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Abstract

The present investigation studies the use of semantics in itemset mining and

jointree propagation. By representing more of the semantics of itemsets than previ-

ous research, we establish a theoretical basis for the study of itemset mining from

the view of utility and we provide a utility based itemset mining approach to find

itemsets conforming to user preferences. Our utility based method for itemset min-

ing can find types of itemsets that could not be identified using previous theories

and techniques. We also propose a novel algorithm for the discovery of functional

dependencies from data. Our approach can reduce the number of functional de-

pendencies to be checked in comparison with previous methods. Then, we show

a practical application of discovering functional dependencies from data, namely,

constructing a sound Bayesian network efficiently. Finally, by applying more of the

semantic information available in a Bayesian network than previous research, we

propose the first jointree propagation architecture that labels the probability in-

formation passed between jointree nodes in terms of conditional probability tables

rather than potentials. We prove the soundness of our architecture. One striking

feature of our architecture is that after propagation, each jointree node has a sound,

local Bayesian network that preserves all conditional independencies of the original

Bayesian network. We show how our architecture is beneficial to three techniques for

implementing inference in probabilistic expert systems, namely, direct computation,

multiply sectioned Bayesian networks, and LAZY propagation.
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Chapter 1

Introduction

Two primary research areas of Artificial Intelligence (AI) are knowledge discov-

ery from databases and uncertain reasoning. Doyle et al. [25] explicitly stated that

one of the principal objectives of AI is to formalize knowledge and mechanize rea-

soning. Reasoning involves knowledge, which can be learned from experience or

acquired from data. For example, doctors often use clinical reasoning to select and

apply an appropriate treatment based on their knowledge of medical science. Fi-

nancial companies identify suspicious transactions and detect credit card fraud by

analyzing transaction data. Thus, reasoning and knowledge discovery are used for

solving complex problems. The work in this thesis spans these two important areas.

The main objective in this thesis is to apply semantics to knowledge discovery and

reasoning.

Knowledge discovery in databases (KDD), also known as data mining, refers to

the finding of valid, novel, potentially useful, and ultimately understandable patterns

in data [27]. Many kinds of knowledge can be discovered from data. For instance,
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decision trees [71] can be learned for solving classification problems, such as deciding

whether an unknown email is a useful message or a spam message. Clusters [34,83]

can be identified to group similar items, such as documents. Outliers [34,83] can be

detected for security management. For instance, credit card companies can identify

suspicious charges if a purchase does not fit a pattern of spending that a customer

has established. Frequent itemsets [2, 3, 57] can be discovered from market basket

data and used to derive association rules [2, 3, 57] for predicting the conditional

probability of the purchase of certain items, given the purchase of other items. In

the portion of this thesis concerning knowledge discovery, we concentrate on itemset

mining.

Frequent itemset mining plays an essential role in the theory and practice of

many important data mining tasks, such as the mining of association rules, long

patterns [8], emerging patterns [24], and dependency rules [81]. For example, an

association rule beer 0.8−−−−→ diapers indicates that diapers occur in 80% of the trans-

actions that include beer. Frequent itemset mining has been applied in fields, such

as telecommunications [5], census analysis [9], and text analysis [81]. An itemset

is a set of items. The goal of frequent itemset mining is to identify all frequent

itemsets, i.e., itemsets that have at least a specified minimum support, which is the

percentage of transactions containing the itemset. Frequent itemset mining is based

on the assumption that only itemsets with high support are of interest to users.

The usefulness of itemset mining with the support measure is restricted by prob-

lems with the quantity and quality of the mined results. A huge number of frequent

itemsets that are not interesting to the user are often generated when the minimum

support is set to a low value. For example, thousands of combinations of products

may occur in 1% of the transactions. If too many uninteresting frequent itemsets
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are found, the user is forced to do additional work to select the association rules

that are interesting. The quality problem is that support, as defined based on the

frequency of itemsets, is not necessarily an adequate measure of a typical user’s

interest. A sales manager may not be interested in frequent itemsets that do not

generate significant profit. More generally, an itemset that is of interest to one user

may not be of interest to another user, since users have different levels of interest

in itemsets. Thus, by performing itemset mining using previous approaches, a user

may incur a high computational cost that is disproportionate to what the user wants

and receives [62].

One solution proposed to address the problems with the quantity and quality of

the discovered results is constraint based itemset mining [2, 7, 17, 19, 49, 53, 57, 70,

92, 94]. The goal of constraint based itemset mining is to ensure the usefulness of

itemsets by means of constraints. Two kinds of constraints have been considered.

One kind of constraint is based on interestingness measures [30, 38, 82, 96]. An

interestingness measure is a metric that captures the dependencies of interest among

items [82]. For example, metrics such as support, confidence, and correlation have

been used extensively to evaluate the interestingness of association rules [2, 81]. A

comprehensive study of twenty-one measures that were originally developed in di-

verse fields such as statistics, social science, machine learning, and data mining is

presented by Tan et al. [82]. Hilderman and Hamilton [38] theoretically and empir-

ically evaluated twelve diversity measures used as heuristic measures of interesting-

ness for ranking summaries generated from a database. Yao et al. [96] presented a

simple and unified framework for the study of quantitative measures associated with

rules. Recent research on interestingness measures has focused on using a statistical

or mathematical method to evaluate the usefulness of rules [30]. It is not trivial for
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a human expert to understand or choose one of these measures. Even data mining

specialists or practitioners may not be familiar with all available measures. More

importantly, these interestingness measures may not express the semantics of appli-

cations, such as cost, profit, or aesthetic value. A natural way of allowing a user to

specify an interesting measure is to allow the user to express his or her beliefs about

the usefulness of potential results since only the user knows his or her information

needs. That is, it is appropriate to consider user-specified constraints, which bring

more of the semantics of the applications into itemset mining.

Another kind of constraint is based on functional dependency, which obey sound

and complete axioms. A functional dependency [56] is a constraint between two

sets of attributes in a relation from a database. Functional dependency has a sound

and complete axiomatization, called Armstrong’s Axioms [56], which are a set of

axioms used to infer all the functional dependencies on a relational database. The

discovery of functional dependencies from data has been extensively studied [41,

58, 64, 65, 91]. Research related to constraints with Armstrong’s Axioms attempts

to develop an efficient pruning strategy by incorporating these axioms as deeply

as possible into the mining process. Previous research has reduced the number of

functional dependencies to be checked by using pruning rules, but other efficient

pruning rules can be identified and incorporated into mining process. Moreover,

other practical applications of discovering functional dependencies from data need

to be identified. It is appropriate to consider more efficient pruning rules and other

potential applications of discovering functional dependencies from data.

A problem closely related to the issue of discovering knowledge is that of using

knowledge to support reasoning. Before reasoning can commence, a specification

of a model is required. Bayesian networks are widely used for uncertain reasoning
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using probability [18,22,32,43,61,68,87]. A Bayesian network is a graphical model

that encodes probabilistic relationships among variables of interest. Bayesian net-

works have been applied to medical diagnosis by the Heart Disease Program at the

Massachusetts Institute of Technology [52] and the Pathfinder Project for lymph-

node diseases at the Stanford University [35]. A Bayesian network is used in the

intelligent assistant in the Microsoft Office software that offers users help based on

other user previous experience [36,40]. Another Bayesian network system is used by

NASA for ground controllers at Space Shuttle Mission Control in Houston. [39]. At

Nokia, Bayesian networks are used to predict and monitor network problems [63].

The central task when performing probabilistic inference using a Bayesian net-

work is to determine the posterior probability of one or more variables given some

observations. Three approaches have been developed to perform probabilistic infer-

ence in a Bayesian network. One approach, called direct computation [23, 48, 97],

answers queries directly in the original Bayesian network. A second approach, called

multiply sectioned Bayesian networks [86–89], performs inference in sections of a

Bayesian network. A third approach, called jointree propagation, performs inference

in a jointree [68, 77] constructed from the original Bayesian network. Shafer, a pio-

neer of Bayesian networks, explicitly stated that jointree probability propagation is

central to the theory and practice of probabilistic expert systems [76]. In this thesis,

we emphasize the third approach, but we also describe some results relevant to the

other approaches.

Jointree propagation has been extensively studied [42,45,54,55,78]. Three clas-

sical methods for propagating probabilities in a jointree were proposed by Lauritzen

and Spiegelhalter [45], Shafer and Shenoy [76], and Jensen et al. [42]. A recent

jointree propagation algorithm suggested by Madsen and Jensen [54], called LAZY
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propagation, appears to be the most efficient probabilistic inference algorithm, ac-

cording to the experimental results presented in [54]. LAZY propagation uses lazy

evaluation of the messages passed between a jointree node and a separator in a

jointree tree [32, 43]. Unlike traditional approaches that multiply together all the

potentials to form a single potential at each jointree node and jointree separator,

LAZY propagation maintains a multiplicative factorization of the potentials at each

jointree node and jointree separator. As a result, LAZY propagation can remove

irrelevant potentials, i.e., potentials irrelevant to the computation of an outgoing

message, from the multiplicative factorization. However, the independencies hold-

ing in the remaining relevant potentials are ignored in LAZY propagation. It is

appropriate to improve the inference performance of jointree propagation by iden-

tifying and applying independence information that remains unnoticed in previous

architectures.

Based on the preceding analysis, the three problems addressed in this thesis are

as follows:

(1) Given a transaction database, find all itemsets that satisfy a user defined

constraint on their utility.

(2) Given a transaction database, efficiently find functional dependencies encoded

in this database and organize the resulting functional dependencies to support rea-

soning.

(3) Improve the performance of probabilistic inference in a Bayesian network

by identifying and applying independence information that remains unnoticed in

previous jointree architectures.

To solve the above three problems, we propose the following approaches by uti-

lizing semantics in itemset mining and jointree propagation.
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(1) We present a utility based itemset mining approach by applying the semantics

of user-specified constraints, in the form of a utility constraint.

(2) We propose an efficient method to discover functional dependencies, and

construct a sound Bayesian network using resulting functional dependencies by ex-

ploiting the semantics of functional dependency and conditional independence.

(3) We propose a jointree propagation architecture for semantic modelling by

utilizing semantic information concerning Bayesian networks.

All of these approaches utilize more semantic information than previous ap-

proaches. In the first approach, the semantics of usefulness of an itemset is defined

as the utility value of the itemset. In the second approach, the semantic relationship

between functional dependency and conditional independence is exploited. In the

third approach, the semantics of the messages passed between jointree nodes are

identified in terms of conditional probability tables.

In addition, the first approach relates to KDD, the third approach relates to

uncertainty reasoning, and the second relates to both. More specifically, the second

approach requires establishing a connection between KDD and uncertainty reason-

ing.

The remainder of this thesis is organized in four chapters. Each of Chapter 2,

3, and 4 describes and evaluates one of the approaches, and Chapter 5 presents our

conclusions. We now describe these chapters in some detail.

In Chapter 2, we propose a utility based itemset mining approach to discover

itemsets matching a user’s interest [92–94]. We use a utility function as a quanti-

tative representation of user preference. In particular, the usefulness of an itemset

is quantified in terms of its utility value. Based on the utility value of an itemset,

a utility constraint is defined. By analyzing the mathematical properties of utility
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constraints, the upper bound of the utility value of an itemset is characterized. A

pruning strategy is proposed to reduce the search space by exploiting the upper

bound property of the utility constriant. Moreover, a heuristic pruning strategy to

further reduce search cost is proposed by analyzing the relationship between the up-

per bound of the utility value of an itemset and the support of the itemset. Based

on these two pruning strategies, we propose two algorithms, called UMining and

UMining H. UMining finds all itemsets with utility values of at least a given value.

UMining H is a heuristic algorithm that finds some and perhaps all itemsets with

utility values of at least a given value. We prove the correctness of UMining. The

effectiveness of the algorithms is demonstrated by applying them to synthetic and

real-world datasets.

In Chapter 3, we propose the FD Mine algorithm [91], for discovering functional

dependencies from data. Based on Armstrong’s Axioms, we identify equivalences

among attributes. Next, we summarize four pruning rules to avoid searching for

functional dependencies that are logically implied by the functional dependencies

already discovered. By applying these pruning rules, the FD Mine algorithm is de-

veloped. We report the results of a series of experiments on synthetic and real-world

datasets. Our study shows that FD Mine can prune more candidates than previous

methods [41,58,64,65] without eliminating any valid candidates. Furthermore, using

the implication relationship that functional dependency logically implies conditional

independence [15], we propose a new algorithm, called FD2BN [95], to construct a

sound Bayesian network from functional dependencies discovered by FD Mine. We

prove the correctness of FD Mine and FD2BN.

In Chapter 4, we propose the first jointree propagation architecture for modeling

two inference tasks, one involving evidence and the other not. By modeling jointree
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inference involving evidence, our architecture [16] precisely labels the probability

information propagated in terms of conditional probability tables by identifying

independencies that are not utilized in previous architectures. We propose a novel

algorithm, called IdentifyCPTMessages, to determine the labels of conditional prob-

ability table corresponding to the probability information to be sent from a jointree

node to a neighbour. We prove the correctness of our architecture and also show that

each jointree node can identify its labels of conditional probability table in polyno-

mial time. Screen shots of our implemented system demonstrate the improvements

in the semantic information. We make use of this semantic information to generate

three work schedules for LAZY propagation. Then we show that our architecture

is also useful for modeling inference not involving evidence. After the conditional

probability tables identified by our architecture have been physically constructed,

each jointree node has a sound, local Bayesian network preserving all conditional

independencies of the original Bayesian network involving variables in this node. We

show two practical applications of local Bayesian networks. First, we propose an

automated multiply sectioned Bayesian network modeling procedure, and secondly,

we show how direct computation approaches can exploit localized queries.

Chapter 5 draws conclusions concerning our study of utilizing semantics in item-

set mining and jointree propagation. We summarize the results of this study and

discuss future research topics.
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Chapter 2

Utility Based Itemset Mining

In this chapter, we briefly review constraint based itemset mining in Section 2.1.

In Section 2.2, the theoretical foundations of utility constraints are analyzed. Two

pruning strategies are presented in Section 2.3. Section 2.4 describes algorithms for

utility based itemset mining. In Section 2.5, our experimental results are presented.

Finally, in Section 2.6, we summarize the chapter.

2.1 Constraint Based Itemset Mining

In this section, we first review frequent itemset mining, a special case of constraint

based itemset mining. Then, an example of the problem is given. Finally, we survey

several previous approaches relevant to constraint based itemset mining.

2.1.1 Frequent Itemset Mining

Adapting from the notations used in the descriptions of other itemset mining ap-

proaches [2,17,70], we use the following notation. I = {i1, . . . , im} is a set of items.
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Each item is an object associated with an attribute of a database. A transaction

database T is a set of variable length transactions, denoted T = {t1, . . . , tn}. Each tq

in T is called a transaction and contains a set of items i1, . . . , ik ∈ I. A transaction

is also assigned a unique transaction identifier, called TID. |T | denotes the number

of transactions in T . An itemset S is a subset of I, i.e., S ⊆ I. A k-itemset is an

itemset containing exactly k items. To simplify notation, we sometimes write an

itemset {i1, . . . , ik} as i1 . . . ik; e.g., ABCD represents itemset {A,B, C, D}. The

union X ∪ Y of two itemsets X and Y is sometimes simply denoted as XY .

Definition 1 The transaction set of an itemset S, denoted TS, is the set of trans-

actions that contain itemset S, i.e.,

TS = {tq | S ⊆ tq, tq ∈ T}.

Definition 2 The support of an itemset S, denoted sup(S), in a transaction data-

base T , is the fraction of transactions in T containing S, i.e.,

sup(S) =
|TS|
|T | .

Definition 3 An itemset S is a frequent itemset if sup(S) ≥ min sup, where

min sup is a support threshold defined by the user. Otherwise, S is an infrequent

itemset.

Example 1 Consider the small transaction database shown in Table 2.1. Each
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nonzero value in the transaction database indicates the quantity sold of an item

and a zero value indicates absence of an item in a transaction. By definition,

sup(AD) = |TAD|/|T | = 7/10 = 70%. The supports for the other itemsets are

shown in Table 2.2. Suppose min sup = 40%. By definition, the itemsets A, C, D,

and AD are frequent itemsets.

Table 2.1: A transaction database.

TID A B C D
t1 4 0 1 0
t2 2 0 0 6
t3 0 0 1 30
t4 3 0 0 5
t5 1 0 0 6
t6 4 0 2 10
t7 2 0 0 8
t8 1 1 1 1
t9 0 1 0 10
t10 5 0 0 9

An important property of the support constraint sup(S) ≥ min sup is that it

satisfies the Apriori property.

Theorem 1 (Apriori property). Let C be the support constraint sup(S) ≥ min sup.

Whenever an itemset S violates constraint C, so does any superset of S.

Theorem 1 is presented in [2] without proof. A straightforward proof of this theorem

is given as follows.

Proof: Let S ⊂ S ′. By Definition 1, TS′ ≤ TS. By Definition 2, sup(S ′) ≤ sup(S).

Thus, if sup(S) < min sup, then sup(S ′) < min sup. 2

The Apriori property indicates that if an itemset is frequent, then all its non-

empty subsets are also frequent. Thus, only those itemsets that consist of frequent
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Table 2.2: The support of all itemsets.

Itemsets Support (%)
A 80
B 20
C 40
D 90

AB 10
AC 30
AD 70
BC 10
BD 20
CD 30

ABC 10
ABD 10
ACD 20
BCD 10

ABCD 10

subsets can potentially be frequent. In other words, if any subset of an itemset S is

an infrequent itemset, then S must be an infrequent itemset.

Based on the Apriori property, the Apriori algorithm was developed. Our version

of the Apriori algorithm is presented in Figure 2.1. In this algorithm, the Apriori

property is applied by the Apriori-Gen algorithm, which is shown in Figure 2.2.

Apriori-Gen generates all possible candidate k−itemsets from the (k− 1)−itemsets

in Lk−1. For details on the Apriori algorithm, the reader is referred to work by

Agrawal et al. [3].
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Apriori(T , min sup)
Input: Transaction database T , support threshold min sup.
Output: A set of frequent itemsets F .
1. I = Scan(T );
2. C1 = I;
3. k = 1;
4. Ck = CalculateAndStore(Ck, T );
5. Lk = Discover(Ck,min sup);
6. while ( |Lk| > 0 ) do
7. {
8. k = k + 1;
9. Ck = Apriori-Gen(Lk−1);
10. Ck = Prune(Ck, Lk−1);
11. Ck = CalculateAndStore(Ck, T );
12. Lk = Discover(Ck,min sup);
13. }
14. F =

⋃k−1
j=1 Lj;

15. return(F );

Figure 2.1: The Apriori algorithm.

Apriori-Gen(Lk−1)
Input: Lk−1, a set of frequent (k − 1)−itemsets.
Output: Ck, a set of candidate k−itemsets.
1. insert into Ck

2. select p.i1, . . . , p.ik−1, q.ik−1

3. from Lk−1.p, Lk−1.q
4. where p.i1 = q.i1, . . . , p.ik−2 = q.ik−2, and p.ik−1 ≺ q.ik−1;
5. return Ck;

Figure 2.2: The Apriori-Gen algorithm.
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2.1.2 An Example of the Problem

The practical usefulness of frequent itemsets is limited by the significance of the

discovered itemsets. Though selecting itemsets based on frequency alone is valuable,

this approach treats all items and transactions in a transaction database uniformly.

Identifying an itemset as frequent reflects the frequency of combinations of items,

but it does not reflect the semantic significance of the items. The support constraint

may not adequately measure a typical user’s interest. The following example shows

that support based itemset mining may lead to some itemsets that are significant

to the user not being discovered due to their low supports.

Example 2 Consider the small transaction database shown in Table 2.1 and the

unit profit for the items shown in Table 2.3. Suppose that the goal of a sales man-

ager is to find the itemsets that can generate a profit greater than or equal to a

threshold. Using Table 2.1 and 2.3, the support and profit for all itemsets can be

calculated (see Table 2.4). For example, since for the 10 transactions in Table 2.1,

only two transactions, t8 and t9, include both items B and D, the support of the

itemset BD is 2/10 = 20%. Since t8 includes one B and one D, and t9 includes one

B and ten Ds, a total of two Bs and eleven Ds appear in transactions containing

the itemset BD. Using the Table 2.3, the profit for each item B is 100 and the

profit for each item D is 1. Thus, the profit of the itemsets BD can be considered

to be 2 × 100 + 11 × 1 = 211. The profit of the other itemsets in Table 2.4 can

be obtained in a similar fashion. Supposing that the minimum support is 40%, the

frequent itemsets in Table 2.4 are D, A, AD, and C, but the four most profitable

itemsets are BD, B, AC, and CD, all of which are infrequent itemsets.
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Table 2.3: The profit table for the items.

Item Name Profit ($)
Item A 5
Item B 100
Item C 38
Item D 1

Table 2.4: The support and the profits of all itemsets.

Itemsets Support (%) Profit ($)
A 80 110
B 20 200
C 40 190
D 90 85

AB 10 105
AC 30 197
AD 70 135
BC 10 138
BD 20 211
CD 30 193

ABC 10 143
ABD 10 106
ACD 20 150
BCD 10 139

ABCD 10 144

Example 2 shows that itemset frequency may not measure how useful an itemset

is in accordance with a user’s preferences, such as profit. It is appropriate to be able

to model a variety of types of semantic significance for itemsets. More precisely, more

general constraints are required to express different types of semantic significance for

itemsets. This requirement motivated researchers [7, 17, 19, 49, 53, 70, 92] to develop

constraint based itemset mining approaches.
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2.1.3 Constraint Based Approaches

Recent work [7,17,19,49,53,70,92] has highlighted the importance of constraint based

itemset mining. Various aspects of semantics, such as the significance of items [17,53]

or the significance of transactions [19], are expressed as constraints. Five constraint

based approaches are Convertible Constraints [70], Weighted Items [17,49,53], Value

Added Mining [49], High Utility Mining [19], and Itemset Share [7, 92]. The main

differences among these approaches are: (1) different levels of granularity are used

to specify the semantic significance of itemsets, and (2) different pruning strategies

are developed according to the identified constraints on the itemsets.

Two important mathematical properties of constraints, namely, the anti-monotone

(or monotone) property and the convertible property, have been identified and used

by existing constraint based itemset mining approaches [2, 3, 17,19,53,57,70].

Definition 4 [69]. A constraint C is anti-monotone iff whenever an itemset S

violates a constraint C, so does any superset of S. A constraint C is monotone iff

whenever an itemset S satisfies a constraint C, so does any superset of S.

Let the constraint C be the support constraint sup(S) ≥ min sup. If an itemset

S satisfies the Apriori property, by Definition 4, it also satisfies the anti-monotone

property. Thus, the Apriori property is a special case of the anti-monotone property.

Definition 5 [69]. An itemset S1 = i1 . . . , im is a prefix itemset of itemset S2 =

i1 . . . , in if the items in S1 and S2 are listed in the same order and m ≤ n.

For example, given an itemset ABCD. By Definition 5, itemsets A, AB, and

ABC are prefix itemsets of ABCD with respect to the order 〈A,B,C,D〉.
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Based on prefix itemsets of an itemset, the convertible property of the itemset

is defined as follows.

Definition 6 [69]. A constraint C is convertible anti-monotone w.r.t. an order

O on items such that whenever an itemset S satisfies property P , so do any prefix

itemsets of S. A constraint C is convertible monotone w.r.t. an O on items such

that whenever an itemset S violates property P , so do any prefix itemsets of S.

A constraint C is convertible w.r.t. an order O if whenever it is convertible anti-

monotone or convertible monotone w.r.t. the order O.

The Convertible Constraints (CC) approach suggested by Pei et al. [70] provided

a significant advance in the study of constraint based mining. In this approach, the

notation of convertible constraints are introduced. The mathematical properties of

convertible constraints are systematically analyzed and characterized. That is, an

itemset w.r.t. an order is downward closed in the lattice of all its prefix itemsets

defined w.r.t. this order. In other word, if an itemset is convertible w.r.t. an order,

then all of its prefix itemsets defined w.r.t. this order do. This closure property

has permitted the development of efficient algorithms that traverse only a portion

of the itemset lattice, yet find all possible itemsets. Pei et al. [70] explicitly stated

that convertible constraints cannot be literally incorporated into an Apriori algo-

rithm. As a result, two new algorithms, namely, FICA algorithm [70] for convertible

anti-monotone constraints and FICM algorithm [70] for convertible monotone con-

straints, are developed.

The Weighted Items (WI) approach [17,53] and the Value Added Mining (VAM)

approach [49] capture the semantic significance of itemsets at the item level. Unlike

Apriori algorithm treats all items uniformly, both of these approaches assume that
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items in a transaction database (columns in the table) have different weights to

reflect their importance to the user. For example, the weights may correspond the

profitability of different items such as a computer (item A) may be more important

than a phone (item B) in terms of profit. Since there is always a decreasing order

based on weights of all items, their convertible property can be defined as
∑

ip∈S f(ip)

for itemset S w.r.t. the descending order on the weight of items, where f(ip) is the

weight of the item ip. As a result, the semantic of weight is a measure of the

importance of an itemsets. Two new algorithms are proposed to find weighted

itemsets. In WI approach, the algorithm, called MINWAL, is developed. The

pruning strategy of MINWAL is designed by using convertible constraints w.r.t.

the order obtained by sorting the items in decreasing order based on their weights.

An exhaustive search algorithm is suggested in the VAM approach, since it fails to

identify the convertible property of the constraints.

The High Utility Mining (HUM) approach [19] captures the semantic signifi-

cance of itemsets at the transaction level. Similar to the WI and VAM approaches,

the HUM approach assumes that transactions in a database (rows in the table)

have different utility values to reflect their importance to the user. For instance,

the same medical treatment for different patients (different transactions) will have

different levels of effectiveness. In more detail, considering a simplified dataset on

medical treatments for a certain disease shown in Table 2.5, which comes from [19].

Transactions t2, t3, t4, and t5 all use the same treatment and medicine but ob-

tained different effectiveness and side-effects for different patients. As a result, in

this example, the utility value of a transaction could be its corresponding values of

attribute Effectiveness minus values of attribute Side-effect. E.g. the utility value

of t2 is 4−2 = 2. In fact, the utility values used for each transaction by HUM is the
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weight of transactions. Since there is always a decreasing order based on weights

of all transactions, their convertible property is defined as
∑

tq∈TS
f(tq) for item-

set S w.r.t. the descending order on the weight of transactions, where f(tq) is the

weight of the transactions tq. As a result, the semantic of weight on transactions is

a measure of the importance of an itemsets. A pruning strategy is developed in this

approach by using a convertible constraint w.r.t. the order obtained by sorting the

transactions in decreasing order based on their weights and an algorithm to mine

top K high utility closed itemsets is proposed.

Table 2.5: A medical dataset obtained from an example in [19].

TID Treatment Medicine Effectiveness Side-effect
t1 1 1 2 4
t2 2 1 4 2
t3 2 1 4 2
t4 2 1 2 3
t5 2 1 1 3
t6 3 1 4 2
t7 3 2 4 2
t8 3 2 1 4

The Itemset Share (IS) approach [7, 92] captures the semantic significance of

numerical values that are typically associated with the individual items in a trans-

action database (cells in the table). The precise impact of the purchase of an itemset

can be measured by the item share, the fraction of some overall numerical value,

such as the total quantity of items sold. For example, five computers sold in one

transaction may be considered to be more important than only two computers sold

in another transactions. Thus, the domain of the table can be explicit quantities,

such as the number of items sold as shown in Table 2.1, rather than the binary

domain {0, 1}, where 1 indicates the presence of an item in a transaction, and 0 in-
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dicates its absence. Five algorithms are developed in [7] to find itemsets with share

values above the minimum share threshold. The Zero Pruning (ZP) algorithm is

defined as the removal of any itemset S for which |TS| = 0, before candidate itemset

generation is performed. The Zero Subset Pruning (ZSP) algorithm is defined to

prevent a generated itemset from having a subset that was found to have a zero

transaction count. The Share Infrequency Pruning (SIP) algorithm is defined as the

removal of any itemset S in the candidate set Ck−1 whose actual share of S is less

than the share threshold before candidate set Ck is generated. The Combine All

Counted (CAC) algorithm defined as to allow all information, which is collected in

the (k − 1) pass to generate k−itemsets, to add to Ck by delaying the infrequency

pruning of the itemsets in Ck−1, until after the itemsets in Ck have been generated.

The Item Add-Back (IAB) algorithm is defined as each single item found in the first

pass is added to the share of itemset from the (k − 1) pass in the kth pass. More

detail of these algorithms is referred to [7]. Among these five algorithms, ZP and

ZSP are deterministic algorithms. The ZIP, SIP, and IAB are heuristic algorithms

that may fail to find some high share itemsets.

2.2 Theoretical Foundation

In this section, we present the theoretical foundation for our utility based itemset

mining approach. We begin by introducing some formal definitions of key terms.

2.2.1 Definitions

We denote the utility value of itemset S as u(S), which will be described in more

detail shortly.
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Definition 7 The utility constraint is a constraint of the form u(S) ≥ minutil.

Definition 8 An itemset S is a high utility itemset if u(S) ≥ minutil, where

minutil is the threshold defined by the user. Otherwise, S is a low utility item-

set.

Based on the utility constraint, the utility based itemset mining problem is de-

fined as follows.

Definition 9 The utility based itemset mining problem is to discover the set H of

all high utility itemsets, i.e.,

H = {S | S ⊆ I, u(S) ≥ minutil}. (2.1)

For example, consider the itemsets in Table 2.4. If u(S) is the profit of an itemset

S and minutil = 150, then H = {B, C, AC, BD, CD, ACD}.
According to Definition 9, u(S) plays a key role in specifying utility based itemset

mining problems. Next, we show how to define u(S) in terms of a user defined utility

function f . In Example 2, the profit of an itemset reflects a store manager’s goal of

discovering itemsets producing significant profit (e.g., minutil = 150). A user judges

BD to be useful, since the profit of itemset BD is greater than minutil. Here, we

observe that the semantic significance of profit can be captured by a function f(x, y),

where x is the quantity sold of an item and y is the unit profit of an item. The

usefulness of an itemset is quantified as the product of x and y, namely, f(x, y) = x·y.

The value of x can be obtained from the transaction database and depends only on

the underlying database used in the data mining process [80]. On the other hand,

y is often not available in a transaction database and may depend on the user who
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examines the itemset [80]. Thus, in this case, the significance of an item is measured

by two parts. One is the statistical significance of the item measured by parameter

x, which is an objective term independent of its intended application. The other

part is the semantic significance of the item measured by parameter y, which is a

subjective term dependent on the application and the user. As a result, f(x, y)

combines objective and subjective measures of an item together. The combination

captures the significance of the itemset for this application, which reflects not only

the statistical significance but also the semantic significance of the itemset. To

define f(x, y) as such a utility function for utility based itemset mining, we start by

defining the parameters x and y.

Definition 10 The objective value of an item, denoted xpq, is the value of an at-

tribute associated with an item ip in a transaction tq.

For example, in Table 2.1, the quantity sold values in the transactions are the

objective values. If i4 = D, then x43 = 30 is the objective value of item D in

transaction t3.

Definition 11 The subjective value of an item, denoted yp, is a real number as-

signed by the user such that for any two items ip and iq, yp is greater than yq iff the

user prefers item ip to item iq.

The definition indicates that a subjective value is associated with a specific value

in a domain to express user preference. In practice, the value of yp is assigned by

the user according to his interpretation of domain specific knowledge measured by

a utility such as cost, profit, or aesthetic value. For example, let i1 = A and i2 = B.

Using the Table 2.3, we have y1 = 5 and y2 = 100. The inequality y2 > y1 reveals
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that the store manager prefers item B to item A, since each item B earns more

profit than each item A.

By obtaining the objective value xpq from a transaction database and the sub-

jective value yp from the user, a utility function to express the significance of an

itemset can be defined as a two dimensional function f(x, y). We restrict attention

to nonnegative utility functions

Definition 12 A nonnegative utility function f is a function f(x, y) : (R,R) → R+,

where R is the set of real numbers, and R+ is the set of nonnegative real numbers.

Many utility functions of interest are nonnegative and other functions can be trans-

formed into nonnegative utility functions. Nonnegative utility functions can be

monotone, non monotone, convertible, or inconvertible. A function f1(x, y) with

range [−n,m], where n,m ≥ 0, can be transformed to a nonnegative function by

adding n to all values, i.e., f ′1(x, y) = f1(x, y) + n. Also a nonpositive function

f2(x, y) ≤ 0 can be transformed to its absolute value, namely |f2(x, y)|. Thus, all

results obtained for nonnegative utility function in this chapter can also be applied

to function f1 or f2. We acknowledge that this transformation will reduce the accu-

racy of the transformed function f ′1 in comparison with the original utility function

f1 for expressing user preferences. However, this approach ensures that a one to one

correspondence between these two utility functions exists. The transformed function

f ′1 also ensures that if a user prefers item A to item B, then the utility value of A is

higher than B.

Nonnegative utility functions are useful in practice. For example, the TF-IDF

function, which is widely used in information retrieval to score similarity between a

query and a document [73], can be used as a utility function. The TF-IDF function
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is defined as f(tfij, idfi) = tfij ∗ idfi, where tfij denotes the frequency of a term i

appearing in a document j, and idfi is the the inverse document frequency for term

i such that idfi = log M
dfi

, where M is the number of documents in the dataset and

dfi is the number of documents containing item i.

Example 3 Consider the transaction database in Table 2.1 and the corresponding

profit in Table 2.3. Let items i1, i2, i3, and i4 be items A, B, C, and D, respectively.

Suppose that the user defines utility function f(xpq, yp) as f(xpq, yp) = xpq ·yp, where

xpq is the quantity sold of an item ip in transaction tq, and yp is the unit price of

the item ip. Then f(x11, y1) = 4 × 5 = 20, which indicates that the supermarket

earns $20 by selling four of item A in transaction t1. Similarly, f(x21, y2) = 0,

f(x31, y3) = 1× 38 = 38, and f(x41, y4) = 0.

In this thesis, we consider a generalized additive independence model [6, 13],

which is a natural but flexible and fully expressive generalization of an additive

utility model. That is, we assume that the utility value of an item is the sum of the

values of the utility function for each transaction. We also assume that the utility

value of an itemset is represented by the sum of the utility values of every item in

the itemset.

Definition 13 The utility value of an item ip in an itemset S, denoted l(ip, S), is

the sum of the values of the utility function f(xpq, yp) for each transaction tq in TS,

i.e.,

l(ip, S) =
∑

tq∈TS

f(xpq, yp). (2.2)
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For example, consider the transaction database in Table 2.1 with the correspond-

ing profit in Table 2.3. Let S = ACD, TS = {t6, t8}, thus l(A, S) = 4×5+1×5 = 25.

Definition 14 The utility value of an itemset S, denoted u(S), is the sum of the

utility value of each item in S, i.e.,

u(S) =
∑
ip∈S

l(ip, S). (2.3)

By substituting Equation (2.2) into Equation (2.3), we obtain

u(S) =
∑
ip∈S

∑
tq∈TS

f(xpq, yp). (2.4)

For example, given f(xpq, yp) = xpq ·yp, for itemset S = ACD, we have TS = {t6, t8},
then u(S) = l(A, S) + l(C, S) + l(D, S) = 5× 5 + 3× 38 + 11× 1 = 150.

Equation (2.4) indicates that user plays an important role in utility based itemset

mining process since a user can measure the semantic significance of the itemset by

using his own utility function f(x, y). Therefore, an itemset that is of interest to

one user, may be of no interest to another user, since users have different levels of

interest in itemsets, as expressed by their utility functions. In other words, different

itemsets may be discovered for two users according to their interests, as expressed

by their utility functions.

As previously mentioned, the two main pruning strategies used in itemset mining

are based on the Apriori property for frequent itemset mining [2, 3, 57] and the

convertible property for convertible constraint based itemset mining [17, 19, 53, 70].

Thus, it is worthwhile determining whether these two pruning strategies can be

applied to the utility based itemset mining.
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The following example shows that the utility constraint may be neither anti

monotone nor monotone.

Example 4 Consider the itemsets shown in Table 2.4. Let u(S) be the profit of

an itemset S. We have u(AD) = 135, u(ABD) = 106, and u(ACD) = 150. Since

u(AD) > u(ABD) and u(AD) < u(ACD), the profit of a superset of AD can be

lower or higher than the profit of AD.

The next following example shows that a utility constraint is not convertible

w.r.t. a decreasing or an increasing order on the profit of each item.

Example 5 Consider the itemsets shown in Table 2.4. Let u(S) be the profit of

an itemset S. In Table 3, u(A) = 110, u(B) = 200, u(C) = 190, and u(D) = 85.

Thus, the profit decreasing order is 〈B,C,A, D〉. Itemsets B and BC are prefix

itemsets of BCAD. Since u(B) = 200, u(BC) = 138, and u(BCAD) = 144,

then u(B) > u(BCAD) and u(BC) < u(BCAD), which indicates that the profit

of prefix itemsets of BCAD can be higher or lower than the profit of BCAD.

Similarly, the profit increasing order is 〈D, A, C, B〉. The itemsets DAC and DA are

prefix itemsets of DACB. Since u(DAC) = 150 and u(DA) = 135, then u(DA) <

u(DACB) and u(DAC) > u(DACB), which indicates that the profit of the prefix

itemsets of DACB can be higher or lower than the profit of DACB. Since neither

decreasing nor increasing orders can guarantee that the profit of itemset ABCD is

always higher (or lower) than the profit of any prefix itemsets, we conclude that

u(S) is not convertible w.r.t. a decreasing or an increasing order.

Theorem 2 shows that the pruning strategies used in existing approaches for

frequent itemset mining and convertible constraint based itemset mining cannot be

27



applied to utility based itemset mining.

Theorem 2 A utility constraint u(S) ≥ minutil is not necessarily anti monotone,

monotone, or convertible w.r.t. a decreasing or increasing order.

Proof: The counterexamples are shown in Examples 4 and 5. 2

2.2.2 Mathematical Properties of the Utility Constraint

In this subsection, we analyze the mathematical properties of utility constraints.

Furthermore, a theorem, which provides the theoretical foundation for the pruning

strategies proposed in next subsection, is formally established.

Definition 15 A k−itemset, denoted as Sk, is an itemset of k distinct items.

Definition 16 The set of all (k − 1)-itemsets of Sk, denoted Lk−1, is the set

{Sk−1 | Sk−1 ⊂ Sk}

Definition 17 The set of (k − 1)-itemsets including item ip, denoted Lk−1
ip

, is the

set {Sk−1| ip ∈ Sk−1, Sk−1 ∈ Lk−1}.

Example 6 Let S4 be the 4-itemset ABCD. Then, by Definition 16, we have

L3 = {ACD,ABD, ABC, BCD}. Since A /∈ BCD, by Definition 17, L3
A =

{ACD,ABD, ABC}.

Lemma 1 Let minSk−1∈Lk−1
ip
{l(ip, Sk−1)} be the minimum of the utility value of item

ip in any itemset of Lk−1
ip

. Then the following property holds.

l(ip, S
k) ≤ min

Sk−1∈Lk−1
ip

{l(ip, Sk−1)} ≤
∑

Sk−1∈Lk−1
ip

l(ip, S
k−1)

k − 1
(2.5)
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Proof: By Equation (2.2), for any Sk−1 ∈ Lk−1
ip

, we have Equation (2.6).

l(ip, S
k−1) =

∑
tq∈T

Sk−1

f(xpq, yp) (2.6)

Since Sk−1 ⊂ Sk, then for each tq ∈ TSk , by Definition 1, tq must satisfy tq ∈ TSk−1 .

Namely, TSk ⊆ TSk−1 . Thus, Equation (2.6) can be rewritten as follows.

l(ip, S
k−1) =

∑
tq∈T

Sk

f(xpq, yp) +
∑

tq∈(T
Sk−1−T

Sk )

f(xpq, yp)

= l(ip, S
k) +

∑

tq∈(T
Sk−1−T

Sk )

f(xpq, yp) (2.7)

By Equation (2.7), we have Equation (2.8).

l(ip, S
k−1)− l(ip, S

k) =
∑

tq∈(T
Sk−1−T

Sk )

f(xpq, yp) (2.8)

By Definition 12, f(xpq, yp) ≥ 0 for all tq ∈ TSk , so
∑

tq∈(T
Sk−1−T

Sk ) f(xpq, yp) ≥ 0.

Thus, by Equation (2.8), we have

l(ip, S
k−1)− l(ip, S

k) ≥ 0, (2.9)

which satisfies l(ip, S
k) ≤ l(ip, S

k−1) for any Sk−1 ∈ Lk−1
ip

. Thus, the first inequality

holds.

Since the number of (k − 1)-itemsets of any k-itemset is k, thus the number of

Sk−1 in Lk−1 is k. Since for all Sk−1 in Lk−1, there is only one Sk−1 that satisfies

ip /∈ Sk−1, it follows that the number of Sk−1 in Lk−1
ip

is k − 1. Thus, the following
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(k − 1) inequalities hold for all Sk−1 in Lk−1
ip

.

min
Sk−1∈Lk−1

ip

{l(ip, Sk−1)} ≤ l(ip, S
k−1)

By adding all these (k − 1) inequalities together, we have

(k − 1) · min
Sk−1∈Lk−1

ip

{l(ip, Sk−1)} ≤
∑

Sk−1∈Lk−1
ip

l(ip, S
k−1) (2.10)

By dividing by (k − 1) on both sides of Inequality (2.10), we obtain the second

inequality in Inequality (2.5).2

Example 7 Consider itemset I = {A,B,C,D} in 2.1 with the corresponding profit

in Table 2.3. Suppose S3 = ACD, and S2 = AD. By Definition 1, TS3 = {t6, t8},
and TS2 = {t2, t4, t5, t6, t7, t8, t10}. Thus, TS3 ⊆ TS2 . By Definition 13, l(A, ACD) =

(4 + 1)× 5 = 25, l(A,AD) = (2 + 3 + 1 + 4 + 2 + 1 + 5)× 5 = 18× 5 = 90. We have

l(A,ACD) ≤ l(A,AD). By Definition 17, we have L3
A = {ACD, ABD, ABC}. By

Lemma 1, we have

l(A,ABCD) ≤ min{l(A,ABC), l(A,ABD), l(A,ACD)}

≤ l(A,ABC) + l(A,ABD) + l(A,ACD)

3

Lemma 1 indicates that the utility value of an item ip in a k-itemset Sk is limited

by the utility value of the item ip in all (k − 1)-itemsets of Sk. The reason is that

the utility value of an item ip in S must be less than the utility value of ip in any
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subset of S that contains ip. In other words, the utility value of any single ip in S

monotonically decreases as the size of S increases. Thus, by considering all k items

in Sk, the upper bound of the utility value of the itemset Sk can be obtained as

follows.

Theorem 3 (Utility Upper Bound Property). Let u(Sk) be the utility value of a

k-itemset Sk. Then the following property holds.

u(Sk) ≤
∑

Sk−1∈Lk−1 u(Sk−1)

k − 1
(2.11)

Proof: By Lemma 1,

l(ip, S
k) ≤

∑
Sk−1∈Lk−1

ip
l(ip, S

k−1)

k − 1
(2.12)

holds for each ip ∈ Sk. Since itemset Sk contains k items, by adding the k inequalities

for all ip ∈ Sk, we have the following.

∑

ip∈Sk

l(ip, S
k) ≤

∑

ip∈Sk

∑
Sk−1∈Lk−1

ip
l(ip, S

k−1)

k − 1
(2.13)

By Definition 13, the left side of Inequality (2.13) satisfies

u(Sk) =
∑

ip∈Sk

l(ip, S
k) (2.14)
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The right side of Inequality (2.13) can be rewritten as

∑

ip∈Sk

∑
Sk−1∈Lk−1

ip
l(ip, S

k−1)

k − 1

=

∑
ip∈Sk

∑
Sk−1∈Lk−1

ip
l(ip, S

k−1)

k − 1
(2.15)

For a given ip, there is only one Sk−1 in Lk−1 that satisfies ip /∈ Sk−1. Let S ′ be this

(k − 1)-itemset. Thus, Equation (2.15) can be rewritten as follows.

∑

ip∈Sk

∑
Sk−1∈Lk−1

ip
l(ip, S

k−1)

k − 1

=

∑
ip∈Sk

∑
Sk−1∈(Lk−1−{S′}) l(ip, S

k−1)

k − 1

=

∑
ip∈Sk(

∑
Sk−1∈Lk−1 l(ip, S

k−1)− l(ip, S
′))

k − 1
(2.16)

Since ip /∈ S ′, by Definition 1, TS′ = 0. By Definition 13, l(ip, S
′) = 0. Thus,

Equation (2.16) can be rewritten as follows.

∑

ip∈Sk

∑
Sk−1∈Lk−1

ip
l(ip, S

k−1)

k − 1

=

∑
ip∈Sk

∑
Sk−1∈Lk−1 l(ip, S

k−1)

k − 1

=

∑
ip∈(Sk−1∪(Sk−Sk−1))

∑
Sk−1∈Lk−1 l(ip, S

k−1)

k − 1

=

∑
ip∈Sk−1

∑
Sk−1∈Lk−1 l(ip, S

k−1) +
∑

iq∈(Sk−Sk−1)

∑
Sk−1∈Lk−1 l(iq, S

k−1)

k − 1
(2.17)
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For
∑

iq∈(Sk−Sk−1)

∑
Sk−1∈Lk−1 l(iq, S

k−1) in Equation (2.17), since iq ∈ (Sk −
Sk−1), then iq /∈ Sk−1. Thus, by Definition 1 and 13, l(iq, S

k−1) = 0. As a result,

Equation (2.17) can be rewritten as follows.

∑

ip∈Sk

∑
Sk−1∈Lk−1

ip
l(ip, S

k−1)

k − 1

=

∑
ip∈Sk−1

∑
Sk−1∈Lk−1 l(ip, S

k−1) +
∑

iq∈(Sk−Sk−1)

∑
Sk−1∈Lk−1 0

k − 1

=

∑
ip∈Sk−1

∑
Sk−1∈Lk−1 l(ip, S

k−1)

k − 1

=

∑
Sk−1∈Lk−1

∑
ip∈Sk−1 l(ip, S

k−1)

k − 1

=

∑
Sk−1∈Lk−1 u(Sk−1)

k − 1
//by Definition 13 (2.18)

Therefore, by substituting Equation (2.14) and Equation (2.18) into Inequal-

ity (2.13), we obtain Inequality (2.19).

u(Sk) ≤
∑

Sk−1∈Lk−1 u(Sk−1)

k − 1
, (2.19)

which is the same as Inequality (2.11). 2

Example 8 For a 4-itemset S4 = ABCD, by Definition 16, we obtain L3 =

{ACD,ABD, ABC,BCD}. Thus, by Theorem 3, we have

u(ABCD) ≤ u(ABC) + u(ACD) + u(ABD) + u(BCD)

3
.
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It is important to realize that Theorem 3 indicates that the utility value of

itemset Sk is limited by the utilities of all its subset itemsets of size (k − 1).

Based on the utility upper bound property, two pruning strategies are provided

in next section.

2.3 Two Efficient Pruning Strategies

In this section, we design two efficient pruning strategies to mine high utility itemsets

using the utility upper bound property.

Definition 18 The candidate itemsets of Sk, denoted Ck−1, is a set of some (k −
1)−subsets of Sk, i.e., Ck−1 ⊆ Lk−1.

Definition 19 The utility upper bound of Sk, denoted b(Sk), is defined as follows.

b(Sk) =

⌈∑
Sk−1∈Ck−1 u(Sk−1)

|Ck−1| − 1

⌉
, (2.20)

where |Ck−1| is the cardinality of Ck−1.

Theorem 4 (Pruning Strategy 1). If every (k−1)-itemset Sk−1 ∈ (Lk−1−Ck−1)

is a low utility itemset and b(Sk) < minutil, then k-itemset Sk satisfies u(Sk) <

minutil.

Proof: Since each Sk−1 ∈ (Lk−1 − Ck−1) is a low utility itemset, then

∑

Sk−1∈(Lk−1−Ck−1)

u(Sk−1) <
∑

Sk−1∈(Lk−1−Ck−1)

minutil (2.21)

By Theorem 3, we have
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u(Sk) ≤
∑

Sk−1∈Lk−1 u(Sk−1)

k − 1

=

∑
Sk−1∈(Ck−1∪(Lk−1−Ck−1) u(Sk−1)

k − 1

=

∑
Sk−1∈Ck−1 u(Sk−1) +

∑
Sk−1∈(Lk−1−Ck−1) u(Sk−1)

k − 1

≤
∑

Sk−1∈Ck−1 u(Sk−1) +
∑

Sk−1∈(Lk−1−Ck−1) ·minutil

k − 1
//by Equation (2.21)

≤
∑

Sk−1∈Ck−1 u(Sk−1) + |Lk−1 − Ck−1| ·minutil

k − 1

≤ (|Ck−1| − 1) · b(Sk) + |Lk−1 − Ck−1| ·minutil

k − 1
//by Equation (2.20)

=
(|Ck−1| − 1) · b(Sk) + (k − |Ck−1|) ·minutil

k − 1

≤ (|Ck−1| − 1) ·minutil + (k − |Ck−1|) ·minutil

k − 1
//by b(Sk) < minutil

≤ (k − 1) ·minutil

k − 1

= minutil

Thus, we have u(Sk) < minutil. 2

Example 9 For the 3-itemset S3 = BCD in Table 2.4, we have

b(BCD) =
u(BC) + u(BD) + u(CD)

3− 1
=

138 + 211 + 193

2
= 271.

This result indicates that the utility value of BCD cannot be greater than 271,

based on the known utility values of itemsets BC, BD, and CD. The actual utility

value of BCD, which is shown in Table 2.4, is u(BCD) = 139.
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Theorem 4 indicates that we can determine whether or not a k-itemset is a

low utility itemset from the utility values of its high utility (k − 1)−size itemsets.

Therefore, a level-wise method [59] can be used to prune the low utility k-itemset

Sk if the utility upper bound b(Sk) calculated by Equation (2.20) is less than the

minutil threshold.

The difference between Theorem 3 and Theorem 4 is that Theorem 3 needs to

consider all the (k − 1)−size itemsets of Sk, whereas Theorem 4 does not. More

precisely, no (k−1)−size itemsets can be pruned in Theorem 3. However, Theorem 4

only considers some of the (k − 1)−size itemsets of S, i.e., the candidate itemsets

Ck−1. The other (k−1)−size itemsets of S in Lk−1−Ck−1 have already been pruned

as low utility itemsets at some previous levels.

Next, we will introduce a heuristic pruning strategy to further reduce the utility

upper bound of an itemset.

Although the utility upper bound property limits the utility values of the k-

itemset Sk to the sum of the utility value of candidate itemsets of size (k − 1), the

utility upper bound may be further reduced by considering their support. As the

size of an itemset increases, its support decreases.

Theorem 5 (Apriori Property [2]). Let s(Sk) be the support of itemset Sk. The

following property holds.

s(Sk) ≤ min
Sk−1∈Lk−1

{s(Sk−1)} (2.22)
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Theorem 5 indicates that the support of Sk is at most the minimum of the

support of any itemset of size (k − 1) of Sk.

For example, for the 4-itemset S4 = ABCD in Table 2.1, we have

s(ABCD) ≤ min{s(ABC), s(ABD), s(ACD), s(BCD)}.

By combining the utility upper bound property of an itemset with the Apriori

property, a heuristic pruning strategy is designed as follows.

Definition 20 Let Sk be a k-itemset, and let Ck−1 be a set of candidate itemsets

of Sk. The expected utility upper bound of Sk, denoted b′(Sk), is defined as follows.

b′(Sk) =

⌈
smin

|Ck−1| − 1

∑

Sk−1∈Ck−1

u(Sk−1)

s(Sk−1)

⌉
(2.23)

where

smin = min
Sk−1∈Ck−1

{s(Sk−1)}. (2.24)

Pruning Strategy 2. Let b′(Sk) be the expected utility upper bound of Sk. If

b′(Sk) < minutil, then itemset Sk can be pruned as a low utility itemset.

Example 10 Consider the 3-itemset S3 = BCD in Table 2.4.

smin = min{s(BC), s(BD), s(CD)} = min{0.1, 0.2, 0.3} = 0.1.
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Thus,

b′(BCD) =
smin

3− 1
×

⌈
u(BC)

s(BC)
+

u(BD)

s(BD)
+

u(CD)

s(CD)

⌉

=
0.1

2
×

⌈
138

0.1
+

211

0.2
+

193

0.3

⌉
= 153.91

The estimated utility upper bound of itemset BCD is only 153.91, as compared to

the utility upper bound of 271, which was determined in Example 9.

The reason that Pruning Strategy 2 is a heuristic strategy is that when the

size of the itemset is increased, more items are included, but the support for the

itemset may be decreased due to fewer transactions being included. It is possible

that u(S) ≥ minutil when b′(S) < minutil. As a result, some high utility itemsets

may be erroneously pruned by the heuristic strategy.

Example 11 Using Table 2.6, we have u(A) = 109, u(B) = 1, s(A) = 100%,

s(B) = 10%, and u(AB) = 101. By Definition 20, b′(AB) = 0.1∗(109/1+1/0.10) =

11.9, which is less than the actual u(AB). As a result, if minutil ≥ 12, then the

high utility itemset AB is erroneously pruned.

This example indicates that erroneous pruning may happen when a high utility

itemset S has a low utility subset with a support that is much lower than the support

of other subsets of S.

Therefore, it is important that the proposed heuristic method provides a reason-

able balance between accuracy and efficiency. In Section 2.5, a series of experiments

are reported that provide evidence that this balance has been achieved.
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Table 2.6: A transaction database.

Transaction ID Item A Item B
t1 100 1
t2 1 0
t3 1 0
t4 1 0
t5 1 0
t6 1 0
t7 1 0
t8 1 0
t9 1 0
t10 1 0

2.4 Algorithms for Utility Based Itemset Mining

In this section, we describe how to mine high utility itemsets efficiently by using

pruning strategies. The main idea is to incorporate the pruning strategies given in

Section 2.3 into the mining process, thereby pruning the search space.

Recall that in the two pruning strategies described in Section 2.3, both Equa-

tion (2.20) and Equation (2.23) use the utility values of (k − 1)-itemsets to predict

the utility upper bound of a k-itemset. Thus, the utility values of the (k−1)-itemsets

at level k− 1 can be used to constrain the utility values of the k-itemsets at level k.

A level based approach is taken to finding H, the set of high utility itemsets.

At level 1, the utility values of all items (i.e., 1-itemsets) are calculated by Equa-

tion (2.4), and the set of all 1-itemsets with their utility values is denoted C1. Then

the high utility itemsets in C1 are placed in H. At level 2, C1 is used to generate

the candidate 2-itemsets for level 2, denoted as C2. The utility upper bound of each

itemset in C2 is calculated using Equation (2.20). By pruning the 2-itemsets that
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have utility upper bounds less than the threshold, the size of C2 is reduced. The

actual utility values of the remaining 2-itemsets in C2 are calculated using Equa-

tion (2.4), and the high utility itemsets in C2 are added to H. Similarly, C2 is used

to generate the candidate 3-itemsets for level 3. And so on until the candidate item-

sets at level K have been checked or no candidate itemsets remain, i.e., Ck = φ for

(k ≤ K−1), where K is the maximum size of an itemset of interest. The purpose of

K is to provide the user with an opportunity to control the algorithm. The running

time for the algorithm may be reduced by setting K to a low value. If K is set high

enough, then the algorithm runs until no more itemsets can be found. In general, Ck

is the set of candidate k-itemsets for the kth pass. After the kth pass, information is

available about the utility value of each high utility k-itemset. Based on the above

reasoning, two algorithms for utility based itemset mining are presented.

2.4.1 The UMining Algorithm

We first develop an algorithm, called UMining, for mining all high utility itemsets

using pruning strategy 1, which is guaranteed to never prune a high utility itemset.

The framework of the UMining algorithm is shown in Figure 2.3.
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Algorithm UMining(T , f , minutil, K)
Input: Transaction database T , Utility function f ,

Utility value threshold minutil, Maximum size of itemset K.
Output: A set of high utility itemsets H.
1. I = Scan(T );
2. C1 = I;
3. k = 1;
4. Ck = CalculateAndStore(Ck, T, f);
5. H = Discover(Ck,minutil);
6. while (|Ck| > 0 and k ≤ K)
7. {
8. k = k + 1;
9. Ck = Generate(Ck−1, I);
10. Ck = Prune(Ck, Ck−1,minutil);
11. Ck = CalculateAndStore(Ck, T, f);
12. H = H ∪ Discover(Ck, minutil);
13. }
14. return H;

Figure 2.3: The UMining algorithm.

The functions called by the UMining algorithm are Scan, CalculateAndStore,

Discover, Generate, and Prune, which are given in Figures 2.4 to 2.8.

The Scan function finds the set of all items in the transaction database T .

Scan(T )
1. I = φ;
2. for each item ip in T
3. I = I ∪ {ip};
4. return I;

Figure 2.4: The Scan function for the UMining algorithm.

The CalculateAndStore function accesses transaction database T to calculate the

actual utility value of each k-itemset in Ck by Equation (2.4). It is assumed that

each itemset S in Ck has associated with it a u field, denoted u(S), for storing its
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utility value.

CalculateAndStore(Ck, T, f)
1. for each itemset S in Ck

2. obtain u(S) using TS and f by Equation (2.4);
3. return (Ck);

Figure 2.5: The CalculateAndStore function for the UMining algorithm.

The Discover function selects all high utility itemsets in candidate set Ck.

Discover(Ck,minutil)
1. C ′ = φ;
2. for each itemset S in Ck

3. if (u(S) ≥ minutil)
4. C ′ = C ′ ∪ {S};
5. return (C ′);

Figure 2.6: The Discover function for the UMining algorithm.

The Generate function generates all possible candidate k-itemsets from the (k−
1)-itemsets in Ck−1.

Generate(Ck−1, I)
1. Ck = φ;
2. for each itemset S ∈ Ck−1

3. for each item ip ∈ (I − S)
4. Ck = Ck ∪ {S ∪ {ip}};
5. return (Ck);

Figure 2.7: The Generate function for the UMining algorithm.

The Prune function calculates the utility upper bound of each itemset in Ck

based on the utility values of the candidate itemsets in Ck−1, and then removes any

itemset with a utility upper bound less than minutil from Ck. It is assumed that
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each itemset S has an associated b field, denoted b(S), for storing the utility upper

bound of S.

Prune(Ck, Ck−1,minutil)
1. for each itemset S in Ck

2. {
3. obtain b(S) using Ck−1 by Equation (2.20);
4. if (b(S) < minutil)
5. Ck = Ck − {S};
6. }
7. return (Ck);

Figure 2.8: The Prune function for the UMining algorithm.

The UMining algorithm follows the basic framework of the Apriori algorithm [3],

but there are significant differences in three subfunctions (Prune, CalculateAndStore,

and Generate functions).

Firstly, for the function Prune, a different pruning strategy is used in UMining.

Itemset S is pruned based on its utility upper bound b(S). The calculation of b(S)

is encapsulated in Equation (2.20). Secondly, for the function CalculateAndStore,

the utility value of each candidate itemset in Ck is calculated using utility function

f . This calculation is encapsulated in Equation (2.4). Finally, for the function

Generate, since the utility values of itemsets do not satisfy the Apriori property, we

cannot generate candidate k-itemsets simply using the Apriori Gen algorithm [3].

As a result, for each (k− 1)-itemset in Ck−1, all its supersets of size k are generated

at level k and then the k-itemsets that have a utility upper bound less than the

threshold are pruned from Ck.

Example 12 We use the sample database in Table 2.1 together with the corre-

sponding profit in Table 2.3 to provide an example of how the algorithm works.
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We assume f(x, y) = x × y, minutil = 196, and K = 4. Figure 2.9(a) shows the

complete itemset semi-lattice of candidate itemsets for ABCD and Figure 2.9(b)

shows the portion of the semi-lattice used in the UMining algorithm. Each edge

between two nodes indicates that the lower level node contributed to the calculation

of the utility upper bound of the upper level node. Each node in the semi-lattice

is labelled with an itemset name. Below each itemset name is the utility value. In

the figure, the high utility itemsets are shaded. The figure indicates that for this

example the high utility itemsets were found with slightly less work than would have

been required to examine all possible itemsets.

The UMining algorithm is traced as follows. At level 1, I = {A,B, C, D} is

returned by the Scan function and assigned to C1. Using the CalculateAndStore

function in line 4, the utility value of each itemset in C1 is calculated, i.e., u(A) =

22 × 5 = 110, u(B) = 200, u(C) = 190, and u(D) = 85. Using the Discover

function in line 5, H = {B}. At level 2, C2 = {AB, AC, AD, BC, BD, CD} is

returned by the Generate function. Using the Prune function, the utility upper

bound of itemsets in C2 are calculated as b(AB) = 310, b(AC) = 300, b(AD) = 195,

b(BC) = 390, b(BD) = 285, and b(CD) = 275. Since b(AD) < minutil, AD is

removed from C2, i.e., C2 = {AB, AC, BC,BD, CD}. Next, the utility value of

each itemset in C2 is calculated. i.e., u(AB) = 105, u(AC) = 197, u(BC) = 138,

u(BD) = 211, and u(CD) = 193. Using the Discover function in line 12, the 2-

itemsets AC and BD are added to H. At level 3, C3 = {ABC,ABD, ACD,BCD}
is returned by the Generate function. Using the Prune function, the utility upper

bounds of itemsets in C3 are b(ABC) = 220, b(ABD) = 316, b(ACD) = 390, and

b(BCD) = 271. No itemset is removed from C3, since all these utility upper bounds

are higher than minutil. Next, the utility value of each itemset in C3 is calculated,
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i.e., u(ABC) = 143, u(ABD) = 106, u(ACD) = 150, and u(BCD) = 139. When

the Discover function is called in line 12, no 3-itemset is added to H, since all

itemsets in C3 are low utility itemsets. At level 4, C4 = {ABCD} is obtained by the

Generate function. Using the Prune function, we obtain b(ABCD) = 179.3, and

thus itemset ABCD is removed from C4, i.e., C4 = φ. At this point, the algorithm

terminates.
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(a) complete search space (b) portion used by UMining

Figure 2.9: Itemset semi-lattice for the UMining algorithm.

The complexity of the UMining algorithm depends on the number of transactions

n in the transaction database T , the total number m of distinct items that appear in

T , the complexity of the utility function f , and the degree of correlation among the

items. If more itemsets are identified as low utility itemsets, then more candidates

can be pruned, which reduces the running cost of the algorithm. The worst case

occurs when all itemsets are high utility itemsets, and thus all combinations of the

items are tested. The time required to compute the utility value for an itemset is

(n · k · C(f)), where C(f) is the complexity of utility function f . Since the number

of combinations of all items is Cm
1 + Cm

2 + . . . + Cm
m = 2m, the worst case time
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complexity is O(n · k · C(f) · 2m).

2.4.2 The UMining H Algorithm

UMining H, a heuristic method for mining most high utility itemsets using pruning

strategy 2, is presented in this section. The framework for the UMining H algorithm

is the same as that for the UMining algorithm shown in Figure 2.3, except the

CalculateAndStore and Prune functions are replaced by the CalculateAndStore H

and Prune H functions shown in Figures 2.10 and 2.11.

CalculateAndStore H(Ck, T, f)
1. for each itemset S in Ck

2. {
3. obtain u(S) of Ck by Equation (2.4);
4. obtain s(S) of Ck;
5. }
6. return (Ck);

Figure 2.10: The CalculateAndStore H function for the UMining H algorithm.

The CalculateAndStore H function is similar to the CalculateAndStore function

given in Figure 2.5, but a line has been added (line 4) to obtain the support s(S)

of itemset S, as required by Definition 20. Each S in Ck has associated with it an

s field, denoted s(S), for storing its support value.

In the Prune H function, pruning strategy 2 is applied by calculating the ex-

pected utility upper bound b′(S) of itemset S instead of calculating the utility upper

bound u(S) as is done in the Prune function. Each itemset has associated with it a

b′ field, denoted b′(S), for storing the expected utility upper bound of S.
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Prune H(Ck, Ck−1,minutil)
1. for each itemset S in Ck

2. {
3. obtain b′(S) by Equation (2.23);
4. if (b′(S) < minutil)
5. Ck = Ck − {S};
6. }
7. return (Ck);

Figure 2.11: The Prune H function for the UMining H algorithm.

Example 13 Continuing from Example 12, we show how the heuristic algorithm

works. At level 1, the UMining H algorithm works in the same manner as the

UMining algorithm, except it also obtains s(A) = 80, s(B) = 20, s(C) = 40,

and s(D) = 90. At level 2, C2 = {AB, AC, AD, BC,BD, CD} is obtained by the

Generate function. Using the Prune H function, the expected upper bounds of

itemsets in C2 are b′(AB) = 227.5, b′(AC) = 245, b′(AD) = 185.56, b′(BC) = 295,

b′(BD) = 218.89, and b′(CD) = 227.77. Since b′(AD) < minutil, AD is removed

from C2, i.e., C2 = {AB, AC, BC,BD, CD}. Next, the utility value and support

of each itemset in C2 is calculated, i.e., u(AB) = 105, s(AB) = 10, u(AC) =

197, s(AC) = 30, u(BC) = 138, s(BC) = 10, u(BD) = 211, s(BD) = 20, u(CD) =

193, and s(CD) = 30. As with the UMining algorithm, 2-itemsets AC and BD are

added to H. At level 3, C3 = {ABC, ABD, ACD, BCD} is generated. The expected

utility upper bounds of the itemsets in C3 are b′(ABC) = 154.33, b′(ABD) = 210.5,

b′(ACD) = 390, and b′(BCD) = 153.92. Thus, ABC and BCD are removed from

C3, i.e., C3 = {ABD, ACD}. Next, the utility value and support of each itemset

in C3 is calculated. i.e., u(ABD) = 106, s(ABD) = 10, u(ACD) = 150, and

s(ACD) = 20. As with the UMining algorithm, no 3-itemsets are added to H. At
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level 4, C4 = {ABCD} is obtained, and b′(ABCD) = 181 is calculated. Thus,

C4 = φ after removing ABCD. At this point, the algorithm terminates.

The UMining H heuristic method may miss some high utility itemsets, but it

only reports correct ones. Figure 2.12(a) shows the complete itemset semi-lattice of

candidate itemsets, and Figure 2.12(b) shows the portion of the semi-lattice searched

by the UMining H algorithm. Since UMining H searches 11 nodes along 14 arcs, it

searches less of the space than UMining, which searches 13 nodes along 21 arcs. In

this case, UMining H does not miss any high utility itemsets.
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Figure 2.12: Itemset semi-lattice for the UMining H algorithm.

2.5 Experimental Results

In this section, experimental results on synthetic datasets and real world databases

are summarized. Then, a comparison between our proposed approach and other

related approaches is made. Next, the differences between utility based itemset

mining and frequent itemset mining are highlighted.

48



All experiments were performed on a l GHz Pentium III PC with 256 MB

RAM running Microsoft Windows XP. The UMining and UMining H algorithm

were implemented in Microsoft/Visual C++ 6.0. For simplicity, the utility thresh-

old minutil for all experiments was defined as minutil = α × total utility value,

where the total utility value is a constant calculated from the transaction database

after the first pass of the algorithm. More precisely, total utility value =
∑

ip∈I u(ip),

where I is the set of all items included in the transaction database. The coefficient

α represents the minimum acceptable ratio of the utility value of an itemset to the

total utility value in the database. For example, if the profit of an itemset is re-

garded as a utility value, then α = 10% indicates that the algorithm should select

any itemset with a profit of at least ten percent of the total profits. We report our

results using α rather than minutil. The maximum size K of the itemsets was set

to a value high enough so that it had no effect on the experiments.

2.5.1 Experimental Summary

To evaluate the efficiency of the UMining and UMining H algorithms, we performed

experiments on both synthetic and real datasets.

First, we report the experimental results found using a synthetic dataset, which

was generated by the IBM synthetic data generator [47] This dataset contains

983, 011 transactions and 7, 352 unique items. The size of the dataset is approx-

imately 331 megabytes. This dataset was chosen since it is typical of those used

in previous data mining performance studies. Each row of the dataset contains a

customer ID, a transaction ID and an item ID. We defined the utility function f as

f = item ID % 100, where % is a modulus operator, and the domain of item ID
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is from 1 to 7, 352. The modulus operator fulfills the requirement that the utility

function f be nonnegative but neither non monotone nor convertible. To compare

the efficiency of the algorithms, we used a fixed function f to keep this factor con-

stant. We studied the effect of different values for coefficient α on the processing

time and the number of transactions that contributed to the calculation of the high

utility itemsets for the UMining and UMining H algorithms. The values of coeffi-

cient α varied from 10% down to 0.25% for each experiment. Lower values for α

typically represent more challenging cases, because the number of itemsets ordinarily

increases as α decreases for itemset algorithms.

The experimental results are summarized in Table 2.7, where the HUI column

represents the number of high utility itemsets discovered by the algorithm, and the

# of Trans. column represents the number of transactions that contributed to the

calculation of the high utility itemsets. The results show that the execution time

decreases when coefficient α increases. Both algorithms obtain the same number of

high utility itemsets when α is greater than or equal to 2%, because all discovered

high utility itemsets are 1-itemsets. Table 2.8 further shows that UMining H is 0%

to 27% faster than UMining on the same IBM synthetic data with an accuracy of

93.97% to 100%, as measured by the percentage of high utility itemsets found.

Table 2.7: Experimental results on synthetic dataset for UMining and UMining H.

Minutil UMining UMining_H 
α # of HUI # of Trans. Time # of HUI # of Trans. Time 

10.00% 21 6,604,369 43 min. 21 6,604,369 43 min. 
5.00% 21 6,604,369 43 min. 21 6,604,369 43 min. 
2.00% 21 6,604,369 43 min. 21 6,604,369 43 min. 
1.00% 39 11,160188 70 min. 39 9,486,180 62 min.
0.50% 394 18,845,636 125 min. 381 13,568,451 91 min.
0.25% 3,371 26,136,835 152 min. 3,168 23,523,151 134 min.
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Table 2.8: The accuracy of estimation and percentage of time saved .

Threshold (α) 10% 5% 2% 1% 0.50% 0.25%
Accuracy 100% 100% 100% 100% 96.70% 93.97%

Time Saved 0% 0% 0% 12% 27% 12%

In theory, an exhaustive search could also be applied to the same dataset by using

the UMining algorithm with the Prune function commented out. Unfortunately, in

practice, the resulting program ran out of memory on our computer. To show the

benefit of the pruning step, we ran our experiments on 3.6 GHZ PC with 2 GB

RAM. The UMining algorithm took 36.9 minutes to find all itemsets when α was

set to 0.25%. The exhaustive search generated 3, 363, 385 candidate 2-itemsets, and

then ran out of memory while processing 3-itemsets. As a result, we gradually

reduced the number of items in the synthetic dataset from original 7, 352 to 500

unique items. Unfortunately, the exhaustive search ran out of memory in all these

experiments. Fortunately, when the number of items is reduced to 100 unique items,

it takes 160 minutes for exhaustive search. However, our UMining algorithm only

needs 23 minutes to obtain all desired results. These experimental results clearly

show the benefit of the pruning step. The pruning strategies are effective in reducing

the space requirements.

Secondly, we tested the UMining and UMining H algorithms on an 8-million-

record transaction database provided by a commercial partner, which represents the

purchase of 2, 238 unique items by 428, 665 customers. Each record of the database

consists of the account number of a customer, an item code identifying the equipment

or service purchased by the customer, and a numerical value indicating the quantity

purchased. The utility function f(x, y) is defined as f(x, y) = x · y, where x is the
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quantity purchased of an item in a transaction and y is the unit price of the item

stored separately in another database table. The coefficient α was varied from 10%

down to 0.25%. We investigated the effect of different values for coefficient α and

different sizes of datasets on the processing time and the number of passes.

Table 2.9 shows that for both UMining and UMining H, the execution time and

the number of passes decrease as coefficient α increases. In the table, the H column

represents the number of high utility itemsets discovered by UMining, and the H’

column represents the number discovered by UMining H. The kth row of the table

shows the number of itemsets discovered during pass k over the database. Display-

ing this information while the algorithm is running provides a user with a chance

to monitor the progress of the algorithm. In this experiment, UMining H found

all itemsets with α = 10% and 5%, but it found only 87 out of 88 (98.86%) when

α = 2%, and 5, 563 out of 5, 694 (97.70%) when α = 0.25%. As α increases, the num-

ber of high utility itemsets discovered decreases for both UMining and UMining H.

Table 2.9 also shows that for a fixed value of α, the number of high utility itemsets

does not increase proportionally with the pass number k.

Table 2.9: Experimental results on the customer database.

Threshold α α  =10% α = 5% α = 2% α = 1% α = 0.5% α = 0.25% 
k H H’ H H’ H H’ H H’ H H’ H H’ 

Pass 1 1 1 2 2 6 6 10 10 22 22 54 54 
Pass 2 2 2 7 7 19 19 54 54 213 213 454 454 
Pass 3 0 0 9 9 31 31 117 117 432 427 1,309 1,297 
Pass 4 0 0 4 4 24 24 123 118 668 642 2,017 1,967 
Pass 5 0 0 0 0 8 7 33 32 467 453 1,860 1,791 
Total 3 3 22 22 88 87 337 331 1,802 1,757 5,694 5,563 
Time 28 m. 25m. 42m. 39m. 65m. 58m. 87m. 76m. 2.7h. 2.4h. 10.5h. 8.4 h. 

By comparing the number of high utility itemsets in Table 2.9, Table 2.10

was obtained to show the accuracy at each pass and percentage of time saved by

52



UMining H. Table 2.10 indicates that UMining H is from 7.14% to 20.00% faster

than UMining on the customer database with accuracy ranging from 97.50% to

100% for the thresholds tested. In this experiment, with α = 5% and α = 10%,

both accuracies are 100%. In other words, no high utility itemsets are missed by

UMining H. For α = 0.25%, the accuracy of the UMining H algorithm is 97.70%,

with 131 of 5, 694 high utility itemsets missed. However, about 20% of the time is

saved. Therefore, UMining H provides a reasonable balance between accuracy and

performance.

Table 2.10: The accuracy of estimation and percentage of time saved

Threshold α 10% 5% 2% 1% 0.5% 0.25% 
 Pass 1 100% 100% 100% 100% 100% 100%
 Pass 2 100% 100% 100% 100% 100% 100%

Accuracy Pass 3 100% 99.08% 100% 98.84% 99.08%
 Pass 4 100% 97.52% 95.93% 96.11% 97.52%
 Pass 5 96.29% 96.97% 97.00% 96.29%
 Overall 100% 100% 98.86% 98.21% 97.50% 97.70%

Time Saved 10.71% 7.14% 10.77% 12.64% 16.05% 20.00%

To examine the scalability of the algorithm, we generated three additional data-

bases from the commercial database with sizes of 10%, 25%, and 50% of the original

database. The effect of the database size on the running time is shown in Table 2.11.

As the size of the database increases, more execution time is saved. Given the same

database, more time is saved as the coefficient α decreases. The time saved by using

UMining H instead of UMining ranges from 9.25% to 20% when α = 0.25%. The

heuristic approach appears to be more suitable for huge datasets, but generally,

the extra time UMining requires may be a good investment, because it guarantees

complete results.
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Table 2.11: The effect of the size of commercial database on the running time.

Size 100% Dataset 50%  Dataset  25% Dataset 10% Dataset 
α UMining UMining_H UMining UMining_H UMining UMining_H UMining UMining_H 

10.00% 28 min. 25 min. 9 min. 8 min.  4 min. 4 min. 4 min. 4 min. 
5.00% 42 min. 39 min. 15 min. 13 min. 7 min. 6 min. 4 min. 4 min. 
2.00% 65 min. 58 min. 21 min. 18 min. 10 min. 9 min. 5 min. 4 min. 
1.00% 87 min. 76 min. 31 min. 26 min. 15 min. 14 min. 8 min. 7 min. 
0.50% 2.7 hour 2.4 hour 67 min. 58 min. 22 min. 20 min. 13 min. 12 min. 
0.25% 10.5 hour 8.4 hour 187 min. 167 min. 54 min. 49 min. 19 min. 17 min. 

 
 

2.5.2 Algorithm Comparison

Since utility constraints may not always be anti monotone or convertible, previ-

ous algorithms cannot handle the problems that UMining was designed to address.

Thus, we cannot directly compare our algorithm with previous algorithms. How-

ever, we can use our algorithms to perform the tasks of frequent itemset mining [3]

or convertible constraint based itemset mining [17, 19, 53, 70], if we treat them as

special cases of utility constraints. To do so, we need to design a utility constraint

that is anti monotone for frequent itemset mining or convertible for constraint based

itemset mining. In more detail, for frequent itemset mining, u(S) could be defined

as an anti monotone function u(S) = s(S), where s(S) is the support of the itemset

S. The Apriori algorithm [3] is more efficient than UMining since the Apriori prop-

erty allows more itemsets to be pruned than our upper bound property allows. For

convertible constraint based mining, u(S) could be defined as u(S) =
∑

ip∈S f(ip)

w.r.t. a decreasing order on the weight f(ip) of item ip. Although UMining can solve

these problems, its performance may be poorer than that of the CC, WI, and HUM

algorithms, since the original algorithms have more efficient and powerful pruning

strategies based on the convertible property. Since the VAM algorithm uses exhaus-
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tive search, UMining is more efficient than VAM. Although several of the original

algorithms are more effective at reducing the the search space than UMining, our al-

gorithm can handle more complex semantics for itemsets in applications than these

algorithms. More precisely, our proposed algorithm can handle utility constraints

but the others cannot. Therefore, the relationship between our approach and related

approaches is complementary rather than competitive.

The Itemset Share approach [7] is the only previous approach that can consider

the numerical value on the cell of transaction datasets. The numerical value for an

item in a transaction can be regarded as the utility value for that item. Since the

Itemset Share approach does not consider any subjective user preferences concerning

the utility of items, it treats all users uniformly and will thus discover the same

itemsets for any user. Therefore the Itemset Share approach can be viewed as a

special case of utility based itemset mining where all user preferences are equal.

To make the Itemset Share approach solve a utility based itemset mining problem,

we transformed the input data by replacing each numerical value of an item in

a transaction by the utility value of the item in the transaction. By running an

Itemset Share program on the transformed data and UMining on the original data,

we created a fair comparison.

We compare the effect of different values for coefficient α and different sizes of

datasets on the processing time between the UMining algorithm used in the utility

based itemset mining approach and the SIP heuristic algorithm proposed for the

Itemset Share approach [7]. Like other Itemset Share approaches, SIP is not guar-

anteed to find all share frequent itemsets. We used Barber’s original implementation

of the SIP algorithm.

First, an empirical comparison between UMining and SIP on the IBM synthetic
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data is presented. The results are shown in Table 2.12, where % found represents

percentage of the high utility itemsets found. The experimental results indicate that

UMining is slightly faster than SIP, since UMining examines a smaller part of the

search space than SIP. Most importantly, UMining is guaranteed to find all high

utility itemsets, while SIP is a heuristic approach that may miss many high utility

itemsets. For example, when α = 0.25%, the accuracy of UMining is 100%, and the

accuracy of UMining H is 93.97%, but the accuracy of SIP is 28.18% with 2, 421 of

3, 371 high utility itemsets missed.

Table 2.12: The comparison of UMining and SIP on IBM synthetic dataset.

Minutil UMining SIP 
α # of HUI % found # of Trans. Time # of HUI % found # of Trans. Time 

10.00% 21 100% 6,604,369 43 min. 21 100% 6,604,369  43 min. 
5.00% 21 100% 6,604,369 43 min. 21 100% 6,604,369  43 min. 
2.00% 21 100% 6,604,369 43 min. 21 100% 6,604,369  43 min. 
1.00% 39 100% 11,160188 70 min. 39 100% 11,260,944 79 min. 
0.50% 394 100% 18,845,636 125 min. 297 75.38% 19,346,322 129 min. 
0.25% 3,371 100% 26,136,835 152 min. 950 28.18% 27,559,764 155 min. 

Next, the UMining and SIP algorithms are compared on the commercial database

described in Subsection 2.5.1. The effect of the database size on running time is

shown in Table 2.13. UMining is faster than SIP on all different sizes, due to its

more effective pruning. UMining appears to be slightly faster than SIP for large

database sizes. The percentages of time saved for an α value of 0.25% are 14%, 3%,

14% and 14% on the 100%, 50%, 25%, and 10% datasets, respectively. Although the

time differences are not great, it must be emphasized that UMining finds all desired

itemsets while SIP does not.
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Table 2.13: Comparison of UMining and SIP on the commercial database.

Size 100% Dataset 50%  Dataset  25% Dataset 10% Dataset 
α UMining SIP UMining SIP UMining SIP UMining SIP 

10.00% 28 min. 35 min. 9 min. 14 min.  4 min. 9 min. 4 min. 4 min. 
5.00% 42 min. 77 min. 15 min. 18 min. 7 min. 14 min. 4 min. 5 min. 
2.00% 65 min. 92 min. 21 min. 25 min. 10 min. 17 min. 5 min. 6 min. 
1.00% 87 min. 119 min. 31 min. 38 min. 15 min. 22 min. 8 min. 9 min. 
0.50% 2.7 hour  3.3 hour 67 min. 76 min. 22 min. 25 min. 13 min. 14 min. 
0.25% 10.5 hour  11.4 hour 187 min. 193 min. 54 min. 63 min. 19 min. 22 min. 

2.5.3 Utility versus Support

To end this section, we use the experimental results to emphasize the differences

between utility based itemset mining and frequent itemset mining. Let us consider

16 representative itemsets selected from the commercial database. Figure 2.13(a)

shows the utility values of the itemsets and their corresponding support values. In

Figure 2.13(b) and (c), the itemsets are ranked in terms of utility value and support

value, respectively. The difference between ranking by utility values and ranking

by support values is apparent. The itemset ranked 1st in terms of utility value was

ranked 3rd in terms of support value. On the other hand, the itemset ranked 1st in

terms of support value was only ranked 7th in terms of utility value.

In Figure 2.14, the rear series represents the utility value of each itemset, and

the front series represents the support values. UMining can find more itemsets of

interest to a user by considering the user’s preferences.
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Itemset
ID 

Utility Support
(%) 

 Itemset 
ID 

Utility 
Ranking

Support
Ranking

 Itemset 
ID 

Support
Ranking

Utility 
Ranking

1 54.21 4.28 1 1 3  2 1 7 
2 16.62 7.51 11 2 2  11 2 2 
3 15.68 1.04 12 3 4  1 3 1 
4 11.37 0.86 13 4 5  12 4 3 
5 14.72 0.97 6 5 7  13 5 4 
6 25.22 1.67 15 6 6  15 6 6 
7 11.68 0.76 2 7 1  6 7 5 
8 10.74 0.70 3 8 8  3 8 8 
9 14.45 0.95 5 9 10  10 9 12 

10 13.40 1.00 14 10 11  5 10 9 
11 47.44 5.32 9 11 12  14 11 10 
12 36.69 3.70 10 12 9  9 12 11 
13 34.63 2.47 7 13 14  4 13 15 
14 14.71 0.97 16 14 15  7 14 13 
15 23.58 1.77 4 15 13  16 15 14 
16 11.60 0.76 8 16 16  8 16 16 

       (a) 16 Itemsets                   (b) Ranked by Utility                   (c) Ranked by Support 

Figure 2.13: Itemsets ranked by their utility values and support values.
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Figure 2.14: Graph of itemsets ranked by their utility values.

2.6 Summary

The problem of utility based itemset mining is to discover the itemsets that are

significant according to their utility values. In this chapter, we first showed that
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the Apriori property and convertible constraint property are not directly applicable

to the problem of utility based itemset mining. As a result, the mathematical

properties of the utility value of an itemset were analyzed. Next, two novel pruning

strategies were presented to reduce the cost of finding high utility itemsets. With

these pruning strategies, a k-itemset with a utility upper bound less than minutil

can be pruned immediately without accessing the database to calculate its actual

utility value. By exploiting these pruning strategies, the UMining and UMining H

algorithms were developed to provide efficient solutions to the utility based itemset

mining problem. The effectiveness of the algorithms was demonstrated by applying

them to synthetic and real world databases. The experimental results indicate that

the proposed algorithms can discover high utility itemsets efficiently. UMining may

be preferable to UMining H, because it guarantees the discovery of all high utility

itemsets.

Utility based itemset mining was compared to frequent itemset mining, convert-

ible constraint based mining, and share based mining. Utility constraints are capable

of expressing more complex semantics than the support measure, convertible con-

straints, or the share measure. Previously developed algorithms are more efficient

for support based or convertible constraint based mining problems. For utility based

mining, the proposed UMining and UMining H algorithms are more efficient than

any previous algorithms. As well, UMining guarantees that all high utility itemsets

are found, while the heuristic share based methods may miss many relevant item-

sets. Overall, when a utility constraint is required to describe more complex user

preferences, the UMining algorithm can efficiently find all useful itemsets from a

database, while methods for frequent itemset mining, convertible constraint based

mining, and share based mining cannot.
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Chapter 3

Mining Functional Dependencies

from Data

In this chapter, we consider the problem of mining functional dependencies from

data. Background knowledge concerning functional dependencies is presented in

Section 3.1. In Section 3.2, the theoretical foundations of functional dependencies

are analyzed and four pruning rules are presented. Section 3.3 describes algorithms

for finding functional dependencies from data. In Section 3.4, our experimental

results are presented. We show a practical application of discovering functional

dependencies from data, namely, constructing a sound Bayesian network, in Section

3.5. Finally, in Section 3.6, we summarize the chapter.

3.1 Functional Dependencies

Let U = {v1, v2, . . . , vm} be a finite set of attributes [56] (or variables). Each variable

vi has a finite domain, denoted dom(vi), representing the values that vi can take on.
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For a subset X = {vi, . . . , vj} of U , we write dom(X) for the Cartesian product of the

domains of the individual variables in X, namely, dom(X) = dom(vi)×. . .×dom(vj).

Each element x ∈ dom(X) is called a configuration of X. A relation r [56] on U ,

written r(U), is a finite set of mappings {t1, . . . , tn} from U to dom(U) with the

restriction that for each mapping t ∈ r(U), t(vi) must be in dom(vi), 1 ≤ i ≤ m,

where t(vi) denotes the value obtained by restricting the mapping t to vi. A relation r

on U = {v1, v2, . . . , vm} is depicted in Table 3.1. Each mapping t is called a tuple [56]

and t(vi) is called the vi-value of t. To simplify notation, we may write the singleton

set {vi} as the single attribute vi and the set of attributes {v1, . . . , vj} as v1 . . . vj.

The union X ∪ Y of two attribute sets X and Y is sometimes simply denoted as

XY . We use the terms relation r(U) and transaction dataset T interchangeably.

Table 3.1: A relation r on the relational U = {v1, . . . , vm}.

v1 v2 . . . vm

t1(v1) t1(v2) . . . t1(vm)

r =
...

...
...

...
tn(v1) tn(v2) . . . tn(vm)

Definition 21 [41]. Let r(U) be a relation and X, Y ⊆ U . A functional dependency

(FD) is a constraint, denoted X → Y . The FD X → Y is satisfied by r(U) if every

two tuples ti, tj ∈ r(U) that have ti(X) = tj(X) also have ti(Y ) = tj(Y ). In an FD

X → Y , we refer to X as the antecedent and Y as the consequent.

Example 14 Consider an example relation r(U) shown in Table 3.2. By definition,

the FDs A → D, D → A, AB → E, BD → E, BE → A, BE → D, CE → A, and

CE → D are satisfied by r(U). However, the FD A → B is not satisfied by r(U),
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since for tuples t1, t2 ∈ r(U), t1(A) = t2(A) but t1(B) 6= t2(B).

Table 3.2: An example relation.

TID A B C D E
t1 0 0 0 2 0
t2 0 1 0 2 0
t3 0 2 0 2 2
t4 0 3 1 2 0
t5 4 1 1 1 4
t6 4 3 1 1 2
t7 0 0 1 2 0

Armstrong’s Axioms [56] are the following three inference axioms for FDs defined

on sets of attributes X, Y , and Z.

F1. (Reflexivity) If Y ⊆ X, then X → Y .

F2. (Augmentation) If X → Y , then XZ → Y Z.

F3. (Transitivity) If X → Y and Y → Z, then X → Y .

Theorem 6 [56]. The inference axioms F1, F2, and F3 are sound and complete.

Soundness indicates that given a set F of FDs satisfied by a relation r(U), any

FD inferred from F using F1-F3 is satisfied by r(U) too. Completeness indicates

that the three axioms F1-F3 can be applied repeatedly to infer all FDs logically

implied by a set F of FDs [56]. The following two inference axioms can be derived

from Armstrong’s Axioms and are introduced for convenience [72].

Union If X → Y and X → Z, then X → Y Z.

Decomposition If X → Y Z, then X → Y and X → Z.
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By Decomposition, X → Y Z is sometimes written as X → vi, vi ∈ Y Z.

Definition 22 [72]. Let X, Y ⊆ U and F be a set of FDs. The closure of X

(X 6= ∅) w.r.t. F , denoted X+, is defined as {Y | X → Y can be deduced from F

using Armstrong’s Axioms}. The closure of F , denoted F+, is a set of all FDs that

can be deduced from F using Armstrong’s Axioms.

Definition 22 indicates that the FD X → Y holds if and only if Y ∈ X+. For

X, Y ⊆ U , we use (XY )+ to denote the closure of X ∪ Y .

Example 15 Let F = {A → C, BD → AC}. By Definition 22, A+ = {A,C} and

(BD)+ = {A, B, C, D}.

Now, we introduce partitions of X and XY . These partitions can be used to

check whether or not an FD X → Y is satisfied by a relation.

Definition 23 Let X ⊆ U and let t1, . . . , tn be all the tuples in a relation r(U).

The partition over X, denoted
∏

X , is a set of the groups such that ti and tj,

1 ≤ i, j ≤ n, i 6= j, are in the same group if and only if ti[X] = tj[X]. The number

of the groups in the partition is called the cardinality of the partition, denoted |∏X |.

For a single attribute vi, we use
∏

Xvi
to denote the partition of the set of

attributes X ∪ {vi}.

Example 16 In Table 3.2, by Definition 23,
∏

A = {{t1, t2, t3, t4, t7}, {t5, t6}},
and

∏
CE = {{t1, t2}, {t3}, {t4, t7}, {t5}, {t6}}. By Definition 23, |∏A | = 2 and

|∏CE | = 5.

Using the cardinality of the partition, we can check whether or not an FD X → Y

is satisfied by a relation using Theorem 7, which was suggested by Huhtala et al. [41].
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Theorem 7 [41]. An FD X → Y is satisfied by a relation r(U) if and only if

|∏X | = |∏XY |.

For example, in Table 3.2, FD CE → A is satisfied by r(U), since |∏CE | =

|∏ACE | = 5.

3.2 Theoretical Foundation

In this section, we give the theoretical foundation for our approach to finding func-

tional dependencies in a relation. We introduce the concepts of equivalent attributes

and nontrivial closure and provide proofs of related lemmas and theorems.

3.2.1 Equivalent Attributes

Definition 24 Let X, Y ⊆ U . If X → Y and Y → X, then X and Y are said to

be equivalent sets of attributes, denoted by the equivalence X ↔ Y .

The following theorem shows that we can check whether or not the equivalence

X ↔ Y is satisfied in a relation U by comparing the closures of X and Y .

Theorem 8 Let X, Y ⊆ U . If Y ⊆ X+ and X ⊆ Y +, then X ↔ Y .

Proof: Since X → X+ and Y ⊆ X+, then by Decomposition, X → Y holds. By a

similar argument, Y → X holds. As X → Y and Y → X, we have X ↔ Y . 2

Example 17 Let U = {A,B, C, D} and F = {BD → AC,CD → B}. By Defin-

ition 22, (BD)+ = {A,B,C,D} and (CD)+ = {A, B, C, D}. Since CD ⊆ (BD)+

and BD ⊆ (CD)+, we have BD ↔ CD.
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Using equivalence X ↔ Y and Armstrong’s Axioms, Lemmas 2 and 3 are ob-

tained.

Lemma 2 Let W,X, Y, Y ′, Z ⊆ U and Y ⊂ Y ′. If X ↔ Y and XW → Z, then

Y ′W → Z.

Proof: By X ↔ Y , we have Y → X. By Augmentation, Y W → XW . By

Transitivity, Y W → XW and XW → Z give Y W → Z. By Augmentation, Y ′− Y

can be added to both sides of Y W → Z giving Y W (Y ′ − Y ) → Z(Y ′ − Y ). By

Y ⊂ Y ′, Y ′W → Z(Y ′ − Y ). By Decomposition, Y ′W → Z. 2

Lemma 3 Let W,X, Y, Z ⊆ U . If X ↔ Y and WZ → X, then WZ → Y .

Proof: By X ↔ Y , we have X → Y . By Transitivity, WZ → X and X → Y give

WZ → Y . 2

Definition 25 Let F be a set of FDs and X+ be the closure of X w.r.t. F . The

nontrivial closure of X w.r.t. F , denoted X∗, is defined as X∗ = X+ − {X}.

For X,Y ⊆ U , we use (XY )∗ to denote the nontrivial closure of the set of

attributes X ∪Y , similarly to how we use (XY )+ to denote the closure of attributes

X ∪ Y . We have (XY )+ = (XY )∗ ∪XY .

Example 18 Recalling Example 15, we have A+ = {A, C} and (BD)+ = {A,B,C,D}.
By Definition 25, A∗ = {C} and (BD)∗ = {A,C}.

Theorem 9 Let X,Y, Z ⊆ U such that Y + ⊆ X. Then X − Y ∗ → Z if and only if

X → Z.
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Proof: We first prove that if X − Y ∗ → Z then X → Z. By Augmentation, Y ∗

can be added to both sides of X − Y ∗ → Z giving X → Y ∗Z. By Decomposition,

X → Z. Now we prove that if X → Z then X − Y ∗ → Z. Since Y = Y + − Y ∗

and Y + ⊆ X, then Y ⊆ X − Y ∗. By Reflexivity, X − Y ∗ → Y . By Transitivity,

X − Y ∗ → Y and Y → Y ∗ give X − Y ∗ → Y ∗. By Union, X − Y ∗ → Y ∗ and

X − Y ∗ → X − Y ∗ give X − Y ∗ → X. Thus, by Transitivity, X − Y ∗ → X and

X → Z give X − Y ∗ → Z. 2

Example 19 Let U = {A,B, C, D, E} such that C → A is satisfied by r(U).

Suppose X = ACE, Y = C, and Z = BD. Since C → A, C∗ = A. Then Y ∗ = A

and Y + = C ∪ C∗ = AC. Thus, Y + ⊆ X and X − Y ∗ = CE. By Theorem 9,

if CE → BD is satisfied by r(U), then ACE → BD is also satisfied by r(U); if

CE → BD is not satisfied, then ACE → BD is not satisfied either.

Theorem 10 Let X, Y ⊆ U . Then X∗ ∪ Y ∗ ⊆ (XY )+.

Proof: By Definition 22, X → X∗ is satisfied by r(U). By Augmentation, Y can be

added to both sides of X → X∗ giving XY → X∗Y . By Decomposition, XY → X∗,

which indicates that X∗ ⊆ (XY )+. It can be similarly shown that Y ∗ ⊆ (XY )+.

Thus, X∗ ∪ Y ∗ ⊆ (XY )+. 2

Example 20 Let U = {v1, v2, v3, v4, v5}, v∗1 = {v3} and v∗2 = {v4}. By Theorem 10,

{v3, v4} ⊆ (v1v2)
+. That is, v1v2 → v3v4. By Decomposition, v1v2 → v3 and

v1v2 → v4 can also be inferred.

Theorem 10 indicates that when checking all FDs of the form XY → vi, where

vi ∈ U − XY , only the FDs of the form XY → vi, where vi ∈ U − X+Y +, need

to be checked, since X∗ ∪ Y ∗ ⊆ (XY )+. As a result, the right side U − XY of

66



FD XY → vi, where vi ∈ U − XY , can be reduced to U − X+Y +. That is, the

attributes X+Y + can be pruned from the right side U −XY of the FD XY → vi,

where vi ∈ U −XY .

Lemma 4 Let X ⊂ S ⊆ U . If X → U −X, then S → U − S.

Proof: By Augmentation, S −X can be added to both side of X → U −X, giving

X(S − X) → (U − X)(S − X). As X ⊂ S ⊆ U , we have S → U − X and

U − S ⊂ U −X. By Decomposition, S → U − S. 2

Lemma 4 indicates that if X functionally determines all attributes in U other

than X, then all supersets of X also functionally determine all attributes in U other

than X.

3.2.2 Pruning Rules

A simple approach to finding all functional dependencies that are satisfied by a

relation is to propose the set of possible candidates for the antecedent and check

them one by one with possible consequents. A candidate X ⊂ U is a nonempty set

of attributes being evaluated for functional dependency.

The semi-lattice illustrated in Figure 3.1, excluding the top level, shows the

search space of an exhaustive algorithm for finding FDs for five attributes. Figure 3.1

shows all possible nonempty combinations of the five attributes A, B, C, D, and E.

For these attributes, there are 2n = 25 = 32 possible subsets of attributes, of which

the 2n − 2 = 30 nonempty, proper subsets are the candidates. The levels of the

semi-lattice are numbered from the bottom to the top. The set U = {A,B, C, D, E}
at level 5 is not a candidate, because for any FD with the form U → vi, we have

vi = U − U = φ. There are n2n−1 edges in a full lattice for n attributes [31]. Since
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the semi-lattice of the total search space of FDs starts from level 1, rather than the

empty set, there are n2n−1−n edges in the semi-lattice of the complete search space

for FDs.

                                                                                                                                                                   Level 
 
 
                                                                           ABCDE                                                            5                                                      
 
 
 
 
                                           ABCD     ABCE     ABDE     ACDE     BCDE                               4                                       
 
 
 
 
 
                    ABC     ABD     ABE    ACD    ACE    ADE    BCD    BCE    BDE    CDE        3 
 
 
 
 
                               
                                  AB    AC    AD    AE    BC    BD    BE    CD    CE    DE                            2 
 
 
 
  
 
                                                              A    B    C    D    E                                                         1 

 
 
 
 Figure 3.1: All possible nonempty combinations of attributes A, B, C, D, and E.

To find the candidates, we generate all possible candidates at level k from the

candidates at level k − 1. For instance, the candidate AB at level 2 is generated

from the candidates A and B at level 1. Overall, given a candidate X, to find the

FDs with X as antecedent that are satisfied by r(U), we will check whether or not

X functionally determines each of the remaining attributes in U , i.e., we will check

whether or not X → vi is satisfied by r(U) for each vi ∈ U −X using Theorem 7.

For example, let U = {A,B, C, D, E} and AE be a candidate. Then, U −{A,E} =

{B, C, D}, which indicates that for candidate AE only the FDs AE → B, AE → C,
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and AE → D need to be checked. For the semi-lattice shown in Figure 3.1, the

number of FDs that could be checked is 75, because n2n−1 = 5 · 25−1 − 5 = 75.

However, by designing useful pruning rules, the number of FDs to be checked can

be reduced since some FDs can be inferred from discovered FDs without checking

them on data.

In general, four kinds of FDs can be inferred. First, using equivalence X ↔ Y ,

any FD S → vi, where Y ⊂ S, can be inferred from X → vi by Lemmas 2 and 3.

Second, given Y + ⊆ X, using nontrivial closure Y ∗, any FD X → vi, where vi ∈
U −X can be inferred from X − Y ∗ → vi by Theorem 9. Third, given X+, any FD

S → vi, where vi ∈ X and X ⊂ S, can be inferred from X → vi by Theorem 10.

Fourth, given X ⊂ S, any FD S → vi, where vi ∈ U − S, can be inferred from

X → vi by Lemma 4. Thus, all these kinds of FDs can be discovered without

checking whether or not they are satisfied by r(U).

To simplify our discussion, when considering equivalent attributes X and Y , i.e.,

X ↔ Y , we assume that the equivalence is written such that the set of attributes

X is generated earlier than the set of attributes Y .

Lemmas 2 and 3 indicate that after an equivalence X ↔ Y has been found, no

further sets of attributes containing Y need to be checked.

Example 21 Suppose that we are given the relation r(U) shown in Table 3.3(a).

By examining all entries for attributes A and D, we determine that FDs A → D

and D → A are satisfied by r(U). According to Definition 24, A ↔ D is satisfied

by r(U). By checking attributes A, B, and C in all tuples in r(U), we determine

that AB → C and BC → A are satisfied by r(U). Without Lemmas 2 and 3,

we would then need to check all tuples in Table 3.3(a) again to determine whether
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or not BD → C and BC → D are satisfied by r(U). However, with Lemma 2,

BD → C can be inferred from A ↔ D and AB → C. By Lemma 3, BC → D

can also be inferred from A ↔ D and BC → A. Thus, using Lemmas 2 and 3, no

further candidate FDs containing D need to be checked. If relation r(U) is only used

for discovering functional dependencies, it may make sense to remove attribute D

from the relation r(U). The resulting relation, after removing attribute D, is shown

in Table 3.3(b). Even if the attribute is not removed from the relation, it can be

ignored in all subsequent processing.

Table 3.3: Effect of removing a redundant attribute D.

TID A B C D TID A B C
t1 0 0 0 1 t1 0 0 0
t2 0 1 0 1 t2 0 1 0
t3 0 2 0 1 t3 0 2 0
t4 0 3 1 1 t4 0 3 1
t5 4 1 1 2 t5 4 1 1
t6 4 2 1 2 t6 4 2 1
t7 0 0 0 1 t7 0 0 0

(a) Original relation (b) Relation without attribute D

In the context of finding all FDs satisfied by a relation r(U), the following four

pruning rules are defined for candidates X and Y , where X 6= φ, Y 6= φ, and

X, Y ⊂ U .

Pruning rule 1. If X ↔ Y is satisfied by r(U), then candidate Y can be deleted.

Pruning rule 2. If Y + ⊆ X, then candidate X can be deleted.

Pruning rule 3. Given X∗ and Y ∗, then when attempting to determine whether

or not the set of FDs XY → vi, where vi ∈ U −XY , is satisfied by r(U), only

the set of FDs XY → vi, where vi ∈ U −X+Y +, needs to be checked in r(U).
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Pruning rule 4. If ∀vi ∈ U − X, X → vi is satisfied by r(U), then candidate X

can be deleted.

These four pruning rules are used to delete candidates at level k − 1 before

generating candidates at level k. Pruning rule 1 is justified by Lemmas 2 and 3.

This rule reduces the size of the search space by eliminating redundant candidates.

Pruning rule 2 is justified by Theorem 9. This rule indicates that X → Z can be

inferred from X − Y ∗ → Z. Pruning rule 3 is justified by Theorem 10. This rule

indicates that for a candidate X and its superset S, S → X∗ can be inferred given

X∗. Thus, for candidate S, we need to check only the FDs S → vi, vi ∈ U −S−X∗.

Pruning rule 4 is justified by Lemma 4. This rule indicates that for any superset S

of X, S → U − S can be inferred.

When no FDs are found in the relation, the checking required for the four pruning

rules is an overhead that may increase the computation time. In Section 3.4, a series

of experiments are reported that provide evidence that it is worthwhile to use these

pruning rules for many datasets, since FDs are discovered that reduce the overall

time cost.

3.3 The FD Mine Algorithm

In this section, the FD Mine algorithm for finding FDs in data is described. FD Mine

combines a level-wise search, similar to that used in the Apriori algorithm [2], and

the four pruning rules given in Section 3.2. In a level-wise search, results from level

k are used to explore level k + 1. The FD Mine algorithm is shown in Figure 3.2.

First, at level 1, the singleton candidates in U are stored in C1. At level 2, each

candidate vi of C1 is used to generate all candidates of the form vivj, where vj ∈ C1
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and vi 6= vj, which are stored in C2. Then all FDs of the form vi → U − vi are

found and stored in F . At level 3, the candidate set C2 is used to generate the three

attribute candidates, which are stored in C3. All FDs of the form vivj → U − vivj

are checked and added to F . This procedure is repeated until Ck = ∅. In addition

to storing a set of FDs in F , this algorithm also stores equivalent candidates in E.

In more detail, for each level, the FD Mine algorithm works as follows. First, in

line 6, k is incremented. All candidates at level k are generated in line 7, then the

partitions of each candidate at level k are calculated in line 8 and their non trivial

closures are initialized to the empty set in line 9. In line 10, for each X ∈ Ck−1, all

FDs of the form X → vi are checked. The equivalent candidates are discovered in

line 11. In line 12, candidates may be deleted from Ck by using the four pruning

rules given in Section 3.2.

FD Mine(r(U))
Input: A relation r(U) over U = {v1, . . . , vm}
Output: A set F of functional dependencies over r(U).
1. F = ∅; E = ∅; C1 = U ; k = 1;
2. Ck = CalculatePartition(Ck, r(U));
3. Ck = InitialClosure(Ck);
4. while (|Ck| > 0)
5. {
6. k = k + 1;
7. Ck = Apriori-Gen(Ck−1);
8. Ck = CalculatePartition(Ck, r(U));
9. Ck = InitialClosure(Ck);
10. F = F ∪ ObtainFDs(Ck−1);
11. E = E ∪ ObtainEquivalences(Ck−1, F );
12. Ck = Prune(Ck−1, Ck, E);
13. }
14. return (F );

Figure 3.2: The FD Mine algorithm.

The algorithms called by the FD Mine algorithm are CalculatePartition, Ini-
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tializeClosure, Apriori-Gen, ObtainFDs, ObtainEquivalences, and Prune. The Cal-

culatePartition algorithm accesses the relation to calculate the actual partition of

each candidate X in Ck. We refer the reader to [41] for a thorough discussion of this

algorithm. The Apriori-Gen algorithm, which is shown in Figure 2.2, generates all

possible candidates in Ck from the candidates in Ck−1. More details concerning the

Apriori-Gen algorithm can be found in [2]. The remaining algorithms are given in

Figures 3.3 to 3.6.

The InitializeClosure algorithm, which is shown in Figure 3.3, initializes the non-

trivial closure of X to the empty set. It is assumed that each candidate X has a

nontrivial closure field, denoted X∗, for storing the nontrivial closure of X.

InitializeClosure(Ck)
1. for each candidate X in Ck

2. X∗ = ∅;
3. return (Ck);

Figure 3.3: The InitializeClosure algorithm of FD Mine.

The ObtainFDs algorithm, which is shown in Figure 3.4, checks the FDs of each

candidate X in Ck. More precisely, FDs of the form X → vi, where vi ∈ U −X+,

are checked by comparing partitions
∏

X and
∏

Xvi
. Theorem 7 guarantees the cor-

rectness of this method. It is assumed that each candidate X has a partition field,

denoted
∏

X , for storing the partition of X.
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ObtainFDs(Ck−1)
1. F = ∅;
2. for each candidate X in Ck−1

3. for each vi ∈ U −X+ // by Pruning rule 3
4. if (|∏X | == |∏Xvi

|) then
5. {
6. X∗ = X∗ ∪ {vi};
7. F = F ∪ {X → vi}; // by Theorem 7
8. }
9. return (F );

Figure 3.4: The ObtainFDs algorithm of FD Mine.

The ObtainEquivalences algorithm, which is shown in Figure 3.5, uses Theorem 8

to obtain equivalent candidates from the discovered FDs.

ObtainEquivalences(Ck−1, F )
1. E = ∅;
2. for each candidate X in Ck−1

3. for each Y → vi ∈ F
4. if (X ⊆ Y + and Y ⊆ X+ ) then
5. E = E ∪ {X ↔ Y }; // by Theorem 8
6. return (E);

Figure 3.5: The ObtainEquivalences algorithm of FD Mine.

The Prune algorithm, which is shown in Figure 3.6, exploits the four pruning

rules given in Section 3.2 to reduce the size of search space.
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Prune(Ck−1, Ck, E)
1. for each S ∈ Ck

2. for each X ∈ Ck−1

3. if (X ⊂ S) then
4. {
5. if (X ∈ {Z | Y ↔ Z ∈ E}) then
6. { delete S from Ck; // by Pruning rule 1
7. break;
8. }
9. if (X∗ ⊂ S) then
10. { delete S from Ck; // by Pruning rule 2
11. break;
12. }
13. S∗ = S∗ ∪X∗; // by Pruning rule 3
14. if (U == S ∪ S∗) then
15. { delete S from Ck; // by Pruning rule 4
16. break;
17. }
18. }
19. return (Ck);

Figure 3.6: The Prune algorithm of FD Mine.

We use the relation in Table 3.2 to provide an example of how FD Mine works.

Example 22 At level 1, C1 is set to C1 = {A,B, C, D, E} and the partition of

each candidate in C1 is computed by CalculatePartition. For example, the partition

of A is
∏

A = {{t1, t2, t3, t4, t7}, {t5, t6}}. At level 2, C2 = {AB, AC, AD, AE, BC,

BD, BE, CD, CE, DE} is generated by Apriori-Gen and the partition of each

candidate in C2 is computed by CalculatePartition. For example, the partition of AB

is
∏

AB = {{t1, t7}, {t2}, {t3}, {t4}, {t5}, {t6}}. Since |∏A | = |∏D | = |∏AD | = 2,

A∗ = D and D∗ = A are obtained in line 6 of ObtainFDs, and FDs A → D

and D → A are discovered in line 7 of ObtainFDs. Using ObtainEquivalences, the

equivalence A ↔ D is deduced. In the Prune algorithm, since A ↔ D holds, then

by pruning rule 1, all candidates that include D, namely, AD,BD, CD, and DE,
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are removed from C2, i.e., C2 = {AB, AC, AE,BC, BE,CE}. At level 3, C3 =

{ABC, ABE, ACE, BCE} is generated by Apriori-Gen and the partition of each

candidate in C3 is computed by CalculatePartition. Since |∏AB | = |∏ABE | = 6,

|∏BE | = |∏ABE | = 6, and |∏CE | = |∏ACE | = 6, ObtainFDs adds candidate E

to (AB)∗ and adds candidate A to (BE)∗ and (CE)∗. ObtainFDs also discovers FDs

AB → E, BE → A, and CE → A, and adds them to F . Using ObtainEquivalences,

the equivalence AB ↔ BE is deduced from AB → E and BE → A. In the

Prune algorithm, since AB ↔ BE is satisfied by r(U), then by pruning rule 1,

ABE, and BCE are removed from C3, i.e., C3 = {ABC,ACE}. Since CE → A is

satisfied by r(U), (CE)+ = ACE. By pruning rule 2, ACE is removed from C3, i.e.,

C3 = {ABC}. Since (AB)∗ = {D, E}, (AE)∗ = {D}, and (BE)∗ = ∅, then, in line

15 of the Prune algorithm, (ABC)∗ = {D,E}, which means (ABC)+ = U . Thus,

by pruning rule 4, ABC is removed from C3 in line 18 of the Prune algorithm,

i.e., C3 = ∅. As no other candidates remain when the Prune algorithm finishes,

FD Mine halts.

The portion of the semi-lattice illustrated in Figure 3.7 shows the search space

for FD Mine when applied to the relation shown in Table 3.2. Each node represents

a combination of candidates. If an edge is shown between nodes X and X ∪ vi, then

FD X → vi needs to be checked. A candidate is shown in bold face if its partition

needs to be computed by accessing the relation. Hence, the number of edges is the

number of FDs to be checked, and the number of candidates in bold face is the

number of partitions to be computed by accessing the relation. Figure 3.7 shows

that FD Mine checks 32 FDs and computes 19 partitions of candidates, while the

semi-lattice shown in Figure 3.1 corresponds to checking 75 FDs and computing 31
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partitions.
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Figure 3.7: Portion of semi-lattice accessed by FD Mine.

The crucial point about Example 22 is that equivalences are discovered and used

as the basis for pruning. First, the discovery at level 2 that FDs A → D and D → A

are satisfied indicates that A ↔ D is also satisfied. Thus, all candidates involving D

at levels 3 and higher do not need to be checked, as reflected in Figure 3.7. Secondly,

the discovery at level 3 that FDs AB → E and BE → A are satisfied indicates that

AB ↔ BE is also satisfied. Hence, all candidates that includes BE do not need

to be checked at level 4. As shown in Figure 3.7, all FDs in the sample relation

have already been discovered after checking level 3. In this case, FD Mine saves

a considerable fraction of the computation compared to searching the semi-lattice

shown in Figure 3.1.
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Theorem 11 Let F be the set of FDs that are obtained by applying FD Mine to a

relation r(U) and F+ be the closure of F . Then, an FD X → vi is satisfied by r(U)

if and only if X → vi ∈ F+.

Proof: When FD Mine is applied to r(U), the possible set of candidates includes all

nonempty, proper subsets of U . For any candidate X, we first prove that if X → vi

is satisfied by r(U) then X → vi ∈ F+. Suppose X → vi is satisfied by r(U). In

this case, X → vi is either discovered by FD Mine or not. If X → vi is discovered

by FD Mine, then X → vi ∈ F and it follows that X → vi ∈ F+. If X → vi is not

discovered by FD Mine, then according to lines 2 and 3 in ObtainFDs, X /∈ Ck or

vi /∈ U −X+, which could only occur if candidate X is pruned by pruning rules 1,

2, or 4, or vi is pruned by pruning rule 3. Since Theorems 8, 9, 10, and Lemma 4

guarantee that pruning rules 1, 2, 3, and 4, respectively, are correct, it follows that

X → vi ∈ F+. Now we prove that if X → vi ∈ F+ then X → vi is satisfied by r(U).

For any FD X → vi ∈ F+, either X → vi ∈ F or X → vi /∈ F . If X → vi ∈ F , then

by Theorem 7, FD X → vi is satisfied by r(U). Otherwise, if FD X → vi /∈ F , then

by Theorem 6, X → vi is satisfied by r(U). 2

The time complexity of the FD Mine algorithm depends on the number of at-

tributes m, the number of tuples n, and the degree of correlation among the at-

tributes. The time required varies for different relations, since the number and

levels of the equivalent candidates and the FDs that are discovered vary for differ-

ent relations. The worst case occurs when no FDs are found in the relation, and

all combinations of the attributes are tested. The number of combinations of all

attributes is Cm
1 + Cm

2 + . . . + Cm
m = 2m − 1. Since the combination U = v1 . . . vm

does not need to be tested, only 2m − 2 candidates will be tested, but this small
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constant is ignored in the complexity analysis. Thus, the worst case time complexity

is O(n · 2m), assuming that the partition of a candidate can be computed in time

O(n), as indicated in [41]. Suppose an equivalence X ↔ Y is discovered at level k,

k < m. Then all supersets of Y above level k will be eliminated by the pruning rules.

Since the number of supersets of Y above level k is 2m−k − 1, then time complexity

will be reduced to O(n · (2m − 2m−k)). If more FDs or equivalent candidates are

discovered in the relation, then more of the search space can be pruned by using the

discovered information.

3.4 Experimental Results

In this section, experiments on fifteen UCI datasets [84] are summarized, and then a

comparison between FD Mine and another algorithm called TANE [41] is presented.

3.4.1 Experimental Summary

FD Mine was applied to fifteen datasets obtained from the UCI Machine Learning

Repository [84]. The results are summarized in Table 3.4, where column 4 represents

the number of FDs that need to be checked on data, column 5 represents the number

of discovered FDs, column 6 represents the number of discovered equivalences, and

column 7 is the CPU time in seconds, measured on a SGI R12000 processor.

The timing results show that in practice the processing time is mainly determined

by the number of attributes m, as expected from the O(n·2m) theoretical complexity.

For example, in the Imports-85 dataset containing 26 attributes, the running time

is long, even though it only has 205 tuples. The Chess dataset has nearly 30, 000

tuples, but only 6 attributes, and its running time is much shorter.
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Table 3.4: Experimental results for FD Mine on fifteen datasets.

Dataset 
Name 

# of 
Attributes 

#  of 
Tuples 

#  of FD 
checked 

# of FDs  
found 

# of 
Equivalents 

Time 
(secs) 

Balance-scale 5 625 70 1 0 0 
Iris 5 150 70 4 0 0 
Chess 7 28,056 434 1 0 3 
Abalone 8 4,177 594 60 8 1 
Led 8 50 477 12 1 0 
Nursery 9 12,960 2,286 1 0 16 
Cancer-Wisconsin 10 699 4,562 19 0 1 
Breast-cancer 10 191 5,095 3 0 0 
Glass 10 142 405 11 1 0 
Bridge 13 108 15,397 61 48 2 
Echocardiogram 13 132 2,676 536 30 0 
Crx 16 690 79,418 494 235 10 
Pendigits 17 7,494 223,143 27,501 671 920 
Hepatitis 20 155 1,161,108 7,381 4,862 1,327 
Imports-85 26 205 2,996,737 3,971 19,888 8,322 

 

3.4.2 Algorithm Comparison

A comparison between FD Mine, TANE [41], and an exhaustive search algorithm is

given. The exhaustive search algorithm was obtained by using the FD Mine algo-

rithm with the Prune function commented out. The search space for the exhaustive

algorithm corresponds to the semi-lattice shown in Figure 3.1. The comparison with

the exhaustive algorithm was used to confirm the correctness of the implementation

and to place any efficiency gains in an overall context. The results indicate that

FD Mine finds correct FDs, because every FD found by FD Mine was also found by

the exhaustive search.

TANE was selected for comparison because work on TANE established the the-

oretical framework for the problem and TANE has been tested on an extensive set

of UCI datasets [84]. For the relation given in Table 3.2, Figure 3.8 shows the por-

tion of the semi-lattice accessed by TANE. The portions of semi-lattices shown in

Figure 3.7 for FD Mine and Figure 3.8 for TANE both have fewer edges than the
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semi-lattice shown in Figure 3.1. In addition, the portion of the semi-lattice accessed

by FD Mine has fewer edges than that accessed by TANE. TANE checks 55 FDs

and computes 30 partitions of candidates, which is more than the 32 FDs checked

and 19 partitions computed by FD Mine.
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Figure 3.8: Portion of the semi-lattice accessed by TANE.

Table 3.5 further compares the number of FDs checked on this sample relation

at each level. FD Mine checks fewer FDs at level 3, since candidates AD, BD, CD,

ED, ABD, ACD, ADE, BCD, BDE, and CDE are removed after A ↔ D is found

to hold. At level 4, FD Mine does not check any FDs, while TANE checks 11 FDs.

Table 3.6 compares the number of FDs that are checked by FD Mine, TANE,

and an exhaustive search for the same fifteen UCI datasets used in Table 3.4. For

example, in the Crx dataset, FD Mine checks 79, 418 FDs, while TANE checks

130, 605 FDs, and the exhaustive search checks 524, 272 FDs. In every case, FD Mine

checks at most as many FDs as TANE. The ′′∗′′ in the table indicates that the
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Table 3.5: Number of FDs checked for the sample relation in Table 3.2.

FD Mine TANE
Level 1 0 0
Level 2 20 20
Level 3 12 24
Level 4 0 11
Total 32 55

exhaustive search ran out of memory on Import-85. It used up all 12GB of available

memory while generating candidates at level 11. Recall that there are n2n−1 − n

edges in the exhaustive search space. The experimental results conform to this

analysis, because in each case, the exhaustive search checks n2n−1 − n FDs. We

can predict for the Imports-85 dataset that the number of FDs to be checked by

the exhaustive algorithm would be 872, 415, 206. It is worth mentioning that as the

number of attributes increases, FD Mine is relatively more useful than the other

methods. One reason for this is that more candidates can be pruned due to using

discovered equivalences, as shown in Table 3.6.

Table 3.6: The number of FDs checked in the UCI datasets.

# of #  of #  of FDs Checked Dataset 
Name Attributes Tuples FD_MINE TANE Exhaustive 

Abalone 8 4177 594 594 1,016 
Balance-scale 5 625 70 70 75 
Breast-cancer 10 191 5,095 5,095 5,110 
Bridge 13 108 15,397 15,626 53,235 
Cancer-Wisconsin 10 699 4,562 4,562 5,110 
Chess 7 28,056 434 434 441 
Crx 16 690 79,418 130,605 524,272 
Echocardiogram 13 132 2,676 2,766 53,235 
Glass 10 142 405 455 5,110 
Hepatitis 20 155 1,161,108 1,272,789 10,485,740 
Imports-85 26 205 2,996,737 3,564,176 * 
Iris 5 150 70 70 75 
Led 8 50 295 477 1,016 
Nursery 9 12,960 2,286 2,286 2,295 
Pendigits 17 7,494 223,143 227,714 1,114,095 
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Table 3.7 shows more detailed results for the Imports-85 and Hepatitis datasets.

At levels 1 through 3, both algorithms check approximately the same number of

FDs, but at levels 4 through 14, FD Mine checks fewer FDs than TANE.

Table 3.7: Number of FDs checked on the Imports-85 and Hepatitis Datasets.

LEVEL FD_MINE TANE  LEVEL FD_MINE TANE 
1 650 650     1 380    380                
2 7,309 7,309    2 3,420   3,420               
3 44,021 44,021   3 19,074  19,074              
4 145,647 154,985   4 70,099  70,484              
5 342,114 377,366   5 165,906  172,024             
6 573,815 656,106   6 262,905  279,461             
7 689,825 817,849   7 284,865 313,801             
8 596,476 731,203   8 207,780 237,601             
9 370,399 469,283   9 102,808 122,133             
10 164,187 216,510   10 34,332 42,300              
11 50,794 71,000   11 8,098 10,210              
12 10,270 15,703   12 1,320 1,735               
13 1,176 2,070    13 116 160                
14 54 121     14 5 6                  

Total 2,996,737 3,564,176  Total 1,161,108 1,272,789 
 

(a) Imports-85 Dataset (b) Hepatitis Dataset

FD Mine finds at most as many FDs as the other methods. In every case, any

FD not found by FD Mine can be inferred from the set F of discovered FDs using

Armstrong’s Axioms. Table 3.8 compares the number of FDs that are found by

FD Mine, TANE, and the exhaustive search for the same fifteen UCI datasets as in

Tables 3.4 and 3.6.

3.5 Constructing a Bayesian Network

In this section, we describe a practical application of discovering FDs from data,

namely, constructing a Bayesian network. We begin by reviewing Bayesian networks

in Section 3.5.1. In Section 3.5.2, we describe the FD2BN algorithm for constructing

a sound Bayesian network from the functional dependencies obtained by FD Mine.

83



Table 3.8: The number of FDs found in the UCI datasets UCI Datasets.

Dataset FD_Mine TANE Exhaustive 
Abalone 60 60 270 
Balance-scale 1 1 1 
Breast-cancer 3 3 8 
Bridge 61 62 28,164  
Cancer-Wisconsin 19 19 139 
Chess 1 1 1 
Crx 494 1,099 214,556 
Echocardiogram 536 583 41,771 
Glass 27 27 1,533 
Hepatitis 7,381 8,250  6,639,417 

Imports-85 3,971 4,176 * 
Iris 4 4 5 
Led 12 12 480 
Nursery 1 1 1 
Pendigits 27,501 29,934 703,082 

 
 

Finally, in Section 3.5.3, we establish the correctness of the FD2BN algorithm and

analyze its complexity.

3.5.1 Bayesian Networks

A directed graph is a pair G = (U,E), where U is a finite set of vertices (variables)

{v1, v2, . . . , vm} and E ⊆ U × U is a set of directed edges. A directed graph G =

(U,E) is acyclic, if the transitive closure of E is irreflexive [1]. We refer to a directed

graph that is acyclic as a directed acyclic graph (DAG) G and denote it as D =

(U,E). For variables vi, vj ∈ U , if there is a directed edge (vi, vj), then vi is called a

parent of vj and vj is called a child of vi. We write Pi for the set of all parents of vi.

Definition 26 A joint probability distribution (JPD) on dom(U) is a function p on

dom(U) such that p satisfies the following two constraint conditions: (i) 0 ≤ p(u) ≤
1, for each configuration u ∈ dom(U), and (ii)

∑
u∈dom(U) p(u) = 1.0.
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A joint probability distribution can be represented as a relation r. The relation

r representing the JPD p(U) has attributes U ∪ p(U), where the column labelled by

p(U) stores the probability value. For example, the relation r representing a JPD

p(U) on the set of variables U = {v1, v2} is shown in Figure 3.9.

Table 3.9: A joint probability distribution p(v1, v2).

v1 v2 p(v1, v2)
0 0 0.12
0 1 0.18
1 0 0.46
1 1 0.24

Definition 27 The marginal probability distribution on a subset of random variables

Y ⊂ X ⊆ U is a function such that p(Y ) =
∑

X−Y p(X).

Definition 28 [77]. Let v be a variable and X be a finite, possibly empty set

of variables. A conditional probability table (CPT ), also known as a conditional

probability distribution, for v given X, is a distribution, denoted p(v|X), satisfying

the condition: for each configuration x ∈ dom(X),
∑

c ∈ dom(v) p(v = c|X = x) =

1.0.

Example 23 Let U = {a, b, c, . . . , k} be a set of binary variables. Eleven CPTs

p(a), p(b|a), p(c), p(d|c), p(e|c), p(f |d, e), p(g|b, f), p(h|c), p(i|h), p(j|g, h, i) and

p(k|g) are depicted in Table 3.10. Note that the missing conditional probabilities

can be obtained by Definition 28; for instance, p(a = 0) = 1−p(a = 1) = 1−0.504 =

0.496 and p(b = 0|a = 0) = 1− p(b = 1|a = 0) = 1− 0.052 = 0.948.
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Table 3.10: Eleven conditional probability tables (CPTs).

a p(a) c p(c) d e f p(f |d, e) g h i j p(j|g, h, i)
1 0.504 1 0.577 0 0 1 0.710 0 0 0 1 0.178

0 1 1 0.193 0 0 1 1 0.565
a b p(b|a) c d p(d|c) 1 0 1 0.485 0 1 0 1 0.446
0 1 0.052 0 1 0.714 1 1 1 0.602 0 1 1 1 0.729
1 1 0.358 1 1 0.627 1 0 0 1 0.931

1 0 1 1 0.582
c e p(e|c) c h p(h|c) b f g p(g|b, f) 1 1 0 1 0.403
0 1 0.383 0 1 0.214 0 0 1 0.027 1 1 1 1 0.222
1 1 0.286 1 1 0.651 0 1 1 0.123

1 0 1 0.898
h i p(i|h) g k p(k|g) 1 1 1 0.405
0 1 0.104 0 1 0.593
1 1 0.369 1 1 0.416

Definition 29 [18]. Any JPD of a ordered set of variables U = {v1, v2, . . . , vm}
can be expressed as a product of m CPTs of the form

p(v1, v2, . . . , vm) =
m∏

i=1

p(vi|Ui), (3.1)

where Ui = {v1, . . . , vi−1}. Equation(3.1) is called the chain rule factorization of

p(U) w.r.t. the ordering 〈v1, . . . , vm〉.

For instance, let p(U) be a JPD on U = {a, b, c, d, . . . , k}. The chain rule factor-

ization of p(U) w.r.t. the ordering 〈a, b, c, d, . . . , k〉 is p(U) = p(a) · p(b|a) · p(c|a, b) ·
p(d|a, b, c) · . . . · p(k|a, b, c, d, e, f, g, h, i, j).

Definition 30 A Bayesian network (BN ) [68] on U is a pair (D,C). D is a directed

acyclic graph on U . C is a set of CPTs defined as: for each variable vi ∈ D, there

is a CPT p(vi|Pi) for vi given its parents Pi.
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Example 24 Let U = {a, b, c, . . . , k} be a set of binary variables. A real-world

Bayesian network for coronary heart disease (CHD) [32] on U is the DAG in Fig-

ure 3.9 together with the CPTs p(a), p(b|a), p(c), p(d|c), p(e|c), p(f |d, e), p(g|b, f),

p(h|c), p(i|h), p(j|g, h, i) and p(k|g) that are depicted in Table 3.10. This screenshot

was obtained by applying the software for semantic modelling jointree propagation

developed in Chapter 4 to the CHD DAG given in [32].

Figure 3.9: A directed acyclic graph (DAG) on U = {a, b, c, d, e, f, g, h, i, j, k} [32].

Given a Bayesian network, the product of the CPTs in C of the Bayesian network

is a JPD. That is,

p(U) =
∏
vi∈U

p(vi|Pi). (3.2)

Equation (3.2) is called the Bayesian factorization of p(U) w.r.t. the DAG D [68].
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For instance, the Bayesian factorization of p(U) w.r.t. the DAG in Figure 3.9 is

a JPD on U = {a, b, c, d, . . . , k}, namely, p(U) = p(a) ·p(b|a) ·p(c) ·p(d|c) · . . . ·p(k|g).

Definition 31 [85]. Let X, Y , and Z be disjoint subsets of variables in U . We

say X and Z are conditionally independent given Y under the joint probability dis-

tribution p, denoted Ip(X,Y, Z), if p(X|Y, Z) = p(X|Y ), whenever the marginal

probability distribution p(Y, Z) > 0. If Y = ∅, then we say X and Z are uncondi-

tionally independent, denoted I(X, ∅, Z).

Henceforth, we may write Ip(X, Y, Z) as I(X,Y, Z) if the joint probability distribu-

tion p is understood.

The next theorem shows that functional dependency logically implies conditional

independence.

Theorem 12 [15]. Let r(U) be a relation over U . Let p(U) be a JPD over r(U).

Let X,Y ⊆ U and Z = U−XY . If r(U) satisfies the functional dependency X → Y ,

then p(U) satisfies the conditional independence I(Y, X, Z).

Example 25 Given a JPD p(U) on U = {a, b, c, d, . . . , k}. If the FD ghi → j is

satisfied by r(U), then I(j, ghi, abcdefk) is satisfied by p(U).

3.5.2 The FD2BN Algorithm

We describe an algorithm, called FD2BN, to construct a Bayesian network from FDs

obtained by FD Mine. A crucial part of FD2BN is the ObtainOrdering algorithm,

which is shown in Figure 3.10. This algorithm finds an ordering O of the variables

of U such that given a set F of FDs, for any two different variables vi, vj ∈ U , if
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vi is before vj in O, then the FD of the form of X → vi ∈ F , where vj ∈ X and

X ⊆ U , cannot be inferred from F using Armstrong’s Axioms.

ObtainOrdering(U , F ).
Input: U = {v1, . . . , vm}, and a F set of FDs.
Output: an ordered list O of the variables of U .
1. O = 〈〉;
2. while (F 6= ∅)
3. {
4. for each X → vi ∈ F
5. if (for all Y → vj ∈ F and vi 6= vj, such that vi /∈ Y ) then
6. {
7. U = U − {vi};
8. prepend vi to the head of O;
9. remove any X → vi from F ;
10. }
11. if (F 6= ∅) then
12. {
13. obtain a FD X → vi from F ;
14. remove all Y → vj that satisfies vi ∈ Y from F ;
15. }
16. }
17. prepend U to the head of O;
18. return(O)

Figure 3.10: The ObtainOrdering algorithm of FD2BN.

We use following example to illustrate how the ObtainOrdering algorithm works.

Example 26 Suppose U = {v1, . . . , v13} and F = {v1v5 → v3, v1v5 → v6, v1v5 →
v11, v1v5 → v13, v1v8 → v7, v4v5v9 → v2, v1v5v10 → v4, v1v2v5 → v8, v1v5v10 → v9,

v1v5v10 → v12}. In line 4, the first FD, v1v5 → v3, is selected. In line 5, v3 is not in

Y for any Y → vj ∈ F , where vj 6= v3. Therefore, in line 7, variable v3 is removed

from U , in line 8, O = 〈v3〉 is obtained, and in line 9, FD v1v5 → v3 is removed from

F . As F is not empty, Algorithm ObtainOrdering repeats lines 4 to 10. The second

FD, v1v5 → v6, is selected in line 4. Variable v6 is removed from U in line 7, and O
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= 〈v6, v3〉 is obtained in line 8. By repeatedly performing lines 4 to 10, an ordering

O = 〈v9, v4, v2, v12, v8, v7, v13, v11, v6, v3〉 is obtained and F becomes empty. Since F

is empty, lines 11 to 15 are skipped, and the algorithm finishes the while loop. At

the end of line 16, U = {v1, v5, v10}. In line 17, U is prepended to the head of O to

give O = 〈v1, v5, v10, v9, v4, v2, v12, v8, v7, v13, v11, v6, v3〉.

The FD2BN algorithm is shown in Figure 3.11. The algorithms called by the

FD2BN algorithm are FD Mine and ObtainOrdering, which are presented in Fig-

ures 3.2 and 3.10, respectively.

FD2BN(r(U))
Input: A relation r(U) over variable set U .
Output: A DAG D〈U,E〉 of a BN learned from r(U).
1. F = FD Mine(r(U));
2. O =ObtainOrdering(U , F );
3. Ui = {};
4. while O is not empty
5. {
6. vi= pophead(O);
7. if (∃X → vi ∈ F and X ∈ Ui) then
8. Pi = X;
9. else
10. Pi = Ui;
11. Ui = Ui ∪ {vi};
12. }
13. Construct a DAG D〈U,E〉 such that {(b, vi) ∈ E | b ∈ Pi, vi ∈ U};
14. return(D〈U,E〉)

Figure 3.11: The FD2BN algorithm.

We illustrate the FD2BN algorithm using the heart disease dataset obtained

from the UCI Machine Learning Repository [84].

Example 27 The UCI heart disease dataset contains thirteen attributes, i.e., U =

{v1, . . . , v13}, and 230 tuples. We apply FD2BN to the heart disease dataset as
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follows. After applying FD Mine, the discovered set of FDs is F = {v1v5 → v3,

v1v5 → v6, v1v5 → v11, v1v5 → v13, v1v8 → v7, v4v5v9 → v2, v1v5v10 → v4, v1v2v5 →
v8, v1v5v10 → v9, v1v5v10 → v12}. The ordering O is obtained in line 2, as shown in

Example 26. Using ordering O, we obtain P1 = {}, P5 = {v1}, P10 = {v1, v5}, P9 =

{v1, v5, v10}, P4 = {v1, v5, v10}, P2 = {v4, v5, v9}, P12 = {v1, v5, v10}, P8 = {v1, v5, v2},
P7 = {v1, v8}, P13 = {v1, v5}, P11 = {v1, v5}, P6 = {v1, v5}, and P3 = {v1, v5}. By

making each element of Pi a parent of vi, the DAG depicted in Figure 3.12 can

be constructed for the heart disease dataset. For example, P2 = {v4, v5, v9}, edges

v4 → v2, v5 → v2, and v9 → v2 are added to the DAG for variable v2 with parents

v4, v5, and v9.
 

v2 v9 v6 v3 

v8 

v1 v5 

v7 

v4 v12 

v10 

v13 v11 

Figure 3.12: The DAG of a Bayesian network for the heart disease dataset.

3.5.3 Correctness and Complexity

In this subsection, we establish the correctness and complexity of FD2BN.
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Theorem 13 Given an input dataset r(U), then the product of the CPTs of the

constructed BN obtained using the FD2BN algorithm is p(U), the joint distribution

w.r.t. r(U).

Proof: Suppose O = 〈v1, . . . , vm〉 and Ui = {v1, . . . , vi−1}. According to Defini-

tion 29, the JPD p(U) can be expressed as the following chain rule factorization

w.r.t. the ordering O.

p(U) = p(v1) . . . p(vj|v1, . . . , vj−1) . . . p(vm|v1, . . . , vm−1)

= p(v1) . . . p(vj|Uj) . . . p(vm|Um) (3.3)

For any vk ∈ Pi, vk is always before vi in the ordering O returned by Obtain-

Ordering. It follows that the graph D obtained in line 13 is a DAG.

We now prove that this DAG is a DAG of a Bayesian network. Due to lines

7 to 10 of FD2BN, each Pi satisfies Pi = X or Pi = Ui. We first consider the

case where Pi = X, which indicates that FD X → vi is satisfied by r(U) in line

7. By Theorem 12, the conditional independence I(vi, X, U − X − vi) is satisfied

by p(U). Since X ⊆ Ui ⊆ U , I(vi, X, Ui − X − vi) holds by the decomposition

axiom of conditional independencies [68]. This conditional independence indicates

that the CPT p(vi|v1, . . . , vi−1) of vi satisfies p(vi|v1, . . . , vi−1) = p(vi|X). Thus,

Equation (3.3) can be rewritten as:

p(U) = p(v1) . . . p(vj|Uj)p(vj+1|Pj+1) . . . p(vm|Pm). (3.4)

Otherwise, consider the case where Pi = Ui. In this case, Equation (3.4) can be

rewritten as:
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p(U) = p(v1|P1) . . . p(vj|Pj) . . . p(vm|Pm) =
∏

vi∈U p(vi|Pi),

which is the Bayesian factorization of p(U) defined in Equation (3.2). 2

Given a relation r(U) with n tuples and m attributes, the time complexity of

the FD2BN algorithm depends mainly on the time complexity of FD Mine, which is

O(n·2m). The time complexity of ObtainOrdering is O(p3), where p is the number of

FDs in F returned by FD Mine. The loop from lines 4 to 12 of the FD2BN algorithm

requires O(m ·p) time. As a result, the complexity of FD2BN is O(n ·2m+p3+m ·p).

3.6 Summary

This chapter addressed the problem of discovering functional dependencies in a

relation. We showed how to simplify the problem by finding equivalences among

attributes and calculating the nontrivial closures of candidate sets of attributes,

and then developed the FD Mine based on this approaches. We also described

how to construct a sound Bayesian network from the FDs discovered by FD Mine.

The experimental results on the UCI datasets show that the pruning rules used by

FD Mine are valuable for the datasets examined, since they reduce the number of

candidates and the overall number of FDs to be checked.
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Chapter 4

A Jointree Probability

Propagation Architecture for

Semantic Modeling

Bayesian networks are well established as a model for representing and reason-

ing with uncertain information using probability. Although various methods ex-

ist for probabilistic inference directly in a Bayesian network [23, 48, 97], the task

of probabilistic inference is usually carried out on a jointree constructed from a

BN [42,45,54,55,78]. Shafer [76] explicitly stated that jointree propagation is central

to the theory and practice of probabilistic expert systems. No study, however, has

focused on identifying the exact information being passed between jointree nodes,

or on the exact information remaining at each node after propagation finishes. In

this chapter, we are interested in identifying the probability information that is

passed during propagation and that which remains after propagation terminates.

As a result, we propose a jointree probability propagation architecture for semantic
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modelling, and demonstrate its usefulness with experimental results.

4.1 LAZY Propagation

In this section, we review LAZY propagation [54]. LAZY propagation is a significant

advance in the study of jointree probability propagation. Based on the experimental

results in [54], LAZY propagation is regarded as the most efficient probabilistic

inference algorithm currently known.

The DAG of a Bayesian network (BN) is normally transformed through moral-

ization and triangulation into a jointree on which the jointree propagation is applied.

The task of constructing a jointree from the DAG of a BN has been extensively stud-

ied in probabilistic reasoning literature. We refer the reader to [66] for discussions

on the detail of how to construct a jointree from a DAG.

Definition 32 [68, 77] A jointree (JT ) is a tree with sets of variables as nodes

such that any variable in two nodes is also in any node on the path between the

two. The separator S between any two neighbour nodes Ni and Nj in a jointree is

S = Ni ∩Nj.

Example 28 One possible jointree for the Bayesian network in Figure 3.9 is de-

picted in Figure 4.1 with circles for the nodes and rectangles for the separators. We

label the nodes of this jointree as ab, bfg, cdefgh, ghij, and gk. The separators are

{b}, {f, g}, {g, h}, and {g}.

LAZY propagation maintains a structure of messages in the form of a multiplica-

tive factorization of the potentials at each JT node and each JT separator when a

node is ready to send its messages to a neighbour.
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Figure 4.1: One possible jointree for the Bayesian network in Figure 3.9.

Definition 33 [77] A potential on dom(X) is a function φ on dom(X) such that

φ(x) ≥ 0, for each x ∈ dom(X), and at least one φ(x) is positive.

For instance, five potentials φ(b), φ(f, g), φ(g, h), φ(f), and φ(g) are illustrated

in Table 4.1.

Table 4.1: Five potentials φ(b), φ(f, g), φ(g, h), φ(f), and φ(g).

b φ(b) f g φ(f, g) g h φ(g, h) f φ(f) g φ(g)
0 0.796 0 0 0.796 0 0 0.432 0 0.469 0 0.808
1 0.204 0 1 0.204 0 1 0.376 1 0.531 1 0.192

1 0 0.819 1 0 0.103
1 1 0.181 1 1 0.089

Definition 34 Let φ be a potential on U and X ⊆ U . Then the marginal of φ onto

X, denoted φ(X), is defined as: for each configuration x ∈ dom(X),

φ(x) =
∑

y ∈ dom(Y )

φ(x, y),
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where Y = U −X, and x, y is the configuration of U that we get by combining the

configurations x of X and y of Y .

When a node is ready to send its messages to a neighbour, the structure of mes-

sage is modeled to remove irrelevant potentials from the multiplicative factorization

by exploiting barren variables [54] and independencies induced by evidence [54].

Given a query, a variable is a barren variable if it is neither an evidence nor a tar-

get variable and it only has barren descendants [54]. The independency relations

induced by a set of evidence in a BN can be determined using the d-separation [54].

Next, physical computation is performed on the relevant potentials by marginalizing

on relevant potentials. After LAZY propagation terminates, the potentials at each

JT node N are a factorization of the marginal p(N) of p(U). Example 29 illustrates

the messages passed in LAZY and the probability information that remains after

propagation.

Example 29 Consider the coronary heart disease (CHD) [32] BN shown in Fig-

ure 3.9 and one possible JT with assigned CPTs shown in Figure 4.2. The distribu-

tions of the five potentials φ(b), φ(f, g), φ(g, h), φ(f), and φ(g) in Figure 4.2, passed

by LAZY propagation, are illustrated in Table 4.1. After propagation, the marginal

distribution at each node is:

p(a, b) = p(a) · p(b|a),

p(b, f, g) = p(g|b, f) · φ(b) · φ(f),

p(c, d, e, f, g, h) = p(c) · p(d|c) · p(e|c) · p(f |d, e) · p(h|c) · φ(f, g),

p(g, h, i, j) = p(i|h) · p(j|g, h, i) · φ(g, h),

p(g, k) = p(k|g) · φ(g).
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Figure 4.2: A jointree for the BN in Figure 3.9 with assigned CPTs.

We now make some remarks on LAZY propagation. From close inspection of the

five potentials in in Table 4.1, it can be verified that the five potentials φ(b), φ(f, g),

φ(g, h), φ(f), and φ(g) to be propagated by LAZY propagation are the respective

CPTs p(b), p(g|f), p(g, h), p(f), and p(g) of the joint distribution p(U). Therefore,

while LAZY propagation can efficiently compute the five distributions in Table 4.1,

it does not clearly articulate the semantics of the messages being propagated be-

tween jointree nodes. Unlike a CPT, a potential [32] does not have clear physical

meaning [18]. Consequently, by propagating messages in the form of potentials, the

semantics of the probability tables being passed are lost. The reason that LAZY

cannot articulate the semantics of the messages being propagated is that LAZY

only uses the independencies that can identify irrelevant potentials, any remaining

independencies in the relevant potentials are immaterial. By ignoring these inde-

pendencies, LAZY propagation is not able to precisely articulate the probability
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information being passed from one node to another. Passing potentials blurs the

exact probability information remaining at each JT node when propagation finishes.

4.2 Modeling Inference Not Involving Evidence

To address the problems mentioned in Section 4.1, instead of developing yet an-

other architecture for performing probabilistic inference, our architecture models

probabilistic inference. We begin by introducing some relevant concepts.

Recall from Chapter 3, that given a DAG, if there is a directed edge (vi, vj), then

vi is called a parent of vj and vj is called a child of vi [18]. The set consisting of a

variable and its parents is called the family of the variable [18]. For example, the

family of variable f in the DAG of Figure 3.9 is {f, d, e}. In a DAG D = (U,E),

the ancestral set An(vj) of a vertex vj ∈ U is the set of all vertexes vi such that

(vi, vj) is a member of the transitive closure of E [1]. For instance, the ancestral

set of variable f in the DAG of Figure 3.9 is {c, d, e}. The ancestral set An(X)

for a set X ⊆ U of variables is defined as the union of the ancestral sets of the

variables in X. For example, the ancestral set of variables {c, e, f, h} in the DAG of

Figure 3.9 is An(cefh) = {c, d, e}. A numbering of the vertices in a DAG is called

ancestral [18], if the number corresponding to any vertex is lower than the numbers

corresponding to all of its children. For example, recall the DAG in Figure 3.9.

One ancestral numbering of these vertexes is a = 1, b = 2, . . . , k = 11. For variable

vi, a unity-potential 1(vi) is a potential 1 assigning value 1.0 to each configuration

of vi. For a subset X ⊆ U , the unity-potential 1(X) is defined as the product of

the unity-potentials 1(vi), vi ∈ X. Following the usage of [77], a set of rules for

governing jointree propagation is called an architecture.
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Our simple semantic architecture identifies the probability information being

passed between JT nodes. It uses five rules, given below, for filling the storage

registers in the JT separators with CPTs or unity-potential labels. The key to our

architecture is the IdentifyCPTMessages (ICM) algorithm used in Rule 4.

Rule 1. For every variable in every separator, allocate two empty storage registers,

one for a label in each direction.

Rule 2. Fix an ancestral numbering ≺ of the variables in the BN.

Rule 3. Each node waits to identify its label(s) to a given neighbour until it has

received labels from all its other neighbours.

Rule 4. When a node Ni is able to send its label(s) to a neighbour Nj, it calls the

ICM algorithm, passing its assigned CPT labels and all CPT labels from its other

neighbours, as well as the variables Ni −Nj to be eliminated.

Rule 5. For each CPT label p(vk|Pk) returned by ICM, fill the storage register for

variable vk from Ni to Nj with label p(vk|Pk). For any variable vl with a storage

register from Ni to Nj still empty, fill the register with the unity-potential label 1(vl).

We illustrate Rules 1-3 with the following example.

Example 30 Consider the JT with assigned BN CPTs in Figure 4.3. By Rule 1,

the separator gh, for instance, has four storage registers, which initially are empty.
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For Rule 2, we fix the ancestral numbering as a ≺ b ≺ . . . ≺ k. According to Rule

3, node bfg, for example, can only send labels to node ab after it has received labels

from both node cdefgh and node gk.

bfg

{ p(a), p(b|a) } { p(c), p(d|c), p(e|c), p(f|d,e), p(h|c) }

{ p(k|g) } { p(i|h), p(j|g,h,i) }

{ p(g|b,f) }

cdefgh

ghij

gk

ab

p(g|f)

p(b)

p(g)

1(g)

p(f)

1(g)

1(f)

1(b)

1(g) 1(h)p(g) p(h|g)

 

Figure 4.3: The probability information being passed between JT nodes.

The ICM algorithm is built upon the FindRelevantCPTs (FRC) and Main-

tainCPTLabels (MCL) algorithms.

Definition 35 Given a set C of CPT labels and a variable vi to be eliminated,

the FindRelevantCPTs (FRC) algorithm returns the set C ′ of CPT labels in C

involving vi, where FRC first sorts the CPT labels in C ′ according to ≺ in Rule 2,

say C ′ = {p(vi|Pi), p(v1|P1), . . . , p(vk|Pk)}, where vi ≺ v1 ≺ . . . ≺ vk.

Example 31 Suppose FRC is called with C = {p(c), p(d|c), p(e|c), p(f |d, e), p(h|c)}
and variable d is to be eliminated. By ≺ in Example 30, FRC returns C ′ = {p(d|c),
p(f |d, e)} and not C ′ = {p(f |d, e), p(d|c)}.
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Definition 36 To eliminate vi, suppose FRC returns {p(vi|Pi), p(v1|P1), . . .,

p(vk|Pk)}. Consider a variable vj ∈ viv1 · · · vk. The parent-set of vj is Pj.

Example 32 To eliminate c, suppose FRC returns {p(c), p(e|c), p(f |c, e), p(h|c)}.
The parent-sets of variables c, e, f , and h are {}, {c}, {c, e}, and {c}, respectively.

Definition 37 Suppose FRC returns {p(vi|Pi), p(v1|P1), . . . , p(vk|Pk)} for eliminat-

ing variable vi. We call Ci = {v1, . . . , vk} the child-set of vi, where v1 ≺ . . . ≺ vk in

Rule 2.

Example 33 To eliminate c, suppose FRC returns {p(c), p(d|c), p(e|c), p(h|c)}.
Besides p(c), variable c appears in the CPT labels for {h, d, e}. By ≺ in Example 30,

e ≺ h, while d ≺ e. By definition, the child-set of vi = c is Ci = {v1 = d, v2 =

e, v3 = h}.

To eliminate vi, given that FRC returns {p(vi|Pi), p(v1|P1), . . ., p(vk|Pk)}, those

CPT labels p(v1|P1), . . ., p(vk|Pk) of the variables vj ∈ Ci are modified. While

variable vi is deleted from Pj, only certain variables preceding vj in ≺ of Rule 2 may

be added to Pj.

Definition 38 To eliminate vi, suppose FRC returns {p(vi|Pi), p(v1|P1), . . .,

p(vk|Pk)}. Consider a variable vj ∈ viv1 · · · vk. The family-set, denoted Fj, of vj

is vjPj.

Example 34 To eliminate c, suppose FRC returns {p(c), p(e|c), p(f |c, e), p(h|c)}.
The family-sets of variables c, e, f , and h are {c}, {c, e}, {c, e, f}, and {c, h},
respectively.
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Definition 39 Given a set of CPT labels {p(v1|P1), . . . , p(vm|Pm)}, the directed

graph defined by these CPT labels, called the CPT-graph, has variables F1 · · ·Fm,

and a directed edge from each variable in Pk to vk, k = 1, . . . , m.

Example 35 Consider the set of CPT labels {p(c), p(e|c), p(f |c, e), p(h|c)} in Ex-

ample 34. The CPT-graph is shown in Figure 4.4.
 

c 

d e h 

Figure 4.4: The CPT-graph for Example 35.

Example 36 Consider another set of CPT labels {p(a), p(c|a), p(d), p(e|b), p(g|d),

p(h), p(j|c, d, e), p(k|c, d, e, h, j), p(l|c, d, e, h, i, j, k), p(m|j)}. The CPT-graph is shown

in Figure 4.5. Note that variables b and i do not have CPT labels in the given set.

d

e

j

k

l

i

g

c

h

m

b

a

Figure 4.5: The CPT-graph defined by the CPT labels in Example 36.
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Definition 40 To eliminate vi, suppose FRC returns {p(vi|Pi), p(v1|P1), . . .,

p(vk|Pk)}. The child-set Ci = {v1, . . . , vk} is defined by ≺ in Rule 2. For each

variable vj ∈ Ci, the elder-set Ej is defined as E1 = Fi − vi, E2 = (E1F1)− vi, E3 =

(E2F2)− vi, . . . , Ek = (Ek−1Fk−1)− vi.

For simplified notation, we will write (EjFj) − vi as EjFj − vi. Definition 40 says

that the elder-set Ej of variable vj in Ci is Fi together with the family-sets of the

variables in Ci preceding vj, with vi subsequently removed.

Example 37 Consider the set of CPT labels {p(a),p(c|a),p(d),p(e|b),p(f |c, d), p(g|d),

p(h),p(j|e, f),p(k|d, f, h),p(l|f, i),p(m|j)}. The CPT-graph defined by these CPT la-

bels is shown in Figure 4.6. Let us assume that ≺ in Rule 2 orders this subset of

variables in alphabetical order. Consider eliminating variable vi = f . The call to

FRC returns {p(f |c, d), p(j|e, f), p(k|d, f, h), p(l|f, i)}. With respect to ≺ in Rule

2, the elder-set of the variables in the child-set Ci = {v1 = j, v2 = k, v3 = l} are

E1 = {c, d}, E2 = {c, d, e, j}, and E3 = {c, d, e, h, j, k}, respectively, as depicted in

Figure 4.6.

b

c d

e

j

m

k

h

l

E 1v i E 2v i E 3v i

f

i

a

g

E 3F 3

Figure 4.6: The elder-sets E1, E2, and E3 for the variables in the child-set Ci =
{v1 = j, v2 = k, v3 = l}.
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The MCL algorithm can now be introduced.

MCL(C ′)
Input: C ′ = {p(vi|Pi), p(v1|P1), . . . , p(vk|Pk)} from FRC for eliminating vi

Output: the modified CPT labels for all k variables vj in Ci = {v1, . . . , vk}
//Determine the elder-set Ej and parent-set Pj for all k variables vj ∈ Ci

1. for j = k, . . . , 1
2. Pj = (EjPj)− vi

3. return({p(v1|P1), . . . , p(vk|Pk)})
To simplify notation, we will write (EjPj)− vi as EjPj − vi.

Example 38 To eliminate variable vi = f , suppose the set of CPT labels obtained

by FRC in Example 37 is passed to MCL. For ≺ in Example 37, consider variable

v3 = l. By Definition 40, E3 = {c, d, e, h, j, k} and P3 = {f, i}. Then p(l|f, i) is ad-

justed to p(l|c, d, e, h, i, j, k), as E3P3 − vi is {c, d, e, h, i, j, k}. Similarly, p(k|d, f, h)

is changed to p(k|c, d, e, h, j), and p(j|e, f) is modified to p(j|c, d, e). By Defini-

tion 39, the CPT-graph defined by the CPT labels remaining after the elimination

of variable f is shown in Figure 4.5.

Lemma 5 According to our architecture, let C ′′ = {p(v1|P1), . . . , p(vk|Pk)} be the

set of CPT labels returned by the MCL algorithm. Then the CPT-graph defined by

C ′′ is a DAG.

Proof: For any BN CPT p(vj|Pj), by Rule 2, v ≺ vj, where v ∈ Pj. Moreover, by

the definition of elder-set, v ≺ vj, where v ∈ Ej. Since the parent set Pj of vj is

modified as PjEj − vi, for any CPT label p(vj|Pj) returned by the MCL algorithm,

it is still the case that v ≺ vj, where v ∈ Pj. Therefore, the CPT-graph defined by

C ′′ is acyclic, namely, it is a DAG. 2

We now present the ICM algorithm.
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ICM(C, X)
Input: a set C of CPT labels,

the set X of variables to be eliminated from C
Output: the set C of CPT labels sent from a node to a neighbour
1. for each variable v in X
2. {
3. C ′ = FRC(C, v)
4. C ′′ = MCL(C ′)
5. C = (C − C ′) ∪ C ′′

6. }
7. return(C)

We use two examples to illustrate the subtle points of our architecture.

Example 39 Let us demonstrate how our architecture determines the CPT la-

bels p(g) and p(h|g) sent from cdefgh to ghij, shown in Figure 4.3. By Rule

2, we use ≺ in Example 30. By Rule 4, cdefgh has collected the CPT label

p(g|f) from bfg, but not 1(f) as this is not a CPT label, and calls ICM with

C = {p(c), p(d|c), p(e|c), p(f |d, e), p(g|f), p(h|c)} and X = {c, d, e, f}. For pedagog-

ical purposes, let us eliminate the variables in the order d, c, e, f . ICM calls FRC,

passing it C and variable d. FRC returns {p(d|c), p(f |d, e)}, which ICM initially as-

signs to C ′ and subsequently passes to MCL. Here vi = d, Ci = {v1 = f}, P1 = {d, e},
and E1 = {c}. As E1P1 − vi is {c, e}, MCL returns {p(f |c, e)}, which ICM assigns

to C ′′. Next, the set C of CPT labels under consideration in ICM is adjusted to

be C = {p(c), p(e|c), p(f |c, e), p(g|f), p(h|c)}. For variable c, the call to FRC results

in C ′ = {p(c), p(e|c), p(f |c, e), p(h|c)}. To eliminate vi = c, the elder-set of each

variable in the child-set Ci = {v1 = e, v2 = f, v3 = h} is E1 = {}, E2 = {e},
and E3 = {e, f}. Moreover, the parent-set of each variable in the child-set is

P1 = {c}, P2 = {c, e}, and P3 = {c}. In MCL, then p(h|c) is adjusted to p(h|e, f), as

E3P3− vi is {e, f}. Similarly, p(f |c, e) is changed to p(f |e) and p(e|c) is modified to

p(e). Therefore, MCL returns the set {p(e), p(f |e), p(h|e, f)} of CPT labels, which
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ICM assigns to C ′′. Then C is updated to be C = {p(e), p(f |e), p(g|f), p(h|e, f)}.
After eliminating variable e, the set of labels under consideration is modified to

C = {p(f), p(g|f), p(h|f)}. Moreover, after considering the last variable f , the set

of labels under consideration is C = {p(g), p(h|g)}. ICM returns C to cdefgh. By

Rule 5, cdefgh places the CPT labels p(g) and p(h|g) in the storage registers of g

and h from cdefgh to ghij, respectively.

Example 40 Now let us show how our architecture determines the labels p(f)

and 1(g) sent from cdefgh to bfg, shown in Figure 4.3. By Rule 2, we use ≺ in

Example 30. By Rule 4, cdefgh does not collect the unity-potential labels 1(g)

and 1(h) from ghij and calls ICM with C = {p(c), p(d|c), p(e|c), p(f |d, e), p(h|c)},
and X = {c, d, e, h}. For simplicity, let us eliminate the variables in the order

d, c, e, h. Similar to Example 39, the set of CPT labels under consideration, after

the elimination of variables c, d, e, is C = {p(f), p(h|f)}. After eliminating the last

variable h, the set of labels under consideration is C = {p(f)}. ICM returns C to

cdefgh. By Rule 5, cdefgh places the CPT label p(f) in the storage register of f

from cdefgh to bfg and places the unity-potential label 1(g) in the empty storage

register for variable g from cdefgh to bfg.

All of the identified CPT messages for Figure 4.3 are illustrated in Figure 4.7,

which is a screen shot of our implemented system.
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Figure 4.7: Identification of the CPT messages in Figure 4.3.

Example 41 Let us review Example 39 in terms of equations:

∑

c,d,e,f

p(c) · p(d|c) · p(e|c) · p(f |d, e) · p(g|f) · p(h|c) (4.1)

=
∑

f

p(g|f) ·
∑

e

∑
c

p(c) · p(e|c) · p(h|c) ·
∑

d

p(d|c) · p(f |d, e) (4.2)

=
∑

f

p(g|f) ·
∑

e

∑
c

p(c) · p(e|c) · p(h|c) · p(f |c, e) (4.3)

=
∑

f

p(g|f) ·
∑

e

p(e) · p(f |e) · p(h|e, f)

=
∑

f

p(g|f) · p(f) · p(h|f)

= p(g) · p(h|g).

The derivation of p(g) and p(h|g) is not correct without independencies. For

instance, the independencies I(d, c, e) and I(f, de, c) are necessary when moving from

Equation (4.2) to Equation (4.3). In fact, without the unconditional independence

I(b, ∅, f), the message p(g|f), from bfg to cdefgh, used in Equation (4.1), is not
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correct either:

∑

b

p(b) · p(g|b, f) =
∑

b

p(b) · p(b, f, g)

p(b, f)
=

∑

b

p(b) · p(b, f, g)

p(b) · p(f)
= p(g|f).

Thus, the importance of showing that we can identify these independencies and

utilize them, as shown above, is made obvious.

4.3 Complexity and Correctness

Here we establish the time complexity of the ICM algorithm and the correctness of

our architecture for modeling inference not involving evidence.

Lemma 6 Let n be the number of CPT labels in C ′ given as input to the MCL

algorithm for eliminating variable vi. The time complexity of MCL is O(n).

Proof: Let {p(vi|Pi), p(v1|P1), . . . , p(vn−1|Pn−1)} be the input set C ′ of CPT labels

given to MCL. The elder-sets E1, . . . , En−1 and parent-sets P1, . . . , Pn−1 can be ob-

tained in one pass over C ′. Given that C ′ has n labels, the time complexity to

determine the required parent-sets and elder-sets is O(n). Similarly, for each label

in {p(v1|P1), . . . , p(vn−1|Pn−1)}, the parent-set is modified exactly once. Hence, this

for-loop executes n− 1 times. Therefore, the time complexity of MCL is O(n). 2

Our main complexity result, given in Theorem 14, is that the CPT labels sent

from a JT node can be identified in polynomial time.

Theorem 14 In the input to the ICM algorithm, let n be the number of CPT labels

in C, and let X be the set of variables to be eliminated. The time complexity of ICM

is O(n2 log n).
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Proof: As the number of CPT labels in C is n, the maximum number of variables to

be eliminated in X is n. The loop body is executed n times, once for each variable

in X. Recall that the loop body calls the FRC and MCL algorithms. Clearly, FRC

takes O(n) time to find those CPT labels involving vi. According to ≺ in Rule

2, these CPT labels can be sorted using the merge sort algorithm in O(n log n)

time [21]. Thus, FRC has time complexity O(n log n). By Lemma 6, MCL has time

complexity O(n). Thus, the loop body takes O(n log n) time. Therefore, the time

complexity of the ICM algorithm is O(n2 log n). 2

We now turn to the correctness of our architecture.

A graphical procedure, namely d-separation [68], has been developed to identify

all the conditional independencies that are encoded in a DAG D. We refer the reader

to [68] for a thorough discussion on the details of d-separation. While Pearl [68]

uses the d-separation method for testing separation in DAGs, Lemma 7 shows how

d-separation in DAGs can be more simply viewed as conventional separation in

undirected graphs. Lemma 7 involves the notion of moralization. The moralization

of a DAG D is the undirected graph defined by a three step process: (i) copy D as

D′; (ii) add an edge (vi, vj) to D′, if vi and vj have a common child in D′; and (iii)

drop the directionality of all edges in D′.

Lemma 7 [46] Let X,Y and Z be three disjoint subsets of vertexes in a DAG D.

Let D′ be the sub-DAG of D restricted to the vertexes in XY Z ∪ An(XY Z). Then

Y d-separates X and Z in D if and only if Y separates X and Z in the moralization

of D′.

The next result shows that certain independencies involving elder-sets hold in

any BN.
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Lemma 8 Let (D, C) be a BN defining a JPD p(U). Given the set C of CPT labels

and any variable vi ∈ D, the FRC algorithm returns {p(vi|Pi), p(v1|P1), . . . ,

p(vk|Pk)}, where the variables in the child-set Ci = {v1, . . . , vk} are written according

to ≺ in Rule 2. For each vj ∈ Ci with elder-set Ej, the independencies I(vi, Ej, Pj−
vi) and I(vj, Pj, Ej) hold in the JPD p(U).

Proof: Observe that the parents, children, and family of any variable v in D are

precisely the parent-set, child-set, and family-set of v, which are defined by C ′,

respectively. Let us first show that I(vj, Pj, Ej) holds for j = 1, . . . , k. Pearl [68]

has shown that I(v, Pv, Nv) holds for every variable v in a BN, where Nv denotes

the set of all non-descendants of v in D. By definition, no variable in the elder-set

Ej can be a descendant of vj in D. Thereby, Ej ⊆ Nj. By the decomposition axiom

of probabilistic independence [68,85], the JPD p(U) satisfying I(vj, Pj, Nj) logically

implies that p(U) satisfies I(vj, Pj, Ej).

We now show that I(vi, Ej, Pj−vi) holds, for j = 1, . . . , k. We write I(vi, Ej, Pj−
vi) as I(vi, Ej, Pj − vi − Ej). By Lemma 7, the ancestral set of the variables in

I(vi, Ej, Pj − vi − Ej) is An(vi) ∪ An(Ej) ∪ An(Pj − vi − Ej), which is the same as

An(EjPj), since vi ∈ Pj. Note that vj, and any child of vi in D succeeding vj in ≺ of

Rule 2, are not members in the set An(EjPj). Hence, in the constructed sub-DAG

D′ of DAG D onto An(EjPj), the only directed edges involving vi are those from

each variable in Pi to vi and from vi to every child preceding vj. By Corollary 6

in [68], Ej is a Markov blanket of vi in D′. By definition, I(vi, Ej, U −Ej−vi) holds

in p(U). By the decomposition axiom, p(U) satisfies I(vi, Ej, Pj − vi). 2

Let us first focus on the elimination of just one variable. We can maintain a CPT

factorization after vi ∈ X is eliminated, provided that the corresponding elder-set
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independencies are satisfied by the JPD p(U). Note that, as done previously, we

write (EjPj)−vi, (EjFk)−vi, and (EjFj)−vivj more simply as EjPj−vi, EjFk−vi,

and EjFj − vivj, respectively.

Lemma 9 Given the output {p(vi|Pi), p(v1|P1), . . . , p(vk|Pk)} of FRC to eliminate

variable vi in our architecture. By Rule 2, v1 ≺ . . . ≺ vk in the child-set Ci =

{v1, . . . , vk} of vi. For each variable vj ∈ Ci with elder-set Ej, if the independencies

I(vi, Ej, Pj − vi) and I(vj, Pj, Ej) hold in the JPD p(U), then

∑
vi

p(vi|Pi) · p(v1|P1) · . . . · p(vk|Pk) =
k∏

j=1

p(vj|EjPj − vi).

Proof: We first show, by mathematical induction on the number k of variables in

Ci, that the product of these relevant CPTs can be rewritten as follows:

p(vi|Pi) · p(v1|P1) · . . . · p(vk|Pk) = p(vi|EkFk − vi) ·
k∏

j=1

p(vj|EjPj − vi).

(Basic step: j = 1). By definition, E1 = Pi. Thus, p(vi|Pi) · p(v1|P1) = p(vi|E1) ·
p(v1|P1). By definition,

p(vi|E1) · p(v1|P1) =
p(viE1)

p(E1)
· p(v1P1)

p(P1)
. (4.4)

When j = 1, by assumption, I(vi, E1, P1 − vi) and I(v1, P1, E1) hold. We can apply

these independencies consecutively by multiplying the numerator and denominator
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of the right side of Equation (4.4) by p(E1P1 − vi), namely,

p(viE1)

p(E1)
· p(v1P1)

p(P1)
=

p(viE1) · p(E1P1 − vi)

p(E1) · p(E1P1 − vi)
· p(v1P1)

p(P1)

=
p(E1P1)

p(E1P1 − vi)
· p(v1P1)

p(P1)

=
p(v1P1E1)

p(E1P1 − vi)
. (4.5)

By definition,

p(v1P1E1)

p(E1P1 − vi)
=

p(E1F1)

p(E1F1 − viv1)

= p(viv1|E1F1 − viv1). (4.6)

By the product rule [87] of probability, which states that p(X, Y |Z) = p(X|Y, Z) ·
p(Y |Z) for pairwise disjoint subsets X, Y , and Z, Equation (4.6) is expressed as:

p(viv1|E1F1 − viv1) = p(vi|E1F1 − vi) · p(v1|E1F1 − viv1)

= p(vi|E1F1 − vi) · p(v1|E1P1 − vi). (4.7)

By Eqs. (4.4) - (4.7),

p(vi|Pi) · p(v1|P1) = p(vi|E1F1 − vi) · p(v1|E1P1 − vi). (4.8)

(Inductive hypothesis: j = k − 1, k ≥ 2). Suppose

p(vi|Pi)p(v1|P1) · · · p(vk−1|Pk−1) = p(vi|Ek−1Fk−1 − vi)
k−1∏
j=1

p(vj|EjPj − vi).
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(Inductive step: j = k). Consider the following product

p(vi|Pi)p(v1|P1) . . . p(vk|Pk) = p(vi|Pi)p(v1|P1) . . . p(vk−1|Pk−1)p(vk|Pk). (4.9)

By the inductive hypothesis,

(p(vi|Pi)p(v1|P1) · . . . · p(vk−1|Pk−1)) · p(vk|Pk)

= (p(vi|Ek−1Fk−1 − vi)
k−1∏
j=1

p(vj|EjPj − vi)) · p(vk|Pk)

= p(vi|Ek−1Fk−1 − vi) · p(vk|Pk) ·
k−1∏
j=1

p(vj|EjPj − vi). (4.10)

Since Ek = Ek−1Fk−1 − vi, Equation (4.10) can be rewritten as

p(vi|Pi)p(v1|P1) · . . . · p(vk|Pk) = p(vi|Ek)p(vk|Pk)
k−1∏
j=1

p(vj|EjPj − vi). (4.11)

It can easily be shown that

p(vi|Ek) · p(vk|Pk) = p(vi|EkFk − vi) · p(vk|EkPk − vi), (4.12)

by following Eqs. (4.4) - (4.7) replacing j = 1 with j = k. Substituting Equation

(4.12) into Equation (4.11), the desired result follows:

p(vi|Pi) · p(v1|P1) · . . . · p(vk|Pk)

= p(vi|EkFk − vi) · p(vk|EkPk − vi) ·
k−1∏
j=1

p(vj|EjPj − vi)

= p(vi|EkFk − vi) ·
k∏

j=1

p(vj|EjPj − vi). (4.13)
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Having rewritten the factorization of the relevant CPTs, we now consider the

elimination of variable vi as follows:

∑
vi

p(vi|EkFk − vi) ·
k∏

j=1

p(vj|EjPj − vi)

=
k∏

j=1

p(vj|EjPj − vi) ·
∑
vi

p(vi|EkFk − vi)

=
k∏

j=1

p(vj|EjPj − vi) · 1.0

=
k∏

j=1

p(vj|EjPj − vi). (4.14)

By Eqs. (4.13) and (4.14), we obtain the desired result

∑
vi

p(vi|Pi) · p(v1|P1) · . . . · p(vk|Pk) =
k∏

j=1

p(vj|EjPj − vi). 2 (4.15)

Equation (4.15) explicitly demonstrates the form of the factorization in terms of

CPTs after variable vi is eliminated. Hence, the right-side of Equation (4.15) is used

in the MCL algorithm to adjust the label of the CPT for each variable in vi’s child-

set. That is,
∏k

j=1 corresponds to the for-loop construct running from j = k, . . . , 1,

while p(vj|EjPj − vi) corresponds to the statement Pj = EjPj − vi for one iteration

of the for-loop.

Example 42 Recall eliminating variable d in Equation (4.2). By Example 39,

vi = d, Ci = {v1 = f}, P1 = {d, e}, and E1 = {c}. By Lemma 8, I(vi, Ej, Pj−vi) and

I(vj, Pj, Ej) hold, namely, I(d, c, e) and I(f, de, c). By Lemma 9,
∑

d p(d|c)·p(f |d, e)

is equal to p(f |c, e), as shown in Equation (4.3).
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We now establish the correctness of our architecture by showing that our mes-

sages are equivalent to those of the SS architecture [76,77]. Since their architecture

computes physical distributions, while our architecture determines labels, let us as-

sume that the label in each storage register of our architecture is replaced with its

corresponding physical probability distribution.

Theorem 15 Given a BN D and a JT for D. Apply our architecture and also the

SS architecture. For any two neighbouring JT nodes Ni and Nj, the product of the

distributions in the storage registers from Ni to Nj in our architecture is the message

in the storage register from Ni to Nj in the SS architecture.

Proof: When a JT node Ni receives a message from a neighbour Nj, it is also

receiving, indirectly, information from the nodes on the other side of Nj [77]. Thus,

without a loss of generality, let the JT for D consist of two nodes, N1 and N2.

Consider the message from N2 to N1. Let Z be those variables vm of N2 such

that the BN CPT p(vm|Pm) is assigned to N2. The variables to be eliminated are

X = N2 − N1. Let Y = N2 − (XZ). By SS architecture [77], the SS message

φ(N2 ∩N1) from N2 to N1 is:

φ(N2 ∩N1) =
∑
X

φ(N2)

=
∑
X

1(N2) ·
∏

vm∈Z

p(vm|Pm)

=
∑
X

1(Y ) · 1(XZ) ·
∏

vm∈Z

p(vm|Pm)

= 1(Y ) ·
∑
X

∏
vm∈Z

p(vm|Pm).
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Consider the first variable vi of X eliminated from
∏

vm∈Z p(vm|Pm). By Lemma 8,

for each vj ∈ Ci, the independencies I(vi, Ej, Pj − vi) and I(vj, Pj, Ej) hold in

p(U). By Lemma 9, the exact form of the CPTs is known after the elimination

of vi. By [77], the product of all remaining probability tables in the entire JT is

the marginal distribution p(U − vi) of the original joint distribution p(U). Let us

more carefully examine the remaining CPTs in the entire JT. First, each variable in

U − vi has exactly one CPT. It follows from Lemma 5 that the CPT-graph defined

by all CPT labels remaining in the JT is a DAG. Therefore, the CPTs for the

remaining variables U−vi are a Bayesian network defining the marginal distribution

p(U − vi) of the original JPD p(U). By the definition of probabilistic conditional

independence, an independence holding in the marginal p(U − vi) necessarily means

that it holds in the joint distribution p(U). Thereby, we can recursively apply

Lemmas 5, 8, and 9 to eliminate the other variables in X. The CPTs remaining

from the marginalization of X from
∏

vm∈Z p(vm|Pm) are exactly the distributions

of the CPT labels output by the ICM algorithm when called by N2 to eliminate X

from C = {p(vm|Pm) | vm ∈ Z}. In our architecture, the storage registers from N2

to N1 for those variables in Y are still empty. Filling these empty storage registers

with unity-potentials 1(vl), vl ∈ Y , follows directly from the definition of the unity-

potential 1(Y ). Therefore, the product of the distributions in the storage registers

from N2 to N1 in our architecture is the message in the storage register from N2 to

N1 in the SS architecture. 2

Example 43 It can be verified that the identified CPTs shown in Figure 4.3 are

correct. In particular, the SS message φ(f, g) from cdefgh to bfg is p(f) · 1(g).

Corollary 1 The marginal distribution p(N) for any JT node N can be computed
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by collecting all CPTs sent to N by N ’s neighbours and multiplying them with those

CPTs assigned to N .

4.4 Modeling Inference Involving Evidence

Pearl [68] emphasizes the importance of structure by opening his chapter on Markov

and Bayesian networks with the following quote:

Probability is not really about numbers; it is about the structure of

reasoning. – G. Shafer

In this section, we extend our architecture to model the processing of evidence and

show that it can still identify CPT messages. Modeling the processing of evidence

is faster than the physical computation needed for evidence processing. By allowing

our architecture to take full responsibility for modeling structure, we empirically

demonstrate that LAZY can finish its work sooner.

It is important to realize that the processing of evidence E = e can be viewed

as computing marginal distributions [74, 77, 90]. For each JT node N , compute

the marginal p(NE), from whence p(N − E, E = e) can be obtained. The desired

distribution p(N − E|E = e) can then be determined via normalization.

Rules 6 and 7 extend our architecture to model the processing of evidence.

Rule 6. Given evidence E = e. For each node N in the JT, set N = N ∪ E. On

this augmented JT, apply Rules 1-5 of our architecture for modeling inference not

involving evidence.
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Rule 7. For each evidence variable v ∈ E, change each occurrence of v in an as-

signed or propagated CPT label from v to v = ε, where ε is the observed value of v.

We now show the correctness of our architecture for modeling inference involving

evidence.

Theorem 16 Given a BN D, a JT for D, and observed evidence E = e. After

applying our architecture, extended by Rules 6 and 7 for modeling inference involving

evidence, the probability information at each JT node N defines p(N − E, E = e).

Proof: Apply Rule 6. By Corollary 1, the probability information at each node N

is p(NE). By selecting those configurations agreeing with E = e in Rule 7, the

probability information at each node is p(N − E,E = e). 2

Example 44 Consider evidence b = 0 in the real-world BN for CHD in Figure 3.9.

With respect to the CHD JT in Figure 4.3, the CPT messages to be propagated are

depicted in Figure 4.8.

Figure 4.8: The propagated CPT labels given evidence b = 0.

The next example involves three evidence variables.
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Example 45 Consider the JT with assigned BN CPTs in Figure 4.9 (top). Given

evidence a = 0, c = 0, f = 0, the LAZY potentials propagated towards node de are

shown [54]. In comparison, all CPT labels identified by our architecture are depicted

in Figure 4.9 (bottom).

bdf

ab bcd

de

{ p(f|b,d) } { p(e|d) }

{ p(a), p(b|a) } { p(c|b),p(d|c) }

c=0 a=0,b,c=0,f=0{ (d), (d), (a=0)}φ φ φ

a=0{ (b), (a=0)}φ φ

c=0
c=0

{ (b), (d)}

φ
φ

Figure 4.9: [54] A JT with assigned BN CPTs (top) and all identified CPT labels
given evidence a = 0, c = 0, f = 0 (bottom).

We can identify messages faster than they can be physically computed.

Example 46 Given evidence b = 0 in Example 44, physically constructing the

distribution p(b = 0) for the message from node ab to bfg required 1.813 milliseconds.

Identifying all CPT messages in Figure 4.8 required only 0.954 milliseconds.
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Although semantic modeling can be done significantly faster than physical com-

putation, the LAZY architecture applies these two tasks iteratively. The conse-

quence, as the next two examples show, is that semantic modeling must wait while

the physical computation catches-up.

Example 47 [54] Consider the BN in Figure 4.10(a) and JT with assigned CPTs

in Figure 4.10(b). Suppose evidence d = 0 is collected. Before node bcdef can send

its messages to node efg, it must first wait for the message φ(b, c) to be physically

constructed at node abc as:

φ(b, c) =
∑

a

p(a) · p(b|a) · p(c|a). (4.16)

Upon receiving distribution φ(b, c) at node bcdef, LAZY exploits the independence

I(bc,d,ef) induced by the evidence d = 0 to identify that φ(b, c) is irrelevant to the

computation for the messages to be sent from bcdef to efg.

bcdef

abc efg

( , )
b

c
φ

{ p(d|b,c), p(e|d), p(f|d) }

{ p(a), p(b|a), p(c|a) } { p(g|e,f) }
 

(a) BN (b) JT

Figure 4.10: [54] A BN and a JT with assigned CPTs.

In the exploitation of independencies induced by evidence, Example 47 explicitly

demonstrates that LAZY forces node bcdef to wait for the physical construction of
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the irrelevant message φ(b, c).

Example 48 [54] Consider the BN in Figure 4.11(a) and the JT with assigned

CPTs in Figure 4.11(b). Before node acde can send its messages to node ef , it must

first wait for the message φ(c, d|a) to be physically constructed at node abcd as:

φ(c, d|a) =
∑

b

p(b|a) · p(c|a, b) · p(d|a, b). (4.17)

Upon receiving distribution φ(c, d|a) at acde, LAZY exploits barren variables c and

d to identify that φ(c, d|a) is irrelevant to the computation for the messages to be

sent from acde to ef .

{ p(b|a), p(c|a,b), p(d|a,b) }

( ,
|

)

c
d

a

φ

acde

abcd ef

{ p(f|e) }

{ p(a), p(e|a) }

 

(a) BN (b) JT

Figure 4.11: [54] A BN and a JT with assigned CPTs.

In the exploitation of barren variables, Example 48 explicitly demonstrates that

LAZY forces node acde to wait for the physical construction of the irrelevant message

φ(c, d|a). These unnecessary delays in Examples 47 and 48 are inherently built into

the main philosophy of LAZY propagation [54]:

The bulk of LAZY propagation is to maintain a multiplicative [fac-

torization of the CPTs] and to postpone combination of [CPTs]. This
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gives opportunities for exploiting barren variables . . . during inference.

. . . Thereby, when a message is to be computed only the required

[CPTs] are combined.

The notion of a barren variable, however, is relative. For instance, in Example 48,

variables c and d are not barren at the sending node abcd, but are barren at the

receiving node acde. Thus, the interweaving of modeling structure and physical

computation underlay these unnecessary delays.

We advocate the uncoupling of these two independent tasks. More specifically,

we argue that modeling structure and physical computation should be performed

separately. As our architecture can model structure faster than the physical com-

putation can be performed, it can scout the structure in the JT and organize the

collected information in three kinds of work schedules.

Our first work schedule pertains to non-empty messages that are irrelevant to

subsequent message computation at the receiving node, as evident in Examples 47

and 48. More specifically, for three distinct nodes Ni, Nj and Nk such that Ni and

Nj are neighbours, as are Nj and Nk, our first work schedule indicates that the

messages from Ni to Nj are irrelevant in the physical construction of the messages

to be sent from Nj to Nk.

Example 49 Given evidence d = 0 in Example 47, the work schedule in Figure 4.12

indicates that the messages from node abc are irrelevant to node bcdef in the physical

construction of the messages to be sent from bcdef to node efg. Now reconsider

Example 48. The work schedule in Figure 4.13 indicates that the messages from

node abcd are irrelevant to node acde in the physical construction of the messages

to be sent from acde to node ef .
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Figure 4.12: The irrelevant message from abc to bcdef given evidence d = 0.

Figure 4.13: The irrelevant message from abcd to acde.

Our second work schedule indicates that an empty message will be propagated

from a non-leaf node to a neighbour. (As LAZY could begin physical computation at

the leaf JT nodes, we focus on the non-leaf JT nodes.) For instance, given evidence

b = 0 in the extended CHD BN and JT with assigned CPTs in Figure 4.14, the

work schedule in Figure 4.15 indicates that bfg will send ab an empty message. Our

second work schedule saves LAZY time.

Example 50 Recall the extended CHD BN and JT in Figure 4.14. Given ev-

idence b = 0, LAZY determines that bfg will send ab an empty message only

after bfg receives the physical message φ(f) from cdefgh. Physically construct-

ing φ(f) involves eliminating the four variables c, d, e, h from the five potentials

p(c), p(d|c), p(e|c), p(f |d, e), p(h|c). In less time than is required for this physical

computation, our architecture has generated the work schedule in Figure 4.15. With-
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bfg

{ p(a), p(b|a) } { p(c), p(d|c), p(e|c), p(f|d,e), p(h|c) }

{ p(k|g) } { p(i|h), p(j|g,h,i) }

{ p(g|b,f) }

cdefgh

ghij
gk

ab
al

lm

{ p(l|a) }

{ p(m|l) }

1.0

 
(a) BN (b) JT

Figure 4.14: An extended CHD BN and a JT with assigned CPTs.

Figure 4.15: All empty messages sent by non-leaf nodes.

out waiting for LAZY to eventually consider bfg, node ab can immediately send its

messages {p(a|b = 0), p(b = 0)}to node al, which, in turn, can send its respective

messages {p(b = 0), p(l|b = 0)} to node lm.

Last, but not least, our architecture can generate another type of beneficial work

schedule. This third work schedule indicates the variables that can be eliminated

at a non-leaf node with respect to the messages for a particular neighbour, before

the sending node has received any messages. Given evidence b = 0 in the CHD JT

of Figure 4.3, the work schedule in Figure 4.16 indicates that, for instance, non-leaf

node cdefgh can immediately eliminate variables c, d, e in its construction of the

message to ghij. Assisting LAZY to eliminate variables early saves time, as the
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next example clearly demonstrates.

Figure 4.16: The variables that can be eliminated at non-leaf nodes before any
messages are received.

Example 51 Given evidence b = 0 in the CHD JT of Figure 4.3, consider the

message from cdefgh to ghij. LAZY waits to eliminate variables c, d, e, f at cdefgh

until cdefgh receives its messages {φ(b = 0), φb=0(f, g)} from bfg, which, in turn,

has to wait for message φ(b = 0) from ab. Thus, LAZY computes the message from

cdefgh to ghij as:

∑

cdef

p(c) · p(d|c) · p(e|c) · p(f |d, e) · p(h|c) · φ(b = 0) · φb=0(f, g). (4.18)

In contrast, the work schedule of Figure 4.16 allows LAZY to immediately eliminate

variables c, d, e as:

φ(f, h) =
∑

c,d,e

p(c) · p(d|c) · p(e|c) · p(f |d, e) · p(h|c).
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The benefit is that when the LAZY messages {φ(b = 0), φb=0(f, g)} from bfg are

received, only variable f remains to be eliminated. That is to say, LAZY’s Equation

(4.18) is simplified to

∑

f

φ(f, h) · φ(b = 0) · φb=0(f, g). (4.19)

In our CHD example, LAZY will eliminate c, d, e twice at node cdefgh, once for

each message to bfg and ghij. This duplication of effort is a well-known undesirable

property in JT propagation [77]. Utilizing our third work schedule, such as in

Figure 4.16, to remove this duplication remains for future work.

We conclude this section by providing some empirical results illustrating the

usefulness of our jointree architecture. In short, we provide the time taken for

LAZY propagation and the time saved by allowing our architecture to guide LAZY.

The source code for LAZY propagation was obtained from [26], as was the code

for generating a jointree from a Bayesian network. Table 4.2 describes five real-

world Bayesian networks and their corresponding jointree representations used in

the experiments.

Table 4.2: Information about five Bayesian networks.

Bayesian Number of Number of Maximum Jointree
Network Variables in the BN Jointree Nodes Node Size
Alarm 37 85 5
CHD 11 24 4

Hailfinder 56 127 5
Insurance 27 64 9
Mildew 35 73 5
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We first measure the time cost of performing propagation without evidence.

Table 4.3 shows the time taken for : (i) LAZY propagation by itself, (ii) LAZY

propagation guided by our architecture, (iii) time saved by using our approach,

and (iv) time saved as a percentage. All propagation was timed in seconds using

a SGI R12000 processor. Note that our architecture lowered the time taken for

propagation in all five real-world Bayesian networks. The time percentage saved

ranged from 11.76% to 69.26% with an average percentage of 37.02%.

Table 4.3: Experimental results on five Bayesian networks without evidence.

Bayesian LAZY LAZY Propagation Time Time Percentage of
Network Propagation Time Guided by our Architecture Saved Time Saved
Alarm 0.758 0.233 0.525 69.26%
CHD 0.083 0.054 0.029 34.94%

Hailfinder 2.56 2.259 0.301 11.76%
Insurance 8.932 7.223 1.709 19.13%
Mildew 882.276 441.032 441.244 50.01%

Next, we measure the time cost of performing propagation involving evidence. In

each BN, approximately twenty percent of the variables are randomly instantiated

as evidence variables, such as was done for the largest BN used in the experimental

results of [54]. Table 4.4 shows how time can be saved by allowing our architecture

to guide LAZY in its propagation involving evidence. Note that once again our

architecture lowered the time taken for propagation in all five real-world Bayesian

networks. The time percentage saved ranged from 1.86% to 14.89% with an average

percentage of 6.12%.

It is worth mentioning that our architecture is more useful with fewer evidence

variables. One reason for this is that the cost of physical computation is lowered with
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Table 4.4: Experimental results on five Bayesian networks with 18% of the variables
randomly instantiated as evidence variables.

Bayesian LAZY LAZY Propagation Time Time Percentage of
Network Propagation Time Guided by our Architecture Saved Time Saved
Alarm 0.579 0.545 0.034 5.87%
CHD 0.047 0.040 0.007 14.89%

Hailfinder 0.783 0.762 0.021 2.68%
Insurance 0.453 0.429 0.024 5.29%
Mildew 15.03 15.00 0.028 1.86%

collected evidence, since the probability tables to be propagated are much smaller

than would be without evidence. For instance, LAZY takes over 882 seconds to

perform propagation without evidence on the Mildew BN, but LAZY only takes

about 15 seconds to perform propagation if 6 variables are instantiated as evidence

variables. Therefore, LAZY needs the most help with little or no evidence and this

is precisely when our architecture is most beneficial.

4.5 Local BNs and Practical Applications

After applying our architecture, as described in Section 4.2, to identify the prob-

ability information being passed in a JT, let us apply either method from [54, 97]

to physically construct the identified CPT messages. That is, we assume that the

label in each storage register of our architecture is replaced with its corresponding

physical probability distribution. Unlike all previous JT architectures [42,45,54,76],

in our architecture, after propagation not involving evidence, each JT node N has

a sound, local BN preserving all conditional independencies of the original BN in-

volving variables in N . Practical applications of local BNs include an automated
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modeling procedure for multiply sectioned BNs and a method for exploiting localized

queries in direct computation techniques.

Lemma 10 Given a BN D and a JT for D, apply Rules 1-5 in our architecture.

For any JT node N , the CPTs assigned to N , together with all CPTs sent to N

from N ’s neighbours, define a local BN DN .

Proof: As previously mentioned, when a JT node Ni receives a message from a

neighbour Nj, it is also receiving, indirectly, information from the nodes on the

other side of Nj [77]. Thus, without a loss of generality, let the JT for D consist of

two nodes, N1 and N2. We only need focus on variables in the separator N1 ∩ N2.

Consider a variable vm in N1 ∩ N2 such that the BN CPT p(vm|Pm) is assigned to

N1. Thus, vm is without a CPT label with respect to N2. In N1’s call to ICM for

its messages to N2, variable vm is not in X = N1 − N2, the set of variables to be

eliminated, Thus, ICM will return a CPT label for vm to N1. By Rule 5, N1 will

place this CPT label in the empty storage register for vm from N1 to N2. Therefore,

after propagation, variable vm has a CPT label at node N2. Conversely, consider

N2’s call of ICM for its messages to N1. Since the BN CPT p(vm|Pm) is assigned

to N1, there is no CPT label for vm passed to ICM. Thus, ICM does not return a

CPT label for vm to N2. By Rule 5, N2 fills the empty storage register of vm from

N2 to N1 with the unity-potential label 1(vm). Therefore, after propagation, both

N1 and N2 have precisely one CPT label for vm. Moreover, for each node, it follows

from Lemma 5 that the CPT-graph defined by the assigned CPTs and the message

CPTs is a DAG. By definition, each JT node N has a local BN DN . 2

Example 52 Recall the JT with assigned CPTs in Figure 4.3. Each JT node has

a local BN after propagation not involving evidence, as depicted by a screen shot of
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our implemented system in Figure 4.17.

Figure 4.17: Local BNs after propagation not involving evidence for the CHD BN.

Theorem 17 Given a BN D and a JT for D, let DN be the local BN for a JT node

N. If an independence I(X, Y, Z) holds in a local BN DN for a JT node N , then

I(X,Y, Z) holds in the original BN D.

Proof: We will show the claim by removing variables in the JT towards the node

N . Let vi be the first variable eliminated in the JT for D. After calling MCL, let

D′ be the CPT-graph defined by the CPTs remaining at this node, together with

the CPTs assigned to all other nodes. It follows from Lemma 5 that D′ is a DAG.

We now establish that I(X, Y, Z) holding in D′ implies that I(X, Y, Z) holds in D.

Note that since vi is eliminated, vi 6∈ XY Z. By contraposition, suppose I(X,Y, Z)

does not hold in D. By Lemma 7, let Dm be the moralization of the sub-DAG of D

onto XY Z ∪An(XY Z). There are two cases to consider. Suppose vi /∈ An(XY Z).

In this case, I(X, Y, Z) does not hold in D′ as Dm is also the moralization of the
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sub-DAG of D′ onto XY Z ∪ An(XY Z). Now, suppose vi ∈ An(XY Z). Let D′
m

be the moralization of the sub-DAG of D′ onto XY Z ∪An(XY Z). By assumption,

there is an undirected path in Dm from X to Z, which does not involve Y . If this

path does not involve vi, this same path must exist in D′
m as the MCL algorithm

only removes those edges involving vi. Otherwise, as vi 6∈ XY Z, this path must

include edges (v, vi) and (vi, v
′), where v, v′ ∈ PiCi. Since the moralization process

will add an undirected edge between every pair of variables in Pi, and since the

MCL algorithm will add a directed edge from every variable in Pi to every variable

in Ci and also from every variable vj in Ci to every other variable vk in Ci such

that vj ≺ vk in Rule 2, it is necessarily the case that (v, v′) is an undirected edge in

the moralization D′
m of D′. As there is an undirected path in D′

m from X to Z not

involving Y , by definition, I(X, Y, Z) does not hold in D′. Thus, every independence

I(X,Y, Z) encoded in D′ is encoded in the original BN D. Therefore, by recursively

eliminating all variables v 6∈ N , all conditional independencies encoded in DN are

also encoded in D. 2

Example 53 In Figure 4.17, it is particularly illuminating that our architecture

correctly models I(g, c, h), the conditional independence of g and h given c, in the

local BN for cdefgh, yet at the same time correctly models I(g, h, i), the conditional

independence of g and i given h, in the local BN for ghij.

Although unconditional independencies of the original BN might not be saved

in the local BNs, Theorem 18 shows that conditional independencies are.

Theorem 18 Given Lemma 10. If an independence I(X,Y, Z) holds in the original

BN D, where Y 6= ∅ and XY Z is a subset of a JT node N , then I(X, Y, Z) holds

in the local BN DN .
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Proof: Let vi ∈ U be the first variable eliminated by our architecture. Suppose FRC

returns the set of CPT labels C ′ = {p(vi|Pi), p(v1|P1), . . . , p(vk|Pk)}. By ≺ in Rule

2, the child-set of vi is Ci = {v1, . . . , vk}. The set of all variables appearing in any

label of C ′ is EkFk. Clearly, the CPT-graph D′ defined by C ′ is a DAG. By Corollary

6 in [68], variable vi is independent of all other variables in U given EkFk−vi. Thus,

we only need to show that any conditional independence I(X, Y, Z) holding in D′

with vi 6∈ XY Z is preserved in D′′, where D′′ is the CPT-graph defined by the set

C ′′ of CPT labels output by MCL given C ′ as input. By Lemma 5, D′′ is a DAG.

By contraposition, suppose a conditional independence I(X,Y, Z) does not hold in

D′′. According to the method for testing independencies in Section 2, let D′
m be the

moralization of the sub-DAG of D′ onto XY Z ∪An(XY Z). There are two cases to

consider. Suppose vi 6∈ An(XY Z). In this case, I(X, Y, Z) does not hold in D′ as

D′
m is also the moralization of the sub-DAG of D′′ onto XY Z ∪ An(XY Z). Now,

suppose vi ∈ An(XY Z). By definition, the moralization process makes families

complete. Observe that the family of each variable vm in D′ is, by definition, the

family-set of vm in the CPT label p(vm|Pm) of C ′. For every variable vm in the sub-

DAG of D′ onto XY Z ∪An(XY Z), vi is a member of the family-set Fm. Therefore,

there is an edge (vi, v) in D′
m between vi and every other variable v in D′

m. Then, in

particular, there is a path (x, vi), (vi, z) from every variable x ∈ X to every variable

z ∈ Z. Since vi 6∈ Y , by definition, I(X, Y, Z) does not hold in D′. Hence, all

conditional independencies on U−vi are kept. Therefore, by recursively eliminating

all variables v 6∈ N , all conditional independencies on N are kept. That is, by

Lemma 10, all conditional independencies I(X, Y, Z) with XY Z ⊆ N are preserved

in the local BN DN . 2
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Example 54 Recall the CPT-graphs in Figs. 4.6 and 4.5 defined by the CPT labels

before and after the elimination of variable vi = f , respectively, where Ci = {v1 =

j, v2 = k, v3 = l}. It may seem as though some conditional independencies are lost

due to the additional directed edges like (c, l), (e, l), and (j, l), where c ∈ Pi, e ∈ P1,

and j, l ∈ Ci. On the contrary, although I(c, ejkhi, l), I(e, bcdhjk, l), and I(j, cde, l)

do not hold in Figure 4.5, these independencies do not hold in Figure 4.6 either.

Some unconditional independencies were lost, however, such as I(be, ∅, kl).

Our first practical application of local BNs concerns multiply sectioned BNs (MS-

BNs) [86–89]. A MSBN is a representation of a BN as a collection of local BNs that

are organized in a JT structure. Before any inference takes place, a given BN needs

first be modeled as a MSBN. Several problems, however, with the manual construc-

tion of a MSBN from a BN have recently been acknowledged [88]. We resolve this

modeling problem as follows.

Recently, Olesen and Madsen [66] gave a simple method for constructing a special

jointree based on the maximal prime decomposition (MPD) of a Bayesian network.

One desirable property of a MPD jointree is that the jointree nodes are unique for

a given Bayesian network. We favour MPD JTs over conventional JTs, since they

facilitate inference in the LAZY architecture while still only requiring polynomial

time for construction [66]. For example, given the CHD BN in Figure 3.9, the JT

shown in Figure 4.3 is the unique MPD JT.

We now propose the following automated procedure for constructing a MSBN

from a given BN. First, construct a MPD JT for the given BN. Next, assign the

BN CPTs as usual. Instead of applying the LAZY architecture on the MPD JT

as Olesen and Madsen suggest, apply our architecture to label the messages to be
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propagated during JT propagation. After the distributions of these identified CPTs

have been physically computed using any of the available inference algorithms, such

as [54,97], each JT node has a local BN. By definition, the representation is a MSBN.

Example 55 We illustrate our automated MSBN modeling method using the real-

world CHD BN in Figure 3.9. The MPD JT with assigned BN CPTs is shown

in Figure 4.3. The CPTs identified by our architecture are listed in Figure 4.7.

Apply any probabilistic inference algorithm to physically construct these CPTs. By

definition, Figure 4.17 is a MSBN for the CHD BN.

The significance of our suggestion is not aimed at an improvement in MSBN com-

putational efficiency. Instead, an automated procedure for the semantic modeling of

MSBNs overcomes the recently acknowledged problems with manually constructing

MSBNs [88].

Our second practical application of local BNs concerns direct computation (DC) [23,

48,97]. MSBNs are well established in the probabilistic reasoning community due, in

large part, to the presence of localized queries [86,87]. That is, practical experience

has previously demonstrated that queries tend to involve variables in close proxim-

ity within the BN [89]. We conclude our discussion by showing how our semantic

architecture allows direct computation to exploit localized queries.

Direct computation is usually better than JT propagation, if one only is inter-

ested in updating a small set of non-evidence variables [54], where small is shown

empirically to be twenty or fewer variables in [97]. However, direct computation

processes every query using the original BN. Therefore, it is not exploiting localized

queries.
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Our semantic architecture models the original BN as a set of local BNs, once the

physical distributions corresponding to the identified CPT labels have actually been

constructed. Hence, direct computation techniques can process localized queries in

local BNs. The following empirical evaluation is styled after the one reported by

Schmidt and Shenoy [74].

Example 56 We suggest that the CHD BN in Figure 3.9 be represented as the

smaller local BNs in Figure 4.17, after the physical construction of CPTs p(b), p(f),

p(g), p(g|f), and p(h|g). Table 4.5 shows the work needed by direct computation to

answer five localized queries using the original CHD BN of Figure 3.9 in comparison

to using the local BNs of Figure 4.17.

Table 4.5: The computation needed in DC to process five localized queries in the
original CHD BN in Figure 3.9 versus the local BNs in Figure 4.17.

Localized Original BN Local BNs
query + × ÷ + × ÷

p(a|b = 0) 1 2 2 1 2 2
p(b|f = 0, g = 0) 3 8 2 1 4 2

p(d|h = 0) 3 6 2 3 6 2
p(g|h = 0, i = 0, j = 0) 19 42 2 1 6 2

p(g|k = 0) 19 38 2 1 2 2

While it is acknowledged that our suggestion here is beneficial only for localized

queries, practical experience with BNs, such as in neuromuscular diagnosis [89], has

long established that localized queries occur in practice.
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4.6 Summary

The LAZY architecture has demonstrated a remarkable improvement in efficiency

over the traditional methods by actively exploiting independencies to remove irrel-

evant potentials before variable elimination. LAZY propagation, however, does not

utilize the independencies holding in the relevant potentials. In our architecture, we

introduce the concepts of parent-set and elder-set in order to take advantage of these

valuable independencies. Based on this exploitation of independence information,

we proposed an architecture for semantic modeling. We believe that the compu-

tationally efficient LAZY method, and the semantically rich architecture proposed

here, serve as complementary examples of second-generation jointree probability

propagation architectures.
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Chapter 5

Conclusion

In this thesis, we have highlighted the use of semantics in knowledge discovery

and uncertainty reasoning. In order to use more semantics in itemset mining, we

proposed utility based itemset mining. Using equivalences among attributes, we

showed that functional dependencies can be discovered efficiently. By considering

the logical implication relationship between functional dependency and conditional

independence, we showed that a Bayesian network can be constructed from the re-

sulting functional dependencies. We established a jointree architecture for semantic

modelling by applying conditional independencies that had remained unnoticed in

previous architectures.

We summarize our research on utility based itemset mining in Section 5.1. We

present the conclusions concerning learning functional dependencies and Bayesian

networks in Section 5.2. We summarize the results of our study of a jointree propa-

gation architecture for semantic modelling in Section 5.3. Future work is discussed

in Section 5.4.

138



5.1 Utility based Itemset Mining

Our research on utility based itemset mining has made two contributions to the

theories and techniques of KDD. First, our theoretical work provides a basis for the

study of itemset mining from the view of utility. Liu et al. have already used our

theoretical work as a basis for developing their own algorithm [50,51] and it has also

been cited by Zhou and Wang [98]. Although previous research on itemset mining

resulted in fast scalable algorithms for discovering frequent itemsets [4,33,67], it did

not emphasize the quality of the resulting itemsets. By allowing users to quantify

their preferences concerning the usefulness of itemsets as utility values, our approach

is capable of expressing and dealing with more complex types of user preferences

than previous research. Based on the utility value of itemsets, we introduced the

utility constraint. As we showed in Chapter 2, utility constraints may not satisfy

the Apriori property [2] or the convertible property [69] commonly used in itemset

mining. Thus, we evaluated a novel mathematical property for this constraint,

namely, the utility upper bound property.

Our second contribution is that we provided an efficient algorithm, called UMin-

ing, for finding all itemsets satisfying a utility constraint. Where a user’s interests

can be specified as utility constraints, this algorithm is effective. Our theoretical

results for utility constraints were used to design an efficient pruning strategy. Us-

ing this pruning strategy, the UMining algorithm can efficiently find all high utility

itemsets from a database, while methods for frequent itemset mining [2], convertible

constraint based mining [17, 19, 49, 53, 70], and share based mining [7, 92] cannot.

Experimental results showed that the proposed algorithm is effective on synthetic

and real world datasets. We also developed a heuristic algorithm, called UMining H,
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which typically finds most high utility itemsets based on a heuristic pruning strat-

egy. Experimental results indicate that UMining H provides a reasonable balance

between accuracy and efficiency for some applications.

5.2 Learning Functional Dependencies and Bayesian

Networks

Our research on learning functional dependencies and Bayesian networks made two

contributions to the techniques and practical applications of learning functional

dependencies from data. First, we provided an efficient algorithm, called FD Mine,

for finding functional dependencies from data. By exploiting Armstrong’s Axioms for

functional dependencies, we identified equivalences among attributes, which can be

used to reduce both the size of the dataset and the number of functional dependencies

to be checked. We summarized four effective pruning rules to reduce the number

functional dependencies to be checked. Based on these pruning rules, the FD Mine

algorithm was developed. Experimental results showed that FD Mine can prune

more candidates than previous methods without eliminating any valid candidates.

Our second contribution is that we showed a practical application of learning

functional dependencies from data, namely, constructing a sound Bayesian network.

Using the implication relationship that functional dependency logically implies con-

ditional independence, we developed another algorithm, called FD2BN, to construct

a Bayesian network using the resulting functional dependencies, which are efficiently

discovered from data by FD Mine. We proved the correctness of FD2BN. Since func-

tional dependency is only a sufficient condition for conditional independence, we ac-
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knowledge that our approach may not utilize all conditional independencies encoded

in data. However, other polynomial learning algorithms also suffer this disadvan-

tage, since Bouckaert [12] proved that discovering all conditional independencies in

a probability distribution is a NP-hard problem.

5.3 Jointree Probability Propagation for Seman-

tic Modelling

Our research on jointree probability propagation for semantic modelling made three

contributions to the theories and techniques of inference in probabilistic expert sys-

tem. We proposed the first architecture to precisely model jointree propagation in

terms of conditional probability tables. Our architecture can identify independen-

cies that are not utilized in previous architectures. The identified independencies are

very useful, since they allow us to maintain a conditional probability table factor-

ization after a variable is eliminated. We showed that after our semantic modelling,

each jointree node has a sound, local Bayesian network preserving all conditional

independencies of the original Bayesian network involving variables in this node.

Our second contribution is showing that the proposed architecture allows us to

assist LAZY propagation [54], the state-of-the-art architecture, by producing three

work schedules, when modeling inference involving evidence. Our first work schedule

identified all irrelevant non-empty messages, as depicted in Figures 4.12 and 4.13.

This information is useful, since LAZY’s lack of semantic information could force a

receiving node to wait for the physical construction of a message that is irrelevant

to its subsequent message computation, as explicitly demonstrated in Examples 47
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and 48. Our second work schedule identified all empty messages propagated from

non-leaf jointree nodes, as shown in Figure 4.15. Our third work schedule identified

variables that can be eliminated at a non-leaf node before the node has received

any messages, as the screen shot in Figure 4.16 indicates. Our experimental results,

given in Tables 4.3 and 4.4, showed that the three work schedules reduced the time

required for LAZY propagation for all five real-world Bayesian networks evaluated.

Our third contribution is showing that our architecture is useful to multiply sec-

tioned Bayesian network techniques and direct computation techniques, even when

modeling inference not involving evidence. Using our architecture, we developed an

automated procedure for constructing a multiply sectioned Bayesian network from

a given Bayesian network. This procedure may be of wide interest, since several

problems with the manual construction of a multiply sectioned Bayesian network

from a Bayesian network have recently been acknowledged [88]. We also have sug-

gested a method for exploiting localized queries in direct computation techniques.

Practical experience, such as that gained from neuromuscular diagnosis [89], demon-

strated that queries tend to involve variables in close proximity within a Bayesian

network. Our approach allows direct computation to process localized queries in

local Bayesian networks. The experimental results in Table 4.5 showed promise.

5.4 Future Research

In this section, some possible directions for future research in itemset mining, learn-

ing functional dependencies, and jointree probability propagation are given.

Several interesting problems related to utility based itemset mining remain as

possibilities for future research. First, the UMining algorithm is based on a level
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wise approach. Since depth first search approaches, such as MAFIA [14] and FP-

growth [33], have several advantages over level wise approaches, future research

could consider whether the pruning strategies described in Section 2.3 could be

incorporated in these approaches. As well, following the suggestion of Kleinberg

et al. [44] that a discovered pattern is interesting only to the extent that it can

be used in the decision making process of the user to increase utility, the ability

to suggest a highly profitable action for the user based on discovered high utility

itemsets could be investigated. Finally, although the focus of utility based mining

has been on itemset mining, the results of the present study may be useful in other

related problem domains, such as information retrieval [73] and web mining [20].

For example, Table 2.1 can be regarded as representing a document set used in

information retrieval, where each column represents a term, and each row represents

a document, and the value in each cell indicates the frequency of a term appearing

in a document. Table 2.1 can also be regarded as representing web pages used in

web mining, where each column represents a keyword, and each row represents a

web page, and the value in each cell indicates the frequency of a keyword appearing

in a web page. In each case, the documents matching a user’s interest could be

retrieved using the UMining algorithm.

We see three possibilities worth investigating in the study of learning functional

dependencies and Bayesian networks from data based on the results obtained in this

thesis. First, it may be possible to use attributes identified as being equivalent to

preform data cleaning by detecting and removing errors and inconsistencies from

data in order to improve its quality. Secondly, our approach might be helpful for

other heuristic search algorithms [28,37] used for learning a Bayesian network from

data. These algorithms use greedy search techniques to pick a Bayesian network.
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However, it is usually difficult for a person to determine a proper initial Bayesian

network [37]. Instead, the Bayesian network constructed in our approach could be

used as the initial Bayesian network in these other approaches. Finally, rules that are

more general than functional dependencies, such as association rules, may possibly

be organized into a Bayesian network to support reasoning.

There is still more work to be done in jointree propagation. A graph might be

used to represent the relationship among conditional probability tables found by the

IdentifyCPTMessages algorithm. Increasing the parallelism in jointree propagation

is another research direction. Also, the potential relationship between jointree prop-

agation and expectation propagation, as proposed by Geng and Hamilton [29] for

mining interesting summaries in a generalization space, needs to be investigated.
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