 8.42e-3 
Any Season TempSplit Any 6.70e-3 
LRegion Any Any Any 6.34e-3 
CRegion Any Any Any 5.88e-3 
Any Any TempRange Any 3.77e-3 
Any Any Any PrecRange 2.91e-3 
Any Decade Any PrecSplit 2.87e-3 
Any Decade TempSplit Any 2.54e-3 
DRegion Any Any Any 2.38e-3 
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iterations. 

When the top-ranked summary has more than one domain value that is not “Any”, 

the summary corresponds to a joint probability distribution.  For example, after the 

fourth iteration, the top-ranked summary is (Any, Season, TempSplit, Any), which means 

that the proportion of Low Temperature and High Temperature days varies with the 

season.  To accept this distribution, a joint estimate between Season and TempSplit is 

specified.  After propagation of the joint estimate and calculation of the interestingness of 

the summary, we can see that not only has (Any, Season, TempSplit, Any) disappeared 

from the top ten summaries, but also closely related nodes (Any, Season, TempSplit, 

PrecSplit) and (Any, Season, TempRange, Any) have become less interesting and also 

disappeared. 

Table 7.3 Top 10 summaries after the third iteration 

 

 

 

 

 

 

 

 

 

 

 

Table 7.4 Top 10 summaries after the fourth iteration 

Station Date Temperature Precipitation Variance 
Any Any TempSplit Any 8.42e-3 
Any Season TempSplit Any 6.70e-3 
LRegion Any Any Any 6.34e-3 
CRegion Any Any Any 5.88e-3 
Any Any TempRange Any 3.77e-3 
Any Any Any PrecRange 2.91e-3 
DRegion Any Any Any 2.38e-3 
Any Season TempSplit PrecSplit 2.11e-3 
Any Season TempRange Any 2.07e-3 
Any Any TempSplit PrecSplit 1.92e-3 
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Table 7.5 Top 10 summaries after the fifth iteration 

 

 

 

 

 

 

 

Table 7.6 Top 10 summaries after the sixth iteration 

 

 

 

 

 

 

 

Station Date Temperature Precipitation Variance 
Any Season TempSplit Any 6.40e-3 
LRegion Any Any Any 6.34e-3 
CRegion Any Any Any 5.88e-3 
Any Any Any PrecRange 2.91e-3 
CRegion Any Any PrecSplit 1.76e-3 
DRegion Any Any Any 2.38e-3 
Any Any TempRange Any 2.36e-3 
Any Season TempSplit PrecSplit 2.01e-3 
Any Season TempRange Any 2.00e-3 
LRegion Any Any PrecSplit 1.72e-3 

Station Date Temperature Precipitation Variance 
LRegion Any Any Any 6.34e-3 
CRegion Any Any Any 5.88e-3 
Any Any Any PrecRange 5.29e-3 
DRegion Any Any Any 2.388e-3 
Any Any TempRange Any 2.36e-3 
CRegion Any Any PrecSplit 1.76e-3 
LRegion Any Any PrecSplit 1.72e-3 
LRegion Any TempSplit Any 1.50e-3 
CRegion Any TempSplit Any 1.46e-3 
CRegion Any Any PrecRange 7.73e-4 

Station Date Temperature Precipitation Variance 
CRegion Any Any Any 3.99e-3 
Any Any Any PrecRange 2.91e-3 
Any Any TempRange Any 2.36e-3 
DRegion Any Any Any 1.35e-3 
CRegion Any Any PrecSplit 1.20e-3 
CRegion Any TempSplit Any 1.01e-3 
Any Any TempSplit PrecRange 6.69e-4 
Any Any TempRange PrecSplit 5.87e-4 
CRegion Any Any PrecRange 5.70e-4 
Any Season TempRange Any 5.15e-4 
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To verify the observation that after accepting the observed probability distribution 

of the top summary and propagating it to the other summaries, its closely related 

summaries become less interesting, we did the following analysis. 

We first define the similarity between two nodes n1 and n2 in a DGG for attribute 

a. If 21 nn ≤ or 12 nn ≤ , we define n
a nnsimilarity α=),( 21  where ]1,0[∈α  is a constant 

value and n denotes the minimum distance between n1 and n2 in the DGG; otherwise, we 

define 0),( 21 =nnsimilaritya . 

We then define the similarity between two summaries s1 and s2. Suppose s1 and 

s2 have m attributes a1, …, am and s1 is at level (n11, …., n1m) and s2 is at level (n21, …., 

n2m), where nij denotes the concept level for the ith summary and the jth attribute. The 

similarity between s1 and s2 is defined as ∑
=

=
m

i
iia nnsimilarity

m
sssimilarity

i
1

2121 ),(1),( . 

We define the similar summaries of summary s as the set the summaries whose 

similarity values with s are greater than or equal to a threshold, i.e., 

})',(|'{)( tsssimilaritysssim ≥= , where 10 ≤≤ t  is a threshold. 

For the weather data set, we set 8.0=α  and 95.0=t . The analysis method is that 

for each iteration, we find the similar summaries S of the top summary and their average 

rankings. Then we accept the observed probability distribution of the top summary as the 

new estimates and propagate them to all the other nodes to start the next iteration. We 

then calculate the average rankings of the summaries in S in this iteration. Table 7.7 

compares the average rankings of the similar summaries of the top summaries for the 

current and next iterations for the first 10 iterations. In all 10 iterations, the average 

rankings decrease significantly after propagation, which means that the similar 
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summaries of the top summaries become less interesting after the user accepts the 

observed probability distributions of the top summaries. 

Table 7.7 Average rankings of the similar summaries of the top summary  
 

      Average 
          ranking    
 
 
Iteration 

Current 
iteration 

Next 
iteration 

1 9.7 29.8 
2 18.1 53.7 
3 15.3 65.6 
4 16.6 42.2 
5 35.0 79.6 
6 10.0 77.2 
7 36.8 107.4 
8 54.5 101.7 
9 43.2 86.5 
10 43.7 91.2 

 

Based on the results of each iteration, we also observe that the user’s estimates 

approach the real distributions as the process continues. Figure 7.3 shows the logarithm 

of the variances for the top summaries and top ten summaries in the fist sixteen iterations. 

Both the variances decrease as the number of the iterations increase in this example. 
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Figure 7.3 Logarithm of variances for the top and top 10 summaries in the first 16 

iterations 
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Lastly, we observe that although we originally expected to learn about the 

weather, as the knowledge discovery process continues, other relationships continue to be 

found, such as summer readings were taken more frequently than winter ones.  

 

7.2 University of Regina Student Data Set 

The objective of the application of the GSSM method to the University of Regina 

student data set is to find surprising knowledge about the distribution of students in terms 

of nationality, term, program, and GPA. We will also explore the correlation between 

these factors. 

The University of Regina student data set contains student information from 1997 

to 1999. The attributes in the table include student number, term code, hours, GPA, 

campus, college, program, major, city, etc. There are 59,635 records in the table. We 

choose four attributes, term code, program, city, and GPA, for our experiments. The 

DGGs for these attributes are shown in Figure 7.4. 

Attribute Term is generalized to Term (regardless of year), Year (starting from the 

winter term), and Academic Year (starting from the fall term). Attribute Program is 

generalized to Degree and College. Attribute City is generalized to Province and 

Country. Attribute GPA is generalized to 10-mark ranges or an ABCDFO scale, 

corresponding to the marks of A, B, C, D, F (fail), and Other. The 10-mark ranges  and 

ABCDFO scale are further generalized to PassOrNot. In the final GenSpace graph, there 

are 400 nodes. 
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            (a) DGG for attribute Term               (b) DGG for attribute Program 
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            (c) DGG for attribute City                 (d) DGG for attribute GPA 

Figure 7.4 DGGs for attributes Term, Program, City, and GPA  

7.2.1 Data Cleaning 

The student data set has missing values and noises. Before we begin the mining 

process, we need to clean the data set. 

1. Missing values. 

A value in a certain conceptual level for an attribute may be missing in the 

original table. In some cases, this is caused by the inner logic of the data. For example, 
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we have Singapore at the City level and Country level. But there is no corresponding 

value at the Province level. In this case, we simply add Singapore at the province level. 

In other cases, missing values are caused by the ignorance of the operator. For 

example, we have the tuple “Regina, _, Canada” where the value for the Province level is 

missing. If all the values in different levels are missing, we replace the empty entry with 

“other”. Therefore, we replace “_, _, _” with “other, other, other”. If in a record, a value 

is missing, we first check if it appears in another record in the same context. If so, we use 

that value to replace “_”, otherwise, we concatenate “other” and the concept name to 

replace “_”. For example, in some records, we have “Regina, _, Canada”. However, we 

can find records with “Regina, SK, Canada”. So we replace “_” with “SK”.  In some 

records, we have “Nottingham, _, UK”, and we could not find a name at the Province 

level corresponding to Nottingham, UK in the data set. Therefore, we replace it with 

“Nottingham, OtherUKProvince, UK”. Similarly, we replace “_, SK, Canada” with 

“OtherSKCity, SK, Canada”. 

2. Spelling errors 

There are some spelling errors in the student data set. Some of these errors will 

influence the mining results. For example, the city “Regna” is supposed to be “Regina”. 

This kind of error will change the output, but it will not be an obstacle for measuring the 

performance of our algorithms. Other errors will make the generalization relations 

inconsistent and prevent the application of the algorithms. For example, the error in 

“Regina, SJ” makes the system confused whether to generalize Regina to SK or SJ. We 

consider this kind of error as inconsistent data error and discuss it in the next section. 

3. Inconsistent data 
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To make the DGGs consistent, we need to guarantee the one-to-many relations 

between any pair of child-parent nodes. However, in the original table, we have 

inconsistencies because of misspelling errors, the multiple forms of the same name, or the 

inner logic of the data. For example, we have “Regina, SK” and “Regina, Saskatchewan” 

in the table. We have to convert one of them to the other to make sure that Regina will be 

mapped to a single province name without ambiguity. In another case, we have 

“Lloydminster, AB” and “Lloydminster, SK”. This violation of one-to-many relation is 

because one part of the city belongs to Saskatchwan, and the other belongs to Alberta. In 

this case, we convert “Lloydminster, AB” to “LloydminsterAB, AB”, and “Lloydminster, 

SK” to “LloydminsterSK, SK”, i.e., consider the city as two cities. This conversion 

restores the consistency of the DGGs. 

Our cleaning process does not aim to obtain 100% accurate and complete data. 

Instead, our objective is to make the data sufficiently consistent that our algorithm can be 

applied without losing existing information. 

7.2.2 Mining Process 

Initially, we assume an even distribution for students among all the countries 

present in the dataset. We assume that the distribution for the students in each college is 

uniform. We assume an even distribution for the students in the winter, summer and fall 

terms. We also assume that 90% of the students pass the classes they took. Finally, we 

assume that the four attributes are independent.  

After the first iteration, we obtain the top ten summaries as shown in Table 7.8. 

From this table we can see that the summary “Nation, Any, Any, Any” is the most 

interesting one. Because we initially assumed uniform distribution among countries, we 



 159

can see that the observed distribution is far from our estimates, i.e., it is far from a 

uniform distribution. To confirm this knowledge, we look into this summary and find 

94.1% of students are from Canada. Now we know that from 1997 to 1999, most of the 

students attending the University of Regina are from Canada. We accept this observed 

distribution and propagate it throughout the GenSpace graph and start the second 

iteration. 

Table 7.8 Top 10 summaries after the first iteration 

 

 

 

 

 

 

After the second iteration, we obtain the top ten summaries in Table 7.9. 

Comparing this result with that of the first iteration, we can see that the summary 

“Nation, Any, Any, Any” has disappeared. The summaries involving Nation (the fourth 

and the ninth summaries) have disappeared from the top 10 list as well. This is due to 

updating the user’s estimates concerning Nation, which leads to previously interesting 

summaries being regarded as uninteresting. As a result, the second most interesting 

summary, “Any, Any, Term, Any” is now on top. When we look at this summary, we find 

that the distribution of the students attending for the terms (Winter, Spring/Summer, Fall) 

is [0.39, 0.14, 0.47], which means that significantly fewer students take classes in the 

Spring/Summer term. 

City Program Term GPA Variance 
Nation Any Any Any 3.39e-2 
Any Any Term Any 2.84e-2 
Any Any Academicyear Any 2.78e-2 
Nation Any Any Passornot 2.40e-2 
Any Any Year Any 1.08e-2 
Any Any Academicyear Passornot 1.01e-2 
Any Any Term Passornot 1.00e-2 
Prov Any Any Any 7.71e-3 
Nation Any Academicyear Any 6.24e-3 
Prov Any Any Passornot 5.97e-3 
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Table 7.9 Top 10 summaries after the second iteration 

 

 

 

 

 

 

Having updated and propagated the estimates for the Term, we obtain the results 

shown in Table 7.10 after the third iteration. In this table, the top three summaries for the 

second iteration have disappeared. Two of these summaries involve attribute Term at the 

Term level. It is reasonable to our estimation since we adjusted the estimates for Term. 

Checking the summay “Any, College, Any, Any”, we obtain the following rules. 

More students (27.39%) have college = AR than estimated 

(7.72%). 

Fewer students (2.12%) have college = SP than estimated 

(7.68%). 

Fewer students (2.30%) have college= PA than estimated 

(7.66%). 

Fewer students (3.91%) have college = FA than estimated 

(7.72%) 

More students (11.28%) have college = SC than estimated 

(7.70%) 

Fewer students (4.78%) have college= EX than estimated 

(7.68%) 

City Program Term GPA Variance 
Any Any Term Any 2.83e-2 
Any Any Academicyear Any 1.08e-2 
Any Any Term Passornot 9.98e-3 
Any College Any Any 4.58e-3 
Any Any Academicyear Passornot 4.25e-3 
Any Any Any Passornot 3.59e-3 
Any Any Any ABCDFO 3.19e-3 
Any Any Any Range10 2.05e-3 
Any College Any Passornot 1.92e-3 
Any Any Year Any 1.82e-3 



 161

More readings (10.32%) have college = ED than estimated 

(7.66%) 

Fewer readings (6.16%) have college= EN than estimated 

(7.68%) 

More readings (9.05%) have college = SW than estimated 

(7.68%) 

Table 7.10 Top 10 summaries after the third iteration 

 

 

 

 

 

 

From the results from the fourth iteration (Table 7.11), the following rule is 

produced for the most interesting summary “Any, Any, Any, Passornot”:  

Fewer students (5.64%) failed classes than estimated (9.93%) 

Table 7.11Top 10 summaries after the fourth iteration 

 

 

 

 

 

 

City Program Term GPA Variance 
Any College Any Any 4.58e-3 
Any Any Any Passornot 3.66e-3 
Any Any Any ABCDFO 3.26e-3 
Any Any Any Range10 2.13e-3 
Any College Any Passornot 1.92e-3 
Nation College Any Any 7.92e-4 
Any College Academicyear Any 6.61e-4 
Any College Term Any 6.17e-4 
Any College Year Any 5.54e-4 
Nation College Any Passornot 4.69e-4 

City Program Term GPA Variance 
Any Any Any Passornot 3.68e-3 
Any Any Any ABCDFO 3.14e-3 
Any Any Any Range10 2.11e-3 
Any Any Year ABCDFO 4.12e-4 
Any Any Academicyear ABCDFO 3.63e-4 
Any Any Term ABCDFO 3.62e-4 
Any Any Year Passornot 3.30e-4 
Any Any Year Range10 3.16e-4 
Any Any Academicyear Passornot 2.85e-4 
Any Any Term Range10 2.63e-4 
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 After the eleventh iteration, the top summary involves two attributes, College and 

Term (Table 7.12). In the summary, some of the rules are presented as follows. 

Fewer students (2.65%) have college = AR and term = 2 than 

estimated (3.95%) 

More students (13.58%) have college = AR and term = 3 than 

estimated (12.55%) 

More readings (2.14%) have college = GS and term = 2 than 

estimated (1.30%) 

More readings (3.50%) have college = EP and term = 3 than 

estimated (2.72%) 

 Initially we assumed that the attributes Program and Term were independent. 

From the discovered rules, we can see that students of college of AR are less likely to 

attend classes in Spring/Summer and more likely in Fall. Graduate students are more 

likely to attend the classes in Sping/Summer than estimated.  

 Now we revise our estimates based on the observations of this summary. 

Table 7.12 Top 10 summaries after the eleventh iteration 

 

 

 

 

 

 

 

City Program Term GPA Variance 
Any College Term Any 1.87e-5 
Any coll Any Any 1.63e-5 
Any Any Term ABCDFO 1.53e-5 
Any Any Term Any 1.25e-5 
Any Any Term Range10 1.15e-5 
Any College Any Passornot 1.07e-5 
Any College Academicyear Any 1.05e-5 
Any Any Term Passornot 7.39e-6 
Any College Any Grade4 7.29e-6 
Any College Term Passornot 7.14e-6 
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After the twelfth iteration, the top summary is “Any, College, Any, Passornot”, as 

shown in Table 7.13, which means that there is a correlation between Program and GPA 

based on the user’s estimates. The top three rules produced on this summary are: 

More students (1.50%) have college = EP and passornot = fail 

than estimated (0.38%) 

Fewer students (25.21%) have college = AR and passornot = 

pass than estimated (25.76%) 

Fewer students (0.04%) have college = GS and passornot = 

fail than estimated (0.43%) 

Table 7.13 Top 10 summaries after the twelfth iteration 

 

 

 

 

 

 

Figure 7.5 shows the logarithms of the variances for the top and top 10 summaries 

in twenty iterations. Both measures are roughly a decreasing function to the number of 

iterations.  

City Program Term GPA Variance 
Any College Any Passornot 1.63e-5 
Any Any Term Passornot 1.19e-5 
Any Any Academicyear Passornot 1.18e-5 
Any Any Year Any 1.11e-5 
Any Any Term ABCDFO 1.06e-5 
Any Any Year Passornot 9.74e-6 
Any Any Academicyear Any 8.77e-6 
Any Any Term Range10 8.08e-6 
Any College Any ABCDFO 7.19e-6 
Any Degree Any Passornot 6.25e-6 
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Figure 7.5 Logarithm of variances for the top and top 10 summaries for the first 20 

iterations 

We also experimented using the Schutz (relative variance) measure as an 

alternative interestingness measure. Since the Schutz measure does not have the bias 

towards the higher-level summaries as variance does, the top summary in each iteration is 

more complex than that when variance is used as interestingness measure. Table 7.14 

shows the top summaries for the first 10 iterations with Schutz measure. Table 7.15 

compares the size (number of records) of the top summaries mined with variance and 

Schutz measures for the first 10 iterations. The sizes of the top summaries mined with the 

Schutz measure are greater than those of top summaries mined with the variance 

measure. We also found that the Schutz measure decreases during the iterations as the 

variance does. Figure 7.6 shows the Schutz values for the top summaries in the first 10 

iterations. 
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Table 7.14 Top summaries for the first 10 iterations with Schutz measure 

 

 

 

 

 

 

 

 

Table 7.15 Sizes of the top summaries mined with the variance and Schutz measures 

 

 

 

             Top  
             summary 
 
Iteration 

City Program Term GPA 

1 Prov Degree Year Grade4 
2 Any College Term Passornot 
3 Prov Any Academicyear Passornot 
4 Prov College Term Passornot 
5 Any Degree Academicyear Passornot 
6 Nation College Academicyear Range10 
7 Prov Degree Term Range10 
8 Any College Year Passornot 
9 Prov Degree Acdemicyear Range10 
10 Nation College Year Grade4 

           Size 
 
Iteration 

Variance
 

Schutz 
measure

1 17 2126 
2 3 76 
3 13 191 
4 2 538 
5 6 278 
6 3 621 
7 64 2350 
8 8 78 
9 68 2187 
10 6 568 
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Figure 7.6 Schutz measure for the top summaries in the first 10 iterations 

7.3 A Customer Data Set 

The third application is conducted on a customer data set, which contains 

1,154,449 tuples. We concentrated on the relationship between the type of business that 

customer is associated with (CustomerID) and the equipment or services that they 

requested (ServiceID). The DGGs for the two attributes are shown in Figure 7.7. 
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(a) DGG for attribute CustomerID 
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(b) DGG for attribute ServiceID 

Figure 7.7 DGGs for the customer data set 

Initially we assume that the distribution at the Segmentation 7 level for attribute 

CustomerID is even, i.e., the estimates for competitive services, industrial services, 

institutions, others, and unknown are all 0.2. We also assume that the distribution for 

level 4 of serviceID is even. 

The top 6 summaries from the first iteration are listed in Table 7.16. Further 

checking the top summary Segmentation 6, we get the following rules. 

Fewer readings (0.519382%) have Segmentation 6 = UNKNOWN 

than estimated (15.3061%). 

More readings (64.2468%) have Segmentation 6 = SERVICES than 

estimated (33.6927%). 

Fewer readings (2.13773%) have Segmentation 6 = OTHERS 

EXISTING IN DATABASE than estimated (20.4082%).  
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Figure 7.8 shows the observed distribution for attribute CustomerID at the 

Segmentation 6 level. 

Table 7.16 Top six summaries from the first iteration 

CustomerID ServiceID Variance 
Segmentation 6 Any 4.97e-2 
Segmentation 3 Any 3.77e-2 
Segmentation 4 Any 3.70e-2 
Segmentation 7 Any 3.23e-2 
Segmentation 8 Any 1.97e-2 
Segmentation 5 Any 1.62e-2 
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Figure 7.8 Distribution in summary Segmentation 6, Any 

After the second iteration, we obtain the top summaries in Table 7.17 and the 

distribution for the top summary Segmentation 3, Any in Figure 7.9. 

Table 7.17 Top six summaries from the second iteration 

SIC USOC Variance 
Segmentation 3 Any 1.63e-2 
Any Level 4 1.48e-2 
Segmentation 4 Any 1.47e-2 
Segmentation 5 Any 6.93e-3 
Segmentation 8 Any 6.88e-3 
Segmentation 7 Any 3.36e-3 
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Figure 7.9 Distribution in summary Segmentation 3, Any 

After the eighth iteration, we obtain the top summaries in Table 7.18. The top 

summary involves both attributes, CustomerID at level Segmentation 7 and ServiceID at 

Level 4. Checking the summary, we found that most transactions are with competitive 

services, industrial services, and institutions, regarding centrex voice hub and single line 

telephones (See Figure 7.10).  

 

Table 7.18 Top summaries from the eighth iteration 

SIC USOC Variance 

Segmentation 7 Level 4 1.16e-4 
Segmentation 6 Level 4 1.05e-4 
Any Level 3 7.91e-5 
Segmentation 4 Level 4 6.93e-5 
Segmentation 8 Level 4 6.37e-5 
Segmentation 3 Level 4 6.33e-5 

 



 170

A
ce

ss

A
dd

-o
n 

E
qu

ip
m

en
t

C
en

tre
x 

V
oi

ce
 H

ub

D
at

a 
Tr

an
sp

or
t

In
bo

un
d

IX
 D

at
a 

Li
ne

s

K
ey

sy
st

em
 V

oi
ce

 H
ub

La
rg

e 
D

at
a 

S
er

vi
ce

Lo
ca

l D
at

a 
Li

ne
s

M
es

sa
gi

ng

M
IS

C
.

M
IS

C
. K

ey
 E

qu
ip

m
en

t

O
th

er

O
th

er
 E

qu
ip

m
en

t

O
ut

bo
un

d

P
A

B
X

 V
oi

ce
 H

ub

P
er

so
na

l D
at

a

S
in

gl
e 

Li
ne

 T
el

ep
ho

ne
s

S
m

al
l V

oi
ce

 H
ub

S
m

ar
t T

ou
ch

 S
er

vi
ce

s

W
ire

le
ss

Competitive Services

Industrial Services

Institutions

Others

Unknown

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

Figure 7.10 Distribution in summary Segmentation 7, Level 4 

 

7.4 Summary 

 In this chapter, we demonstrated the effectiveness of the GSSM method on three 

real data sets, the Saskatchewan weather data set, the University of Regina student data 

set, and a customer data set. Based on the mining process and results, we have the 

following observations. First, the GSSM mining process integrates belief revision. The 

GSSM finds the most interesting evidence (summary) to present to the user. Based on the 

evidence, the user revises his/her belief, which is simulated by the GSEP process.  Based 

on the revised belief, GSSS then finds the most interesting evidence in the next iteration. 

Experimental results show that during the mining process, the interestingness values of 

the top summaries, which represent the distance between the user’s belief and the 

observed distribution in the data, decrease. This coincides with our estimation that the 
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user’s knowledge becomes closer and closer to the distribution represented by the data 

during the mining process. 

Secondly, the GSSM method can greatly facilitate the summary exploration 

process.  The initial knowledge of the data can easily be specified by the user. In most of 

cases in the experiments, we assume an even probability distribution for each attribute at 

a certain level. After that, the process can be completely automated. 

Thirdly, the GSSM method responds to changes in the user's knowledge during 

the knowledge discovery process.  If a summary has been presented to the user as the 

most interesting summary, its closely related summaries will become less interesting in 

the next iteration. The example of Pay-TV shows in Chapter 1 can be well tackled by the 

GSSM method. 
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CHAPTER 8  

CONCLUSIONS 

 

In this thesis, we introduced the GenSpace summary mining (GSSM) problem and 

proposed a solution to this problem. The original contributions of the thesis include: 

(1) A framework for summary mining, called GSSM, based on belief revision is 

proposed. In this framework, the system consists of two parts: GSEP for propagating 

user’s estimates and GSSS for selecting the interesting summaries in the GenSpace 

graph. 

(2) We proposed three GSEP principles and based on the principles, we formalized the 

GSEP problem as a linear constrained least square optimization problem. We also 

proposed a linear GSEP method as a heuristic method to the optimization based GSEP 

method with a more efficient calculation process. 

(3) Two methods to find efficient propagation paths in GenSpace subgraphs are 

proposed. Experimental results show that these two methods can greatly reduce the 

propagation and storage costs, if some nodes at lower levels in the GenSpace graph or 

some specific nodes in ExGen graphs are defined as uninteresting nodes. 

(4) Virtual bottom nodes are proposed to reduce the storage and time costs. Virtual 

bottom nodes can be applied together with the path selection algorithms to further 

improve the efficiency of the GSSM process. 

(5) Interestingness measures that can incorporate a user’s estimates are analyzed in the 

context of GSSM, especially in terms of pruning strategies. 

The current version of the GSSM system has the following limitations. 
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We do not have an integrated user interface for the system. The user needs to edit 

the DGG files for each attribute manually. The system outputs the most interesting 

summaries in text files. For this system, a graphic user interface that can assist the users 

to define the input and view the output will be useful.  

 The GSSM method needs more calculation than the most other summarization 

algorithms for the following two reasons. First, other than the selected materialization 

method [Harinarayan et al., 1996], the well-known summarization algorithms do not 

evaluate multiple ways of aggregations. The selected materialization method aims to 

answer a query to a specific summary efficiently, i.e., it only needs to aggregate one 

summary at one time. Secondly, GSSM not only needs to aggregate the summaries, but 

also needs to propagate estimates and calculate the interestingness measures. Therefore, it 

needs more calculations than all other summarization methods. However, none of the 

existing aggregation methods can find interesting summaries based on the user’s estimate 

as GSSM does. As well, none of the existing aggregation methods except the selected 

materialization method has multiple ways of aggregation as GSSM does.  

In the future, many topics regarding the GSSM system deserve further research. 

First, an efficient I/O algorithm for GSSM during the mining process is desirable for 

large data sets. In our implementation, we load the entire bottom node in memory and 

only output the top summaries in each round of the GSSM process. If the bottom node is 

too large to be loaded in memory at the same time, an efficient I/O method is desirable. 

The Partitioned-Cube aggregation method has efficient I/O cost of O(kr), where k is the 

number of attributes and r is the number of records. However, it can only be applied to 

the case without conceptual generalization. How to partition the bottom node is not an 
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important issue in the Partitioned-Cube. However, in the GSSM process, the partition 

method will influence the I/O efficiency. The I/O problem in GSSM process is to find an 

appropriate partition method and choose propagation paths such that the I/O cost is 

minimum. In the future, we could design an algorithm to deal with this problem and 

integrate it into our GSSM system. 

 In our current implementation, only count is aggregated and used in the 

interestingness measures. In future research, other aggregation functions such as sum, 

mimimum, and maximum could be readily used. As well, more complex aggregation 

functions, such as average, could also be used. Suitable pruning strategies based on these 

functions might be found for the GSSM process.   

 Interestingness measure selection remains an open issue in the area of data 

mining. In our experiments, we only used the Schutz and variance measures. In the 

future, additional experiments with more interestingness measures could be performed to 

study their effects on the GSSM problem. 

 An estimate propagation and pruning strategy could be developed to mine other 

kinds of knowledge that is present in the GenSpace graphs, such as anomaly rules. For 

example, suppose that record abc is generalized to abc′ in a GenSpace graph. We can 

find the distance of the observed and estimated percentage of c to c′ in the context of ab. 

 The connection between the GSEP and Bayesian belief updating, especially how 

to use conditional independence among variables and Bayesian belief updating technique 

to improve the efficiency of the GSEP process, could be further studied. 

 When we use chi-square to find the interesting records in summaries, we set the 

level of significance at 0.05. However, with multiple tests in our case, the probability of 
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false rejection can be highly inflated, which will result in Type I error. In the future, we 

will use a more stringent level of significance cutoff for the individual tests based on 

Bonferroni inequality. 

 Currently, we assume that the user accepts the observed probability distribution of 

the most interesting summary as the new estimates to facilitate the analysis of the 

effectiveness of GSSM method. In the future, experiments with human users would be 

useful. In particular, users should be allowed to vary the estimates between iterations of 

the GSSM process.  
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